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1. The so-called combination theorems of Maskit play an important
role in the theory of Kleinian groups. In [6], Maskit proved that every
function group can be constructed from elementary groups, quasi-Fuchsian
groups and degenerate groups by using his combination theorems.
Moreover, in [1] Abikoff and Maskit proved that every finitely generated
Kleinian group can be constructed from elementary groups, degenerate
groups and web groups in a similar manner. In this note we investigate
the limit sets of Kleinian groups which are constructed by using the
combination theorems.

2. Let G be a Kleinian group and denote by Ω(G) and Λ(G) the
region of discontinuity and the limit set of G, respectively. We denote
by SL' the group of all the Mobius transformations. Consider a sequence
{Cn} of Jordan curves on C and a point zeC. We say that {Cn} nests
about z, if Cn+1 separates z from Cn for every natural number n and if
the sequence of spherical diameters of {Cn} forms a null sequence.

Let C be a Jordan curve on C and {gn} be a sequence of elements
of SL'. We say that the sequence {gn(C)} converges to a point zeC,
if there exists a point x e C so that {gn(x)} converges to z and the se-
quence of spherical diameters of {gn(C)} forms a null sequence.

3. Let G be a Kleinian group and let H be a subgroup of G. A sub-
set S on C is called precisely invariant under H in G, if h(S) = S for
every h e H and g(S) ΓΊ S = 0 for every g eG — H. For a cyclic sub-
group H of G, a precisely invariant disc B for H is the interior of a
closed topological disc B on C, where B — A(H) is precisely invariant
under H in G and B - Λ(H) c Ω(G).

We use the combination theorems in the following forms.

COMBINATION THEOREM I. Let Gx and G2 be two Kleinian groups
and let Bi (i — 1, 2) be a precisely invariant disc under H, a finite or
a parabolic cyclic subgroup of both Gλ and G2. Assume that Bγ and B2

have the common boundary Y and Bt Π B2 = 0 . Let G be the group
generated by Gλ and G2. Then we have the following:



420 K. INOUE

(1-1) G is Kleinian.
(1-2) G is the free product of Gt and G2 with the amalgamated sub-

group H9 where G is often denoted by G1 *H G2.
(1-3) // zeΛ(G) — UfefftfC^Gi) U Λ(G2))9 then there is a sequence

{9n} of elements of G so that {gn(j)} nests about z.
(1-4) g(y) = 7 if and only if g eH.
(1-5) g eGi — H and g(y) ί l τ ^ 0 if and only if H is parabolic

cyclic and g e NG.(H), where NGi(H) denotes the normalizer of H in Gi9

for i = 1, 2.
(1-6) The cardinality of the set g(j) Π 7 is not greater than one for

geG-H.

COMBINATION THEOREM II. Let Gλ be a Kleinian group. For i = 1, 2,
let Bi be a precisely invariant disc for a finite or a parabolic cyclic sub-
group Hi of Crj and let 7t be the boundary of Bt. Assume that g(B^) Π
B2 — 0 for all g e Gt. Let f be a loxodromic element satisfying /(Ti) = 729

f(Bλ) Π B2 = 0 and f~Ή2f = Hλ. Let G be the group generated by G±

and f Then we have the following:
(II-l) G is Kleinian.
(Π-2) Every relation in G is a consequence of the relations in G1

and the relation f~ιH2f — H^
(Π-3) // zeΛ(G) — U*6σ0θί(6ri)), then there is a sequence {gn} of G

so that {flr»(Ti)} nests about z.
(Π-4) g(yt) = Ίi for i = 1, 2, if and only ifge H^
(Π-5) geG± — Hi and g(7i) Π Ti ^ 0 for i = 1, 2, if and only if Ht

is parabolic cyclic and g e NGl{H%).
(Π-6) The cardinality of the set g(7t) Π 7t is not greater than one

for i = 1, 2, and for geG — Ht.

PROPOSITION 1. Let G = G^HG2 and let geG. If g{7) aBά U Λ(H)
and (g'°g)(7) Γί (Bj - Λ(H)) Φ 0 for all g'eGt and for i, j = 1, 2, iΦ j ,
then g eGi.

