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1. Introduction. Given a local martingale M, the associated ex-
ponential local martingale Z is not necessarily uniformly integrable. As
is first indicated by Girsanov in [2], to know whether Z is a uniformly
integrable martingale is very important in certain questions concerning the
absolute continuity of probability laws of stochastic processes. However,
it seems to us that the essential feature of the problem appears in the case
where M is continuous. For that reason, assuming the sample continuity
of M we consider the uniform integrability of Z in this paper: but we
have no mind to deny the significance of the extension to right continuous
martingales. Historically, in the last ten years many sufficient conditions
about this problem have successively been found: for example, see Novikov
[9, 10], Kazamaki [4, 5], Lepingle and Memin [7] and Okada [11].

This paper consists of six sections, and Section 5 contains the main
result. Our aim here is to give a new sufficient condition which is an
improvement of the above-mentioned criteria. In Sections 2 and 3 we
collect some notations and technical results that are used in later sections.
In Section 4 we shall deal with a special case in order to explain our
idea explicitly. Finally, in Section 6 we shall state some remarks on a
BMO-martingale in connection with the problem about the uniform inte-
grability of exponential martingales.

2. Preliminaries. Let (42, F, P) be a complete probability space with
a non-decreasing right continuous family {Ft)^t<oo of sub σ-fields of F
such that F = V<̂ o Ft and Fo contains all null sets. It goes without
saying that the martingales here are adapted to this filtration.

Given a continuous local martingale M with Mo = 0, consider the
exponential local martingale Z defined by the formula

(1) Zt
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where (M) denotes the continuous increasing process associated with M.
Clearly, E[ZT] ^ 1 for any stopping time T, because Z is a supermartin-
gale with Zo = 1. Therefore, a necessary and sufficient condition for Z
to be a uniformly integrable martingale is the validity of the equality
E\Z«\ = 1 where Z^ = lim^^Z^ But, unfortunately, the direct verifi-
cation is usually hard to carry out.

For any real number a, let us denote by Zia) the process given by
the formula

(2) Zt^

which is also an exponential local martingale. An easy calculation shows
that

ZZ{1) = exp (-<AΓ» , Z = {ZW)Y exp ( ~ i -

From these relations we can immediately derive that {Z^ = 0} =

KM). = oo}.
We shall denote for convenience by ^ u the class of all uniformly

integrable martingales and by S^h the class of all bounded stopping times
(relative to (Ft)). Let now φ: R+ —> R+ be a continuous function such
that 0(0) = 0, and for each real number a we set

Ga(t, φ) = exp \aMt + (\ ~ o)<M\ - 11 - α \Φ«M)t)\ (0 ^ t < - )

g(a, φ) = sup E[Gβ(T, φ)].

Obviously, G^t, φ) — Zt, and it follows at once from Fatou's lemma that
g(a, φ) = supΓ E[Ga(T, φ)], where the supremum is taken over all stopping
times.

The reader is assumed to be familiar with the martingale theory as
expounded in [8]. Throughout the paper, let us denote by C a positive
constant and by Cp a positive constant depending on p only, both letters
are not necessarily the same from line to line.

3. Properties of g(a, φ). Clearly, G0(ί, 0) = exp«M>ί/2) and G1/2(t, 0) =
exp (Mt/2). Furthermore, it is known that g(0, 0) < oo => Ze ^ C (Novikov
[9]) and g(0, 0)< oo =» #(1/2, 0)< oo => Ze ^ (Kazamaki [4]).

PROPOSITION 1. Let a < β < 1. Then

(3) g(β, Φ) ^ g(a, ΦY1-^1-* .

On the other hand, if 1 < a < β, we have
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(4) g(a, φ) ̂  g(β9 φy-»«>-» .

PROOF. We first show (3). For that, let a < β < 1, and set p =
(1 — α)/(l — β) which is larger than 1. Then, the exponent conjugate q
to p being (1 - a)/(β - a), it is easy to see that Gβ{T, φ) = Ga(T, φ)1/pZ#q.
So, applying Holder's inequality to the right hand side we find

( 5) E[Gβ(T, φ)] £ E[Ga(T, φ)Y"E[Zτγ« £ E[Ga(T, φ)Y" .

Consequently, g(β, φ) ̂  g(a, φ)1/p.
Secondly, we show (4). If 1 < a < β, then

Ga(T, φ) = Gβ(T, fy-i)/u-»z«-vu-»

and we apply Holder's inequality with exponent (β — l)/(α — 1) and
(β — l)/(β — a) to the right hand side:

( 6 ) E[Ga(T, φ)] ̂  E[Gβ(T, φ)γ-»<v-»E[Zτγ*-a)n>-» .

