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1. Introduction. Let f(x) be a locally integrable function on the
real line R. The Fourier integral analogue of Marcinkiewicz function [7] is

2(f) (@) = (S’” \Fe +t) + Flz — t) — ZF(x)lzt'sdt>l/2
where
Flx) = S Fowydu .

We generalize this as follows : for a > 0

) @ = {21 - L) e - w — fo + widu| L

1(f)(x) coincides with g(f)(x). (1.1) is the one dimensional form of the
more general Marcinkiewicz function

1/2
’

pAe = [e 15 o - 00

lul<t

Zdt 1/2
H
where Q(w')/|ul* is the Calderdén-Zygmund kernel on k-dimensional space
and c is a constant depending on k only, see Stein [8].

On the other hand we have generalized the Littlewood-Paley function
as follows

=) oo ’ . 2 1/2
(1.2) i) = {= [ yray [T JECH W )"
T Jo —o |t — x — qy|*

where ¢(z) = ¢(x + 1) is analytic in the upper half-plane and has boundary
value ¢(x) = lim,,é(x + 7y). The original Littlewood-Paley function
9*(#)(x) in Fourier integral form corresponds to the case 8 =1 in (1.2).

Let 04 R; xz, B8) the R-th (C, B8)-mean of Fourier integral of complex
valued function ¢(x) and set

1.3) To(R; x, ¢) = Rj%op(R; z, ¢) = Blos_(B; x, ¢) — 04(R; x, ¢)}

and set
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(1.4) mo)o = (| 'L"(E‘R—”ﬂdze)‘” :

Then (1.2) is equivalent to (1.4), that is,
Ahy(9)(®) = 95 (p)(@) = Bhe(g)(®) ,

where A and B are constants independent of ¢ and x; see Sunouchi [11].
Here after A and B mean such constants.

Now we consider the functional h,; for imaginary part of ¢. Let
Gs(R; x, f) the (C, B)-mean of the conjugate Fourier integral of any f(x)
and define T4(R; z, f) and ky(R;x, f) analogously to the formula (1.3) and
(1.4). We denote by S the Schwartz space on R, that is, the space of
rapidly decreasing C~-functions. Then our main theorem is as follows.

THEOREM 1. If a +1/2 =73 (a > 0), then
Ahg(f)() = p(f)@) = Bhy(f)(x)
for any function flx)e S and x <€ R.
One of the inequalities
ho()(@) < Apta( ) i)

is already given by Flett [3] for the functions on the unit circle.
For a variant of this, let f,(x) be the Riesz potential of f(x), that is,

fuw) = " leefioeds and set
D,(f)(x) = (S | fulx — t) — fulx + t)l2 >1/2

t1+2a

THEOREM 2. Ifa+12=08 0<a<1l), then
Ahy(f)(®) = Do(f)(@) < Bls(f)(@)
Jor fe S and z€ R.
The fact that, for « + 1/2 > g
D(f)@) = Blhy(f)(@) + hs(f)@)} = Bhs(p)(@) ,

is given by Stein [9] for functions of several variables.
Corresponding to h,(f)(x), we consider

8.(F) (@) = (S tldt Mt 2, f)jdt)

where

Mtw, ) =< Smsg (1 - '%‘)“”‘f(w — wdu .
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THEOREM 3. If a — (1/2) = B (a > 0), then
Ahy(f)(x) = 0.(f)(x) = Bhs(f)()
for fe S and x<€ R.

In the last section, an analogous relation to the Littlewood-Paley
function g(f)(x), is also established. In particular the relationship
between

0o(f)() = <S:t '%{f(x —t) + flo + t)}'zdty/z

and g(f)(x) is clarified. This question is proposed as problem 6(a) of
Stein-Wainger [10, p. 1289] for several variables case.

I wish to express my appreciations to Professor M. Kaneko, whose
valuable suggestions have led to a material improvement in the presenting
of this paper.

