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1. Introduction. The theory of unbounded derivations in operator
algebras has been recently investigated by many authors (see for com-
plete references, [10]), since the infinitesimal generators of the one-para-
meter groups of automorphisms in quantum dynamical systems are in
general unbounded derivations. There are many examples of derivations
which are not generators of dynamical systems and hence it may be
important to study the property of unbounded derivations in C*-algebras.
Since a derivation in a C*-algebra is extended to one in its enveloping
von Neumann algebra, we shall mainly study derivations in von Neu-
mann algebras.

In this paper we show that every (unbounded) x-derivation in a von
Neumann algebra is decomposed into the sum of the normal part and
the singular part, by using an algebra on an indefinite inner product
space which is induced by the derivation.

The author would like to express his great gratitude to Professor
M. Tomita for useful suggestions on this subject and to Professor S.
Sakai for valuable discussions with him.

2. Preliminary results. We begin this section by giving the de-
finition of derivations and introducing some notations.

By a derivation in a C*-algebra A (resp. a von Neumann algebra
M), we mean a linear mapping 6 of the domain = (6), which is a norm-
dense (resp. o-weakly dense) x-subalgebra of U (resp. M), into A (resp.
M) such that

o(ab) = é(a)h + ad(b)

for each @, b in 2(8). A derivation ¢ is called a *-derivation if é(a*)=
o(a)* holds for each @ in =7(6). Since every derivation can be expressed
in the form 4, + i9,, where 6, and 4, are x-derivations. We shall only
discuss *-derivations. It is well known that a derivation ¢ in a C*-alge-
bra 2% with &(0) = ¥ is necessarily norm-continuous and is also extended
to a o-weakly continuous derivation on the enveloping von Neumann
algebra A**. Let 6 be a x-derivation in a C*-algebra ¥ and let = be a
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non-degenerate =-representation of % on a Hilbert space such that
(4. TN Z(0))C 4. w; that is, 6(a) € 4. for each ac4.wN2(6). Then
5 is extended to a =-derivation in the weak closure () of (). In
fact, we define 6, on 7(=2(6)) by d.(m(a)) = n(é(a)) for each a € (). It
is easily seen that 4. is well-defined and is a =-derivation in the weak
closure 7(A) of m(A).

Suppose that I is a von Neumann algebra acting on a Hilbert space
&% and suppose that ¢ is a *-derivation in . We denote by G(6) the
graph of ¢ in MPIN; that is, G(0) = {{a, é(a)}; a € 2 (5)}.

DEFINITION 2.1. A x-derivation é in I is said to be o-weakly closed
if the graph G(6) in M P M is closed with respect to the o-weak (oper-
ator) topology.

We may analogously introduce the concepts of o-strong * and o-strong
closedness. Since the graph of ¢ is a convex set in the von Neumann
direct sum I P M, the o-weak closedness is equivalent to them. It is
well known that the infinitesimal generator of a o-weakly continuous
one-parameter group of =-automorphisms of a von Neumann algebra is
o-weakly closed. For details, the reader is referred to (cf. [2]).

Let M be a von Neumann algebra on a Hilbert space 22 and é be
a s-derivation in M. Suppose that there exists a densely defined sym-
metric operator h in 5% which implements 6, namely aZ(h)Cc < (h) for
all ¢ in 2 (%) and 6(a)¢ = i[h, ale (=i(ha — ah)¢) for all a in & (6) and
all ¢ in 27(h). It is easily seen that such a derivation is o-weakly
closable.

If a net {a;} converges to a with respect to the o-weak topology,
then we simply denote this convergence by a, —a (¢ — w). The follow-
ing proposition is more or less known.

PROPOSITION 2.2. Let M be a von Neumann algebra acting on a
Hilbert space 57 and let 6 be a o-weakly closable *-derivation in M.
Then the o-weak closure (the minimal g-weakly closed extension) of ¢ as
a linear mapping is also a *-derivation in IM.

