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REMARKS ON THE LIMIT SETS OF KLEINIAN GROUPS
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1. The so-called combination theorems of Maskit play an important
role in the theory of Kleinian groups. In [6], Maskit proved that every
funetion group can be constructed from elementary groups, quasi-Fuchsian
groups and degenerate groups by using his combination theorems.
Moreover, in [1] Abikoff and Maskit proved that every finitely generated
Kleinian group can be constructed from elementary groups, degenerate
groups and web groups in a similar manner. In this note we investigate
the limit sets of Kleinian groups which are constructed by using the
combination theorems.

2. Let G be a Kleinian group and denote by 2(G) and A(G) the
region of discontinuity and the limit set of G, respectively. We denote
by SL’ the group of all the Mobius transformations. Consider a sequence
{C.} of Jordan curves on C and a point ze €. We say that {C,} nests
about 2, if C,,, separates z from C, for every natural number % and if
the sequence of spherical diameters of {C,} forms a null sequence.

Let C be a Jordan curve on € and {9.} be a sequence of elements
of SL’. We say that the sequence {g,(C)} converges to a point zeC,
if there exists a point 2 €C so that {g.(x)} converges to z and the se-
quence of spherical diameters of {g,(C)} forms a null sequence.

3. Let G be a Kleinian group and let H be a subgroup of G. A sub-
set S on € is called precisely invariant under H in G, if h(S) = S for
every he H and g(S)N S = @ for every geG — H. For a cyclic sub-
group H of G, a precisely invariant disc B for H is the interior of a
closed topological disc B on C, where B — A(H) is precisely invariant
under H in G and B — A(H) c 2(G).

We use the combination theorems in the following forms.

COMBINATION THEOREM I. Let G, and G, be two Kleinian groups
and let B; (i =1, 2) be a precisely invariant disc under H, a finite or
a parabolic cyclic subgroup of both G, and G,. Assume that B, and B,
have the common boundary v and B,N B,= @. Let G be the group
generated by G, and G,. Then we have the following:
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(I-1) G s Kleinian.

(I-2) G 1is the free product of G, and G, with the amalgamated sub-
group H, where G is often denoted by G, *y G,.

(1-3) If z€A(G) — Uyee 9(4(G) U A(R,)), then there is a sequence
{9.} of elements of G so that {g.(7)} nests about z.

(I-4) g(v) =7 if and only if ge H.

(I-5) geG,— H and g(v)N7Y#* @ if and only if H is parabolic
cyclic and g € Ng,(H), where Ny (H) denotes the normalizer of H in G,
for 1 =1, 2.

(I-6) The cardinality of the set g(v) N v is mot greater than one for
geG — H.

COMBINATION THEOREM II. Let G, be a Kleinian group. For 1 =1, 2,
let B; be a precisely invariant disc for a finite or a parabolic cyclic sub-
group H, of G, and let v; be the boundary of B;. Assume that g(B)N
B, = @ for all g€ G,. Let f be a loxodromic element satisfying f(7.) = Y.,
fBYNB,= @ and fH,f = H. Let G be the group generated by G,
and f. Then we have the following:

(II-1) G is Kleinian.

(II-2) Ewvery relation in G s a consequence of the relations in G,
and the relation fH,f = H,.

(I1-8) If 2€ A(G) — Uyee 9(4(G))), then there is a sequence {g,} of G
so that {9.(7,)} mests about z.

(I1-4) g(v,) =, for + =1, 2, if and only if g€ H,.

(I-5) 9geG,— H;and g(v;)N v, # @ for ©=1,2, if and only if H,
is parabolic cyclic and g € N (H,).

(I1-6) The cardinality of the set g(v;) N v, is nmot greater tham one
for 1 =1,2, and for g€ G — H,.

PROPOSITION 1. Let G = G, *, G, and let geG. If g(v)C B; U A(H)
and (¢’ 9)(7) N (B; — A(H)) # @ for all ¢'€G, and for i,j =1,2, i+ j,
then g €@G,.