2. Notations. We suppose throughout this paper f(x) belongs to
the class S. We write for a fixed x,,

#(t) = ¢(t; m, f) = flw, — t) + fl2, + 1)
and
Y(t) = P(t; mo, f) = [y — t) — flw, + 1) .
For ¢ >0 and ¢t = 0, set

. . . o t _ ﬂ a—1
@.1) 8u8) = gutim, ) = 2| (1= L) stwydu,
and
2.2) Bt = dlti i ) = L (1= L) pwdn.
t Jo t
The generalized Marcinkiewicz function and a variant are written as
(2.3) )@ = (" |wti o 1| L),
2.4) o)) = (| t| Lputtim, )| 'at)”

For the Cesaro-Riesz mean of f(x), we introduce the well-known
Young function. Let

¥ (&) + iTL(@) = S (1 — t)e-tgistdy

where a > 0, = 0, then it is known [1],
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Y (X) ~x™? as x— oo, where p = Min (2, «) .

Then the R-th Cesaro-Riesz mean of of the S-th order for Fourier
integral of f(x) is

(2.5) 0iB) = o(Rs 1, f) = ¢ | 6 R, i (Ru)u
and for the conjugate Fourier integral of f(x) is

(2.6) GUR) = 3R 2 1) = ¢ | 4R, Ru)n
where ¢ and ¢’ are constants. Then we have

@7 m( @) = (| 1os-iB) = o BIZaR)”
and

2.8) Fie) = (1 5B - s(BILAR)" .

3. Proof of Theorem 1. Let fe Sand fix a point x, in R. By the
change of the variables u = e¢7¥ and t = ¢ (2.3) becomes
@) @ =" [|" e - ernyeyenay|an] "

If we rewrite

(a1 =€), =0
(3.2) K, (x) = { 0 5>0
and ¥(x) = 4(e™), then (3.1) becomes
(3.3) @) = (|7 1@ K@)
In (2.6) and (2.8), we set v = ¢ and R = ¢°, then (2.8) is

R = [ ¢ ||| wRE R - 7y (Rw)du| LR

=[f
If we rewrite
(3.4) K} (x) = e*(T5(e") — Vpiu(e®) = e*Vj(e”)
and ¥(x) = «(e™*), then

(3.5) @) = (1" 1@ Rp@lda) .

| e e T ) = Tpter Ny da |
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To compare (3.3) with (3.5), we apply Fourier transform method.

Since (u) = flw, — u) — f(@, + u)e S, T(x) = y(e™*) = 0(e™®) as & — oo,
and O(e7'*") as #-— —oo. Since K, (x) is integrable on (— oo, o), (T x K,)(x)
is an ordinary convolution. However, since

Vele) ~e? as x—o (0<B=1)
we have
Ki(x) ~ e e = ¢ as g— oo,
But
Ki@)=0() as z——o (0<B=1).

If 1/2< B =1, then 1 —3=0 and Kj(x) is locally integrable, but not
integrable on (—co, ). In fact this is the most interesting case. Hence
we have to consider a distributional FAourier transform. As we shall
show at (3.11), the Fourier transform Kj}(2) belongs to the class L= and
evidently @(g)eLm L”. Accordingly we can apply convolution rule to
(¥ + K¥)(x), see Katznelson [5, p. 151, Lemmal.

Now we take the complex Fourier transform of kernels (3.2) and (3.4).
Let s = { — i&, where { is a complex number. Then

(3.6) S“’ K () ds = S (] — g)idy = g S (1 — ty-'tdt

—oo

_TI'la+DI'(s+1) _
= FatsiD (>0, Res> —1).

Let 6(x)e S, and consider Parseval’s formula:

(K¥(x)e*, 0(x)y = 27z:<S: K (x)e™ - e~=dy, 1‘7(5)> .

Then both sides are analytic functions of a complex variable { in an
appropriate do_main. Therefore we can calculate the distributional Fourier
transform of K¥(x) by analytic continuation method, see [4, p. 171]. We
have
3.7) S“’ Ri@eds = S’” 7 e d

=c F(B)S
I'g — s+ 1)sinrws/2

(B>0,8+1>Res,2>Res> —2).
Accordingly we have, from (3.6) and (3.7),

(3.8) R = TR IO @>0)
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and

Prla) — c'I'(B)(ig) )
3.9) Ki@ (B + i& + 1) sin wig/2 B >0):