PROOF. We may assume i = 1 and j = 2. Since g{7) Π B2 Φ 0 , we
have geG — H by (1-4). So g can be written in the normal form g =
ffn° " - °Qi* where e i ther g2k eGx — H and g2k+1 eG2 — H9 or g2keG2 — H

and g2k+1 eGι — H. This representation is not unique, but, as is well
known, the number n of factors on the right hand side of this representa-
tion is determined only by g. (See [3].) We call the number n the
length of g and denote it by L(g).

By our assumption, we see g%eG1 — H. Assume L{g) ^ 2. Since
(9f ° flθ(τ) czB2- Λ(H) for all g' e Gt and since g'1 e G19 we have (g'1 ° g)(y) =
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(9»-i° ' °Λ)(7)CJB2 — Λ(H). This means gn_ιeG1 — H, which contradicts
the choice of g19 , gn. Hence we have L{g) — 1. Therefore g = g1zGι

and we are done.

Let G be a Kleinian group constructed from G± and / by using
Combination theorem II. Every element g e G can be represented, not
necessarily uniquely, as a word in the form g = fan+1°gn° °g1

ofai

9

where glf , gn e Gλ and au , an+1 are integers. In this representation
we assume that ai+1 ^ 0 whenever at > 0 and gi e H2, and that ai+1 ^ 0
whenever at < 0 and #* e i^.

The following is due to Maskit [5].

PROPOSITION 2. Let G be a Kleinian group constructed from Gx

and f by using Combination theorem II. For gsG, assume g — fan+ίo
9n° ''' °9i°fai> Then an+1>0 (resp. an+1 < 0) implies g(71)czB2 (resp.

4. Let G be a Kleinian group which is constructed from Gl9 , Gs

and f19 , ft by using Combination theorems I and II, where s + t ^ 2.
Put Λ(G) = Λ(G) - UyββflfdJU^G,)). Then we have the following.

THEOREM 1. Under the above notations, let G = G1*HG2 and xeΛ(G)
and let 7 be the common boundary of precisely invariant discs under H.
Assume that there is a sequence {gn} of elements of G such that {gn(7)}
nests about λ. Then XeAN(G).

PROOF. Otherwise, then there are goeG and XoeA(Gi) such that
{(0o ° 0«)(τ)} nests about go(X) = Xoe Λ(Gτ) for i = 1 or 2. We may assume
i = l and ooeΩ(G). We first observe X0£\JgeGlg(Λ(H)). If not, then
there are g0 e Gx and λ0 e A(H) so that gQ(Xo) = λ0 G Λ{H) C 7. It shows
that {(<7o°9o°9J(y)} nests about λ o e τ and the cardinality of the set
(9o°9o°9n)(y) ΓΊ 7 is greater than one for a sufficiently large n. It clearly
contradicts (1-6). Thus we have XQeΛ{Gλ) - \J9eGl9(Λ(H)).

Since λ0 e Λ(GX), there is a sequence {hn} of elements of Gλ such that
the sequence of Jordan curves {hn(y)} converges to λ0. By the definition
of precisely invariant discs, we see that λ0 is contained in the exterior
of hn(Bj) for all n. We set gn = 9o°9n By choosing subsequences of
{hn} and {gn}, again denoted by {hn} and {gn}, respectively, we have that
ft»(jBi) is contained in the intersection of Int gn-i(Ύ) and Ext ^(7), where
Intgn-i(y) (resp. Ext gn(y)) means the interior of §r

ίl_1(7) (resp. the ex-
terior of gn(y)).

Now, let m be an arbitrary fixed integer. Since g 6 Hh^1 c Gλ implies
(g o hJiB,) = B1 and geGλ — {Hh'1} implies (g © hm){B^) a B2 and since g(X0) e
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A(G,) for all g e G19 we have (g o gm)(y) aB2- Λ(H) for all g e G,. Thus
Proposition 1 shows gm e Gx and we see {gn} c Gx. If gn e G19 then λ0 is
contained in the exterior of gn(B^), which contradicts the fact that {gn(y)}
nests about λ0. This completes the proof of Theorem 1.

THEOREM 2. Let G be a Kleinian group constructed from Gλ and
f by using Combination theorem II and let λeΛ(G). Assume that there
is a sequence {gn} of elements of G such that {<7w(7i)} nests about λ. Then
XeΛN(G).

