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Introduction. Let G be a split algebraic absolutely almost simple
group defined over a field k. For a split maximal k-subtorus T of G let
Y = 3(G, T) denote the root system of G with respect to 7. Let {x.,
ce 3} be a system of isomorphisms, normalized as usual (see, for example,
Steinberg [4]), from the additive group onto the root subgroups with
respect to T.

We say (in the spirit of O’Meara [2, 3]) that a subgroup H of G(k)
is full if for every g in G(k) and ¢ in X there exists a non-zero ¢ = ¢(g, €)
in k such that g~'z.(c)ge€ H. Thus, H is full if and only if its intersec-
tion with any root subgroup (relative to any maximal split k-torus) con-
tains at least two elements.

For a subset R of k we denote by G?(R) the subgroup of G(k)
generated by all x.(a), where ¢ Y and acR. Here “E” stands for
“elementary”.

A subset R of k is called full (cf., Vaserstein [7]) if for every ¥ in
k there is a non-zero r in R such that yre R. For a subring R it means
that k is its field of fractions. Note that in this paper a ring is not
required to have identity.

The results of the present paper are modeled on the results of
Vaserstein [7], the methods are also similar. However the situation for
groups of type C, in characteristic 2 turns out to be more complicated.

We assume throughout (except in the last section) that the rank of
G is greater than one. If rank(G) =1, i.e., G is of type A4,, then the
conclusions of Theorems 1-5 below are false, see [7] and the last section,
where we also discuss possible generalizations of our results.

The following Theorems 1-5 summarize our main results. More pre-
cise and detailed statements are given in the corresponding sections.

THEOREM 1. For every full subring R of k, the subgroup GE(R) of
G) is full.

THEOREM 2. (“Arithmeticity Theorem”). FEwvery full subgroup H of
G(k) contains GE(A) for some full subring A of k with the exception of
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the case when G is of type C, (n = 2), char(k) = 2 and the dimension
of k over k* is uncountable.

Here, for a field k of characteristic 2, k* denotes the subfield of k,
consisting of all squares. In the exceptional case we will show that not
every full subgroup H contains GZ(A) for a full subring A (see Sections
8 and 9 for details).

THEOREM 3. If H s a full subgroup of Gk) and g,, +++, 9. are in
G(k) then the intersection of all g.Hg;' is a full subgroup of G(k).

THEOREM 4. Assume that k does mot consist of 2 elements when G
18 of type B, or G,. If H is a full subgroup of Gk) and M is a sub-
group of G(k) normalized by H then either HNM 1is full or M lies in
the center of G.

Theorems 1-4 for G = SL, were proved by Vaserstein [7]. According
to [10], Serezhkin considered subgroups H of G(k) = SL,(k), » = 3, more
general than full subgroups. Assuming that H is irreducible (in the
standard representation) he proves that a conjugate of H either contains
GE(A) = E,(A) for a full subring A of k or is contained in HSp,(k), the
group of symplectic similitudes. Since a full H is irreducible and HSp, (k)
is not full, this result combined with our Theorem 8.4 gives Theorem 2
for G =SL,, n=3. He also tried to prove Theorem 2 for G = Sp,,
with char(k) + 2, see [11].

THEOREM 5. Let H be a subgroup of G(k). Set R.(H):= {tek: x.(t) e
H}. Suppose that R, := R,(H) 0 for every root ¢ in 2. Suppose further
that G is mot of type B,, C,, or F, when char(k) = 2, and that G is not
of type G, when char(k) = 3. Then there is a non-zero subring A of k
such that R, ACR, (i.e. R, is an A-module) and (AR.)(AR_,)CA for every
root ¢ in 3.

We do not assume here that H is full. Here and throughout the
paper BC:= {bc: be B, cc C} for any subsets B, CCk. About the cases
excluded from Theorem 5, see the next section.

The groups H in Theorem 5 are similar to “tableau”, “carpet” or
“net” groups considered in many papers including Riehm [12], [13], James
[14], Borevich [15], Vavilov [16]. The main two differences are that our
R.(H) need not be ideals of A and are not allowed to be 0.
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reference [1] and D. James and a referee for many corrections. The work
was started in the fall of 1981 jointly with B. Weisfeiler, and later he
made a few corrections.
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NOTATIONS AND CONVENTIONS. If all roots in 3 have the same length,
we set Y;:=J3,:= 3. Otherwise there are roots of only two lengths in
Y (see, for example, [4]). We denote then by 3, (resp., X,) the set of
long (resp., short) roots in 2. Always, Y, is a subsystem of X.

