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Abstract. Let &* be a family of shift operators on £ = Σ«ez
such that the von Neumann algebra M(&) generated by ̂  is the crossed
product of a factor M on ® = ®0 by Z with respect to an action of spatial
automorphisms {λάun}nez of M. It is proved that every reducing subspace
for S? is decomposed into two reducing subspaces: one is generated by a
pure simply invariant subspace and the other contains no simply invariant
subspace.

Introduction. This paper is a continuation of [7]. Let $ be the
direct sum Σnezφ ®n ( = s*(Z) (x) ft) of a countable family {®n}nez of copies
of a separable Hubert space $. A unitary operator U on φ is said to
be a shift operator if

U: (ξn)neZ ~> (W.^-i)..* (f» € Λ, ft 6 Z) ,

where wn is a unitary operator on ίΐ. When wn = 1 for all τι in Z, 17
becomes the usual shift operator and is denoted by β ® 1. Then each
shift operator U is of the form U = W (β (g) 1), where T7 = Σπezφ w»
Let ^ be a family of shift operators on φ and TΓ(^) denote the set
of diagonal parts of shift operators in Sζ that is, W(£f) = { W: U —

Our purpose is to analyze the structure of reducing subspaces for
Sf. We here recall the case where &* = {s (g) 1}. When dim SB = 1, φ
is regarded as L2(Γ) and s ® 1 = s is the multiplication operator by
/(«) = z, where T is the unit circle in the complex plane. According to
Beurling's theorem in [6], any non-trivial reducing subspace MχEL*(T)
contains no simply invariant subspace, where MχE is the multiplication
operator by the characteristic function of a measurable subset E of T.
For an arbitrary $, § is regarded as the Hubert space L\T, $) of
measurable 5£- valued functions / such that the functions: z — > \\f(z) ||, are
square integrable, and s (x) 1 is the multiplication operator by F =
F(z) = zl (z e Γ). According to Halmos and Helson's theorem in [5] and
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[6], a reducing subspace 31 = MFL
2(T, SS) contains a simply invariant

subspace if and only if dim F(z) ^ 1 for a.e. z in Γ, where F is a
projection-valued measurable function on T.

In this paper, we seek a necessary and sufficient condition for
reducing subspaces for £f to contain a simply invariant subspace. In
the above classical theory, the following two decomposition theorems
for invariant subspaces play an important role.

( 1 ) If 9K is a simply invariant subspace, then we have

m = m, 0 mr ,
where %RP is a pure simply invariant subspace and Sftr is a reducing
subspace.

( 2 ) If SW is a pure simply invariant subspace, then SDΐ is decomposed
into the wandering subspaces; i.e.,

Although the above two theorems do not necessarily hold for an
arbitrary family ^ the author [7] showed that they hold if £f satisfies
the following conditions:

( i ) W(^) is a group ,
( * } ( i i) STF(^)S* - W(&) .

Throughout this paper, the condition (*) is assumed.
For £?, we denote by M(<9*) (resp. D(^)) the von Neumann algebra

generated by £f (resp. W(^)). Let J{ be the isometric operator of $
into φ defined by

(fJnβX ( < = = 0

Let M denote the von Neumann algebra J*D(&}Js and JV denote the
commutant of M on $. The main theorem in [7] says that every pure
simply invariant subspace is of Beurling type if and only if there exists
a unitary operator u on $ such that

( 1 ) [Ad u](M) = M, (hence [Ad u](N) = N) ,

(2) M(£*) is the crossed product of M by Z with respect to

(**) the action {Adttn}n e*»

( 3 ) Ad u leaves the finite central projections in N element-wise

fixed ,

where Ad u means the ^-automorphism of the full operator algebra JB($)
defined by [Ad u](x) = uxu* for x in B(&). In this paper, we assume
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the condition (**) in addition to (*). Moreover, in order to clarify our
discussion, we restrict ourselves to the case where M is a factor.

In Section 2, for each case of £f we give decomposition theorems
for reducing subspaces for £S (Theorems 2.5,10,11,12,13). To get the
decomposition theorems in the case where M(£f) is semi-finite we use the
center-valued trace, or a generalized center-valued trace of the commutant
N(<9*) of M(£f). For this reason, Section 1 is devoted to discussions
about crossed products and center-valued traces as well as generalized
center-valued traces. In the case where N(&*) is finite (resp. properly-
infinite and semi-finite), we describe the center-valued trace (resp. a
generalized center-valued trace) by producing a candidate directly, instead
of constructing it along the proof of the existence theorem [10: V.
Theorem 2.6, 2.34].

For standard results of crossed products we refer to the book of
Stratila [9: Section 22].