PROOF. Assume the contrary. Then there are g0 e G and λ0 e A(GX)
such that {(go°gn)(Ύ1)} nests about gQ(X) = λoeΛ(G!). We may assume
oo e £((?!). Since XoβΛiGJ, there is a sequence {hn} of elements of G1

such that {/^(7i)} converges to λ0 and λ0 is contained in the exterior of
K(B^ for all n.

Set B3 = C — (Bx U B2) and gn = g0

ogn- Then we have λ0 6 B3,
gnirf^)(zBz and hn{B^)aBz for sufficiently large w's. Choosing sub-
sequences of {hn} and {gn}, again denoted by {hn} and {̂ w}, respectively,
we have that hn(B^) is contained in the intersection of Int gn-x{Ί^ and

Now, let m be an arbitrary fixed integer and let gm = fak+logm,k° °
ffm,ι°fai> where gnΛ9 , gm,keGι and α1? •• ,α A ; + 1 are integers. Since
(jjTx) C 5 3 , we have ak+1 = 0 by Proposition 2 and ^ m = #TO,fc o . . . o ̂ m>1 o faκ

Next we show αA = 0. If geHh-'czG,, then (gohJiBJ = B lβ If ί/6
, then (g o hJiBJ a BB. Since g(X0)eB3 for all ^ e G x , we see

c JB3 for all βr e Gx. By Proposition 2, we have ak = 0, so <7m =
ffm,i°fai By repeating this procedure, we have aλ = 0 and then ^ m =
^^ef f i . This contradicts the fact that {̂ %(Ti)} nests about λ0. This
completes the proof of Theorem 2.

REMARK. Let G = G1*HG2 and xeΛN(G). Then there exists a se-
quence {gn} of elements of G so that {gn(y)} nests about λ. Theorem 1
and (1-3) show that the set ΛN(G) coincides with the set of all limit
points which are nested by the translates of 7 under G. We have a
similar result in the case of Theorem 2.

Now we prove the following.

THEOREM 3. Let G be a Kleinian group constructed from Glf - , Gs

and f, - , ft by using Combination theorems I and II, where s + t ^ 2.
Then the cardinality of AN(G) is either zero, two or that of a continuum.

In order to prove Theorem 3, it suffices to show the following two
lemmas.
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LEMMA 1. Let G = G^HG^ Then either ΛN{G) is empty or has the
power of a continuum.

PROOF. Assume that AN(G) is a non-empty finite set. Since ΛN(G)
is invariant under the action of G, we see that AN(G) is an infinite set
whenever G is not elementary. Thus G and Gt are elementary groups
for i = 1,2. By the classification of elementary groups, G and Gi
(i = 1, 2) must be those whose signatures are (0, 4; 2, 2, 2, 2) and
(0, 3; 2, 2, oo), respectively. But in this case, AN(G) is an empty set.
Therefore, AN{G) is an empty set or AN(G) is an infinite set.

Assume that ΛN(G) is an infinite set. Let oo eΩ(G). For XoeAN(G),
there is an element g* eG such that λoelnt#*(7). Set £7* = Intg*(7)
and take two distinct points Xλ and λ2 in U* Π AN(G). Then we can
choose g0, gλ and g2eG in such a way that £7< cf7* and t/, ( 1 ^ = 0 for
i ^ = 0, 1 and 2 (i Φ j) and that XiβUi, where 17, = Int^(τ). Take
this procedure for each λ,. (i = 0, 1 and 2.)

Let Γ be the subset of all elements of G, which are chosen under
these procedures. Choose a point xoe U* Π (ΓLer-^*} Ext0(7)). For each
g eΓ — {g*}, we set D(g) = Int ^(7). Let w(g) be a path from x0 to a
boundary point of D(g), where w(g) meets each translate of 7 under Γ
at one point at most. Denote by v(g) the cardinality of the set w(g) Π
(U,'er/(7)) and set Dn = \Jn=v,gf)lntgf(^ for n = 1, 2, . . . . Then we
have Dn+1aDn for all w. Let i? = Πϊ=i-D«> which is clearly closed.

Next we show DaΛN(G). For all XoeD, we have λ o e ΰ Λ for all w
and, moreover, XoeDn for all n. Then there exists a sequence {gn} of
elements of Γ such that {̂ %(7)} nests about λ0. By Theorem 1 we have
DaAN(G). Since D is dense, D is a perfect set. Hence the power of
D is that of a continuum. This completes the proof of Lemma 1.

