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1. Introduction. The theory of unbounded derivations in operator
algebras has been recently investigated by many authors (see for com-
plete references, [10]), since the infinitesimal generators of the one-para-
meter groups of automorphisms in quantum dynamical systems are in
general unbounded derivations. There are many examples of derivations
which are not generators of dynamical systems and hence it may be
important to study the property of unbounded derivations in C*-algebras.
Since a derivation in a C*-algebra is extended to one in its enveloping
von Neumann algebra, we shall mainly study derivations in von Neu-
mann algebras.

In this paper we show that every (unbounded) *-derivation in a von
Neumann algebra is decomposed into the sum of the normal part and
the singular part, by using an algebra on an indefinite inner product
space which is induced by the derivation.

The author would like to express his great gratitude to Professor
M. Tomita for useful suggestions on this subject and to Professor S.
Sakai for valuable discussions with him.

2. Preliminary results. We begin this section by giving the de-
finition of derivations and introducing some notations.

By a derivation in a C*-algebra Sί (resp. a von Neumann algebra
3ft), we mean a linear mapping δ of the domain £&(δ)f which is a norm-
dense (resp. σ-weakly dense) *-subalgebra of 9ί (resp. 9ft), into 9ί (resp.
3ft) such that

δ(ab) = δ(a)b + aδ(b)

for each α, b in &(δ). A derivation δ is called a *-derivation if δ(α*) =
δ(a)* holds for each a in &($). Since every derivation can be expressed
in the form δx + iδ2, where δλ and δ2 are * -derivations. We shall only
discuss *-derivations. It is well known that a derivation δ in a C*-alge-
bra Sί with 3f{&) — Sί is necessarily norm-continuous and is also extended
to a (T-weakly continuous derivation on the enveloping von Neumann
algebra Sί**. Let δ be a *-derivation in a C*-algebra Sί and let π be a
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non-degenerate *-representation of 31 on a Hubert space such that
7r; that is, δ(a)e^*π for each α e ^ s n ^ ί ) . Then

δ is extended to a *-derivation in the weak closure π($Ά)w of π (δϊ). In
fact, we define δπ on π(&(δ)) by δπ(π(α)) = π(δ(a)) for each α e ^ i ) . It
is easily seen that δπ is well-defined and is a *-derivation in the weak
closure π(W)w of

Suppose that SW is a von Neumann algebra acting on a Hubert space
£$f and suppose that δ is a * -derivation in 3K. We denote by G(δ) the
graph of δ in 9K09K; that is, G(δ) = {{α, <5(α)}; α e ^ ( δ ) } .

DEFINITION 2.1. A ^-derivation <5 in 9K is said to be σ-weakly closed
if the graph G(δ) in 3K ® 3ft is closed with respect to the σ-weak (oper-
ator) topology.

We may analogously introduce the concepts of σ-strong * and σ-strong
closedness. Since the graph of δ is a convex set in the von Neumann
direct sum Tl φ 9ft, the σ-weak closedness is equivalent to them. It is
well known that the infinitesimal generator of a <τ-weakly continuous
one-parameter group of *-automorphisms of a von Neumann algebra is
σ-weakly closed. For details, the reader is referred to (cf. [2]).

Let 9ft be a von Neumann algebra on a Hubert space £ϊf and δ be
a *-derivation in 9ft. Suppose that there exists a densely defined sym-
metric operator h in 3ίf which implements δ, namely a&(h)c:2&(h) for
all a in &(δ) and δ(a)ζ = i[h, a]ξ ( = i(ha - ah)ζ) for all a in &{8) and
all ξ in &(h). It is easily seen that such a derivation is σ-weakly
closable.

If a net {αj converges to a with respect to the σ-weak topology,
then we simply denote this convergence by at-> a (σ — w). The follow-
ing proposition is more or less known.

PROPOSITION 2.2. Let 2K be a von Neumann algebra acting on a
Hilbert space £ίf and let δ be a σ-weakly closable ^-derivation in SK.
Then the σ-weak closure (the minimal σ-weakly closed extension) of δ as
a linear mapping is also a ^-derivation in 9K.