1. Crossed products and their centers. Let M be a factor on a
separable Hubert space Λ and u a unitary operator on $ such that Ad u
is a spatial automorphism of M. Throughout this paper N denotes the
commutant of M. Then Ad u is a spatial automorphism of N, too. The
crossed product &(M9 Ad u) of M by Z with respect to the action
{Adun}nez is a von Neumann algebra on the direct sum £ = Σn ezφ$n
( = /2(Z)(g)$). For x in M, we put I(x) = Σ.ezΘ [Ad u~n](x). Let s
denote the usual shift operator on /2(Z): (ςn)nez-* (fn-ι)»ez Then
&(M, Aάu) is the von Neumann algebra generated by {I(x):xeM} and
{sn ® 1: n 6 Z}. It is well-known the commutant of &(M9 Ad u) is the
von Neumann algebra generated by {1 (x) x: x e N} and {s71 (g) u~n: n e Z},
and it is denoted by £f(M, Ad u'1). Hereafter we use letters & and
£? instead of &(M, Ad u) and £f(N9 Ad u'1) for short when there is
no confusion.

We here consider the matrix representations of elements of & and
&. For A in B(Q) and ί, j in Z, we put A < f y = JfAJj9 where l?(φ) is
the full operator algebra on H. Moreover we put Pt = JtJ*. Then
{PJiez is a family of orthogonal projections on ξ> such that ΣiezJP* = I
and we have PiAP3 — JtAitiJ*. We need the following two well-known
representations of elements of & and £f for our discussions.

(1-1) A (e.B(φ)) belongs to ̂  if and only if there exists a mapping
f:Z->M such that Aitj = %-'/(i - ί>*

(1-2) A (e5(φ)) belongs to £f if and only if there exists a mapping
g: Z-+ N such that Aiti = g(ί — fin3'"*.
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To get the matrix representation of the center % = & Γ) &> we
examine whether the automorphism Ad un is inner or not for each n in
Z. For a von Neumann algebra J^ such that [Ad u](j^) = JK we put

/(Ad w, J^) = {n 6 Z: Ad un is an inner automorphism of j^} .

Then I(Ad u, M) is a subgroup of Z and /(Ad w, Λf) = /(Ad u, AΓ) When
/(Ad u, M) = {0}, &} and ̂  are factors (cf. [9: 22.6, Corollary 1]).
Thus, of course, the center %* is the trivial algebra. Next we assume
that /(Ad u, M) Φ {0}. Let p be the smallest number in {n e /(Ad u, M):
n ^ 0}. Then Ad up — Ad v on M for some unitary operator v in M.
We can easily find that the unitary operator v in M is uniquely
determined up to constant multiple. Put w — v*up. Then w is a unitary
operator in N and up = vw. Let 7 be a complex number with absolute
value 1 such that [Ad u\(v) = Ίv. Then 7 is uniquely determined and
[Ad u}(w) = ΎW. According to Connes [2], p and m = pq (q — order of 7)
are said to be the outer period and the minimal period of Ad u,
respectively and these numbers are fixed in this paper. We can see
examples of such automorphisms in the preface of [3] added by Lance,
in addition to [2].

The following is the matrix representations of operators in the center
% and this is easily obtained by (1-1) and (1-2) (cf. [9: 22.6, Theorem]).

(1-3) A (6 £(£)) belongs to %* if and only if Aiti = f(i - j ) for some
mapping f: Z-+M such that f(mk + i) = δi)Qλ,mkv

gk (i = Q, , m — 1),
where δttS are Kronecker symbols and \mk complex numbers.

Since A is regarded as a bounded linear operator on /2(Z) (g) ίΐ the
following representations are useful in what follows.

(1-4) A ~ ΣnezS71 ® xnu~n means that A is the operator in £f defined
by (1-2), where xn = g(n).

(1-5) A ~ ΣfcezSm A :® ^mkV~gk means that A is the operator in $ί defined
by (1-3).

We remark that symbol Σ in (1-4) and (1-5) does not mean tr-weak
convergence in ̂  or % but merely formal sum.

Let M(s) denote the von Neumann algebra generated by the shift s
on /2(Z). Then M(s) is *-isomorphic to the T7*-algebra L°°(Γ) of all
essentially bounded measurable functions on the unit circle Γ, in which
two functions are identified if they coincide almost everywhere. Further-

more the tensor product Λf(β) ® JB(ίϊ) is *-isomorphic to the W* -algebra
of /?($)-valued essentially bounded measurable functions on Γ, which is
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denoted by L°°(Γ, 5(Λ)) ([10: IV. Theorem 7.17]). An operator- valued
measurable function F:T->B(&), means that for ς and η in $, the
scalar-valued function: z — > (F(z)ζ, rf) is measurable on T, where < , •>
is the inner product of $. As in the scalar case, we define the Fourier
coefficients of F in L°°(T, β(Λ)) as follows: For n in Z, let F(n) be the
operator in B(SK) satisfying the following equalities:

= (1/27Γ) Γ
Jo

(f , η e ft) .