PrOOF. Let 0 be the o-weak closure of §. Take elements a in
26) and b in 2(). Then there exists a net {a;} in & (d) such that
a;,—a (6 —w) and &(a,) —d(a) (6 —w). Since ba, »ba (¢ — w) and
o(ba;) = 6(b)a; + bd(a,) — d(b)a + bd(a) (¢ — w), we have bac =2 () and
o(ba) = d(b)a + bd(a) for each ac 2 (d) and be 2 (5). Next for each
a,be 2(0), there exists a net {b;)} in =2(d) such that b, —b (¢ — w) and
0(b;) —6(b) (¢ — w). By the same argument, it is easily seen that abe
2 (5) and d(ab) = d(a)b + a3(b), which implies our proposition.
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DEFINITION 2.3. Let 6 be a x-derivation in a von Neumann algebra
M. We define the set 7 (d; ¢ — w) as follows:

SO0 —w) = {ae: {0, a}eGH) '},
where G()  denotes the g-weak closure of G(5).

We remark that a =x-derivation 6 in IN is o-weakly closable if and
only if _#(0; 0 — w) = {0}.

LEMMA 2.4. The set _#(6;0 — w) s a o-weakly closed two sided
iwdeal of M.

PROOF. Since .7 (§; ¢ — w) is obviously o-weakly closed, we have
only to show that _7(§; 0 — w) is a two sided ideal of IM. Take ele-
ments a¢ in M and b in _#(6; 0 — w). Since 2 () is o-weakly dense in
IR there is a net {a;} in =2 (5) with a; - a (6 — w). By the definition
of _“(d; 0 — w) there is a net {b,} in = (6) such that b, >0 (¢ — w) and
0(b;) »b (6 — w). For each a;, we have a;b, >0 (¢ — w) and d(azb,) =
a,;,0(b;) + d(a;)b; — a;b (6 — w) since a;b;€ Z(6), we have a,be 7 (;
o — w). It follows from the o-weak closedness of .7(0;0 — w) that
abe #(0; 0 — w). Similarly, we have ba € _#(0; ¢ — w), which completes
the proof.

DEFINITION 2.5. Let 6 be a x-derivation in a von Neumann algebra
M. A x-derivation § in IM is said to be o-singular if for every a in
2(0)  (the o-weak closure of the range .Z#(3) of 9) there exists a
net {a;} in = () such that a; -0 (¢ — w) and é(a;) > a (¢ — w).

It is easy to see that a x-derivation 6 in M is o-singular if and
only if #(0; 0 —w) = Kﬁ—(gja—w. We may define the singularity of x-de-
rivations by using the o-strong * (resp. o-strong) topology analogously.
As we mentioned in the remark to Definition 2.1, the o-singularity is
equivalent to them. Lemma 2.4 gives the following:

COROLLARY 2.6. Suppose that a wvon Neumann algebra M is a
factor. Then every x-derivation 6 im IN is either o-weakly closable or
else g-singular.

REMARK 2.7. There exists a non-trivial o-singular *-derivation in a
von Neumann algebra. In fact, it is shown in [1] that there exists a
non-norm-closable x-derivation 6, in a UHF-algebra . Take a factor
representation w of A on a Hilbert space. Since 7 is faithful by the
simplicity of %A, we can define a x-derivation i, in the weak closure (von
Neumann algebra) 7(2) of 7(2) such that 8.(w(a)) = 7(d,(a)) for all ae
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Z(,). Then 0. is also non-norm-closable and so d. is not o-weakly
closable. It follows from Corollary 2.6 that 6. is o-singular.

PROPOSITION 2.8. Let I be a von Neumann algebra acting on a
Hilbert space and let 6 be a o-weakly closable x-derivation in IM. If
there exist a bounded x-derivation o, in M (i.e., Z(6,) =M and a
og-singular x-derivation 6, in I such that 6 = 6, + 0,, then 6, = 0; that
18, 0 18 bounded.