PROOF. Let δ be the σ-weak closure of δ. Take elements a in
3fQί) and 6 in &(δ). Then there exists a net {αj in &(β) such that
at-+ a (σ — w) and δ(aτ) —> δ(a) (σ — w). Since bat —> ba (σ — w) and
δ(bat) = δ(6)αί + bδ(a{) -> δφ)a + bδ(a) (σ - w), we have ba e &φ) and
δφa) = δ(b)a + bδ(a) for each α e ^ ( 5 ) and be^(δ). Next for each
α, 6 e ^ ( § ) , there exists a net {6̂ } in ^ ( δ ) such that bλ—>b (σ — w) and

^ δ(b) (σ — w). By the same argument, it is easily seen that ab e
and δ(ab) = δ(α)δ + ad(b), which implies our proposition.
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DEFINITION 2.3. Let δ be a *-derivation in a von Neumann algebra
9K. We define the set ^ Γ ( δ ; σ — w) as follows:

; σ - w) = {α e 2K: {0, a} e G(δ) } ,

where G(δ) denotes the σ-weak closure of G(δ).

We remark that a *-derivation δ in 9K is σ-weakly closable if and
only if ^ ( δ ; σ - w) = {0}.

LEMMA 2.4. Tfoe se£ ^ ( δ ; σ — w) is a σ-weakly closed two sided
ideal of 9W.

PROOF. Since *J^(δ; σ — w) is obviously σ-weakly closed, we have
only to show that ^ ( δ ; σ — w) is a two sided ideal of Wl. Take ele-
ments a in Wl and 6 in ^(δ; σ — w). Since 3f{δ) is σ-weakly dense in
3K there is a net {ax} in «^(δ) with α̂  —> a (σ — w). By the definition
of <J^(δ\ σ — w) there is a net {ί>J in £^(5) such that bt —• 0 (σ — w) and
δ(bi)-+b (σ — w). For each α^, we have α ^ ^ O (σ — w) and δ{aλpv) =
^λQδ(bi) + δ(aλQ)bi —> α 0̂6 (σ — w) since α ^ e ^ ( δ ) , we have aλJbe<J^(δ;
σ — w). It follows from the σ-weak closedness of ^ ( δ ; σ — w) that
α& e ^ " ( δ ; σ — w). Similarly, we have 6α e ^ ( δ ; σ — w), which completes
the proof.

DEFINITION 2.5. Let δ be a * -derivation in a von Neumann algebra

Wl. A ^-derivation δ in $R is said to be σ-singular if for every α in

(the σ-weak closure of the range &(β) of δ) there exists a

net {aλ} in ^ ( δ ) such that aλ —• 0 (σ — w) and δ(α^) —> α (σ — w).

It is easy to see that a * -derivation δ in 3K is σ-singular if and

only if ^ ( δ ; σ — w) = &{δ) w. We may define the singularity of *-de-
rivations by using the σ-strong * (resp. σ-strong) topology analogously.
As we mentioned in the remark to Definition 2.1, the σ-singularity is
equivalent to them. Lemma 2.4 gives the following:

COROLLARY 2.6. Suppose that a von Neumann algebra 3K is a
factor. Then every ^-derivation δ in Wl is either σ-weakly closable or
else σ-singular.

REMARK 2.7. There exists a non-trivial cr-singular ^-derivation in a
von Neumann algebra. In fact, it is shown in [1] that there exists a
non-norm-closable *-derivation δ0 in a UHF-algebra Sί. Take a factor
representation π of SI on a Hubert space. Since π is faithful by the
simplicity of SI, we can define a ^-derivation δπ in the weak closure (von
Neumann algebra) π(SΆ)w of τr(δt) such that δπ(π(a)) = ττ(δo(α)) for all a e
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Then δπ is also non-norm-closable and so δπ is not σ-weakly
closable. It follows from Corollary 2.6 that δπ is σ-singular.

PROPOSITION 2.8. Let 3ft be a von Neumann algebra acting on a
Hubert space and let δ be a σ-weakly closable ̂ -derivation in 8ft. //
there exist a bounded ^-derivation δλ in 9ft (i.e., ^ ( δ j = 9ft) and a
σ-singular ^-derivation δ2 in 9ft such that δ — δλ 4- 52, then δ2 = 0; that
is, δ is bounded.