Let π be the canonical "-isomorphism of Λf(s) (g) 5(3Ϊ) onto L°°(Γ,
Then, for each cc in !?($), φ (x) a?)(«) = zx for all 2 in T and immediately
we get the following:

(1-6) π(£f) = {Fe L°°(Γ, J3(ft)): unF(™) 6 N} ,

(1-7) π( r) = {FeL°°(T, B(St)): F(mk + ί) = 0 for i = 0, 1, , mk - 1 ,

For convenience, we seek a unitary operator V on φ such that
ττ([Ad V](3T» = L°°(Γ, m, C(Λ)), where the right hand side means the
set of periodic C(ίϊ)-valued essentially bounded measurable functions on
T with period 2ττ/m, i.e., F(z) = F(ze2πί/m) for a.e. 2 in Γ and C(Λ) is the
algebra of all scalar multiples. We put en = (xm) ( e /2(Z)), where a;n = 1
and xm = 0 for m ̂  n. Then the required operator is the unitary
operator F defined by V(epn+i ® f ) = 6 ,̂,+, ® vn£ for 0 ̂  i ^ p — 1 and n
in Z. In the remainder of this section, we construct the mapping of £f
onto L°°(Γ, m, C(Λ)) which corresponds to the center- valued trace or a
generalized center- valued trace of £f. Let a represent the * -automor-
phism of L-(T, J5(ft)) defined by a(F)(z) = F(ze-2πί/m) (z e Γ) for F in

We put

(l/w)(F + α(F) + + α"-1^)) (FeL°°(T,

and

LEMMA 1.1. Let A be an operator in £f. I/ A
then Φ^A) ~ Σfcez$m f c ® ^m^"mfc-

PROOF. For F in L°°(Γ, JB(Λ)), we have

w) - (l/2mττ) 1

= (l/2mττ) S f Γ F(eu)e-intdt]e2n

k=o \ J o /

fc=o o

kπi/m
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e2nkπi/m

fc=0

Thus we have (¥,(F)Γ(n) = F(n) if n = mft (fceZ) and =0 otherwise.
q.e.d.

Now we consider the matrix representations of operators in Φ^
Since up = vw (v e M, w e N), we have smk (x) xmfcu~wfc = smfc ® xmkv~qkw~qk =
smk®ymkv~-qk, (ymk = xmkw

qkeN). Hence it follows that

= A e
fceZ

Thus we have

TΓCΦΛJ^)) - ί^e Z,"(Γ, £(£)): F(m& + i) = δM^m^-?fc, a?.4 6 N} .

For the unitary operator V defined above, we have [Ad V](smk ® xmkv~qk) =
smk (x) xmft, so that

&, = [Ad F]^^^)) - M(sm) ® ΛΓ and π(^) - L°°(Γ, m, 2SΓ) .

For a moment, ΛΓ is assumed to be a finite factor with the unique
trace τ. For F in L°°(Γ, m, AT), we put Φ2(F)(z) = τ(F(z)}l. Then ?F2

coincides with the canonical center- valued trace of L°°(Γ, m, AT) onto
L*(T, m, C(Λ)), and we put

Then we have the following lemma.

LEMMA 1.2. Let A be an operator in =5 .̂ // A ~ ΣιkezSmk (x)xmk,
then Φ2(A) - Σ*ezsmfc(x) τ(xmk)l.

PROOF. For each operator A of the form A — smk (x) «(« eAΓ), we
have

τ('r\Λί>'m'kt(>~ίntrl1- — τ(^\λ I ^(mk-nn^fL \Λ/) J-t/ cί u/t/ — L \ιb)λ. I tί Cvi/
Jo

__ J2τr τ(a?)l if n = mk (keZ) ,

(0 otherwise .

Thus (π"1 ^ π )(A) = smfe (g) r(ίc)l. Hence the statement holds for all
operators A of the form A = Σί=-π «mfc ® ίcmfc (K ^ 0). We shall prove
the statement in the general case. As in the case of scalar-valued
functions [4: p. 20, Theorem], the Cesaro means σn(F) of F in L°°(!Γ, m, N)
converge σ-weakly to F (cf. [8: Lemma 2.5]). Since ¥2 is σ-weakly
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continuous, Ψ2(σn(F)) converge σ-weakly to ΨZ(F) and thus (Ψ2(σn(F))Γ(ϋ
converge to (W2(F)Γ(ϋ for each ί in Z. For A ~ Σ*ezSmfc(x)α;mfc in &>,
we have

0 otherwise .

Hence we have (Ψ2(π(A))Γ(ϊ) = ?(&<)! if i = mft (ft e Z) and = 0 otherwise.
q.e.d.

REMARK. In [8], the Cesar o means are associated with a periodic
flow acting on a von Neumann algebra. In the present paper, it is the
periodic * -automorphism group {βt}teR of L°°(T9 m, N) defined by βt(F)(z) =
F(ze-u) for F in L~(T, m, N).

THEOREM 1.3. Suppose that N is a finite factor and /(Ad u, N) Φ {0}.
Let Φ = Ad F* Φ2 Ad V Φ^ Then Φ is the unique center-valued trace
of &> onto %.