PROOF. Take an element a in <2(5,) . Then there exists a net
{a;} in £(8,) such that a;,— 0 (¢ — w) and d,(a;) > a (¢ — w). Since 6,
is o-weakly continuous, we have

0,(a;) >0 (0 —w).

Hence we have d(a;,) > a (¢ — w). Since 6 is o-weakly closable we have
a = 0. We complete the proof.

Now in connection with a x-derivation we introduce operator alge-
bras on an indefinite inner product space, which will be used in the re-
mainder of this paper.

Let 2% be a Hilbert space with the usual inner product (-, -). We
denote by <#(2%") the algebra of all bounded linear operators on .5¢".
Let J, be a self-adjoint unitary operator on .2¢°. We introduce an in-
definite inmer product induced by J, as follows:

[z, ¥, = (Jox, ¥)
for all x, ye . 22". With this indefinite metric, 22" is called a J,-space
denoted by {7, J}. For Ae Z (2% ), we denote by A’° the adjoint
operation of A with respect to [-,-];. With Ae (%), we write A*
for the usual adjoint operation of A with respect to (-,-). It then is
easily seen that

Al = J,A*J, .

Let B be a subalgebra of &#(27). If B is an involutive algebra
with this adjoint operation A — 4’v as involution, then B is said to be
a Jy-algebra on {7, J,}. It is clear that <& (9% ) is such an algebra. If
€ is an involutive subalgebra of a J,-algebra B then € is said to be a
J-subalgebra of B. This involution A — A’ is called a J,-involution.

Suppose that A is a C*-algebra acting on a Hilbert space 52 and §
is a =-derivation in .

DEFINITION 2.9. We define the mapping of the domain =(§) into
FB(#) as follows:
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o= (¢ )

0 a

for a e 2 (5), where 57 = 57 @ 57 denotes the Hilbert direct sum of
.

We write 7,(=(9)) for the image of z,; that is, 7,(=(d)) = {n,(a):
ae€ Z(6)}.

LeMMA 2.10 [6, Proposition 2.1]. Keep the same notations as in De-
finition 2.9. Let J be a self-adjoint unitary operator on 57 defined
by JEPBn) =nPe for &, nesF. Then w,(=2(0)) is a J-algebra on
(SF, T}

We remark that if 6 is norm-closed then 7,(&(d)) is a semi-simple
Banach algebra with the operator-norm topology and the Hermitian in-
volution mentioned above, and that ¢ is bounded if and only if 7,(=7(9))
is C*-equivalent as a Banach involutive algebra ([6]).

3. Decomposition of unbouded derivations. In this section we shall
discuss a decomposition of x-derivations in a von Neumann algebra into
a o-singular part and a normal part and show the following main
theorem.

THEOREM 3.1. Let I be a von Neumann algebra acting on a Hil-
bert space. Then every x-derivation 6 in M is decomposed into the sum

0=20,+0,

where 0, 18 a o-weakly closable x-derivation in MM and 6, is a o-singular
x-derivation in M.

Before giving the proof of the theorem, we shall present several
lemmas, which are concerned with J-algebras induced by x-derivations.
Let M be a von Neumann algebra acting on a Hilbert space 57°.
Let 6 be a x-derivation in M. As we mentioned in Definition 2.9 and

Lemma 2.10, we introduce the J-algebra w;(=(0)), which is induced by
0, on a J-space {%7", J} where S# = 7 @ & and J = (g (1)> We note
that a mapping x; is an involution-preserving isomorphism of = (d) into

B(SF); that is, m(a*) = m,(a)’ for ac (). In fact, we have

, . la B(a)>* _ <o 1>< a* 0 ><o 1> _ <a* 5(a*)> .
m(a)’ = J<o o 7=\ o/lsw@ny arllio) T lo g )T
for all ae (3. For simplicity we write ¥, = 7,(2())  for the
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o-weak (operator) closure of the J-algebra 7,(<=7(d)) in .%’“(5//7). Then we
have the following, which is more or less obvious.