PROOF. Take an element a in ^?(δ2) . Then there exists a net
{αj in &(δ2) such that α* -> 0 (σ — w) and δ2(α4) —> α (σ — w). Since δx

is σ-weakly continuous, we have

δx(a%) -^ 0 (σ - w) .

Hence we have δ(at) —>α (σ — w). Since δ is σ-weakly closable we have
α = 0. We complete the proof.

Now in connection with a *-derivation we introduce operator alge-
bras on an indefinite inner product space, which will be used in the re-
mainder of this paper.

Let JΓ* be a Hubert space with the usual inner product ( , •). We
denote by &{J%Γ) the algebra of all bounded linear operators on 3ίΓ.
Let Jo be a self-adjoint unitary operator on 3ίΓ. We introduce an in-
definite inner product induced by Jo as follows:

[x, y]j0 = (J&, y)

for all x, y e JίΓ. With this indefinite metric, 3ίΓ is called a J0-space
denoted by pT~, Jo}. For A G ^ ( X ) , we denote by AJ° the adjoint
operation of A with respect to [ , ] J o. With Ae^(Jg^) , we write A*
for the usual adjoint operation of A with respect to (•,•)• It then is
easily seen that

AJ° = J0A*Jo .

Let S b e a subalgebra of &{SίΓ). If 33 is an involutive algebra
with this adjoint operation A -»AJ{} as involution, then 93 is said to be
a J0-algebra on {J%Ί Jo}. It is clear that &(<3ίΓ) is such an algebra. If
(£ is an involutive subalgebra of a J0-algebra 33 then (£ is said to be a
Jo-subalgebra of S3. This involution A -»AJ° is called a J0-involution.

Suppose that Sί is a C*-algebra acting on a Hubert space Sίf and δ
is a *-derivation in 8ί.

DEFINITION 2.9. We define the mapping of the domain Sf{$) into
^ as follows:
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a δ(a)

0 a

for a e &(δ), where Sϊ? = Si? φ Si? denotes the Hubert direct sum of
Si?.

We write πδ(&(δ)) for the image of πδ; that is, πδ(&r(δ)) = {πδ(a):
a 6 ^(<5)}.

LEMMA 2.10 [6, Proposition 2.1]. Keep the same notations as in De-
finition 2.9. Let J be a self-adjoint unitary operator on Si? defined
by J(ξ Θ V) = V 0 ζ for ζ,ηe Si?. Then πδ(&(δ)) is a J-algebra on

We remark that if δ is norm-closed then πδ{&(δ)) is a semi-simple
Banach algebra with the operator-norm topology and the Hermitian in-
volution mentioned above, and that δ is bounded if and only if πδ(3r{δ))
is C*-equivalent as a Banach involutive algebra ([6]).

3. Decomposition of unbouded derivations. In this section we shall
discuss a decomposition of *-derivations in a von Neumann algebra into
a (T-singular part and a normal part and show the following main
theorem.

THEOREM 3.1. Let W be a von Neumann algebra acting on a Hil-
bert space. Then every ^-derivation δ in Tt is decomposed into the sum

δ = δ, + δ2

where δλ is a σ-weakly closable ̂ -derivation in ίΰl and δ2 is a σ-singular
^-derivation in SK.

Before giving the proof of the theorem, we shall present several
lemmas, which are concerned with J-algebras induced by ^-derivations.

Let SK be a von Neumann algebra acting on a Hubert space S(?.
Let δ be a *-derivation in 3K. As we mentioned in Definition 2.9 and
Lemma 2.10, we introduce the J-algebra πδ(&(δ))f which is induced by
δ, on a J-space {<%?, J} where £%? = Si? © ^ T and J = (J J). We note
that a mapping πδ is an involution-preserving isomorphism of <&(δ) into

); that is, ^(α*) = πδ(a)J for α e ^ ( δ ) . In fact, we have

la δ(a)\* /0 1W α* 0 WO 1\ (a* δ(a*
} J =

a /

for all fl6^(i). For simplicity we write % = πδ(&(δ)) for the
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(7-weak (operator) closure of the J-algebra πδ(&(δ)) in &{<%?). Then we
have the following, which is more or less obvious.