PrRoOF. We may assume ¢ =1 and 5 = 2. Since g(v)N B, # @, we
have geG — H by (I-4). So g can be written in the normal form g =
g,0 g, where either ¢,,€G, — H and ¢,.,€G, — H, or ¢,,€G, — H
and ¢,..,€G, — H. This representation is not unique, but, as is well
known, the number n of factors on the right hand side of this representa-
tion is determined only by g¢g. (See [3].) We call the number % the
length of g and denote it by L(g).

By our assumption, we see g,€G, — H. Assume L(g) = 2. Since
(¢’ 9)(v) € B, — A(H) for all ¢’ € G, and since g;'€@G,, we have (g;'°9)(v) =
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(gp_ro--+09)v)CB, — A(H). This means g, ,cG, — H, which contradicts
the choice of ¢, ---, g,.. Hence we have L(g) = 1. Therefore g = g, G,
and we are done.

Let G be a Kleinian group constructed from G, and f by using
Combination theorem II. Every element geG can be represented, not
necessarily uniquely, as a word in the form g = f*+iog,0...0g,0 f%,
where ¢, -+, 9,€G, and a,, ---, a,,, are integers. In this representation
we assume that a,., = 0 whenever a, > 0 and g,¢ H,, and that a;;, <0
whenever a; < 0 and g, € H,.

The following is due to Maskit [5].

PROPOSITION 2. Let G be a Kleinian group constructed from G,
and f by using Combination theorem II. For geG, assume g = for+io
gno---og,0of%. Then a,., >0 (resp. a,., <0) implies g(v,) C B, (resp.
9(v,) C B)).

4. Let G be a Kleinian group which is constructed from G, ---, G,
and f,, ---, f; by using Combination theorems I and II, where s + ¢t = 2.
Put 4,(G) = A(G) — Uyee 9(Ui=, 4(G,)). Then we have the following.

THEOREM 1. Under the above notations, let G = GxzG, and )€ A(G)
and let v be the common boundary of precisely invariant discs under H.
Assume that there is a sequence {g,} of elements of G such that {g.(7)}
nests about n. Then € Ay(G).

ProOF. Otherwise, then there are ¢g,€G and )\ € A(G,) such that
{(go° 9.)(7)} nests about g,(\) = N, € 4(G;) for i =1 or 2. We may assume
1 =1 and o eQ(G). We first observe N\ & U,cq 9(4(H)). If not, then
there are §,c€G, and X,e€ A(H) so that §,(\,) = N, € A(H)C~v. It shows
that {(9,°9,°9.)(7)} nests about X,€v and the cardinality of the set
(§y09o°9.)(Y) Ny is greater than one for a sufficiently large n. It clearly
contradicts (I-6). Thus we have \, € 4(G) — Ujyeq, 9(4(H)).

Since ), € 4(G,), there is a sequence {h,} of elements of G, such that
the sequence of Jordan curves {h,(7)} converges to \,. By the definition
of precisely invariant discs, we see that )\, is contained in the exterior
of h,(B) for all n. We set §, = g,°9,. By choosing subsequences of
{h,} and {7.,}, again denoted by {r.} and {9.,}, respectively, we have that
h.(B,) is contained in the intersection of Int §,_,(v) and Ext §.(v), where
Int §._,(v) (resp. Ext §,(v)) means the interior of §,_,(v) (resp. the ex-
terior of §.(7)).

Now, let m be an arbitrary fixed integer. Since g € Hh,' C G, implies
(goh,)(B) = B,and g € G, — {Hh;'} implies (g h,)(B,) C B, and since g(\,) €
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A(G,) for all ge@G,, we have (909,)(v)c B, — A(H) for all geG,. Thus
Proposition 1 shows §,€G, and we see {§,} cG,. If §,€G,, then ), is
contained in the exterior of §,(B,), which contradicts the fact that {F,(7)}
nests about )\,. This completes the proof of Theorem 1.

THEOREM 2. Let G be a Kleinian group constructed from G, and
f by using Combination theorem Il and let N € A(G). Assume that there
18 @ sequence {g9,} of elements of G such that {g,.(v,)} mests about n. Then
€ Ay(R).