Let e¢(Z) be the square ratio of lengths of long and short roots.
Recall that e(X) =1 when X is of type A,, D,, or E,; ¢(2) =2 when ¥
is of type B,, C, or F,; ¢(¥) =3 when 3 is of type G.,.

We say that a subset of Y is connected if it is not a union of two
orthogonal non-empty subsets.

If «, B are in ¥ and a # B #—a, then we have a commutation
relation of the form [z,(t), xs(w)] = T %insjs(E Pa s tu?) for all ¢, w in k,
where the product is taken over all roots e + j8 in Y with natural
%, 7 = 1, the factors in the product are ordered lexicographically (¢ and,
for fixed 4, also j increase from the left to the right), p.s.; are natural
numbers, and the signs + do not depend on ¢t and u but only on «, 3, %, J
(once the parametrizations x, were chosen). When a + 8 is not a root,
the product is taken over an empty set and equals 1.

For a subset Ack and an integer n we set A":= {a":a € A}. For
A, Bk we set AB:= {ab:ac A, be B}.

We define p as follows: if char(k) # e¢(Y), then p:=1; otherwise,
p := char(k) = e(2).

For a subgroup H of G(k) and a root ¢ in ¥ we set R.(H):={tck:
x.(t)e H}.

1. A generalization of Theorem 5.

1.1. THEOREM. Let H be a subgroup of G(k) such that R.(H) +# {0}
for every root ¢ in X. Set R,:= R,(H). Then there exist additive sub-
groups A and B of k and (for every root ) mon-zero a., b, in k such
that:

(i) a,BCR,cb;B, R,A’CR,, and AR,R_;CA for every long root o
wn 3

(ii) a,AcCB;Cb;,A, R,BCR,, and B'(R,R_.)’CB for every short root
v in 3, where B’ := BB when char(k) =2 =e(3) — 1, B := e¢(3)! B when
char(k) = 0, and B’ := B otherwise;

(iii) ABcA, BA*CB, and A?’CBCA;

(iv) B is a subring of k (t.e. BBCB) when 3, is connected; A is a
subring of k when 3, is conmnected.

The case p = 1 of this theorem contains Theorem 5 (indeed, (iii) with
p =1 implies that A = B is a subring, and to obtain AAR,R_,C A when
char(k) = 0, we replace A by e(3)! A). Note that RLACR, and AAR.R_.CA
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imply ccACR,CcZ!A for any ¢, in R, and ¢_, =0 in AAR_.. When p #1
and k is not algebraic over its prime subfield, the conclusion of Theorem 5
is false for some H with R.(H) # 0 for all ¢ in 5, see Theorem 6.1 below
(namely, for H = G*(k,, k?) with subfields k2cCk,Ck).

We will prove Theorem 1.1 in Sections 2, 3-4, and 5 in cases e(Z) =
1,2 and 3 respectively. The following technical lemmas will be used in
our proof of Theorem 1.1.

1.2. LEMMA. Let m = 2 be an integer; A, BCk; ABC A, ABCB.
Then:

(i) f a is in the multiplicative set generated by A and b is in
the multiplicative set generated by B, then Ba™C B and AbC A; therefore,
for A, := Aa, B,:= Bb we have A,B,CA,, A"B,CB;;

(ii) 2f acA, beB, then for A,:= Aa™', B,:= Ba™ we have
A,B,CA,, A’B,CB,, and B,CA,;

(iii) <f be BCA, then for A,:= Ab, B,:= Bb™"' we have A,B,CA,,
ATB,CB,, and ATCB,CA,;

(iv) 4f B+ 0 #cAACA for some ¢ in k, then there ts a mon-zero
a, tn A such that (arA)(arA)CarrA4;

(v) if A #0 % cBBC B for some ¢ in k, then there is a non-zero
b, in B such that (b7 'B)(br'B)Cbr'B.

ProorF. (i) Wewritea =a,---a, witha,€ A. Then Ba?CBA™CB
and, by induction on n, Ba™ = B(a, - - - a,_)™a®C BaTC B. Similarly AbC A.

(ii) Since a™ ' = a™*abeca™*ABCa™*A and a™b e A"BCB, by (i)
we have A,B, = A, and ArB,CB,. Moreover, B, = Ba™ = (Ba)a™'bC
Aa™'b = A,.

(iii) Again, the first two inclusions follow from (i), which implies
also that d"*BCA. Hence B, = b 'BCAb = A,. Finally, AT = A™b™ =
A™bbm ' C A™Bb™'C Bb™ ' = B,.

(iv) We have (cA)(cA)CcA, that is, cA is a multiplicative set in k.
In particular, (cA)™C((cA)(cA))"C(cA)™, so B(cA)™ACB(cA)"A=c"BA™AC
¢c"BAccmA.