Thus, (4) is obtained. This completes the proof.

We close this section with two examples which are used in Section
5. In the following B — (Bt) denotes a one dimensional Brownian motion
starting at 0.

EXAMPLE 1. For 0 < a < °°, we define the stopping time

( 7) τa = inf {t ^ 0; Bt ^ t - φ(t) - a).

Let now M = BTa where Bla = BtATa (x Ay denotes the minimum of x and
y). Then (M)τ/2 - Φ((M)T) ̂  Mτ - <M>Γ/2 + a (Te £>%) by the definition
of τβ, so that fir(0, ̂ ) ^ eα s u p r e ^ E ' ^ ] ^ eα. Furthermore, combining
this fact with (3) we have g(a, φ) < °° for all α with 0 ^ α < 1.

EXAMPLE 2. For 0 < a < °°, let va be the stopping time given by

(8 ) vα = inf {t ^ 0; Bt ^ ί + ^(ί) + a},

and consider the martingale M = BVa. Then it follows from the defini-
tion of va that for any

2MT + (-|- - ή<M)τ - ^«M>Γ) ^ MΓ - y<ilί>Γ + a

Thus ί/(2, φ) ̂  βα. Combining this with (4) we have g(β, φ) < °° for all
β with 1 < β <; 2.

4. An application of a simple criterion to the case φ = 0. Recently,
Lepingle and Memin have proved in [7] that if for some a with 0 ^ a < 1
the family {Gα(Γ, 0)}Γe.n is uniformly integrable, then Ze^u. But the
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verification of the uniform integrability is often hard to carry out. The
purpose of this section is to improve their result by applying the follow-
ing simple criterion.

LEMMA 1. Let aΦO and Tx = inf {t ^ 0; (M)t > λ} for λ > 0. Then
Z{a) e^u if and only if limiii£x^.E[Z^; Tλ < oo] = 0.

PROOF. For each λ > 0 it follows from the definition of Tx that
(M)Tχ ^ λ and {Tλ = oo} = {(M)^ ^ λ}. Therefore, we have

E[Zfi; Tλ<oo] = E[Z%] - E[Zfi; Tλ = oo] = 1 - E[Zίa); <M>. £ λ],

completing the proof.

LEMMA 2. Let aΦl. If g(a, 0) < oo, then Z{a) e ^ .

PROOF. Since Ga(t, 0) = Z}a) exp {(1 - a)\M)t/2} and <M>Γyl = λ on
{T; < oo}, W e find

; Tλ<~] = E[Ga{Th 0); Tλ < oo] exp {-yλ(l - α

which converges to 0 as λ—> oo. Thus ^ ( α ) e j ; by Lemma 1.

PROPOSITION 2. // sr(α, 0) < oo for some aΦl, then Zz^€u.

PROOF. Suppose first that g(a, 0) < oo for some a with — oo < a < 1.
If a ^ β < 1, then #(/3, 0) < oo by (3) and so Z{β) e ^ u by Lemma 2.
Moreover, since Z}P ^ Gβ(Tf 0) for any stopping time T, it follows from
(5) that

1 = E[Z±β)] ̂  g(a, θ)W«-*E[Z»]«-a)/a-a).

The last expression converging to E[Z^ as β 11, we find 1 <̂  Έ\Z«\.
This implies that ϋΓεifcf*. The proof for the case where g(a, 0) < oo for
some a with 1 < a < oo is completely analogous except that (6), instead
of (5), is used.

It is necessary to compare the two conditions (a) g(a, 0) < oo for
some a < 1 and (b) g(βf 0) < oo for some β > 1, but we shall explain it
in the next section. In conclusion, one of these conditions does not always
imply the other. However, as is seen in Proposition 4, if g(a, 0) < oo
for some a with a < 1 (resp. 1 < a), then the family {Gf̂ Γ, 0)}τe^b is
uniformly integrable for all β with a < β < 1 (resp. 1 < β < a). At all
events, for the purpose of verifying the uniform integrability of Z, Pro-
position 2 is more suitable than the criterion of Lepingle and Memin.

5. A new criterion. Recall that φ is said to be a lower function if
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P{Bt < φ(t)f ί —> co} = 0; as is well-known, by BlumenthaΓs zero-one law
this probability is equal to 0 or 1.

Our main result is the following.