PROOF. Assume the contrary. Then there are g,€ G and A, € A(G,)
such that {(g,°¢9,)(7v)} nests about g,\) =N € 4(G,). We may assume
o € 2(G). Since )€ A(G,), there is a sequence {h,} of elements of G,
such that {A,(7,)} converges to )\, and ), is contained in the exterior of
h,(B,) for all n.

Set B,=C— (B,UB,) and §, = g,09,. Then we have \€B,
d.(v)c B, and h,(B)c B, for sufficiently large =’s. Choosing sub-
sequences of {h,} and {7,}, again denoted by {h,} and {g,}, respectively,
we have that h,(B,) is contained in the intersection of Int g, _.(v,) and
Ext g.(v).

Now, let m be an arbitrary fixed integer and let §,, = f*+iog, 40 ---o
.o f™, where g,., ++, 9.:€G, and a,, ---, a,;, are integers. Since
9.(7,) C B;, we have a,., = 0 by Proposition 2 and §,, = gn,z° - ° gm0 f2.

Next we show a, = 0. If ge Hh,'CG,, then (goh,)(B,) = B,. If ge
G, — {Hh,}, then (goh,)B)C B,. Since g(\,) € B, for all geG,, we see
(9°9,.)(v) C B, for all geG,. By Proposition 2, we have a, =0, 50 §,, =
Om.°f. By repeating this procedure, we have a, = 0 and then §, =
Im1.€G,. This contradicts the fact that {§,.(v,)} nests about ), This
completes the proof of Theorem 2.

REMARK. Let G = G, x; @, and M€ 4y(G). Then there exists a se-
quence {g,} of elements of G so that {g,.(v)} nests about A. Theorem 1
and (I-3) show that the set 4,(G) coincides with the set of all limit
points which are nested by the translates of v under G. We have a
similar result in the case of Theorem 2.

Now we prove the following.

THEOREM 3. Let G be a Kleinian group constructed from G, ---, G,
and f,, ---, f; by using Combination theorems 1 and II, wheres + t = 2.
Then the cardinality of Ay(G) s either zero, two or that of a continuum.

In order to prove Theorem 3, it suffices to show the following two
lemmas.
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LEMMA 1. Let G = G,*;G,. Then either Ay(G) is empty or has the
power of a continuum.

ProorF. Assume that 4,(G) is a non-empty finite set. Since 4y(G)
is invariant under the action of G, we see that 4,(G) is an infinite set
whenever G is not elementary. Thus G and G, are elementary groups
for ¢ =1,2. By the classification of elementary groups, G and G,
(1=1,2) must be those whose signatures are (0,4;2,2,2, 2) and
0, 8;2, 2, =), respectively. But in this case, 4,(G) is an empty set.
Therefore, 4y(G) is an empty set or 4,(G) is an infinite set.

Assume that 4,(G) is an infinite set. Let « € 2(G). For \, € 4(G),
there is an element g* € G such that )\, eIntg*(v). Set U* = Int g*(7)
and take two distinct points A, and N\, in U* N 4,(G). Then we can
choose ¢,, 9, and ¢,€G in such a way that U,cU* and U, N U; = @ for
1,7 =0,1 and 2 (¢ # j) and that \,e U,, where U, = Intg,(v). Take
this procedure for each \,. (2 =0,1 and 2.)

Let I be the subset of all elements of G, which are chosen under
these procedures. Choose a point x,€ U* N (N,er—y Ext g(7)). For each
gel — {g*}, we set D(g) = Intg(v). Let w(g) be a path from z, to a
boundary point of D(g), where w(g) meets each translate of v under I
at one point at most. Denote by v(g) the cardinality of the set w(g) N
(Uyer g’™) and set D, = Un—y Int g’(v) for » =1,2, ---. Then we
have D,,,c D, for all . Let D = Nz, D,, which is clearly closed.

Next we show D c 4,(G). For all A, € D, we have N, e D, for all n
and, moreover, A, €D, for all ». Then there exists a sequence {g,} of
elements of I" such that {g,(v)} nests about )\,., By Theorem 1 we have
Dc 4,(G). Since D is dense, D is a perfect set. Hence the power of
D is that of a continuum. This completes the proof of Lemma 1.