Before proving the theorem, let us recall the properties of center-
valued trace. The center-valued trace is the unique mapping Φ satisfying
the following conditions: (1) Φ is a linear mapping of £f onto JΓ, (2)
Φ(I) = I, (3) Φ(A*A) - Φ(AA*) ^ 0, (4) Φ(A*A) Φ 0 if A * 0, (5) Φ(XA) =
XΦ(A) for X in & and A in £f. In our proof, instead of Φ, we consider
the mapping Ψ2 π Ad V Φ± of £f onto L°°(T, m, C(Λ)), which is denoted
by T, and show that T satisfies the following conditions; (i) T is linear,
(ii) T(I) = I, (iii) Γ(A*A) - Γ(AA*) ^ 0, (iv) Γ(A*A) ^0 if A Φ 0, (v)
T(XA) = π([Ad V](X))T(A). If this is done, the statement in the theorem
mentioned above trivially holds.

PROOF OF THEOREM 1.3. We first see the posit ivity of W^ and Ψ2.
Let F be a positive function in L°°(T, £($)). Then F(z) and an(F)(z)
are positive operators in B($ty for a.e. z in T and n = ί, •• ,m — 1.
Hence Ψ,(F)(z) = (l/m}Σn=ί an(F)(z) ^ 0 for a.e. z in T. Next, let G
be a positive operator in L°°(Γ, m, AT). Then we have y2(G)Oδ) = r(GOs))1^0
for a.e. z in ϊ7. Since TT and Ad V are ^isomorphisms, T satisfies (i) and
(iv). Condition (ii) holds trivially.

To prove (iii) and (v), let A ~ ΣnezSn ®xnu~n and X~ΣkεzSmk(><)
^mkV~9k Since π(X) is periodic of period 2π/m, we have a(π(XA)) =
π(X)a(π(A}). From this, we have Φ,(XA) = XΦ,(A). Since [Ad V](X) -
Σfcezsm f c(g)λm f c, π([A.άV](X)) is a C(^)-valued function, so that

(W2 - π)([Ad F](XΦ,(A)) - r2(π([Ad V](X»π([Ad F](Φ,(A)))

- π([Aά V](XW*(π([AA F](Φ,(A)))) - ττ([Ad V}(X))T(A) .
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Hence Condition (v) holds. We now show T(A*A) = Γ(AA*). Since
(AA*),,y = Σ*6zA, f fcA?,y, we have

A >4* ~ V Q71 6?) fVXΛ.UΓI. /^" x j o \^/ v / j
neZ i e Z

and

neZ ieZ

where Σiez^^'^-n^71 and Σiez'M'ί"X*-n^^n~ί converges in ΛΓ with respect
to the σ-weak topology.

Thus we have

ΦΛAA*)- Σs w f c ®(2
keZ ie

and

Hence we have

?>2 Ad F ΦJ(AA*) - Σ smh (g) r((Σ »iW~m*«<-.
J f c e Z i e Z

~ Σ sm* ® Σ
fc e Z

(Φ2 Ad F ΦJ(A*A) - Σ smk

fceZ

~ Σ s**
keZ

Since [Ad t6](t(;7) = w9 and r([Ad u](aj)) = τ(x) (x e N\ we have

Σ s** (g) Σ r(i*'—
keZ ieZ

Therefore it follows that (Φ2 Ad F ΦO(AA*) - (Φ2 Ad F Φ1)(A*A), so
that T(AA*) - Γ(A*A). q.e.d.

In the remainder of this section, N is assumed to be a semi-finite
properly-infinite factor with an Ad u-in variant faithful normal trace τ.
The condition /(Ad u, N) Φ {0} is still assumed. Then we can get a
generalized center- valued trace of .Sf as in the finite case above. In
this case, instead of L°°(T, m, C(3ϊ)) (resp. )̂, we consider the set

L°°(T, m, C(Λ))+ (resp. ^+) of all the supremums of increasing net of
positive operators in L°°(Γ, m, C(fl)) (resp. )̂. Since π is an order
preserving mapping of [Ad V](^+) onto L°°(Γ, m, C(Λ))+, it can be

canonically extended to an order isomorphism of [Ad V](^+) onto
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L°°(Γ, m, C(Λ))+, which is again denoted by π, where [Ad V](B) =

sup [Ad F](A<) for B = sup Ai in &+. In this situation, we put Wz(F)(z) =
τ(F(z))l (z € Γ) for a positive function F in L°°(Γ, m, N). Then f2(F) is
a [0, oo]-valued measurable function on T. Further we put Φ^π~l^W2 π and
Φ = AdV* Φ2 AdV Φ1. Let Nr denote the definition ideal of τ (cf. [10:
V. Definition 2.17]). Then τ can be extended to a linear functional τ on Nτ.
Then, for B in j^ - [Ad V](Φ^)) of the form B = Σί— * smfc <g) xmk