THEOREM 3. Let φ be a lower function. If g(a, φ) < °o for some
aΦl, then

Of course, Proposition 2 corresponds to the special case φ = 0. More-
over, letting a = 1/2 we obtain the criterion given by Novikov in [10].
Quite recently, Okada has proved in [11] that if for some a with 0 ^
a < 1 the family {Ga(T, CV t )}Γ6^6 is uniformly integrable, then 2 e χ
On the other hand, by Kolmogorov's criterion, for any positive continuous
function φ satisfying φ(t)/t I and φ($)\V~T f as t-+ oo, p{ft < φ(t), t-+ oo} = o
or 1 according as

expl-i-
(see Section 1.8 in [3]). For example, Ci/T and V2Λ, log log t are lower
functions. Therefore, as a special case the following corollary contains
the result which is an improvement of Okada's criterion.

COROLLARY. If g(a, CVΎ) < oo for some aΦl, then

In order to prove Theorem 3, we need four lemmas.

LEMMA 3 (Shepp [12]). Let τa and va be the stopping times given by
(7) and (8) respectively. Then we have

- i-τ α ); τa < oo] = P(fα < oo)

(10) #[exp (βVa - i-u β); v

where fa = inf {ί ^ 0; J5t ^ -^(ί) - α} α^d va = inf {ί ^ 0; ft ^ ^(t) + a}.

PROOF. We show only (9), because the proof of (10) is similar. Let
N=BTa and W= exp(iSΓ — (N)/2). Note that T7is a martingale, because
(N)t ^ t. Thus -B[WJ = 1 for every t. Then, from Girsanov's theorem
it follows that for each t the process {B8 — s A t A τa} is a Brownian
motion relative to the now probability measure WtdP. Let now Δά\ 0 <
t[j) < tij) < <tH} <t U = 1, 2, •) be a sequence of refining partitions
which become dense in [0, ί]. Then, noticing the theorem of Girsanov
we find

E[Wt; t^τa] = lim E[Wt; ftω > t[j) - φQP) - a, 1 ^ k ^ nj9 t ^ τ j
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= lim P{Btjό) > -φitψ) - α, 1 ^ k ^ ns)

= P{B8 > -φ(s) - α, 0 £ s ^ ί},

from which l i m ^ E[Wt; t^τa] = P(τa = oo). Therefore,

P(fβ < oo) = Jim E[Wt; τβ < ί] = #[exp ( X - i-τα); τα < - J ,

completing the proof.

LEMMA 4. Lei 0 < α < ° o . If φ is a lower function, so is φ + a.

PROOF. Consider the stopping times

μ = inf {ί > 0; Bt ^ tφ(l/t) + α(l Λ ί)},

α = inf {ί > 0; Bt ^

Clearly, {jt£ = 0} = {σ = 0}. Recall that {ί-B }̂ is also a Brownian motion.
Then

P{Bt < φ(t) + a, t -> oo} = P{βt < t^(l/t) + αί, ί -> 0}

= P(σ > 0) = P(^ > 0).

On the other hand, by the theorem of Girsanov the process B defined by
the formula Bt = Bt — α(l At) (0 ^ t) is a Brownian motion under dP
where dP = exp {aBx — a2/2)dP. Now, let us assume that φ is a lower
function. Then P(μ > 0) = P{Bt < tφ(X/t), t -> 0} = 0 and, since P is equiv-
alent to P, we have P(μ > 0) = 0. This completes the proof.

LEMMA 5. φ is a lower function if and only if P(?β < oo) = l for
all a > 0.

PPOOF. Suppose first that φ is a lower function. Then φ + α is also
a lower function by Lemma 4. So, we have

P(τa = oo) = P{J?t < ^(ί) + α, 0 ^ ί < oo} = 0.

Conversely, let us assume that P(τa < oo) = l for all a > 0. Then,
since {tBί/t} is a Brownian motion, we find

(11) P{Bt < tφ(l/t) + at, 0 < t < oo} = P(τα = oo) = o.

Suppose now that φ is not a lower function. Then P{Bt < tφ{ί/t)91 —> 0} = 1
by BlumenthaΓs zero-one law. In other words, P(τ > 0) = 1 where
T = inf {t > 0; Bt ^ t^(l/t)}. Let u be a positive number such that
P(τ > u) > 1/2; namely, P{B8 < sφ(l/s), 0 < s ^ u} > 1/2. On the other
hand, P(B8 < a, s -> 0) = 1 and so P(σα > 0) = 1, where τa = inf {ί ^ 0;
Bt ^ α}. Furthermore, P(σa > 1/u) > 1/2 for large α, because σα —• oo as
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a —> oo from the the definition of σa. That is,

P(B8 < as, u ^ s < oo) = P(Bt < a, 0<t^ 1/u) = P(σa > 1/u) > 1/2 .

