Tôhoku Math. Journ. 32 (1980), 279-282.

ON A CLASS OF ASYMPTOTICALLY STABLE LINEAR DIFFERENTIAL EQUATIONS

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

ROBERTO CONTI

(Received July 10, 1979, revised October 12, 1979)

1. We consider a linear ordinary differential equation

$$\dot{x} - A(t)x = 0$$

where $A: t \mapsto A(t)$ is a continuous, complex $n \times n$ matrix valued function of $t \in J =]\alpha, + \infty[, -\infty \leq \alpha]$.

We denote by $E: (t, s) \mapsto E(t, s)$ the evolution operator generated by A, defined for $(t, s) \in J^2$ by

$$E(t, s) = \lim_k \left[I + \int_s^t A(t_1)dt_1 + \cdots + \int_s^t \cdots \int_s^{t_{k-1}} A(t_1) \cdots A(t_k)dt_k \cdots dt_1\right],$$

where I is the $n \times n$ identity matrix.

Given $p \ge 1$, we say that A belongs to the class L^pS if for each $\theta \in J$ there exist $k_p(\theta) > 0$ such that

(1.1)
$$\alpha < \theta \leq t \Rightarrow \left(\int_{\theta}^{t} |E(t, s)|^{p} ds \right)^{1/p} \leq k_{p}(\theta) .$$

The class $L^{\infty}S$, defined by

$$(1.2) \qquad \qquad \alpha < \theta \leq t \Rightarrow \sup\{|E(t, s)| : \theta \leq s \leq t\} \leq k_{\infty}(\theta)$$

for some $k_{\infty}(\theta) > 0$, coincides with the class of A such that

$$lpha < heta \leqq s \leqq t \Rightarrow |E(t, s)| < \gamma(heta)$$

for some $\gamma(\theta) > 0$, and will be denoted by US. It corresponds, in fact, to equations (A) whose solutions are uniformly stable for $t \to +\infty$.

The family L^pS , depending on the parameter p, $1 \leq p \leq +\infty$, has been considered (Coppel [1], [2]; Conti [3]) in connection with boundedness properties of the solutions of

$$\dot{x} - A(t)x = b(t) \ .$$

Later on other properties of $L^{p}S$ were established (Conti [4], [5]). We want to add here a few remarks and put one question.

R. CONTI

2. We shall first prove by an example the validity of

$$(2.1) L^pS \setminus L^{p+\varepsilon}S \neq \emptyset , p \ge 1 , \ \varepsilon > 0 .$$

Let n = 1, $A(t) = \dot{f}(t)/f(t)$, $f(t) = e^{-t}[1 + g(t)]^{-1}$ where g is defined as follows. Let $\{t_k\}, \{\delta_k\}, \{\gamma_k\}$ be three sequences such that $t_k \uparrow +\infty$, $\delta_k > 0$, $\gamma_k > 0$, $t_k + \delta_k < t_{k+1} - \delta_{k+1}$, so that no two intervals $J_k = [t_k - \delta_k, t_k + \delta_k]$, $(k = 1, 2, \cdots)$, overlap. Then let g(t) = 0 for $t \in \mathbb{R} \setminus \bigcup J_k$, let $g(t_k) = \gamma_k$ and let the graph of g on J_k be the union of the two segments with endpoints $(t_k - \delta_k, 0)$, (t_k, γ_k) and (t_k, γ_k) , $(t_k + \delta_k, 0)$. Since E(t, s) = f(t)/f(s), using the inequality $(\alpha + \beta)^p \leq 2^{p-1}(\alpha^p + \beta^p)$ for $p \geq 1$, we have

$$egin{aligned} &\int_0^t |E(t,\,s)|^p ds = e^{-pt} [1+g(t)]^{-p} \int_0^t e^{ps} [1+g(s)]^p ds &\leq e^{-pt} \int_0^t e^{ps} [1+g(s)]^p ds \ &\leq 2^{p-1} e^{-pt} \int_0^t e^{ps} [1+g^p(s)] ds &\leq 2^{p-1} igg[p^{-1} + \sum_{1}^\infty k \int_{J_k} g^p(s) ds igg]. \end{aligned}$$

On the other hand, since $g(s) = \lambda s + \mu$ on $[t_k - \delta_k, t_k]$, g^p is a convex function increasing from 0 to γ_k^p and the integral of g^p over $[t_k - \delta_k, t_k]$ is less than the area $\partial_k \gamma_k^p/2$ of the triangle with vertices at $(t_k - \delta_k, 0)$, (t_k, γ_k^p) , $(t_k, 0)$. Similarly, the integral of g^p over $[t_k, t_k + \delta_k]$ is less than $\partial_k \gamma_k^p/2$. Therefore we have

(2.2)
$$\int_0^t |E(t,s)|^p ds \leq 2^{p-1} \left[p^{-1} + \sum_{1}^\infty \delta_k \gamma_k^p \right].$$