Both I?,(g) and I%;“(g) have no zero on € (— o, ) and finite.
By the asymptotic formula of the Gamma function

|[’(a + ”:f)l ~ (277)_1/23_"'6I/QIEV—“/Z) , ae (___ o, oo)
as |g| — o, we have as [£] — oo,
A 1—(1/2)
(3.10) R ~ l—‘;l'L— ~ clels

and as [g] — oo,

(3.11) |[?;‘($)[ ~c |5| ~ crlsl(x/z)—p .

|El1+ﬁ—(1/2)e—xlé'|/2e:rlél/2

Hence |K,(&)/K:(2)| is bounded if a + 1/2 = 8 (a > 0). Thus
05 |7 1@« Kowlde = @) | TR
=en | |7 Lo L a
- K39
=e|” @R
=¢|" 1@ En@rds,

provided that the last term is finite. Since the proof of converse part
is done similarly, Theorem is proved completely.

4. Proof of Theorem 3. From (2.1),

sult) = & (- L) stu)du = a |, @ = o=sendo
and since f(x, — u) + flx, + u) € S,
“.1) gt-géa(t) —a S: (1 — v)* - vg'(tv)dv
_ 1 (¢ _u a1
=a-= SO (1 ; > ug' (uw)du

where ¢'(u) = —{f'(@, — u) — f'(x, + u)}.
We set as in §3 u = ¢7¥, t = ¢7, then, by (2.4), we have
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@2 Ay = | Lledso|at

-1

We set X(x) = e*¢'(e™®) and

« Sw e V) -e?-e" V(1 — e ¥)* ! dy 2dac .

ae*(1 —e*)*', 250

Kelw) = l 0 , x>0.
Then
@ = |10 Ko@)tds .

On the other hand, by (2.5)

oxR) = ¢ S°° () RY . u(Ru)du
and
(4.3) oy(R) = ¢ S“ & (WY s, (Ru)du .
By the definition (2.7)

i P@p = ¢ | LIRGURR
= S“’ %’ R S“ &) - Y pu(Ru)du| dR .

We set v = e, R = ¢°, then
(4.4 @ = |10+ Kp@da

where X(x) = e7%¢'(e™®) and Kj(x) = e™V;,(€%).
Since ¢'(e™®) = f'(x, — %) — f'(x, + e7%), X(x) behaves better than ¥(x)

in §3. However since
Kj(x) ~ e e~ ¥t = ¢g=#* a5 g — oo,

*(x) behaves for 0 = 8 > —1/2, as if Kj(x) in (3.4). Hence all things
go analogously as in §3.
The complex Fourier transform of K,(x) is

O ey — emyamig, — L@ 4+ DI(s + 1) 0 1
as_me e*(1 — e*)*'dux FatstD (¢ >0, Res > )
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and that of Kj(x) is
S“’ e, (e*)da = S‘” 157 5. (8)dlt
—00 0
ko re-+1
2 I'(B + 1 — s)cos ws/2
B+1>0,8+1>Res, -1 < Res<1).
SAince Ifa(g) =lNa+1DI'AQA -/ l(a+1— ig), IK,(g)[ ~ ¢|l&|™™ and since
Ky =IB+D/I'(B+1—1g)cosmig/2), |Ki@)| ~ g7,
If 3> —1/2, then K}(¢) is bounded, and the theorem is proved for
a =8+ (1/2).

REMARK. If a > 1, we may eliminate differentiability of f(x) in (4.1)
by a partial integration. However 0 < o =<1 case, we define ¢.(t) by
(4.1) and o5(R) by (4.3) respectively assuming differentiability of f(x).

5. Proof of Theorem 2. For a proof of Theorem, we need two
lemmas.

LEMMA 1. For fin S we have
folw —t) — fulw+1t) =c¢ S:o & sin &tdg Sj J(u; x, f)sinucdu .
PrOOF. By definition of Riesz potential, we have
flo =) = flo + 1) = e |l Reie — eds
= —2i¢ Sl |&]=* sin t& -f(g)ei”fds .
Since |&|~*sints is odd, we may take the odd part of
fge= = S: flz + we™du ,

which implies the lemma.