LEMMA 3.2. U, is a o-weakly closed J-algebra on {9?, J}.

Let a be an element in ;. Suppose that a is expressed in matrix
form as
<a11 a12>
a =
a21 a22
where each a,;€ Z(5#) (1, j = 1,2). Then it is easy to show that a,, =
a, and a, = 0.

Keeping the same notations as above, we define a mapping +; of
A, into & (57) by

’\b‘«s(a) = Ay
for a € U;, and we also define a mapping 4 of ¥, into & (5#) by
4d(a) = ay,

for a€¥U;. Then, with these notations, each element a in ¥, is express-
ed in matrix form as

. («Ma) A(a))
0 ’\l"a(a) )
Then we have the following by simple computations.
LEMMA 3.3. The following statements hold.
1. The mapping +; is a o-weakly continuous homomorphism of U,
mto M with r(a’) = P(a)* for each ac ;.

2. The mapping 4 is a o-weakly continuwous linear mapping of 2,
into M such that

4(ab) = ri(@)4(b) + A(a)ys(b)
and
A(a’) = 4(a)*
for each a,be¥U,.

We remark that the mapping o7, is the identity mapping on &(4)
and the mapping 4o, is equal to 4.

We put K= {4(a): acU, and +,(a) =0}. Then we have K =

F(0; 0 —w). In fact, for each b in _“(6;0 — w), there exists a net
{b.} in =2(06) such that b, -0 (¢ — w) and 6(b,) b (¢ — w), and so we
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Thus (§ g)em,,. This shows that be K, hence .#(5; ¢ — w)C K. The
reverse inclusion is also shown analogously. Hence it follows from
Lemma 2.4 that K is a o-weakly closed two sided ideal of I, which
implies that there exists a central projection p of I with K = pMn.
We put ¢ =1 — p.

Let a be an arbitrary element in 9;. Then a is decomposed into
the sum a = a, + a,, where

(%(a) qA(a))
(%) a, =
0 ()

and

(O pA(a))
a, = .
0 0

We write U;(q) for the set of all a, (¢ €¥U;). Then we have the
following:

LEMMA 3.4. In the above decomposition, both a, and a, belong to
A,. Furthermore U(q) is a o-weakly closed J-subalgebra of ;.

Proor. Take any a in %,. By the definition of K, we have a, e %,,
so that a, = a — a,€%;. We next show that U,(q) = {a € U,;; pd(a) = 0}.
Suppose that a, is an element in %,(q) and is represented as (x) with
a €. Since A;(q) A;, we have

<"/’\5(a’q) A(aq)>

a, = .

0 Y 5(aq)

Hence pd(a,) = p-q4(a) = 0. The reverse inclusion is clear.

Since a €U, — pd(a) is a o-weakly continuous linear mapping by
Lemma 8.3, A;(q) is o-weakly closed.

Finally we show that 9,(q) is a J-subalgebra of ;. For a, be A, q),
we have, by Lemma 3.3, pd(ab) = pd(a)y,(b) + r(a)pd(d) =0, and
pd(a’) = pd(a)* = (pd(a))* = 0. Hence abeW, g) and a’ €A, (g). This
shows that %,(q) is a J-subalgebra of ¥;, and so completes the proof of
the lemma.

PROOF OF THEOREM 3.1. Let 6 be a *-derivation in a von Neumann
algebra IN acting on a Hilbert space 57°. Keep the same notations as
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in the previous three lemmas. Take an element a in %, with +,(a) = 0.
Then 4(a)€ K, so that gd(a) = 0. Therefore we can define the linear
mapping 4, of ;(%,;), which is the set of all +,(a) with a€¥;, into M
as

4,(¥ro(@)) = q4(a)

for a€ ;. Then we shall show that 4, is a o-weakly closed x-deriva-
tion in M with the domain (,). Since +,(A;) contains the domain
2(0) of 0, s(W,) is o-weakly dense in M. For a,be N, we have, by
Lemma 3.3, 4,(s(a)4s(b)) = 4,(4s(ab)) = q4(ab) = qA(@)s(®) + ¥s(a)gd(B) =
L @palb) + (@), (a(0), and 4,(y(@)*) = A, (rs(a”)) = g A(a”) = (q4(@))* =
(do(apra@)))*.