Then, combining these facts we find

P{Bt < tφ{l/t) + at, 0 < t < oo}

^ P{£t < tφ(l/t) for all ί ^ w and Bt < at for all t ^ u} > 0,

which is inconsistent with (11). Consequently, φ is a lower function.

By using the same argument we obtain the following.

LEMMA 6. φ is a lower function if and only if P(ya < °°) = 1 for
all a > 0.

PROOF OF THEOREM 3. As is well-known, any continuous local martin-
gale can be reduced to stopped Brownian motion by means of a continuous
change of time. Therefore, it suffices essentially to verify this theorem
in the case where M = Bζ for a certain stopping time ζ. We begin with
the case where g(a, ψ) < oo for some a with — oo < a < 1. Let τs =
inf {t ^ 0; Bt <: t — φ{t) — j} (j ^ 1), which is nothing but the stopping
time obtained by letting a = j in (7). Then, since φ is a lower function
by the assumption, combining Lemmas 3 and 5 we have

= 1 (i^i)
L \ ' Z /-I

and so

I [ J o J I I \ ^ 2 / _J

Noticing i?Γi = τ^ — ̂ (ry) — j on {τy < oo}, we find that the expectation
in the last expression is smaller than

τi9 φ) exp {(1 - a)(BTJ - τ5 + φ(τ5))}\ τ5 < oo]

^ g(a, ^)exp{-(l - a)j),

which tends to 0 as ? —> oo f because g(a, φ) < °° by the assumption. Thus
1 ^ E\Z^ from which Z e X

Secondly, we deal with the case where g(β, φ) < oo for some /3 with
1 < β < oo. Instead of τjf consider this time the stopping time vs —
inf {t ^ 0; Bt ^ t + ^(ί) + i}. Then P ( ^ < oo) = l (j ^ 1) by Lemma 6,
because φ is a lower function. Therefore, combining this fact with
Lemma 3 we have

ζ] .
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Since 2? . = vά + φ(vd) + j on {vά < oo}, the second term on the right hand
side is smaller than

vi9 Φ)

Consequently 1 ^ E[Za^. This completes the proof.

PROPOSITION 4. Let ψ be a lower function. If g(a, φ) < °° for some
a with — oo < a < 1 (resp. 1 < α < oo), £/̂ w £fee family {Gβ(T, φ)}Te^b

is uniformly integrable for every β with a < β < 1 (resp. 1 < β < a).

PROOF. Let a < β < 1. Then for λ > 0 and Γ e ^ we can obtain

E[Gβ(T, φ); Gβ(T, φ) > λ] ^ ff(α, ^) ( 1 ^/ ( 1 - α ) ^[^; ^ ( Γ , )̂ > λ ] ( ^ α ) / ( 1 " α )

by modifying slightly the proof of (5). Assume now g(a, φ) < oo. Then
Ze^u by Theorem 3, so that

E[ZT; Gβ(T, φ)>\] = E[Z»\ Gβ(T, φ) > λ] .

Furthermore, by using Chebyshev's inequality and then the inequality
(3) in Proposition 1 we find

\P{Gβ(T, φ)>\}^ g(a, φ)^>/^«> (λ > 0) .

From these estimates the uniform integrability of the family {Gβ(T, φ)}τe^b

follows immediately.
On the other hand, in order to give the proof for the case where

g(a, φ) < oo for some a with 1 < a < oo it suffices to apply (4) and (6)
instead of (3) and (5).

Now, let us consider the class Φ of positive continuous functions φ
satisfying lim inf^^ φ(t)/t = 0. Obviously, it is larger than the class of
all lower functions. But the reverse inclusion fails. For example,
φ(t) = (1 + e)ι/2t log log t (ε > 0) belongs to the class Φ, but it is not a
lower function by Kolmogorov's criterion.