(xmk e NT), we have Φ2(5) = Σί=-χ *mfc (x) f (a?mjfe) (cf . Lemma 1.4). Therefore,
for A in ̂  of the form A = Σf=-* s?l Θ #«^~n (# e JVr), we have Φ(A* A) =
Φ(AA*). Since r is normal, so is the positive linear mapping Φ on the
set £f+ of positive operators in £f. Hence Φ(A*A) = Φ(AA*) for every
A in £f because the set {A e=2f:A = Σ?=-* «n ® &»^~n, »» eNT,K^ 0} is
σ- weakly dense in ̂  Therefore Φ enjoys the properties of generalized

semi-finite trace on &>+ onto ^+, that is, (1) Φ(A + B) = Φ(A) + Φ(E)
for A and B in j^+, (2) Φ(JCA) = XΦ(A) for A in ĵ + and -ϊ in ^+, (3)
Φ(A*A) = Φ(AA*) for A in ĵ , (4) Φ(A*A) Φ 0 if A =* 0, (5) Φ(sup A,) =
supΦ(Ai) for any bounded increasing net {AJ in £?+ (cf. [10: p. 330]).
Thus we get the following:

THEOREM 1.4. Suppose that N is a semi-finite and properly-infinite
factor with an Ad u-invariant faithful normal trace τ, and /(Ad u, N) Φ
{0}. Let Φ = Ad V* Φ2 Ad V Φ^ on £f+. Then Φ is a generalized

centervalued trace o/ £?+ onto %*+.

In Section 2, instead of Φ in the above theorem, we use the mapping
Ψ2 - π Ad V Φ, of &>+ onto L°°(Γ, m, C(Λ)), which is denoted by f .

2. A decomposition of reducing subspaces. Let &* be a family of
shift operators on £ = ΣπezΘ$n (=^2C2Γ) (£)$)• In the present paper
we are assuming that £f satisfies the conditions (*) and (**) in the
introduction. In additon, we assume that M(&") is the crossed product
&(M9 Ad u) of a factor M on $ by Z with respect to a spatial auto-
morphism Adu. For convenience, we denote by N(^) the commutant
of M(^) on φ. We here note that N(^) is *-isomorphic to ^?(N, Ad u'1)
because it is the commutant of the crossed product M(£^} = &(M9 Ad u)
(cf. [10: the end of V. 7]).

Let 9K be a pure simply invariant subspace for & Then, by [7:
Proposition 1.7], 2ft is decomposed as

where mn = (sn (g) 1)[TΓ(^)2K0] for w ^ 1. We denote by Λ(SW) the
reducing subspace generated by SW, i.e., the smallest reducing subspace
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containing 2K. Then we have that

where 3Wn = (sn(g) l)[T7(^)aK0] for all integer n Φ 0. Moreover by [7:
Theorem 2.12], it follows that

where 9ΐn = (sn (g) 1)[T7(̂ )9Ϊ0] = e$n for some projection β in N and Z7 is
a partial isometry in JV(^) such that UU*$ = Λ(2K) and J7*£7£ =
ΣnezφeΦn- Namely the projections of φ onto jβ(3K) and ΣnezΦeΦn are
equivalent in the von Neumann algebra N(£*). Two projections P and
Q in a von Neumann algebra J^ are said to be equivalent of P — F*F
and Q = FF* for some partial isometry in J^ and this relation is
denoted by P ~ Q. A projection P is said to be dominated by a projec-
tion Q if P is equivalent to a sub-projection of Q, and this relation is
denoted by P <Q. For a subspace 3W of φ, let P^ represent the
projection of φ onto 2K. Then, from the above discussion, we get the
following:

LEMMA 2.1. Lei 3ΐ &e a reducing subspace. Then the following
three statements are equivalent.

( 1 ) 91 contains a simply invariant subspace.
(2) 3ΐ contains a pure simply invariant subspace.
(3) P g t X K X ) ^ for some projection e in N.

To see the equivalence between the projections of the form 1 (g) e
and the other projections, we use the center- valued trace. We thus
need the following, whose proof by easy calculation is omitted:

LEMMA 2.2. Let e be a projection in N. Then we have the following:
(1) (AdV Φjαφβ) - I®*. ^
( 2 ) T(l (g) e)(z) = τ(β) (resp. Γ(l (g) e)(z) = τ(e)) provided N and

I(Aάu,N) satisfy the hypothesis in Theorem 1.3 (resp. Theorem 1.4).

DEFINITION 2.3. Let 3ΐ be a reducing subspace for ^ Then we
say that

( 1 ) St is fat if at is of the form 31 = R(m) for a pure simply
invariant subspace 3K for &>,

( 2 ) 91 is thin if 91 contains no simply invariant subspace.

From the definition of fat reducing subspaces, we get the following
lemma immediately.

LEMMA 2.4. 91 is a fat reducing subspace if and only if PR ~ 1 (x) e



SHIFT OPERATORS 435

in M(£S) for some projection e in N.

From now on, we break down the remainder of this section into
two parts [I] and [II]. In the first part, we assume that N is a semi-
finite factor with an Ad u-in variant trace τ and /(Ad u, N) Φ {0}. In
the second part, we consider the other cases.