LEMMA 2. Let G be a Kleinian group constructed from G, and f
by using Combination theorem 1I. Then Ay(G) consists of just two points
or has the power of a continuum.

ProoF. Since f is loxodromic, we may suppose that A, and X\, are
the attractive and the repelling fixed points of f, respectively. Since
{f*(7,)} nests about X, and {f~"(v,)} nests about \,, two points A, and A,
are contained in 4,(G) by Theorem 2. Therefore we see that 4,(G)
consists of at least two points. If G is not elementary, 4,(G) contains
infinitely many points. Thus 4,(G) consists of two points only if G is
elementary. By Ford [2], if 4,y(G) consists of two points, then G is a
cyclic group generated by a loxodromic element, or a group generated
by a loxodromic element and an elliptic element, which have the common
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fixed points. By an argument similar to that of the proof of Lemma 1,
we see that 4,(G) has the power of a continuum whenever G is not
elementary. This completes the proof of Lemma 2.

It is obvious that Theorem 3 can be established by Lemmas 1 and 2.

THEOREM 4. Let G be a Kleinian group constructed from G, ---, G,
and fi, ---, f, by using Combination theorems 1 and II, wheres + t = 2.
If 4,(G) = @, then (i) s =2 and t =0 (i.e., G is constructed from G,
and G, by wusing Combination theorem I). (ii) G has the signature
0,4;2,2 2,2) and (iii) G, (1=1,2) has the signature (0, 3;2, 2, o).
Conversely, the properties (i), (ii) and (iii) imply 4,(G) = @.

PROOF. The second assertion of Theorem 4 can be seen in the proof
of Lemma 1. So we prove the first assertion.

First we suppose that Combination theorem II is used in the last
step of the construction of G from G, ---,G, and f,, ---, f;. Then G
is constructed from G’ and f, by using Combination theorem II, where
G’ is the group constructed from G, ---,G, and f, ---, fi_.,., We set
Ay(G) = AG) — Uyee 9(4(G"). By definition, we see 4,(G)D Ay(G) and
AD) C Ay(G) © 45(G), where (f,> is the cyclic group generated by f..
Sinece A({f,>) consists of just two points, we see that 4,(G) contains at
least two points. This contradicts the assumption 4,(G) = @. Hence
we conclude that G is constructed by using Combination theorem I in
the last step.

We set G = G, and G} the group constructed from G, ---, G,_, and
fy +++, fi. Then G is the group constructed from G; and G; by using
Combination theorem I. Hence we have A,(G) = A(G) — Uyee 9(AG2) U
A(Gy)) € Ay(G).

Assume Ny (H) & G; for i =1 or 2. We may assume ¢ = 1. Then
there exists an element g, € G; — Ny (H). For an arbitrary fixed element
9.€G; — H, we set g = g,og,. Since g, is not contained in Ny (H), we
see (g,°9,)(B) c B, by (I-5). This means that ¢g is a loxodromic element,
whose fixed points are contained in Ay(G). This contradicts the fact
Ay(G) = @. Thus this case does not occur.

Therefore we have Ny (H) = G; for i =1 and 2. In this case G has
the signature (0,4;2,2,2,2) and G, (1=1,2) has the signature
0,38;2,2, ). It is well known that the elementary group with the
signature (0, 3;2, 2, ) cannot be decomposed into simpler groups by
using the combination theorems. This completes the proof of Theorem 4.

REMARK. By Theorem 4, we see that 4y(G) & AG) if Ay(G) = @.
The proof of Lemma 2 shows that 4,(G) = A(G) if 4,(G) consists of just
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two points. In the case where 4,(G) has the power of a continuum,
there are also groups G whose limit sets coincide with 44(G). These
groups are those which are constructed from G, ---,G, and f, ---, f;
by using Combination theorems I and II, where G, (=1, ---,8) is a
finite cyclic group. The most conspicuous example of these groups is a
Schottky group.
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