PROPOSITION 5. Let φeΦ. If g(a, φ) < oo for a Φ 1, then Z{a) e

PROOF. For λ > 0, let Tλ = inf {ί ^ 0; (M)t > λ} as before. Since
Ga(t, φ) = Zl* exp{(l - a)\M)t/2 - |1 - a\φ((M)t)}> we find

fi; Tλ < oo] = E[Ga(Tλ, φ); Tλ < oo] Θχp J|l - a\φ(X) - i-λ(l - α)2}

^ g(a, φ) exp {-λ|l - α |(^- | l - a\ - $

Moreover, Φ(Xn)/Xn converges to 0 for some sequence λn t °° by the as-
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sumption. Therefore, we have l i m i n g E[Z^; Tλ < oo] = o. Then
Z{oc) e ^*C by Lemma 1. Thus the proof is complete.

As an illustration, consider the case where g(a, φ) < oo for some a
with - o o < α < l . I f α ^ / 3 < 1 , then g(β, φ) < oo by (4) and so Z{β) e
^fu by Proposition 5. However, there are some cases where Z g ^^u in
addition to that. For example, for ε > 0 let φ{t) = (1 + €)V2t log log t
and let τa be the corresponding stopping time defined by (7). Consider
now M = Bτ«. Then g(0, φ) < oo by Example 1, and so Z{β) e ^ for all
β with 0 ^ β < 1 by Proposition 5. On the other hand, since φ is not
a lower function, it follows from Lemmas 3 and 5 that E\Z^ < 1.
Namely, Z ? χ . By contrast, considering the martingale M = BUa where
va denotes the stopping time defined by (8), we can obtain an example
such that Z{β) e ^ C for all β with 1 < β ^ 2 and Z$^fu. We close this
section with three further counterexamples.

EXAMPLE 3. Let τ = inf {t ^ 0; Bt ^ t — 1}, which is nothing but
the stopping time defined by setting φ = 0 and a = 1 in (7). Consider
now the martingale M = Bτ. Then g(0, 0) ^ β by Example 1, so that
Z{β) e ^ £ for all β with 0 ^ / 3 ^ 1 according to Theorem 3 and Proposi-
tion 5. On the other hand, since Z^ = exp (aBτ — α2r/2) ^ e~α exp (τ/2)
on {τ < oo}, we find that for a > 1

J ? ^ 5 ] ^ e-^(0, 0) ^ e1"α < 1.

Namely, Z{a) £ ̂ u for a > 1. This implies that #(/3, ^) = oo for any
f G(? and any number β > 1.

EXAMPLE 4. Let now ikf = B% where x> = inf {t ^ 0; 5 t ^ ί + 1}. Ob-
viously, v is the stopping time obtained by setting φ = 0 and α = 1 in
(8). Then g(2, 0) < oo by Example 2. Therefore, from Theorem 3 and
Proposition 5 it follows that Z{β) e ^fu for all β with 1 <; β ^ 2. On the
other hand, since Z^ — exp(l + v/2) on {v < oo}, we find

E[ZLa); v < oo] = Jξ Γexp |—α(2 - a)v +

^ eα£;[exp (v/2); v < oo] ^ e*-1.

Thus Z(α) ί ^ u if α < 1. This implies that g(a9 ψ) = oo for any
and any number a < 1. By this example it comes out that Theorem 3
properly contains the criteria of Okada and Novikov.

EXAMPLE 5. Let B = (Bt) and B — (Bt) be two independent Brownian
motions, and define the stopping times τ = inf {t ^ 0; Bt ^ t — 1} and
v = inf {t ^ 0; 5 t ^ ί + 1} as before. We have already seen in Examples
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3 and 4 that the exponential processes X = exp (Bτ — (Bτ}/2) and Y =
exp (Bv — (Bv}/2) are uniformly integrable martingales. Consider now
the continuous martingale M = BT + Bu. From the independence of B
and B it follows immediately that (M)t = t At + t Λv. Therefore, the
exponential martingale Z associated with M is equal to XY, and then
we have E[Z^ = E[XM]E[Y^] = 1 by the independence. Namely, 2 e χ
However, for a > 1, £"[exp (αJ?Γ — α2τ/2)] < 1 by Example 3. On the
other hand, for a < 1, JEr[exp (αl?v — α2v/2)] < 1 by Example 4. Therefore,
-ET̂ i?*] < 1 for all a Φ 1, which implies that #(α, φ) = oo for any ^ e Φ
and any number α ^ 1. Thus the converse of Theorem 3 does not hold.