LEMMA 3.2. Sί3 is a σ-weakly closed J-algebra on {Sίf, J}.

Let a be an element in δίδ. Suppose that a is expressed in matrix

form as

/α n α12

a =
\ft21 CL22,

where each ai5 e &{β(f} (i, j = 1, 2). Then it is easy to show that an =
α22 and α21 = 0.

Keeping the same notations as above, we define a mapping α/rδ of
% into &(<%?) by

for α e Sίa, and we also define a mapping z/ of 9ί3 into ^ ( ^ g ^ ) by

= α12

for α e ίlβ. Then, with these notations, each element α in Sίδ is express-
ed in matrix form as

(ψδ(a) A{a)
a —

\ 0 ψδ(

Then we have the following by simple computations.

LEMMA 3.3. The following statements hold.
1. The mapping ψδ is a o-weakly continuous homomorphism of

into 5DΪ with ψδ(aJ) = ψδ(a)* for each a e SΆδ.
2. The mapping A is a σ-weakly continuous linear mapping of

into 2ft such that

Δ(ab) = fδ(a)Δ{b)

and

A{aJ) = z/(α)*

for each a, b e ^ίδ.

We remark that the mapping ψδoπδ is the identity mapping on
and the mapping A<>πδ is equal to 3.

We put K={A(a): ae% and ψδ(a) = 0}. Then we have # =
^ ( δ ; σ — w). In fact, for each b in ^ ( δ ; α* — w), there exists a net
{ba} in ^ ( δ ) such that ba —• 0 {σ — w) and δ(δα) ->δ (σ — tϋ), and so we
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have

/0 δ\
πa(ba) -> ( I (σ - w) .

Thusβj o)G 8 l« T h i s s h o w s t h a t δeJSΓ, hence ^ ( δ ; σ-w)aK. The
reverse inclusion is also shown analogously. Hence it follows from
Lemma 2.4 that if is a σ-weakly closed two sided ideal of 2K, which
implies that there exists a central projection p of SK with i£ = p3K.
We put g = 1 — p.

Let a be an arbitrary element in 8ίβ. Then α is decomposed into
the sum α = aq -j- αp, where

and

We write 8Iβ(g) for the set of all αρ (αe8la). Then we have the
following:

LEMMA 3.4. In the above decomposition, both ag and ap belong to
Sίβ. Furthermore 8lβ(̂ ) is α σ-weakly closed J-subalgebra of SΆδ.

PROOF. Take any a in 81,. By the definition of K, we have ap e SΆδ,
so that aq = a — ape%δ. We next show that 8ίβ(g) = {αeδίδ; pΔ{a) = 0}.
Suppose that aq is an element in %(q) and is represented as (*) with
a e 5ίδ. Since 8ίa(g) c 8ίa, we have

0 ψδ(aq))

Hence pΔ{aq) = p-qA{ά) = 0. The reverse inclusion is clear.
Since α e §ίδ —> pJ(α) is a σ-weakly continuous linear mapping by

Lemma 3.3, %(q) is σ-weakly closed.
Finally we show that %(q) is a J-subalgebra of 81*. For a, be%(q)f

we have, by Lemma 3.3, pA{ab) = pΔ{ά)fδ{b) + ψδ(a)pΔ(b) = 0, and
p φ J ) = p φ ) * = ( p φ ) ) * = 0. Hence abe%(q) and α'eSUί). This
shows that %(q) is a J-subalgebra of %, and so completes the proof of
the lemma.

