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Introduction. Throughout this paper, (M, g) is an n-dimensional
space form of constant curvature, that is, the Euclidean space R", the
standard sphere S* or the hyperbolic space H". Let 4 be the (non-
negative) Laplacian of (M, g). Let 2 be a bounded domain in M with
an appropriately regular boundary o62. For an arbitrary fixed real
number p, let us consider the following boundary value eigenvalue
problem:

Af =\f  in 2,
f=0 on I',, and
of/on = pf a.e. I, i.e., where the exterior normal n of I, is defined.

Here the boundary 02 is a disjoint union of I', and I',. It is called (cf.
[B, p. 91]) to be

(D) the fixed membrane problem if I', = @,

(N) the free membrane problem if I, = @&, or

(M,) the membrane problem of mixed boundary conditions if I', # @
and I, # O.
It is well known that each problem has a discrete spectrum of the
eigenvalues with finite multiplicity. We denote by Spec,(2), Specy (2)
and Spec,,p (2), the spectra of the problems (D), (N) and (M,), respectively.

One of the important problems of the spectra is to research how the
spectra Spec, (2), Specy (2) or Spec,,p (2) reflect the shape of 2. In his
paper [K], M. Kac posed the following problem:

For two bounded domains 'QL 2 in R* (n = 2), assume that Spee, (2) =
Spec, (2). Are the domains 2, 2 congruent in R™?

Here two domains @2, 2 are congruent in the space form (M, g) if there
exists an isometry @ of (M, g) such that &(2) = 2. Note that 2, 2 are
isometric with respect to the induced metries from (M, g) if and only if
they are congruent in (M, g) because of simple connectedness of M (cf.
[K.N., p. 252]).
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In the paper [U], we gave the following answer:

THEOREM A (cf. [U, Theorem 4.4]). There exist two domains 2, 2
wm R* (n = 4) such that

Spec, (2) = Spee, (2) and Specy (2) = Specy (2),
but 2 and @ are not congruent in R".

THEOREM B (cf. [U, Theorem 3.8] and Proposition 3.1, §3). There
exist two domains 2,2 in S (n = 4) such that

Spec,, (2) = Spec, (?) and Specy (2) = Speey (D),
but 2 and 2 are not congruent in S*.
In this paper, we give the following:

THEOREM C (cf. §2). Let (M, g) be an n-dimensional simply connected
space form of constant curvature. Assume that n=4. Then there exist
two domains 2, 2 in (M, g) and disjoint subsets I',, I', (resp. fl, ') of
092 (resp. 02) such that

Spec,, (2) = Spec, (2), Specy (2) = Specy (2) and
Spec,, (2) = Spec,,p(ﬁ) for each real mumber o,

but 2 and @ are not congruent in (M, g). Here Spec,,,p (2) (resp. Spech(.@))
are the spectra of the membrane glroblem (M~,,) of the mixed boundary
conditions for 2, ', and I, (resp. 2, I, and T7,).

1. Preliminaries. Let (}, g) be an n-dimensional simply connected
space form of constant curvature. Fix an origin o of M. Let exp:
T.M — M be the exponential mapping of (M, g) from the tangent space
T.M of M at o into M. Let S"'={we T.M; |w| = 1}, where |-| is
the norm of T,M induced from the Riemannian metric ¢ on M. We
give the geodesic polar coordinate (r, w)e R* xS™*' around the origin o
of M by

® = 0(p) = ——exp™(p)e §*, and r = r(p) = d(o, p),
7(p)