[I] Let p, 7, q and m be as in Section 1. Then the center ^ =
M(£S) Π N(£S) is non-trivial and π([Ad V](3T)) = L°°(Γ, m, C(ft)). For a
projection P in N(S^)(=Sf = 5f(N, Adu'1)), we put

ε(P) = ess. inf (T(P)(z): zeT} (N is finite) ,

έ(P) = ess. inf {Γ(P)(z): z e T} (N is properly-infinite) ,

where ess. inf J£is the number —ess. sup( — E) for a subset E of [0, oo].
In the case where N(S^) ( = £f) is finite (resp. semi-finite and

properly-infinite), Condition (3): Pm>l^)e (eeN), in Lemma 2.1 is
equivalent to Φ(P&) ^ Φ(l ® e) because Φ is the center- valued trace
(resp. a generalized center-valued trace) of Sf [10: V. Corollary 2.8]
(resp. [9: p. 175]). The latter is equivalent to T(PR) ^ Γ(l ® e) (resp.
5Γ(PR) ̂  Γ(l (8) e)), since T (resp. Γ) is the product of the order preserving
mappings Ad V and Φ. In our main theorem, looking at the values
T(P«)Os) (resp. f(PR)(s)) (seΓ), we get a condition under which 3t
contains a simply invariant subspace.

THEOREM 2.5. Suppose that N is a semi- finite factor and
I(Ad u, N) Φ {0}. Then every reducing subspace 3ΐ for &* has a decom-
position:

where 9ΐ/ is α /αί reducing subspace and 3tt is α ίfcm reducing subspace.

PROOF. Let 31 be a reducing subspace such that ε(Pm} = 0 (when AT
is finite) or ε(PR) = 0 (when JSΓ is infinite). Then 3ΐ itself is thin. In
fact, if 3ΐ contains a pure simply invariant subspace, then Pm > 1 (x) e
for some projection e in N by Lemma 2.1. Hence T(PΛ)(z) (resp. Γ(PR(s))) ̂
Γ(l(g)e) (resp. Γ (l(g)e)) = r(e)l for a.e. 2 in T. This contradicts the assump-
tion. When S(PSR) (resp. ε(PR)) > 0, we consider the following four cases.

CASE 1. N is of type I and ε = e(PR) (resp. = έ(PR)) > 0. Since
every *-automorphism of a factor of type I is inner (cf. [10: V. 1.
Exercise 4]), we have /(Ad u, N) = Z, that is, p = q = m = 1. Thus Φi
becomes the identity mapping. Hence π Ad u Φj. is a ^isomorphism of
^ onto L°°(Γ, N). Thus an operator A in & is a projection if and
only if ((τr Ad u ΦJ(A))(2;) are projections in N for a.e. z in Γ. Since N
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is discrete, it follows that {τ(e)ι e is a projection in N} = {nτ(eQ)}n=ι for
some k (1 ̂  ft <£ oo), where e0 is a minimal projection in N. Hence ε =
nτ(eQ) for some integer n. We take ^-mutually orthogonal projections
{β<}?=o which are equivalent to e0 and put e = e0 + e± + + en-1. Then
we have P > 1 (x) e. Hence there exists a sub-projection Q of P^ which is
equivalent to 1 (g) β. We put SI, = Q£ and 31, = 31 θ 3l/ Then T(Q)(z)
(resp. T(Q)(z)) - nr(β0) for a.e. 2 in T and ε(PΏ - Q) (resp. e(P, - Q)) - 0,
so that they are the reducing subspaces desired.

CASE 2. N is of type JL and ε(P«) - oo. Since f(P^(z) = oo for
a.e. ^ in Γ, we have that Pm ~ 1 (g) e for any infinite projection β in AT.
Hence 3ΐ itself is fat.

CASE 3. N is of type II and 0 < ε = e(PR) (resp. = έ(PR)) < oo. Since
N is continuous, there exists a projection e in JV such that τ(e) = ε.
This implies that Pχ> I® e. Namely there exists a sub-projection Q
of PS which is equivalent to 1 (g) e. The reducing subspaces Sly — Qφ
and 3ΐt = 31 © 3t/ are fat and thin respectively.

CASE 4. N is of type IL, and έ(PΛ) = 00. As in Case (2), 3ΐ itself
is fat. q.e.d.

COROLLARY 2.6. Let N and I(Adu,N) be as in Theorem 2.5. Then
a reducing subspace SI contains a simply invariant subspace if and only
if e(PR) > 0 (when N is finite) or έ(PR) > 0 (when N is infinite).

COROLLARY 2.7. Suppose that N is of type I. Then a reducing sub-
space Sϊ contains a simply invariant subspace if and only if T(PΛ)(z) > 0
(when N is finite) or f(Pm)(z) > 0 (when N is infinite) for a.e. z in T.

