ON A CLASS OF ASYMPTOTICALLY STABLE LINEAR DIFFERENTIAL EQUATIONS

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

Roberto Conti

(Received July 10, 1979, revised October 12, 1979)

1. We consider a linear ordinary differential equation

(A)

$$
\dot{x}-A(t) x=0
$$

where $A: t \mapsto A(t)$ is a continuous, complex $n \times n$ matrix valued function of $t \in J=] \alpha,+\infty[,-\infty \leqq \alpha$.

We denote by $E:(t, s) \mapsto E(t, s)$ the evolution operator generated by A, defined for $(t, s) \in J^{2}$ by

$$
E(t, s)=\lim _{k}\left[I+\int_{s}^{t} A\left(t_{1}\right) d t_{1}+\cdots+\int_{s}^{t} \cdots \int_{s}^{t_{k-1}} A\left(t_{1}\right) \cdots A\left(t_{k}\right) d t_{k} \cdots d t_{1}\right]
$$

where I is the $n \times n$ identity matrix.
Given $p \geqq 1$, we say that A belongs to the class $L^{p} S$ if for each $\theta \in J$ there exist $k_{p}(\theta)>0$ such that

$$
\begin{equation*}
\alpha<\theta \leqq t \Rightarrow\left(\int_{0}^{t}|E(t, s)|^{p} d s\right)^{1 / p} \leqq k_{p}(\theta) \tag{1.1}
\end{equation*}
$$

The class $L^{\infty} S$, defined by

$$
\begin{equation*}
\alpha<\theta \leqq t \Rightarrow \sup \{|E(t, s)|: \theta \leqq s \leqq t\} \leqq k_{\infty}(\theta) \tag{1.2}
\end{equation*}
$$

for some $k_{\infty}(\theta)>0$, coincides with the class of A such that

$$
\alpha<\theta \leqq s \leqq t \Rightarrow|E(t, s)|<\gamma(\theta)
$$

for some $\gamma(\theta)>0$, and will be denoted by US. It corresponds, in fact, to equations (A) whose solutions are uniformly stable for $t \rightarrow+\infty$.

The family $L^{p} S$, depending on the parameter $p, 1 \leqq p \leqq+\infty$, has been considered (Coppel [1], [2]; Conti [3]) in connection with boundedness properties of the solutions of

$$
\dot{x}-A(t) x=b(t) .
$$

Later on other properties of $L^{p} S$ were established (Conti [4], [5]). We want to add here a few remarks and put one question.
2. We shall first prove by an example the validity of

$$
\begin{equation*}
L^{p} S \backslash L^{p+\varepsilon} S \neq \varnothing, \quad p \geqq 1, \quad \varepsilon>0 \tag{2.1}
\end{equation*}
$$

Let $n=1, \quad A(t)=\dot{f}(t) / f(t), \quad f(t)=e^{-t}[1+g(t)]^{-1}$ where g is defined as follows. Let $\left\{t_{k}\right\}$, $\left\{\delta_{k}\right\},\left\{\gamma_{k}\right\}$ be three sequences such that $t_{k} \uparrow+\infty, \delta_{k}>$ $0, \gamma_{k}>0, t_{k}+\delta_{k}<t_{k+1}-\delta_{k+1}$, so that no two intervals $J_{k}=\left[t_{k}-\delta_{k}\right.$, $\left.t_{k}+\delta_{k}\right], \quad(k=1,2, \cdots)$, overlap. Then let $g(t)=0$ for $t \in \boldsymbol{R} \backslash \bigcup J_{k}$, let $g\left(t_{k}\right)=\gamma_{k}$ and let the graph of g on J_{k} be the union of the two segments with endpoints $\left(t_{k}-\delta_{k}, 0\right),\left(t_{k}, \gamma_{k}\right)$ and $\left(t_{k}, \gamma_{k}\right),\left(t_{k}+\delta_{k}, 0\right)$. Since $E(t, s)=$ $f(t) / f(s)$, using the inequality $(\alpha+\beta)^{p} \leqq 2^{p-1}\left(\alpha^{p}+\beta^{p}\right)$ for $p \geqq 1$, we have