On the other hand, B(cA)™A = ¢ (BA™)ACc*™BACc™A.

Therefore c®ANc*™A # 0, i.e., there are non-zero a, and a in A such
that ¢™ = a,/a. Then ai™ = ar2a, = arac™ = (a,c)™ *(ac)c € (cA)™ *(cA)cC
(cA)c = *A. Hence A(ar'A)CA(c*A)A = Ac(cAA)c AcAcC A. Multiplying
both sides by ai™*, we get (ar—*A)(ar—A)CarA.

(v) From (¢B)(cB)CcB we deduce that A(cB)*c A¢cB = cABccA. On
the other hand, A(cB)* = ¢’ AB*cc*(AB)BCc*ABCc?A.

Therefore, cANctAD A(cB)* +# 0, hence a, = ac for some non-zero a,
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a, in A. Pick a non-zero b’ in B. Then 0 #b:=a™’'€ A®BCB, 0 #b,:=
arb’ e A~BC B, and b, = c™b.

We have b = ¢™bby—2 = (be)(b,e)™2¢c € (Be)(Be)™*c C(Bc)c = Bc*. There-
fore, B(br'B)c B(Bc*)B = Be(BeB)C BeBC B. Multiplying this with 7,
we get (b7 'B)(br'B)Cby'B.

1.3. LEMMA. Let n, m, N be mnatural mumbers. Let non-empty
A, B, R,ck, and c¢,d,;ek for i=1,---, N. Assume that 0 = AB"CA,
A"BcB, 0 #¢c, AcR,cd;A (t=1, -+, N). Then there is a mon-zero b
in B such that d,AbB)"Cc,A and, therefore, R,(bB)"CR, fori =1, --<, N.

ProoOF. From c,Acd,A it follows that A(c/d,)cA. Therefore
A(c,/d)"c A for every integer r = 0. Pick non-zero @, in A and b’ in B.
Set a,:=a.;/d;€A, b,:=0bareBA™cB for ¢=1,:--, N, and b,:=
b'ar e B.

We have: (c,/d)™ = (a;/a,)™ = b;/b, and bfACb;A/b; = A(b,/b)" =
Ale,/d)"c Ae,/d, for i =1, ---, N.

Let a be the product of all a;,, 2 =1, --+, N, and b := b'a™ e BA"CB.
We have: bB = b,B when N =1, and bBcb,A"BCbB for 1 =1,---, N
when N > 1.

Therefore, AbB)"C A(b,B)" = AB"b;Cc Ab;CAc,/d,. Hence d,A(bB)"C
Ac; and R,(bB)"cd,AbB)"CcAc,CR, for 1 =1, .-+, N.

2. Proof of Theorem 1.1 for groups G of type A, n=2), D,
(n=38), and E, (n=6,7,8). Recall that H is a subgroup of G(k) and
that the R,:= R.(H):={tek: x.(t) € H} are assumed to be non-zero for
all roots ¢ in 3. In this section we consider the case when ¥ = 3, = 3,.

2.1. LEmMMA. (i) Ifv,0,v+06€X then R,R,CR,.;
(ii) for any a, B in I there exists a non-zero c,; in k such that
Ca'pRpCRa.

Proor. (i) We have [x:(f), x,(u)] = 2r4;(=tu) for all ¢, u in k (see,
e.g., [4, Examples to Lemma 14]). Taking here te R;, u € R, we see that
R,R;CR,,;.

(ii) There exist v, «+-, 7, in ¥ such that 8 + v, + --- + v,€2 for
all i<m and a=8+7,+ +++ +7,. Let us proceed by induction on
m. If m =0, then R, = R, and we can take ¢,, =1. For m =1, we
setY:=7,0=8+7+ +++ + 7,_,. Pick a non-zero ¢, in R,. Applying
(i) and the inductive assumption to d, we have: R;,; = R,DR,;R;Dc¢; ;R:R:D
€13 sRs = CopB With ¢, 1= €155 # 0.

Now we can complete our proof of Theorem 1.1 in the case Y = J,.
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For every pair a, B8 of roots in 3 we fix a non-zero ¢, ; € k such that
¢.;B;CR, (see, Lemma 2.1 (ii)).

Pick roots «, B, v in X such that v = a — 3. By Lemma 2.1, R,D
RyR, D¢ R.; R, = cR,R,, where c¢:=c¢p.c;,+0, hence A:=cR,D
¢cR.cR,=AA is a subring of k.

For any root ¢ in Y set a.:=c "¢, b.:=c'c;: #0, hence RE.D
c..R, =c..c"A=aA and R,Cc; R, = ¢ 'c;.A = b.A.

