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The purpose of this paper is to prove a simple fixed point theorem
in Banach spaces, and to show its application in ergodic theory. The
theorem asserts the existence of a unique fixed point for affine transfor-
mations and the convergence of successive approximations to the fixed
point. In the special case of linear operators in L' generated by point-
to-point nonsingular transformations, this fixed point theorem demon-
strates the existence and uniqueness of invariant measures and the
exactness of corresponding measurable dynamical systems. The theorem
thus gives a new tool for proving the exactness of some measurable
endomorphisms.

The paper is divided into four parts. In Section 1 an abstract version
of the fixed point theorem is proved. From the formal point of view
it remembles some known results of Edelstein [1]. The proof, however,
is based on ideas due to Pianigiani and Yorke [7]. Section 2 contains
the specialization of the fixed point theorem to the space L'. In Section
3 the general theory is examined in the case of expanding mappings of
differentiable manifolds and a new simpler proof of the well known
Krzyzewski-Szlenk theorem [5] is presented. In the proof once again the
ideas of Pianigiani and Yorke are used. Finally, Section 4 is devoted to
the study of a class of dynamical systems generated by piecewise convex
transformations.

1. Fixed point theorem. Let E, || || be a Banach space. A closed
convex set CC E is said to be imbedded in V (VcC E) if for each two
different points x,, ,€C the closed interval [0, 1] is contained in the
interior of the set (M e R:Ax, + (1 — \)z,€ V}. The distance between a
nonempty set CC E and a point x € F is defined, as usual by

o(z, C) = inf {||& — y|l: y € C}.

A sequence {x,} CE converges to C (x,—C) if lim, o(x,, C) =0. In
particular z, — x, always stands for ||z, — 2,|| — 0.
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THEOREM 1. Let C be a compact convex subset of a Banach space E,
imbeded im a set VC E. Assume that an affine trasformation U: E— E
satisfies the following two conditions:

(1) There exists a comstant q such that ||Ux —U™y|| < qllz — vl
for all z, ye E and all integers n > 0.

(2) The set {x:U"x— C} is dense in V.

Then U has in V a unique fixed point x,. Further, x,€C and

(3) lim,U"x = x, for each xe V.

Proor. From (1) it follows that U*x — C for each xe V. Since C
is a compact set, {U"x} is relatively compact for x € V. Thus according
to the Kakutani Yosida ergodic theorem (see also Edelstein [1]) there
exists a limit of the sequence n~'>-iU*xr which is a fixed point of U.
The condition U™x — C implies that any fixed point of U in V belongs to C.
It remains to prove (3). Let x,€C be a fixed point and let x € V. Suppose
that (8) does not hold. Then there exists a subsequence {U*zx} such
that lim,U*x = x, == x,. Now let {v,} be a subsequence of {a,} such that
Bn = Ta — a,— co. From (1) it follows that

U, — @,]| < ||UPra, — Usntlrg|| + || U — @, ||
= qllz, —Usz|| + || Uz — ]| .

Since {v,} is a subsequence of {a,}, this implies lim,U’x, = x,. Now
consider the family of points z; = (1 — \)x, + \x,. Since x, is a fixed
point of U, one has lim,U*’x, = (1 — \)x, + A2, = x;. The limit belongs
to C whenever 2;€ V and therefore the following implication is proved
(4) r,e V=um¢eC.

Define

N =1inf (M2, €C), M =sup{haeCl, Y=oy, Y =.

Notice that », <0, M =1landlety,= 1 — Ny, + My,. Now implication

(4) may be rewritten in the form
Y, € V= Y. € C.

From the definition of ¥, and y, it follows that y,€C if and only if A e
[0, 1]. Consequently, since C is imbedded in V there is an open 4 [0, 1]
such that y,€ V for ne4. This in turn implies that y,€C for ne4
which is impossible according to the definition of ¥, and y,.