LEMMA 2. Let G be a Kleinian group constructed from Gx and f
by using Combination theorem II. Then ΛN{G) consists of just two points
or has the power of a continuum.

PROOF. Since / is loxodromic, we may suppose that xλ and λ2 are
the attractive and the repelling fixed points of /, respectively. Since
{/*(7i)} nests about Xλ and {/~"(7i)} nests about λ2, two points λx and λ2

are contained in AN{G) by Theorem 2. Therefore we see that AN(G)
consists of at least two points. If G is not elementary, AN(G) contains
infinitely many points. Thus AN(G) consists of two points only if G is
elementary. By Ford [2], if AN(G) consists of two points, then G is a
cyclic group generated by a loxodromic element, or a group generated
by a loxodromic element and an elliptic element, which have the common
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fixed points. By an argument similar to that of the proof of Lemma 1,
we see that AN(G) has the power of a continuum whenever G is not
elementary. This completes the proof of Lemma 2.

It is obvious that Theorem 3 can be established by Lemmas 1 and 2.

THEOREM 4. Let G be a Kleinian group constructed from Glf , Gs

and f, , ft by using Combination theorems I and II, where s + t ^ 2.
// ΛN(G) = 0 , then (i) s = 2 and t = 0 (i.e., G is constructed from Gx

and G2 by using Combination theorem I), (ii) G has the signature
(0, 4; 2, 2, 2, 2) αwd (iii) Gt (i = 1, 2) ftαs ίλe signature (0, 3; 2, 2, oo).
Conversely, the properties (i), (ii) and (iii) imply ΛN(G) — 0 .

PROOF. The second assertion of Theorem 4 can be seen in the proof
of Lemma 1. So we prove the first assertion.

First we suppose that Combination theorem II is used in the last
step of the construction of G from G19 ••-,<?* and fl9 •• ,/ t . Then G
is constructed from G' and ft by using Combination theorem II, where
Gf is the group constructed from Gl9 , G8 and f19 , ft^x. We set
ΛN(G) = Λ(G) - \Jg,Gg(Λ(G')). By definition, we see AN(G) z> ΛN(fi) and
A((ft))<zΛN(G)(zΛN(G), where </*> is the cyclic group generated by ft.
Since A((ft)) consists of just two points, we see that AN(G) contains at
least two points. This contradicts the assumption AN(G) = 0 . Hence
we conclude that G is constructed by using Combination theorem I in
the last step.

We set Gf

2 = Gs and G[ the group constructed from Gl9 , Gs^ and
fiy •••,/*- Then G is the group constructed from G[ and Gg by using
Combination theorem I. Hence we have AN(G) = A(G) — \Jgeσ9(Λ(Gl) U

Assume NG^(H) £ G\ for i = 1 or 2. We may assume i = 1. Then
there exists an element gγeG[ — Nβ>t(H). For an arbitrary fixed element
g2eG'2 — H, we set g = flr2ogrlβ Since ^ is not contained in NG£H)9 we
see (g2og^)(B^ςzB1 by (1-5). This means that g is a loxodromic element,
whose fixed points are contained in ΛN(G). This contradicts the fact
AN(G) — 0 . Thus this case does not occur.

Therefore we have NG^H) = G[ for i = 1 and 2. In this case G has
the signature (0, 4; 2, 2, 2, 2) and (•?* (i = 1, 2) has the signature
(0, 3; 2, 2, oo). It is well known that the elementary group with the
signature (0, 3; 2, 2, oo) cannot be decomposed into simpler groups by
using the combination theorems. This completes the proof of Theorem 4.

REMARK. By Theorem 4, we see that AN(G) £ A(G) if AN(G) = 0 .
The proof of Lemma 2 shows that AN(G) = A(G) if AN(G) consists of just
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two points. In the case where ΛN(G) has the power of a continuum,
there are also groups G whose limit sets coincide with ΛN(G). These
groups are those which are constructed from Glf , G8 and f19 - -, ft

by using Combination theorems I and II, where Gt (ΐ = l, •••,«) is a
finite cyclic group. The most conspicuous example of these groups is a
Schottky group.
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