We also have by Hölder's inequality

$$igg(\int_{t_k}^{t_k+\delta_k} |E(t_k+\delta_k,s)|^p ds)^{1/p} = e^{-t_k-\delta_k} \Bigl(\int_{t_k}^{t_k+\delta_k} e^{ps} [1+g(s)]^p ds \Bigr)^{1/p} \ \ge e^{-t_k-\delta_k} \widehat{\delta}_k^{1/p-1} \int_{t_k}^{t_k+\delta_k} e^s [1+g(s)] ds \ge e^{-\delta_k} \widehat{\delta}_k^{1/p-1} \int_{t_k}^{t_k+\delta_k} g(s) ds$$

and finally

(2.3)
$$\left(\int_{t_k}^{t_k+\delta_k} |E(t_k+\delta_k,s)|^p ds\right)^{1/p} \ge 2^{-1} e^{-\delta_k} \delta_k^{1/p} \gamma_k \, .$$

Since δ_k , γ_k can be chosen so that $\delta_k \to 0$, $\sum_{k=1}^{\infty} \delta_k \gamma_k^p < +\infty$, whereas $\delta_k^{1/(p+\epsilon)} \gamma_k \to +\infty$ (for instance, $\delta_k = a^k$, $\gamma_k = 2^k$, $2^{-(p+\epsilon)} < a < 2^{-p}$) we see from (2.2) and (2.3) that there are $A \in L^p S \setminus L^{p+\epsilon} S$.

The relation (2.1) suggests the following

QUESTION. Does

$$(2.4)$$
 $L^{p+arepsilon}S\subset L^pS$, $1\leq p$, $arepsilon>0$

hold?

280

3. We say that A belongs to the class AS if

$$\lim_{t\to+\infty} E(t,\,\tau)=0\,,\quad \tau\in J$$

which amounts to asymptotic stability of the solutions of (A) as $t \rightarrow +\infty$.

It can be shown (Coppel [2], Conti [5]) that

$$L^pS \subset \mathrm{AS}$$
 , $1 \leq p$

and that the inclusion is strict.

We say that A belongs to the class ES if for each $\theta \in J$ there exist $\gamma(\theta) > 0$, $\mu(\theta) > 0$, such that

$$(3.1) \qquad \qquad \alpha < \theta \leq s \leq t \Rightarrow |E(t, s)| \leq \gamma(\theta) e^{-\mu(\theta)(t-s)} .$$

It is readily seen that if $A \in ES$ then

$$(3.2) \qquad \qquad \alpha < \theta \leq t \Longrightarrow \left(\int_{\theta}^{t} |E(t, s)|^{p} ds \right)^{1/p} \leq \gamma'(\theta) , \quad 1 \leq p ,$$

for some $\gamma'(\theta) > 0$. But (3.2) implies, in turn, both (1.1) and (1.2), i.e., $A \in L^p S \cap US$ and since (Conti [5])

$$\mathrm{ES} = L^p S \cap \mathrm{US} \;, \;\; 1 \leq p \;,$$

we see that (3.1) and (3.2) are equivalent.

The class ES corresponds to equations (A) whose solutions are exponentially (or uniformly asymptotically) stable for $t \to +\infty$.

From (3.3) it follows

$$(3.4) ES \subset \bigcap_{1 \le p} L^p S .$$

We want to show that the inclusion is strict. In fact, taking $\delta_k = 2^{-k^2}$, $\gamma_k = 2^k$ in the preceding example we have $\sum_{k=1}^{\infty} \delta_k \gamma_k^p = \sum_{k=1}^{\infty} (2^{p-k})^k < +\infty$ for every $p \ge 1$. Then, by virtue of (2.2), the corresponding A belongs to L^pS for every $p \ge 1$, i.e., $A \in \bigcap_{1 \le p} L^pS$.

On the other hand from (2.3) we have

$$\left(\int_{t_k}^{t_k+\delta_k} \! | \, E(t_k\,+\,\delta_k,\,s)^p \, | \, ds
ight)^{1/p} \geq 2^{-1} e^{-1/2} 2^{-k^2/p} 2^k$$
 ,

hence, as $p \to +\infty$,

$$\sup\{|\mathit{E}(t_k+\delta_k,\,s)|\colon t_k\leq s\leq t_k+\delta_k\}\geq 2^{-1}e^{-1/2}2^k$$
 .

Therefore (1.2) cannot hold, i.e., $A \notin US$, and from (3.3) it follows that (3.4) is a strict inclusion.

R. CONTI

References

- W. A. COPPEL, On the stability of ordinary differential equations, J. London Math. Soc. 39 (1964), 255-260.
- [2] W. A. COPPEL, Stability and Asymptotic Behavior of Differential Equations, Heath Math. Monographs, Boston, 1965.
- [3] R. CONTI, On the boundedness of solutions of ordinary differential equations, Funkcialaj Ekvacioj 9 (1966), 23-26.
- [4] R. CONTI, Quelques propriétés de l'opérateur d'évolution, Colloquium Math. 18 (1967), 73-75.
- [5] R. CONTI, Linear Differential Equations and Control, Academic Press, New York, 1976.

ISTITUTO MATEMATICO U. DINI Viale Morgagni 67/A 50134 Firenze, Italy