which is valid in M — {o} in case of M = R" or H", or M — {o, 0}, (0 the
antipodal point of o in S") in case of M = S". Here d(p, q), », g€ M, is
the geodesic distance between p and ¢ in (M, g). Let g, be the Rieman-
nian metric on $"! = {we T,M; ||w| = 1} of constant curvature 1 induced
from the inner product g on T,M. It is well known that the Riemannian
metric g can be expressed using the geodesic polar coordinate (r, w) as
follows:
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(1.1) g = dr* + (Sn(r))%g, .
Here the function Sn(7) of » is
r , if M=R",
Sn(r) = {sin() , if M=8", or
sinh(»), if M=H".
Then the volume element dv is
(1.2) dv = (Sn ()" 'drdw ,
where dw is the volume element of (S™*, g,). The (non-negative) Laplacian
4= =3 ,9"%0"ox.00; — >, '%0/0x,), can be expressed by
1.3) 4= —0*or* — (n — 1)Ct (r)o/or + (Sn ()4,
where (¢g%) is the inverse of the matrix (g,;), 9.; = 9(d/ox,, d/0x;), (X1, - -+, @,)
is a local coordinate, I'%; are the Christoffel symbols, the function Ct(7)
of » is
1/r , if M=R",
cot(r) , if M=8S", or
coth(r), if M=H",

and 4, is the (non-negative) Laplacian of (S*7, g,).

2. Reduction of Theorem C to Theorem B. Throughout this paper,
we consider the truncated cone D, in (M, g) as follows: For 0 < e < ¢,
and a domain C, in the unit sphere S* of the tangent space T,M, let
D, = {exp (rw); e<r<e,, we C,}, where the number ¢, is 1 if M = R*, H*
or /2 if M = S*. Then the boundary oD, of D, in M is given by

0D, = exp (eC,) U exp (6,C,) U {exp (rw); e = r < ¢, w€ 3C}} ,
where 0C, is the boundary of C, in S*'. Put

' ={exp(rw);e<r=e¢,wecoC}, and
I', = exp (eC)) U exp (6,C)) (cf. Figure 1).
Let us consider the following problems for the truncated cones D,:
Af =\f in D,,
f=0 on 0D,,
Adf =Nf in D,,
offon =0 a.e. dD,,

(D){

(N){
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FIGURE 1. The domain D, and the boundary oD..
Af = \Nf in D,,
(Mp){f =0 on I,
of/on = pf ae. I,,

where o/on is the derivative with respect to the exterior normal unit
vector of 0D.. Then we have the following:

THEOREM 2.1. For Q < e< ¢ and two domains C, C, in S, define
the truncated comes D,, D, by
D, ={expro);e<r<e, weC},
D, ={exp(ro); e < r < e, weC}, respectively.
(i) If Spec,(C,) = Spec,(C,), then we have
Spec, (D,) = Spec, (D) and Specy,(D.) = Specy, (D.)
for each real mumber p. _ 5
(i) If Specy (C,) = Specy (C,), them we have Specy(D.) = Specy (D,).
Here Spec,, (C,) (resp. Specy (C))) stands for the spectrum of the fixed (resp.
free) membrane problem of the Laplacian 4s for a domain C, in S™.

Theorem C follows from Theorem 2.1 because of Theorem B. In
fact, two truncated cones D,, D, are congruent in (M, g) if and only if
C, C, are congruent in (S*, g,). Theorem 2.1 follows from Proposition
2.2, which is proved in §4.

PROPOSITION 2.2. For 0<e<e, and a domain C, in S™, let D, be
the truncated cone as in Theorem 2.1. Then we have the following:
(i) The spectra Spec,(D,) and Spec,,,p (D,) depend only upon & and

Spee,, (C).
(ii) The spectrum Specy (D,) depends only upon ¢ and Specy (C)).
3. Case of spherical domains.

3.1. In this section, we generalize Theorem B, which is proved in
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[U]. We preserve the notations as in [U].

Let (&, (,)) be the n-dimensional Euclidean space. Let (W, E) be
a finite reflection group acting essentially on E (cf. [U] or [B.N]). We
assume that (W, E) is a direct product of two reflection groups (W, E,),
i=1,2, that is, W=W,, xW,, E=E, X E,, (direct product). Put
Ny =dimE,, 1 =1,2. We choose and fix a chamber C of (W, E). Then
it is given by C = C,, X C, where C,, is a chamber of (W, E,). Let
My ={H; 5=1,---,n,} be the set of all walls H, of the chamber
Cy, 1 =1,2. We consider the spherical domain C, = CN S**, where
S '={weE, |o||=1)}, || =V (w, ). The boundary 4C, of C, in S
is 0C, = F\UF,. Here

F, = (C, x Cy)NS**' (the closure in S*) and
Fz = (Cu) X aC(z))msn—1 ’
where oC,, is the boundary of the chamber C, in E,, 1 =1, 2.