We now define a mapping of 2, into the von Neumann direct sum
M P M by

o = <’\f/‘5(a') 4(a)
0 Ysa)

It is easily seen that this mapping is a homeomorphism with respect
to the o-weak operator topology. Since U (q) is o-weakly closed by
Lemma 3.4 and G(4,) = {{b, 4,0): b€ yu@)} = {{(¥(a), ¢4(@)}: a € A}, the
graph G(4,) of 4, is o-weakly closed in % @ M. This shows that 4, is
a o-weakly closed *-derivation in IR.

We write d, for the restriction of 4, to the domain =(6) of 9, and
put 0, =0 — d,. Then d,(a) = pé(a) and i ,(a) = qdé(a) for each ac =Z(9).
Indeed, as we remarked in Lemma 3.3, for ac <(0) we have d,(a) =
4y(a) = 4(ys(s(a))) = qd(zms(a)) = qd(a), and 5,(a) = d(a) — dy(a) = pi(a).

It is clear that §, is a o-weakly closable x-derivation in It, and o,
is a x-derivation in M. Finally we shall verify that o, is o-singular.
Take an arbitrary element 2 in Z2(,) . Sinece Z2(5,) cMp =K,
there exists a in ¥, such that x = 4(a) and +,(a) = 0. Then there ex-
ists a net {x,} in =2(6) such that =,(x, —a (¢ — w); that is, x,—0
(=+s(a)) (6 —w) and o(x,) —> 4(a) = 2 (¢ — w). Therefore d,(x,) = po(x,) —
px = (6 — w), which implies that o0, is o-singular. This completes the
proof of the theorem.

) — {yrs(a), 4(a)} e M P .

REMARK 3.5. It is easily shown, in the proof of Theorem 3.1, that
the minimal o-weakly closed extension of §, as a linear mapping is just
equal to 4,, and that .“(0; 0 — w) coincides with the o-weak closure

Z2(,)  of the range of 5,.
REEMARK 3.6. Let 9% be a von Neumann algebra acting on a Hil-
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bert space &~ and 6 be a +-derivation in M with =(9) containing the
identity 1. Then the radical of %, is the set of all ¢ in %, with (@) = 0.
In fact, if a belongs to the radical of ¥, then we have

0 =lim [|(@a)"* = lim || (5@} $u(@)"|" = [lyula)]

and hence +,(a) = 0. Suppose, conversely, that y,(a) = 0. Then for any
beU;, we have
15+ ba — (’1 + 4rs(ba) A(ba) > _ <1 v,,(b)A(a)) ’
0 1 + 4s(ba) 0 1

where 1; denotes the identity operator on S7. Hence we have

1z +ba)* = <1 4 "(b)"(“)> _ («/fa(lg, —ba) 41z — ba)
0 1 0 vs(1z — ba)

which implies that a belongs to the radical of 2,. Thus the radical of
A; is the set of all @ in A, with ;(a) = 0.

Furthermore, in the same situation, ¢ is o-weakly closable if and
only if 9, is semi-simple. This follows from the equality K = _“(J;
o — w) immediately after Lemma 3.3.