By Corollary 2.7, when N = B(SE) and Ad u = the identity on N, a
reducing subspace SI contains a simply invariant subspace if and only if
r(τr(PR)Os))l ^ 1 for a.e. z in Γ, where τ is the usual trace of positive
operators in B(ft). This is the case treated in [5]. In the continuous
cases, the condition T(P*(z)) > 0 for a.e. z in Γ, is not a sufficient
condition for 9ΐ to contain a simply invariant subspace as is shown in
the following:

EXAMPLE 2.8. Let N be a factor of type H with the normalized
trace τ. Let ̂  be a family of shift operators satisfying the condition

(*) in the introduction and such that D(^) = 1 (gj N on /2(Z) (g) jϊ. Then
M(^) is *-isomorphic to L°°(T, N). Let F be a measurable function in
L°°(T, N) such that τ(F(eu)) = t/2π (0 ̂  ί < 2τr). For a projection β in
ΛΓ we put G(z) = e for all z in Γ. If G is dominated by Fin L°°(T, N),
so is G(z) by JF(3) in AT for a.e. z in Γ. Hence τ(G(z)) ^ r(F(z)) for a.e.
z in T. But this is impossible. Hence the corresponding reducing
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subspace for a* contains no simply invariant subspace.

REMARK. If Nis finite, the decomposition in Theorem 2.5 is unique
in the following sense. For another decomposition 31 = 9l/ 0 91J, it
follows that PR/ ~ P#f (resp. PRί ~ PR,). Indeed, P* f is equivalent to a
projection in ̂  of the from l(x)e', where e' is a projection in JNΓ.
Hence, as in the proof of Theorem 2.5, we get r(β') — ε = r(e) because
3lί is thin. Thus we have PΛ, ~l(g)e '~l(><)e~ PΛ/. Since ^ is
finite, PR; = PK/ — Pgjy is equivalent to PRί — P^ — PR/.

In the case where N is semi-finite and properly-infinite the decom-
position is not unique in the sense mentioned above, as we see in the
following:

EXAMPLE 2.9. Suppose that the dimension of $ is infinite and ̂  —

{s (g) 1} on U(T) ® Λ. Then M(&} = ML~(T} d) C(Λ) and 8 = M(^Y =

ML«>(T}® B(5Ϊ), which is *-isomorphic to L°°(T, JB(Λ)). Let r be the usual
trace on B(Jϊ)+. We take a one-dimensional projection eQ in J3($) and
put P(e") = 1 - e0 (0 ̂  ί < 2π) and Q(e") = 1 if 0 ̂  t < TT, =1 - β0 if
7Γ < t < 2π. Then P and Q are properly-infinite projections in I/°°(Γ, B(Λ))
whose central support are equal to the identity. Thus we have P~ Q ~ I
in .̂  Hence 3ΐ = Q^> itself is a reducing subspace for ̂  But 3ΐ has
a decomposition Sft = P£ + (Q - P)φ such that P^ is fat and (Q - P)φ
is thin. Obviously Q — P is not equivalent to 0.

[II] In this part, we consider all the cases except the ones examined
in part [I]. We recall that every *-automorphism of a factor of type I
is inner and the unique trace of a Il^factor is *-automorphism-invariant.
Furthermore, when N is of type 11̂  and /(Ad u, N) Φ {0}, every trace
of N is Ad u-mvariant. Hence the following cases remain:

(II-l) N is of type IIX and 7(Ad u, N) = {0}.
(Π-2) N is of type IL and J(Ad u, N) = {0}.
(II-3) N is of type III and 7(Ad u, N) = {0}.
(Π-4) N is of type III and I(Ad u, N) Φ {0}.
In each proof of the following theorems, we use the fact that the

von Neumann algebra £f = £f(N, Ad u'1) is spatially isomorphic to the
crossed product &(N, Ad u"1) of N by Z with respect to the action
{Adu~n}nez.

THEOREM 2.10. Let N and I(Ad u, N) be as in (II-l). Then every
non-zero reducing subspace for & is fat.

PROOF. The von Neumann algebra N(^) = ̂  is a factor of type
Hi, because &(N, Ad u~l) becomes such a factor by [9: 22.6, Corollary
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1 and 22.7, Theorem 1], Let Tr be the unique normalized trace of .Sf.

Then, considering the conditional expectation of £f onto 1 (x) N9 we find
that the set {2V(1 (x) e): e is a projection in N} is just the closed interval
[0, 1]. Hence, for each projection P in ̂  there exists a projection e
in N such that Tr(P) = 2V(1® e). This implies that P is equivalent to
l(g)e. q.e.d.

THEOREM 2.11. Lei N and I(A.du,N) be as in (11-2). Then every
non-zero reducing subspace /or &* is /αί.