6. Remarks on a BMO-martingale. The purpose of this section is
to explain an interesting role played by a BMO-martingale in the problem
about the uniform integrability of exponential martingales. Recall that
a continuous local martingale M is said to be in the class BMO if
£r[<M>Oo — (M)τ I Fτ] <: C for any stopping time T, where C is an abso-
lute constant. As is well-known, the space BMO is a Banach space if
we let ||AΓ||BMO = supΓ ||j0[<Λf>co - <M>Γ|FΓ]

1/2||oo be its norm.
We remark first that the exponential process Z associated with a

BMO-martingale M is a uniformly integrable martingale. In fact, Zτ > 0
for any stopping time T and, since M is obviously in the class ^*C we
have by Jensen's inequality

E[ZJZT\FT] ^ exp { ^ [ M . - Mτ - -^

which implies that Z 6 ^ u . We claim here that the following remarkable
result holds further.

THEOREM 6. // Me BMO, then g(af 0) < oo for some aΦl.

The proof which follows is rather long: it must be possible to give
a shorter proof, but regretfully we did not succeed in it.

LEMMA 7. 1/ | |X||BMO < 1, then for any stopping time T we have

E[exj> «Z>TO - (X)τ) I Fr] ^ (1 - \\ X UIMOΓ1 .

This inequality was first established by Garsia for discrete parameter
martingales. For the proof, see [1],

LEMMA 8. Let Me BMO and p = (1 + 2||ikf ||BMo)2. Then for any a
with \a\ ^ 2 we have
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PROOF. This is not necessarily a well-known fact, though it was
essentially proved in [5] or [6]. For that reason, we shall sketch its proof.
We may assume that | |M | |B M 0 > 0. Let now r = ι/"jΓ+l, s = {Vp+l)lVp
and b = -ar/(p - 1). If | α | ^ 2, then α2||M||2BMo/{2(l/p" - I)2} ^ 1/2. On
the other hand, by a simple calculation we have l/{s(l/ p ~ I)2} — r/(p — I)2 =

— 1). So, by using Holder's inequality

Noticing Zib) e ^ u and applying Lemma 7 we find that the last expres-
sion is smaller than

which completes the proof.

In the next place, let Kε = 2ε(l+ ε)-12(1+ε)(2ί)-v^) where p = (1 + 2\\M ||BMO)2

as above, and choose ε > 0 such that ίΓe < 1. Then we have the following.

LEMMA 9.

1 — Kε

PROOF. Let us assume that 0 < | | M | | B M O < °°. Noticing
and using Jensen's inequality we have

for any stopping time S. Then we apply Lemma 7 to the right hand side

(IαI £ 2 ) .

Thus the usual stopping argument enables us to assume the boundedness
of Z{α) in advance. First of all we shall show the basic inequality

(12) E[ZLα); Ziα) > λ] ^ 2\p\zLα) > —} (λ > 0),

where α = 22p~^ > 1. For that, let Γ = inf {ί ^ 0; ^ ( α ) > λ}, and consider
the bounded martingale X defined by Xt = P{Ziα) ^ Z^/α\Ft}. Then by
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using Holder's inequality and Lemma 8

x? =

from which Xτ ^ 1/2. Therefore, we have

1 r <: pί z ( α ) ^ ^ z (α)
 T ^ oo I

2 I α
and so

E[Zίa); Zia) > λ] = £?[^α ); Γ < oo] ^ λP(Γ < oo) ^ 2λP{^α) > λ/α}.

Finally, multiplying both sides of (12) by ελ'"1 and integrating with
respect to λ on the interval [1, °o[, we find

E[{Z^γ+ε - ZLa)\ ZLa) > 1] ^ KεE[{ZLa)}1+ε; ZLa) > 1] + Kε.

That is, (1 - K.)E[{ZL*ψ+", ZLa) > 1] ^ Ke + E[ZLa)\ ZLa) > 1] ^ Kε + 1,
which yields

This completes the proof.

PROOF OF THEOREM 6. We may assume that | | J £ | | B M O > 0 . Let
| α | ^ 2. Then ||ίίJLα>||1+. ^ Cε for some ε > 0 by Lemma 9. Moreover,
we can easily see that Ga(T9 0) = Z£a) exp {(1 — a)2(M)τ/2} for every stop-
ping time Γ, and so we apply Holder's inequality with exponents 1 + ε
and (1 + ε)/ε to the right hand side:

E[Ga(T, 0)] ^ i| ZP l u

Let now 0 < d < min{l, i/T/(i/l + e||Af ||BMO)} Then, using Lemma 7
we find that for any a with |1—a\<δ the expectation on the right hand
side is bounded by 2, because (1 + ε)(l — af\\M||2BMo ^ ε. Consequently,
g(a, 0) < oo for all a with |1 - a\ < δ.
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