PROOF OF THEOREM 3.1. Let δ be a *-derivation in a von Neumann
algebra Wl acting on a Hubert space §ίf. Keep the same notations as
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in the previous three lemmas. Take an element a in SΆδ with ψδ(a) = 0.
Then Δ(a) e K, so that qΔ(a) = 0. Therefore we can define the linear
mapping Δq of ψδ($ίδ), which is the set of all ψδ(a) with αeδί 3 , into Ti
as

for α e 81,. Then we shall show that Δq is a σ-weakly closed ^deriva-
tion in Wl with the domain ^(81,). Since <^(8ϊa) contains the domain
^ ( δ ) of δ, ψδ(%) is σ-weakly dense in Wl. For α, 6 e 2Ϊ3, we have, by
Lemma 3.3, Δq(ψδ(a)ψδ(b)) = Δq(ψδ(ab)) = gJ(α6) = qΔ(a)ψδ(b) + ψδ(a)qΔ(b) =

ψδ(a)Δq(fδ(b)), and

We now define a mapping of δίδ into the von Neumann direct sum
SK by

It is easily seen that this mapping is a homeomorphism with respect
to the σ-weak operator topology. Since %(q) is σ-weakly closed by
Lemma 3.4 and G{Δq) - {{b, Δq(b)}: beψδ(Wδ)} = {{ψδ(a), qΔ(a)}: α e δ ϊ j , the
graph G(Δq) of Δq is σ-weakly closed in Wl 0 SW. This shows that J g is
a σ-weakly closed ^-derivation in SK.

We write δq for the restriction of Δq to the domain £&{$) of δ, and
put δp = δ - δq. Then δp(α) = pδ(a) and δff(α) = qδ(ά) for each α e ^ ( i ) .
Indeed, as we remarked in Lemma 3.3, for a e £̂ (<?) we have δq(a) =
Δq(a) = A^πJίa))) - ^(ττ,(α)) - ffδ(α), and ίp(α) = δ(α) - δq(a) = pS(α).

It is clear that <?g is a σ-weakly closable ^-derivation in SK, and δp
is a ^-derivation in SK. Finally we shall verify that δp is σ-singular.

Take an arbitrary element x in &{δp)~w. Since ^ ( ^ ' " " c S K p = K,
there exists α in Sl3 such that α = Δ{a) and ψ»β(α) = 0. Then there ex-
ists a net {xa} in ^ ( δ ) such that πδ(xa) -* α (σ — w); that is, #α —> 0
( = ψ i(α)) (σ - w) and δ(a;β) -> J(α) = α? (α - w). Therefore δp(^α) = pδ(xa) ->
pa; = x (tf — w), which implies that δp is σ-singular. This completes the
proof of the theorem.

REMARK 3.5. It is easily shown, in the proof of Theorem 3.1, that
the minimal tf-weakly closed extension of δq as a linear mapping is just
equal to Δq, and that ^(δ; σ — w) coincides with the σ-weak closure

~w of the range of δp.

REEMARK 3.6. Let 3K be a von Neumann algebra acting on a Hil-
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bert space £έ? and δ be a *-derivation in 3K with Ξf(δ) containing the
identity 1. Then the radical of % is the set of all a in % with ψδ(a) = 0.
In fact, if a belongs to the radical of %, then we have

0 = lim ||(α'α) | r ^ lim ||(^(α)V*(*))ir = \\ψδ(a)\\>

and hence fδ(a) = 0. Suppose, conversely, that fδ(a) = 0. Then for any
b e 9ϊδ, we have

+ ψδ(ba) A(ba) \ (I ψδ(b)A(a)\

ba ,

0 1 + ψδ(ba)J \θ 1 ) '

where 1^ denotes the identity operator on 3ff. Hence we have

~ψδ(b)A(a)\ ίψδ(l^ - ba) ΔQL& - ba)\
=

0 1 / \ 0 φδ(l£ - ba)]

which implies that a belongs to the radical of 81a. Thus the radical of
9ίδ is the set of all a in Sίδ with ψδ(a) = 0.

Furthermore, in the same situation, δ is α-weakly closable if and
only if Sίδ is semi-simple. This follows from the equality K — ^{δ\
σ — w) immediately after Lemma 3.3.