PROOF. Let r be a faithful normal semi-finite trace of N+. Then
there exists a number λ (0 < λ £S 1) such that r([Ad u](#)) = λr(#) or
τ([Ad u-^x)) = λr(ff) (xeN). When λ = 1, ^T(N, Adir1) is a factor of
type Πoo [9: 22.7, Theorem 2]. If λ =£ 1, ^?(ΛΓ, Ad u"1) becomes a factor
of type III; [9: 29.1, Proposition]. Hence N(&*) = £f is factor of type
Πoo or III;. In the former case, we can show as in Case (II-l) that
every projection in & is equivalent to 1 (x) e for some projection e in
N. In the latter case, every projection in £f is equivalent to 1 (x) e for
any projection e in N. q.e.d.

THEOREM 2.12. Let N and I(Adu,N) be as in (II-3). Then every
non-zero reducing subspace /or £f is fat.

PROOF. It is sufficient to note that &(N, Ad u"1) is a factor of type
III [9: 10.21, Proposition]. q.e.d.

THEOREM 2.13. Let N and I(Adu,N) be as in (Π-4). Then a
reducing subspace /or ά^ is either fat or thin.

PROOF. We first point out that N(&*) = £f is of type III. In fact,
the crossed product of a factor of type III by a discrete group is always
of type III (cf . [9: 10.21, Proof of (1) in Proposition]). Next we see that
the central support of 1 (g) e (e e N) in Sf is the identity. Let X be a
central projection in £f such that (1 0 e)X = 1 ® e. Then we have
(1 (x) e)([Ad 7](JSΓ)) - [Ad F]((l (g) e)(Z)) - [Ad F](l ® e) = 1 ® β. Since
τr([Ad 7]C$r)) - L°°(Γ, m, C(Λ)), it follows that π((l (x) e)([Ad
e τr([Ad F](-y))(«) - β for a.e. ̂  in T. Since, for each z in Γ,
is a projection in C(jBΓ), we have π([Ad V](X)) = 1, thus [Ad V](X) =
X= I.

Therefore a projection P in £f is equivalent to 1 0 e if and only if
the central support of P is the identity. q.e.d.

For a projection P in ̂  let π(P) denote the function defined by
fi(Py(z) = l if 7r(P)(z)^0 and -0 if 7r(P)(s) = 0. Then we get the
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following.

PROPOSITION 2.14. Suppose that N is of type III and v — 1 (i.e.,
up = weN). Then the following statements hold.

( 1 ) For any projection P in £f, π(P) is periodic of period 2π/p.
( 2 ) A reducing subspace 3ΐ is fat if and only if π(P^ = 1 for a.e.

z in T.
( 3 ) A reducing subspace 3t is thin if and only if π(Pχ) = 0 for z

in a measurable subset of T with positive measure.

PROOF. ( 1 ) From the assumption, we have π(^) = L°°(T, p,
Let C(P) denote the central support of P. Then P ~ C(P), thus π(P) ~
τr(C(P)). Hence ττ(P)(z) - ττ(C(P))(z) for a.e. * in Γ. Since ττ(C(P)) is
periodic of period 2π/p, so is π(P).

( 2 ) Since C(l ® e) = I, P* is equivalent to l®e if and only if
C(PR) = 7. The latter is equivalent to π(PΛ) = /.

( 3 ) This is derived from (2). q.e.d.

Now we notice that the statements (2) and (3) in the above prop-
osition closely resemble the original theorem of Beurling, though the
structure of M(^) is mose complex.

REMARK. From the preceding theorems, it seems that the structure
of reducing subspace for £f is easily analyzed in the case where the
von Neumann algebra M(£*) is factor, even if £f does not satisfy the
condition (**). For instance, for the unitary operator u on U(T) defined
by uf(z) = f(zezπίθ), where θ is an irrational number in (0, 1), we consider
the crossed product & = &(ML™(T], λάu) on /2(Z)(g)L2(Γ). It is well-
known that & is a factor of type II,. Let & be a family of shift
operators on /2(Z) (g) L2(Γ) such that W(£*) satisfies the condition (*)
and D(^) be the diagonal part of &. Then M(^) = ̂ . Since &*
does not satisfy the condition (**), there is at least one simply invariant
subspace 3K which cannot be of the form 9R = Z/ΣϊUΘ^ where
(sn (g) l)[W(^)no] = 9tre = e® (e e ML~(T)). However every projection of φ
onto a reducing subspace is equivalent to a projection of the form 1 (g) e,
hence so is that of § onto the reducing subspace generated by 2ft. This
means that every projection onto the reducing subspace generated by
a simply invariant subspace is equivalent to 1 (g) e for some projection e
in ML°o(T], though a simply invariant subspace is not necessarily of
Beurling type. Hence it seems to be useful for the study of invariant
subspaces for &* to analyze the reducing subspaces generated by simply
invariant subspaces.
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Addendum. Recently the author received a preprint [11] from
Professor B. Solel. In that paper he solved the invariant subspace
problem mentioned in the above remark. Namely he expressed all pure
simply invariant subspaces for & such that M(£S) = & as the ranges
of canonical models by the partial isometries in the commutant of M(&>).

The author however believes that it is still very interesting to study
the relation between the reducing subspaces and the simply invariant
subspaces for the above family ̂
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