2. Markov-Hopf processes. Let (X, X, m) be a measure space with
o-finite measure m. A linear operator P: L' — L' (L' = L'X, m)) is called
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a Markov-Hopf process ([2], [3]) if it satisfies the following two conditions:
(@ Pf=0 for f=0, felt
(o) [IPflIl=IlfIl for f =0, felL,
where || || stands for the norm in L'
Denote by D = D(X, m) the set of all densities, that is, all f € L'(X, m)
such that £ =0 and ||f|| =1. From Theorem 1 follows immediately

COROLLARY 1. Let P: L' — L' be a Markov-Hopf process for which
there exists a convexr compact set C imbedded im D and such that the
family {f: P*f — C} is dense in D. Then there exists a unique f,€ D
which satisfies Pf, = f,. Moreover lim, P"f = f, for feD.

The corollary is of special value for Markov-Hopf processes generated
by point-to-point transformations of the space X into itself. Let p: X —
X Dbe measurable and nonsingular. The last condition means that
m(®~'(A)) = 0 whenever m(A) =0 and AcX. The operator P,, corre-
sponding to ¢, is defined by the formula

P,f = (d/dm)(ptsop™), dfty = fdm .

P, is obviously a Markov-Hopf process. From the definition it follows
that y, is invariant under @ if and only if P,f = f.

Corollary 1 gives, therefore, a sufficient condition for the existence
and uniqueness of invariant measures for some nonsingular transforma-
tions. It will be shown below that it is also useful for proving the
exactness of some dynamical systems.

Let (X, X, ) be a measure space with normalized measure ¢ (4(X) =1)
and let @: X — X be a measure preserving transformation. The dynamical
system (X, 3, #; @) is called exact if the g-algebra M., 2 "(2) contains
only sets of measure zero and their complements. Exactness is a strong
property, implying ergodicity and mixing of all orders. It is equivalent
[9] to the following condition: For each A € X such that o*(4)eY (n=
1,2 ),

1((A) > 0= lim, ;(p"(A)) = 1.

Using this definition it is easy to prove the following analog of M. Lin
condition:

PROPOSITION 1. Let (X, 3, m) be a o-finite measure space and let
@: X — X be a nonsingular tranformation. If there exists f,€ D(X, m)
such that lim, Pif = f, for each f €D, then the system (X, 3, fts; P)
18 exact.

ProoOF. First observe that for each f € D supported on aset A (f =



570 A. LASOTA

1,f), the function P}f vanishes outside of ®"(A4) (4, ---, #"(A) are as-
sumed to be measurable). In fact, write B, = X\ 9"(A). Form the defi-
nition of P, it follows that

S Prfdm =S

By, ¢ (By,)

fdm = S fdm .

ANPT™(By)
Since A N9 "(B,) = @, the last integral is equal to zero. This proves
that P;f vanishes on B,. Now assume that /;(A4) > 0 and define f, =

1./t (A). Of course f,e€D and consequently P;f,— f,. From the
condition 1w Pyfs = Py fs— fo, it follows that 1., f, — f,, and finally

1t (P™(A)) = SWA)ﬁ,dm — Lj},dm =1.

The following result is a direct consequence of Corollary 1 and
Proposition 1:

THEOREM 2. Let ¢: X — X be a monsingular transformation of a
o-finite measure space (X, 3, m). Assume that there exists a convex
compact set C imbedded in D(X, m) such that the family {f: P;f — C} is
dense in D. Then there exists a unique normalized measure !t absolutely
continuous with respect to m and invariant under @. The system
(X, 2, 1t; @) is exact and lim, Pyf = dp/dm for each f € D.

3. Expanding mappings. In this section M will always denote a
compact connected smooth (C*) manifold equipped with a Riemannian
metric ||-|]. The metric induces on M the natural (Borel) measure m
and the distance p. A density f € D(M, m) will be called regular if there
is a constant ¢ > 0 such that f(x) >0 and |f(x) — f(¥)| = co(z, y) for
x,ye M. The regularity of f (see [7]) is defined by

Reg f = sup (Fadiap)

where | f’| is the length of the gradient of f. An important property
of regular densities is described by the following:

PROPOSITION 2. If fe D(M, m) is regular and Reg f < «, then
(5) ke= £ f(x) £ ke and |f'(x)| < ke for xeM,
where r = sup {o(x, ¥): x, y € M} and k = 1/m(M).

PrOOF. Let v(t) (0 <t <1) be an arc joining the points x, = v(0)
and z, = v(1). The differentiation of f(v(t)) gives

(d/dt) f(v(8)) = {f'(v@), Y'(8)) = exl|Y' (DI F(x(2))

and consequently
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f@) < fz) eXp(aS:Hv' ®lldt) .