LEMMA 2. Ifa+1/2=08 (0 < a<1), then for f€S we have
T R e s

where
6.9,01(R) = 6.8,01(R; Loy f)

18 the (C, B)-mean of the Fourier integral

Sw &% sin gtde Sw Y(u; x, f) sin ugdu .
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PrROOF. We set w = e¢7?. Then

5.1) |l de _ " jou)ray,

0 uza
where
O(y) = (e e .
On the other side

Gs.R) =c S: «/r(u){R S: (1 — 2)%(Rz)* sin (Rzu)dz}du ,
where
Sl (1 — 2)%2* sin (zu)dz B>-1,a>-1)

is Kummer’s confluent hypergeometric function. Set w =e?, R = ¢?,
then

62 |TR|Ls.®)| R = LB - 5, RIR
= | 16+ Rrowyrde
where
K} () = e@tV® S; 1 — 2)¥ 2% sin (e*2)dz

The complex Fourier tranform of K} .(x) is
S“’ Rt (w)ede = I'(®ra —s)I'd + a + s) cos {(a + 8)x/2}
- I +1—s
O<a<1,12<pB8<38/2,1 —a>Res> —1 + a)

which is analytic in the strip near the line Re s = 0 and has no zero on
Res = 0. Furthermore we have

e—(nie[/ﬁ)[Sll—(1/2)e—(n’|$[/2) |E|a+1—(1/2)en‘|6|/2

K50 ~ e

e—(frlfl/2) lslﬂ+1—(1/2)

- clél—-ﬁ-l—lx-l—(l/z) as |§I — oo ,

Furthermore Kj,(&) is bounded on £e(—oo, ). Thus any necessary
condition analogous to §3 are satisfied. Comparing (5.1) with (5.2) we
get the lemma.

Theorem 2 is obvious from Lemmas 1 and 2.
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6. We consider here the Abel summability analogue of the preceeding
sections. Let f(x) € S and the Poisson and conjugate Poisson integral of

(@) be
u(x, ¥) = 1 Sw _m)___du — _1_§ yo(u; x, f)du
7T Jo

=@ —u) + ¥ '+ Y
1" _@—wfw g, 1w, f)
u(xy ?/) S - (x — ’I,{,)2 T y - So —_—’u2 I y2 du .

The Littlewood-Paley function g(f)(x) is defined by

0@ = {{7u (|2 + |22 )as} "
But since
ax l 8y ’
o)@ = {7y (|2 + |22 Jav} "
We separate the real and imaginary part and set
6.1) mp)a) = ([ v |24 fay)™,
(6.2) R = (] v | et fay )"

We use notations ¢(u) = ¢(u; &, f) and y(u) = ¥(u; 2, f). We set B =y,
and write

(6.3) a(R) = a(R; &, f) = S"" : f¢((ul)’2)2
and

(6.4) @(R) = a(R; x,, f) = S f;(wg;) R uy(u) 4
Then

W) = (o | B |[4240 'aR)”

and

R = (¢ S R ] da(k) | dR)
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Now we consider A(f)(x,). By definition
. e (=1({*, . 2Ru 2
ey =e| 5| v 2hdu|ar

We set w =e?, R = ¢ and ¥(y) = ¥(e™¥), K*x) = (/1 + €*)?). Then

(6.5) E@Y = |7 1@« B @)l
The convolution is obviously well-defined. The complex Fourier transform
of K*(x) is
) e . =3 e(s+2)z

S_m e K *(x)dx = S_w 5o x

o tl+1
—dt

So 1+ t?)?
s T

2 sinzs2’

For an Abel analogue of Marcinkiewicz function, we set

(6.6) vt = 2|7 (L) ey,
(see Levinson [6]) and
B ) 2dt 1/2
6.7) @) = (| (L)
Set t =e*, u =e?, then
(6.8) (@ = "1« O@rds
where

K(zx) = e+1/2z exp (—e?)

The complex Fourier transform of K(x) is
r e’ K(x)dx = r e+ exp (—e®)dx
=\ gt -t gy _?L
—Sot edt—l"<2+s).
Therefore

= — —?45 . T . s N C|5| o
K@) 2  sinm(—ig)/2’ KX pEE as |¢]
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and

z|§1/2

R =I@2— i) ; K<e>~c'e‘5‘ as |g = oo .