>=1;;+ba,

In the above theorem, we have also shown that a unique central
projection p with _#(8; 0 — w) = Mp gives the decomposition in Theorem
3.1. In what follows, we denote this central projection by p,. We
note that & is o-weakly closable if and only if p, = 0. By P(3) we de-
note the set of all central projections in I, each of which gives the
decomposition of 6 as mentioned in Theorem 8.1; that is, 6 = é,-, + 0,
where 6,-, = (1 — p)0 is a o-weakly closable x-derivation in 2% and ¢, =
pd is a o-singular *-derivation in M. Such a decomposition of 6 given
by a central projection p in P(9) is called a canonical decomposition of
0 induced by p. It is clear that & is o-weakly closable if and only if
P(5)20. It is also shown, by the definition of P(§), that 6 is o-singular
if and only if there exists p in P(6) with 6 = §,. The following lemma
characterizes p; in P(9).

LEMMA 3.7. Let M be a von Neumann algebra acting on a Hilbert
space and let & be a x-derivation in IM. Then the projection p; is a
minimal projection in P(0).

ProOF. Take an arbitrary element p in P(3). Since p,€ _“(0; 0 —w),
there exists a net {x;} in £(d) such that 2, —>0 (¢ — w) and d(x;) —
ps (6 — w). Therefore we have

01-p(®) = (1 — p)o(x;) > (1 — p)p; (6 — w) .
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Since 0,-, is g-weakly closable, (1 — p)p, = 0 which implies that p, < p.
Thus p, is a minimal projection in P(5).

In general we may not expect that the sum of two o-weakly
closable linear mappings in a von Neumann algebra is also o-weakly
closable, and hence we may not obtain the uniqueness of such a decom-
position in Theorem 3.1.

PROPOSITION 3.8. Let I be a von Neumann algebra acting on a
Hilbert space and let 6 be a x-derivation in M. If the domain =Z(6)
of 0 contains the center 3 of I, then the camonical decomposition of o
18 unique.

PrOOF. Let p be an element in P(§). Then we have only to show
that o,(x) = 0, (x) for every xe =2 (6). If p =0, then ¢ is g-weakly
closable and hence p;, = 0. Therefore we may assume that p is a non-
zero projection. Take y in “(6,; 06 — w). Then there exists a net {x;}
in =7 (9) such that x; >0 (¢ — w) and 6,(x;) >y (¢ — w). Hence é(px,;) =
o(p)xy + po(x;) = o(p)x; + 0,(x)) —y (60 — w). This implies that y € .7 (9;
o —w). Now let x be an arbitrary element in <7(6). Since 4, is
o-singular, the range of §, is contained in . (d,; 0 — w), hence in
F(0;0 —w). Thus p,0,(x) =d,(x). By Lemma 3.6, we have ,,(2) =
p:0(x) = p;00(x) = 6,(x) for x€ =2 (6). This completes the proof.

To finish this section, we remark that every (unbounded) derivation
in von Neumann algebras (or C*-algebras) is extended to a norm-conti-
nuous module derivation of a Banach algebra 2 to a Banach %-module.
To see this, we recall some definitions [4]. Let 2 be a Banach algebra
and 22~ be a Banach space. Then 2” is said to be a Banach 2-module
if it is a two sided module and both bilinear mappings (a, z) € A X 27~ —
a-x, x-a€. 2 are bounded. Furthermore a Banach A-module .2 is said
to be a dual UA-module if .2~ is isometrically isomorphic to the dual
space of a Banach space 27, and, for each a ¥, both mappings ze
& —a-x, x-a €27 are weak s-continuous.

Let I be a von Neumann algebra acting on a Hilbert space 57 and
0 be a x-derivation in 9. Keeping the same notations as in Lemmas
3.2 and 3.3, we define bilinear mappings of A;xIM to M by

(@, m) > a-m = ,(a)m and m-a = ms(a) .

Then 9 is a Banach 2;-module since, for all a € %, and m eI, we have
la-m| = [[ys@) Im| < [la][[[m] and [[m-a| < |[a] |m]|. We have by
Lemma 3.3 the following:

PROPOSITION 38.9. Let M be a von Neumann algebra and 6 be a
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x-derivation in M. Then 6 s extended to a morm-continuous module
derivation 4 of U; to a dual N;-module M.
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