$$
\begin{aligned}
\int_{0}^{t}|E(t, s)|^{p} d s & =e^{-p t}[1+g(t)]^{-p} \int_{0}^{t} e^{p s}[1+g(s)]^{p} d s \leqq e^{-p t} \int_{0}^{t} e^{p s}[1+g(s)]^{p} d s \\
& \leqq 2^{p-1} e^{-p t} \int_{0}^{t} e^{p s}\left[1+g^{p}(s)\right] d s \leqq 2^{p-1}\left[p^{-1}+\sum_{1}^{\infty} \int_{J_{k}} g^{p}(s) d s\right] .
\end{aligned}
$$

On the other hand, since $g(s)=\lambda s+\mu$ on $\left[t_{k}-\delta_{k}, t_{k}\right], \quad g^{p}$ is a convex function increasing from 0 to γ_{k}^{p} and the integral of g^{p} over [$t_{k}-\delta_{k}, t_{k}$] is less than the area $\delta_{k} \gamma_{k}^{p} / 2$ of the triangle with vertices at ($\left.t_{k}-\delta_{k}, 0\right)$, $\left(t_{k}, \gamma_{k}^{p}\right), \quad\left(t_{k}, 0\right)$. Similarly, the integral of g^{p} over $\left[t_{k}, t_{k}+\delta_{k}\right]$ is less than $\delta_{k} \gamma_{k}^{p} / 2$. Therefore we have

$$
\begin{equation*}
\int_{0}^{t}|E(t, s)|^{p} d s \leqq 2^{p-1}\left[p^{-1}+\sum_{1}^{\infty} \delta_{k} \delta_{k} \gamma_{k}^{p}\right] . \tag{2.2}
\end{equation*}
$$

We also have by Hölder's inequality

$$
\begin{aligned}
& \left(\int_{t_{k}}^{t_{k+\delta_{k}}}\left|E\left(t_{k}+\delta_{k} s\right)\right|^{p} d s\right)^{1 / p}=e^{-t_{k}-\hat{\delta}_{k}}\left(\int_{t_{k}}^{t_{k}+\delta_{k}} e^{p s}[1+g(s)]^{p} d s\right)^{1 / p} \\
& \quad \geqq e^{-t_{k}-\hat{\sigma}_{k} \delta_{k}^{1 / p-1}} \int_{t_{k}}^{t_{k}+\delta_{k} k} e^{s}[1+g(s)] d s \geqq e^{-\delta_{k}}\left\langle\delta_{k}^{1 / p-1} \int_{t_{k}}^{t_{k}+\dot{\delta}_{k}} g(s) d s\right.
\end{aligned}
$$

and finally

$$
\begin{equation*}
\left(\int_{t_{k}}^{t_{k}+\delta_{k}}\left|E\left(t_{k}+\delta_{k}, s\right)\right|^{p} d s\right)^{1 / p} \geqq 2^{-1} e^{-\delta_{k}} \delta_{k}^{1 / p} \gamma_{k} . \tag{2.3}
\end{equation*}
$$

Since δ_{k}, γ_{k} can be chosen so that $\delta_{k} \rightarrow 0, \sum_{k=1}^{\infty} \delta_{k} \gamma_{k}^{p}<+\infty$, whereas $\hat{o}_{k}^{1 /(p+\varepsilon)} \gamma_{k} \rightarrow+\infty$ (for instance, $\delta_{k}=a^{k}, \gamma_{k}=2^{k}, \quad 2^{-(p+\varepsilon)}<a<2^{-p}$) we see from (2.2) and (2.3) that there are $A \in L^{p} S \backslash L^{p+\varepsilon} S$.