Let us consider the following membrane problem of mixed boundary
conditions.

AW =T in C,,
38.1) =0 on F,, and
o/on =0 a.e. F,, i.e., where the exterior normal n of F,
in S*' is defined.

FIGUER 2. Membrane problem with free condition for the dotted
set and fixed condition for the dark lined set.
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As an example, let W = I(p) X A, (cf. [U]). We can choose a chamber
C of W as the domain in Figure 2, F, is the dark lined set and F, is the
dotted set.

3.2. The method of Bérard-Besson [B.B] is valid for the problem
(8.1). We sketch briefly how to determine the spectrum Spec,, (C,) of
the membrane problem (3.1) of mixed boundary conditions.

Consider a C~ function f on S"* satisfying the conditions

(3.2) dsf =Nf in S™', and

3.3) w-f =ew)f, weWw,

where (w-f)) = flw™(x)), xe S~™', we W, and e(w), we W, is given by
(8.4) e(w) =detw,, w=(w,w)eW=W, xXW,.

Then the restriction to C, of f satisfies (38.1). Furthermore the set of
all restrictions to C, of C~ eigenfunctions of 4, on S"! with the condition
(8.3) is dense in the space L*C,) of all square integrable functions on C,
with respect to the volume element dw of (S*7, g,). Thus to determine
the spectrum Spec, (C,) of (3.1), we have only to consider the set of all
C= eigenfunctions of 4, on S with (3.3).

The set of the eigenvalues of 45 on S"*is {k(k+n—2);k=0,1,2, ---}
and the corresponding eigenfunctions are given by the restrictions to S*!
of all harmonic polynomials in E. That is, for k. =0,1, 2, ---, let P,(E)
be the set of all homogeneous polynomials in E of degree k, H,(E) =
{Pe P,(E); 4P = 0}, where 4 is the Laplacian of the standard Euclidean

space (K, g). Set
H, y(E) = {Pe H(E); w-P = ¢(w)P for all we W},
where w-P(x) = P(w'(x)), we W,xe E. Put h,, = dim H, (&), k =0,

1,2, ---. Then the number k(k + » — 2) is really an eigenvalue of (3.1)
with multiplicity &, , if and only if h,, # 0.
To determine all A, ,, k=0,1,2, ---, consider the Poincaré series

Fy(T) = 3 huwT*,

where T is an indeterminate. Using the invariant theory of finite re-
flection group (cf. [B.N]), the series F,(T) can be determined as

(3.5) Fy(T) = (L= TYTHIT (1 — 7o),

where {m;};., is the set of all the exponents of the reflection group W
and d, is the sum of all the exponents of the reflection group W,,.
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Thus we have:

PROPOSITION 3.1. Let W, W be two finite reflection groups acting
essentially on t~he same n-dimensional Euclidean space (E,(,)). Assume
that (W, E), (W, E) are decomposed as

W=Wuy*xWy, E=EyXEy; W=Wy,xW,, and E=FE,xE,.

Let C=C, xC,, C =6m><6m be the chambers of W, W, respectively. Put
01 =Cn8~, C,;=CNS*'. Set F,=(0Cy XCa) NS, Fy=(Cy xCs)N S

= (3Cy) x C)NS** and F, = (Cyy X 3C)NS™.  Let Spec,,(C,) (resp.
Spec,,,0 (C)) be the spectrum of the membrane p'roblem 3.1) of mixed
boundary conditions for (C, F., F,) (resp. (C, Fl, Fy).

(i) If the sets of all the exponents of W, W and the sums of all the
exponents of W, W, coincide each other, then Spec,, (C,) = Spec,, ().

(i) The domains C, C, are congruent in S*' if and only if the
Coxeter graphs of W, W coincide.