In the above theorem, we have also shown that a unique central
projection p with ^(δ; σ — w) — Tip gives the decomposition in Theorem
3.1. In what follows, we denote this central projection by pδ. We
note that δ is σ-weakly closable if and only if pδ = 0. By P(δ) we de-
note the set of all central projections in SK, each of which gives the
decomposition of δ as mentioned in Theorem 3.1; that is, δ = δt-p + δp

where δt-p = (1 — p)δ is a σ-weakly closable ^-derivation in SK and δp =
pδ is a ^-singular ^-derivation in ffll. Such a decomposition of δ given
by a central projection p in P(δ) is called a canonical decomposition of
δ induced by p. It is clear that δ is α-weakly closable if and only if
P(δ) 9 0. It is also shown, by the definition of P(δ)f that δ is σ-singular
if and only if there exists p in P(δ) with δ = δp. The following lemma
characterizes pδ in P(δ).

LEMMA 3.7. Let 3K be a von Neumann algebra acting on a Hilbert
space and let δ be a ^-derivation in 3ft. Then the projection pδ is a
minimal projection in P(δ).

PROOF. Take an arbitrary element p in P(δ). Since pδ e ^{δ\ σ — w),
there exists a net {xλ} in 3f{Ji) such that xλ -> 0 (σ — w) and δ(xλ) -»
pδ (σ — w). Therefore we have
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Since δλ-p is cr-weakly closable, (1 — p)pδ = 0 which implies that pδ <̂  p.
Thus pδ is a minimal projection in P(δ).

In general we may not expect that the sum of two σ-weakly
closable linear mappings in a von Neumann algebra is also σ-weakly
closable, and hence we may not obtain the uniqueness of such a decom-
position in Theorem 3.1.

PROPOSITION 3.8. Let -OR be a von Neumann algebra acting on a
Hubert space and let d be a ^-derivation in Wl. If the domain S${δ)
of δ contains the center 3 of 9K, then the canonical decomposition of 3
is unique.

PROOF. Let p be an element in P(δ). Then we have only to show
that δp(x) = δPδ(x) for every xe^(δ). If p = 0, then δ is σ-weakly
closable and hence pδ = 0. Therefore we may assume that p is a non-
zero projection. Take y in ^(δp; σ — w). Then there exists a net {xλ}
in 3f($) such that xλ —> 0 (σ — w) and δp(xλ) -*y (σ — w). Hence δ(pxλ) =
δ(p)xλ + pδ(xx) = δ(p)xλ + δp(xλ) ->y (σ - w). This implies that y e ^{δ\
σ — w). Now let x be an arbitrary element in &(δ). Since δp is
ίj-singular, the range of δp is contained in ^(δp; σ — w), hence in
^{δ\ σ — w). Thus pδδp(x) = δp(x). By Lemma 3.6, we have δPδ(x) =
pδδ(x) = pδpδ{x) — δp{x) for xe^(δ). This completes the proof.

To finish this section, we remark that every (unbounded) derivation
in von Neumann algebras (or C*-algebras) is extended to a norm-conti-
nuous module derivation of a Banach algebra Sί to a Banach Sί-module.
To see this, we recall some definitions [4]. Let Sί be a Banach algebra
and <£? be a Banach space. Then <£? is said to be a Banach Sί-module
if it is a two sided module and both bilinear mappings (α, x) e 9ί x <3f —•
a-x, x ae <£f are bounded. Furthermore a Banach 9ί-module <%f is said
to be a dual Sί-module if 3f is isometrically isomorphic to the dual
space of a Banach space <%f*, and, for each αeSί, both mappings xe
<^f-+a x, x-ae^f are weak ^-continuous.

Let 2K be a von Neumann algebra acting on a Hubert space 3ίf and
δ be a *-derivation in Wl. Keeping the same notations as in Lemmas
3.2 and 3.3, we define bilinear mappings of SΆδχTl to Wl by

(α, m) —» a m = ψδ(a)m and m-a = mψδ{a) .

Then SK is a Banach 5ίδ-module since, for all a 6 2ίδ and m e 301, we have
||a-m | | ^ | |^ a(α)| | | |w| | ^ | |α | | | |m| | and | |m α|| ^ | |α | | | |m| | . We have by
Lemma 3.3 the following:

PROPOSITION 3.9. Let 9K be a von Neumann algebra and δ be a
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^-derivation in Wl. Then d is extended to a norm-continuous module
derivation A of Sίδ to a dual %δ-module SPΪ.
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