The relation (2.1) suggests the following
Question. Does

$$
\begin{equation*}
L^{p+\varepsilon} S \subset L^{p} S, \quad 1 \leqq p, \quad \varepsilon>0 \tag{2.4}
\end{equation*}
$$

hold?
3. We say that A belongs to the class AS if

$$
\lim _{t \rightarrow+\infty} E(t, \tau)=0, \quad \tau \in J,
$$

which amounts to asymptotic stability of the solutions of (A) as $t \rightarrow$ $+\infty$.

It can be shown (Coppel [2], Conti [5]) that

$$
L^{p} S \subset \mathrm{AS}, \quad 1 \leqq p
$$

and that the inclusion is strict.
We say that A belongs to the class ES if for each $\theta \in J$ there exist $\gamma(\theta)>0, \mu(\theta)>0$, such that

$$
\begin{equation*}
\alpha<\theta \leqq s \leqq t \Rightarrow|E(t, s)| \leqq \gamma(\theta) e^{-\mu(\theta)(t-s)} . \tag{3.1}
\end{equation*}
$$

It is readily seen that if $A \in \mathrm{ES}$ then

$$
\begin{equation*}
\alpha<\theta \leqq t \Rightarrow\left(\int_{\theta}^{t}|E(t, s)|^{p} d s\right)^{1 / p} \leqq \gamma^{\prime}(\theta), \quad 1 \leqq p, \tag{3.2}
\end{equation*}
$$

for some $\gamma^{\prime}(\theta)>0$. But (3.2) implies, in turn, both (1.1) and (1.2), i.e., $A \in L^{p} S \cap$ US and since (Conti [5])

$$
\begin{equation*}
\mathrm{ES}=L^{p} S \cap \mathrm{US}, \quad 1 \leqq p, \tag{3.3}
\end{equation*}
$$

we see that (3.1) and (3.2) are equivalent.
The class ES corresponds to equations (A) whose solutions are exponentially (or uniformly asymptotically) stable for $t \rightarrow+\infty$.

From (3.3) it follows

$$
\begin{equation*}
\mathrm{ES} \subset \bigcap_{1 \leqq p} L^{p} S \tag{3.4}
\end{equation*}
$$

We want to show that the inclusion is strict. In fact, taking $\delta_{k}=$ $2^{-k^{2}}, \quad \gamma_{k}=2^{k}$ in the preceding example we have $\sum_{k=1}^{\infty} \delta_{k} \gamma_{k}^{p}=\sum_{k=1}^{\infty}\left(2^{p-k}\right)^{k}<$ $+\infty$ for every $p \geqq 1$. Then, by virtue of (2.2), the corresponding A belongs to $L^{p} S$ for every $p \geqq 1$, i.e., $A \in \bigcap_{1 \leqq p} L^{p} S$.

On the other hand from (2.3) we have

$$
\left(\int_{t_{k}}^{t_{k}+\delta_{k}}\left|E\left(t_{k}+\delta_{k}, s\right)^{p}\right| d s\right)^{1 / p} \geqq 2^{-1} e^{-1 / 2} 2^{-k^{2} / p} 2^{k},
$$

hence, as $p \rightarrow+\infty$,

$$
\sup \left\{\left|E\left(t_{k}+\delta_{k}, s\right)\right|: t_{k} \leqq s \leqq t_{k}+\delta_{k}\right\} \geqq 2^{-1} e^{-1 / 2} 2^{k}
$$

Therefore (1.2) cannot hold, i.e., $A \notin$ US, and from (3.3) it follows that (3.4) is a strict inclusion.

References

[1] W. A. Coppel, On the stability of ordinary differential equations, J. London Math. Soc. 39 (1964), 255-260.
[2] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath Math. Monographs, Boston, 1965.
[3] R. Conti, On the boundedness of solutions of ordinary differential equations, Funkcialaj Ekvacioj 9 (1966), 23-26.
[4] R. Conti, Quelques propriétés de l'opérateur d'évolution, Colloquium Math. 18 (1967), 73-75.
[5] R. Conti, Linear Differential Equations and Control, Academic Press, New York, 1976.
Istituto Matematico U. Dini
Viale Morgagni 67/A
50134 Firenze, Italy