According to the definition of » this implies f(x,) < f(x,)e*" for z,, x, € M.
Since f is a density, there is a point ¥ € M such that f(&) = k. Sub-
stituting x, =% and z, = x give the first inequality (5). The second follows
from the first one and the condition Reg f < a.

A C'-mapping @: M — M is called expanding if there exists a constant
X > 1 such that at each point x € M the differential de(x) satisfies

(6) lldp(@)s]l = M€l

for each tangent vector &. The following theorem (proved in [5]) plays
a crucial role in the ergodic theory of expanding mappings.

THEOREM 3 (Krzyzewski, Szlenk). Assume that : M — M 1is an ex-
panding mapping of class C®:. Then there exists a unique normalized
measure p absolutely comtinuous with respect to m and invariant under
@. The system (M, tt, @) 18 exact and the density f, = dp/dm is regular.
Moreover

(7) lim, Py f = f, for feDM, m).

PrROOF. Since d@ is nonsingular, for each point xe€ M there is a
neighbourhood W, of 2 such that @~'(W,) can be written as the union
of disjoint sets V,, ---, Vy and @ restricted to V;, =1, ---, N) is a
homeomorphism (from V, onto W,). Thus on W, the operator P has an
explicit formula

P,f(@) = 3 | Det dyry(x) [ (foyri(®)) ,

where +, denotes the inverse function to @|,,. Differentiation of P,f
gives

|(Pof)| < |33 Jif o) . |32 T A (F7 o)
Pf = S J{few) S T{fow)

< peAl M 1| L o]

< max, 7 + max, || dv; || Ford
where J,(x) = |Detdy(x)|. From (6) it follows that |/dvy,|| < 1/r.
Therefore Reg P,f < A 'Reg f + K, where K = sup,,|Ji(z)|/J(x) and
consequently by induction Reg P;f < A "Reg f + K(A —1)"'. Choose a
real « > K/(» —1). Then Reg P;f < a for sufficiently large n and, ac-
cording to Proposition 2, the sequence PZ2f belongs to the set C =
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{geD:ke*" < g=<ke, |g'| <ke}. Since C is convex compact and imbedded
in D, this, in virtue of Theorem 2, finishes the proof.

REMARK 1. From the proof it follows that for each regular f the
sequence {Pqf} is relatively compact in the space of continuous functions
“on M. Thus for such f the convergence in (7) is not only strong in L'
but also uniform.

4. Piecewise convex transformations. A real valued function g¢
defined on an interval 4 is convex if

glaz + 1 — a)y) = ag(x) + 1 —a)g(y) for =z, yes;0=a=1.

In general, the density of a measure invariant with respect to a piecewise
convex mapping is not differentiable (not even continuous) and the notion
of regularity is rather useless now. A somewhat analogous role will be
played by ‘“positive variation”:

Vi =S (f@a) = f@)* (F:le, 01— B),

a 1=

where z+ = max(0, z) and the supremum is taken over all possible par-
titions ¢ = 2, <2, < --- <x, = b. - A simple but useful property of
densities (on the unit interval [0, 1]) with finite positive variation is
described by the following

PROPOSITION 3. Assume that f € D([0,1]) and

\1/+f Sa,
then
f@=Q1+a)jx  for xe(0,1].

PROOF. According to the definition of positive variation f(s)=
f(x) —a for x = s. Hence 1 = S f(8)ds = S (f(x) — a)ds = zf(x) — a.
0 0

Let @ be a given transformation of the unit interval [0, 1] into itself.
We shall assume that it satisfies the following conditions:

(i) There exists a partition 0 =a, < --- < ay =1 such that for
each integer 7« (¢ =1, ---, N) the restriction @, of @ to the interval
[a;_, a;) is continuous and convex.

(li) Pa;_) =0, pi(a,_,) >1 for i = .., N.

(iii) @y([ay, @) = [0, 1), supp{ < oo.

From (ii) and the convexity of ¢, it follows that ®i(z) = @i(a, ) > 1
for all z€la,_, a;].
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The foregoing conditions are satisfied in particular for the r-adic
transformations @(x) = o (mod 1) if » > 1. The existence of an absolutely
continuous invariant measure for these transformations was proved by
Rényi [8] and the exactness of the corresponding dynamical systems by
Rochlin [9].