EXAMPLE 1. Let W, = 4, Wy = A, X Gy Wy, =G, W, = A, X B,.
Then these exponents are
W.:1,2,3, W,:1,1,5,
Wuil, 5, Weil,2,1,3.

Thus the sets of all the exponents of W, x W, and W, x W, and the
sums of all the exponents of W, W, coincide each other. But the
Coxeter graphs of W, x W,, W, x W, are different.

ExampPLE 2. Let W, = 4, X 4,, W = A, x B,. Then the sets of
all the exponents of W,, and W, coincide. For any reflection group W,
let W, =W, =W. Then W, xW, and W, x W, give the examples
which satisfy the assumptions of Proposition 3.1.

4. Proof of Proposition 2.2. Proposition 2.2 can be proved in the
similar manner as Theorem 4.3 in [U].

Let Spec, (C) ={N =N, <:--} be the spectrum of the fixed membrane
problem for the domain C, in S, and {¥';}2, the complete basis of
L¥C,, dw) such that

Aswi = X,{w‘z in Cl ’
v, =0 on dC, .

Here L*C,, dw) is the space of all square integrable functions on C, with
respect to the volume element dw on S*!. For each X\, in Spec, (C)), let
L;, be the differential operator on the open interval (¢, ¢,) defined by

4.1)
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4.2) L,, = —d*/dr* — (n — 1)Ct (r)d/dr + N, Sn (r)~*.
Note that the differential equation in (g, ¢,)
(4.3) L,9 = po

is equivalent to the differential equation of Sturm-Liouville type:

d "_lig_ . . n—3 n—1 —
(4.4) W<Sn(r) dr) A, Sn ()"0 + #Sn ()0 = 0.

Then we have:

LEMMA 4.1. For arbitrary fized constants 0= a<rw, 0< BT, let us
consider the boundary value problem (4.4) with the boundary conditions

(sin @) Sn (e)"*'@'(e) — (cos a)P(e) = 0,
{(Sin B3)Sn (¢,)""'@'(e,) — (cos B)P(e;) = 0 .

Let {p%}, be the spectra of the boundary value problem (4.4) and (4.5),
0%, 7 =1,2, ---, an eigenfunction on (¢, &) with the eigenvalue pk. Then
{@4}, is a complete basis of the space Li(s, &) of all square integrable
functions on (¢, &) with respect to the volume element Sn (r)"~'dr.

PROOF. See [P, p. 508] or [Y, p. 109, Theorem 1].

Now for the complete basis {Z )}z, of L*C, dw) satisfying (4.1), and
the eigenfunctions @%, 7 =1,2, ---, of (4.4) and (4.5) on (¢, ¢;) with the
eigenvalues g%, define C~ functions ¢} @ ¥, on D, by

04 @ T (exp (rw)) = Ox(r)¥ (@), re(s ), weC,.
Then the functions 9% @ ¥; on D, satisfy, by (1.3),
JP¥QRT) =L, 05 QF, = (0 Q¥, in D,,

and the following boundary conditions:

(4.5)

RV, =0 on {exp(rw);e<r<e,wedC},

(sin ) Sn (e)n-lg";(q);i QF) — (cosa)Pi@F, =0, on exp(eC), and
(sin B) Sn (sl)"“ain(ﬂ)i-f Q) — (cos R)P} Q¥, =0, on exp(eC).
Moreover we have:

LEMMA 4.2. (05 Q@F;1,7=1,2, ---} i3 a complete basis of L*(D,).
Here LX(D,) is the space of all square imtegrable fumctions on D, with
respect to the volume element dv of (M, g) (see 1.2)).
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PROOF. It can be proved by the same way as Lemma 4.2 in [U],
due to Lemma 4.1.

Due to Lemma 4.2, if we choose a =0 and 8 =7 (resp. o =
Sn (e)' "cota = Sn(e,)' "cotB), as in Lemma 4.1, then the set {u¥; 1,
1=1,2, ...} gives the spectra Spec,(D.) (resp. Spec,,p (D,)). Thus we
prove (i) of Proposition 2.2. We can prove (ii) in the similar manner
as (i) making use of Lemma 4.1 for o« = 8 = 7/2.
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