Thus we get the following theorem.
THEOREM 4. For f(z)e S, and xz,€ R,
AR(f)(@,) £ () () < Bh(f)(,) .

If we set
N R

and change t = e¢™%, u = e¢~?, then the corresponding kernel is
K:(x) — e—(1+1/2)x exp (_e—-z) .

Since

ek =r(2-s), Rio=r(3+i)

equals asymptotically to that of «,(¢) as |¢] — . Therefore we have

THEOREM 4’. For f(x)e S and x,€ R,
AR(f) () < px(f)(@e) < Bh(f)(,) ,

where

) = {72 [7(L) el ae) .

For the real part function h(f)(x,), we consider the following function.
Let

(6.9 5.6 = |7 (L) s
and
(6.10) 01w = (|7 t| Lot at) "

Moreover put
) —1/2
sr(t) = ¢\ (L) ey L
0 [7A u

and
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o d 2 1/2
01w = (|7t | Loz 'ar) .
o Idt

Then we have
THEOREM 5. For f(x)e S and 2,€ R,
AR(f)(@o) = 0,(f)(@,) = Bh(f)(x,)
and
AR(f)(@,) < 03(f) () = Bh(f)(,)
PRrOOF. By definition

@)y = L R-Lar)dr .

By (6.3) we have (d/dR)a(R) = ¢ S:{u;zs’(u)/(l + (Ru))}du. Now set u = e7?,
R =e¢*, X(x) = e*¢'(e7®) and K*(x) = ¢*/(1 + ¢*), then

(6.11) W@ = | 100« K*)a)ids
On the other hand, since

$a(t) = % S: ¢(u)<i:->_me‘“”du = qus(tv)v"”ze‘”dv ,

a0 = | sewprean = | g@(L) edu .

Set t =e, u=e" Xx) = e *¢(e*) and
K(x) = e”* exp (—e")
then

(6.12) ey = |7 10 K@)da

The Fourier transforms of the kernels (6.11) and (6.12) are

N . 1 5 s
K(e) = el — —~) and K*¢) = —--"——

@ =c ( W 2> n © = e n(—ia
respectively. Hence we get the first part of Theorem. By the same
method we can prove the another part.

7. Here we give some corollaries of the above theorems. Fefferman
[2] proves that h,(f)(x) and h(f)(x) is of weak type (p, p) for 1 <p <2
and 8 = (1/p). We assume this results in the sequel. In fact he proved
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the theorem in several variables form.
COROLLARY 1. For a= (1/p) — (1/2) and 1< p <2, the operator
U f)(x) is of weak type (p, p).

This is given from Theorem 1. a = (1/p) — (1/2), so if a = (1/2) then
Huo(f)(x) is of strong type (p, p) for any p (1<p<2). Zygmund [12] proved
that p(f)(x) = p#.(f)(x) is of strong type (p, p) for any p > 1.

COROLLARY 2. For a = (1/p) —(1/2) and 1< p <2, the operator
D,(f)(@) has weak type (p, D).

This comes from Theorem 3. Fefferman [2] remarks that this
corollary is established by the same method to proof of gk(f)(x).

COROLLARY 3. For a = (1/p) + (1/2) and 1 < p <2, the operator
0.(f)(@) has weak type (p, p).

Since, hy(f)(x) is of weak type (p, p) for 1 < p < 2, the corollary comes
from Theorem 2.

COROLLARY 4. Let
0@ = (|7 t| itw — ) + fw + 03| at)" .

Then, for o, > a, >0
h(f)(@) ~ 0(f) (@) < 04,(f)(@) < 0a,(f) () < 0o(f)(2)

and for B, > B, > —1/2
h(f)(@) < hg,(F)(@) < g, () (@) ~ 0p,010(F) (@) < 0o(f) () ,
where < means that if the right side is finite then the left side is finite.

A comparison each other of Fourier transform of corresponding

kernels and Theorems 3 and 5 yield the corollory.
This is an answer of Problem 6 (a) of Stein-Wainger [11, p. 1289]

in one dimensional form.

REMARK. Several variables analogues in spherical sense of the above
theorems will appear in the forthcoming paper.
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