The main result of this section is the following

THEOREM 4. If @:[0, 1] — [0, 1] satisfies (i)-(iii), then there exists a
unique normalized absolutely continuous measure [t invariant under .
The system ([0, 1], tt, ) is exact and the density f, = dp/dx is positive
(inf f, > 0), bounded and increasing. Moreover

limP:f = f, for feD(o,1]).

ProOF. A simple computation shows that the operator P, can be
written in the form

(8) P.f(@) = S 9@ F @)
where

piw), replla, a))

"1"1(%) = a; , X E [0, 1]\¢i([at—1; az)) .

From (i) and (ii) it follows that the functions 4, are increasing, continuous
and differentiable except on a set of at most countable number of points.
At these points 4/ is defined as the right hand derivative. The functions +;
are decreasing and 0<+j(®)<\N~' with A= min; {(a,_,)>1. Now consider
the set C={ge D:6<g(x)<K, g decreasing} where the numbers K=6=0
will be defined later. It is obvious that C is a convex compact subset
of L' imbedded in D. Thus in order to finish the proof it is sufficient
to show that P:f — C for each f €D of bounded variation. The proof
of this convergence depends upon the fact that the operator P, has the
property of shrinking the positive variation. From (8) it follows that

Vo Pof S 3 Vo) -

=1
Since oy} are decreasing, one has
1 1 a;
‘{+ Pi(foqp) = (Sup i) \0/+ fov, ENTVYTSf
@51
and consequently

ViPf SA SV f = VT

i=1a;_,
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Finally, by induction

VP SA VIS

0
Choose a function f €D of bounded variation. For each ¢ > 0 there is
an integer n,(¢) such that the sequence f, = P2f satisfies

(9) \:/*Lf,‘ée for n = nye) .

Thus, according to Proposition 3, f.(x) < 2/x for n = n, = n,(1). This
inequality allows one to evaluate f,(0). In fact

Furs®) = Pofil0) = $(0)F0) + 3, #(0)(ac)

< A0) + S 2,
and by induction
f20) < fo(ON"+™ + K, for m=mn,, where K,=20\ —1)" gl (@)™ .
From this and (9) it follows that f,() < f.(0) + Vit f. < fu,(ON""™ +
K,+1 for n=n,. Let K= K, +2. Then there is n, = n, such that
10) fu.(x) = K for n=mn,.
Now it is easy to evaluate f, from below. In fact f,.,(z) = P,f.(x) =
(@) fo(4r(x)). By induction this implies
(11) fari®) = @ f(4i(®)) for m=mn,, >0,

where, according to (iii), @ = inf 4] = 1/sup @; > 0. From (ii) it follows
that for sufficiently large » (» = 7,) we have j(x) < (4K)™. It is easy
to see that f,(y) =1/2 for y < (4K)~' and large =, namely n = n, =
n, + ny(1/4). In fact suppose not, then

1= S:fndw = S:fudx + Sl fude = Ky + supg,,af.

1 ( v > 1 1 1
<=+ (fa )<= +=+==1
~4+f(y)+\0/f <Tteta
which is impossible. Thus, for » = 7, inequality (11) implies
(12) fa@)=zd for nz=m,=mn+ 17

where 6 = a™/2. Now write g,(x) = 1 — @) sup{f.(s):x < s <1} +

0 1inf {f,(s): 0 < s < x} where #€][0, 1] and is chosen such that ||g,|| = 1.
From the definition it follows that g, is decreasing. According to (10)
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and (12), 6 < g, < K for n = n,. Thus ¢g,€C for n = n,. On the other
hand, from (9) it follows that sup |f, — 9.] < € for n = n,(¢). This implies
o(fay C) < € for m = m,(e) + n, and finishes the proof of the convergence
fo=P;f —C.

REMARK 2. The existence of absolutely continuous invariant measures
for piecewise convex transformations has been proved in [4] and [6] under
weaker assumptions than (i)-(iii). In particular, Condition (iii) can be
fully omitted. In this case, however, little can be said about the ergodic
properties of corresponding dynamical systems.
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