By Lemma 1.8 (with A=B, m =n =1, N:= card(J)), (ad)R.CR,
for all ¢ in ¥ with some non-zero a in A. Replace A by a4 and a., b,
by a.a™, b.a™' respectively. Then AR.c R, for all ¢ in 5 and still
a. ACR,cb.A for all e.

Now for every ¢ in 3 we can find ¢ in 3 such that ¢ + €. Then
R,R.R_.CR,,,R_.CR; by Lemma 2.1(i). Take the product R of all R,
over 60€X. Then RR.R_.CcR for all ¢ in 3.

Since R,cb.A for all ¢, we have RcbA, where b = 0 is the product
of all b,. Replacing A by its subring generated by Rb~*, we have R,ACR,
and AR.R_.c A for every root ¢ in 3.

3. Proof of Theorem 1.1 for G of type B,. Since G is split over
k, it is isogenous to the symplectic group of a non-singular alternating
form in dimension 4.

The root system (see, Figure 1) consists of 8 roots. Four of them
(£a, =(a + 2B)) are long, and four (B3, +(a + B)) are short.

Let us call a pair (v, d) of roots admissible, if veZX, 6€2%, and
d —veX, In other words, v is short and 6 makes an angle +45° with
v. Every root is contained therefore in exactly two admissible pairs.

As in Theorem 1.1, R,:= R,(H)#{0}. For any pair (7,d) of roots
we set R, ,;:= R, ,(H):={(t, w) e kD k: ,(t)x,(u) € H}. Let R;, (resp., By,
be the projection of R,, on the first (resp., second) factor. Clearly,

a atf a+t23

FIGURE 1. System of roots of type B..
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R} ,DR; and R;;DR,.

3.1 LEMMA. Let (7,0) be an admissible pair of roots, a€ R, _;, be
R, 3, (c,d)eR;,;, and t,t, € R,_,. Then (i) (abe, ab’c®) € R, ,; (ii) 2t,t.d €
Rzr-a~

PrOOF. Set ¢:=4d — 27.

(i) Since both z.(k) and z_.(k) commute with x,(k), we have: H>
[2_(@), [x.(0), z:()s(d)]] = [x_.(@), %, (E£be)x,(£bcY)] = x,(Labe)z,(+ab’c”).
Since R., are additive subgroups of %k, we can, changing if necessary
signs of a and b, obtain that R;,s (abc, ab’c®), as claimed.

(ii) We have H3 y(t):=[x,_s(t), 2:(c)2:(d)] = 2 (£ td)xsr_,( L t*d = 2¢t) for
any t in R, ;, hence H3y(t, + t)y(—t)y(—t,) = ®p_s(+2t,t,d). Thus,
Ry , = — ar—s D 28, t,d.

3.2, COROLLARY. In the motation of Lemma 38.1:
(i) R;,D2R.R_.R,; and R,D8R.R.R_.R,R;;, where ¢:= 206 — 27;
(ii) R,;Cy_JCr__JCR‘;D4R,;Cr_5Cr_5Cr_5, 'M)hze're Cy_,; = 2R7_3R,;_7'.

Proor. (i) Let a, b, ¢, d be as in Lemma 3.1, and ¢'€ R,, b' e R,.
By Lemma 3.1, R, ,2z(c):= (abe, ab’c®) e k@ k. Since x,(k) and z,(k) com-
mute, R, ;is an additive subgroup of £ @ k. Therefore, R;,32z(c) — 2(—¢c)=
(2abc, 0), so R,D2R_.R.R;,, which proves the first inclusion.

Similarly, R; ;3 z2(c) + 2(—c¢) = (0, 2ab’c®), hence R;> 2ab’c®. Therefore
R;32ab%(c + ¢')? — 2ab’c* — 2ab’*c” = 4ab’cc’ and R, 3 4a(b + b')*cc’ — 4ab’cc’ —
4dab”cc’ = 8abb’cc’. This establishes the second inclusion in Corollary 3.2(i).

(ii) By Lemma 3.1(i), R/, 2R, ,R,_;,)CR,_;. Replacing here (7, d)
by the admissible pair (v, 2y — 4), we get R/, ,2R;_:R,_;)CR,. Combin-
ing the last two inclusions we get R/,C,_,C:_,CRy_,(2R;_;R,_;)CR,.

To prove the second inclusion in (ii) we take arbitrary % in R,_;, v
in B, ;,and ¢ in R;, Then H 5 [[x,(t), 2r_s(w)], x,_r(v)] = 2:(Etuv)x,( L 2tuv
+tu’”), hence (changing if necessary signs of ¢ and u) R}, 2 2tuv + u*v.
Since R!;DR;,DR,C._,C;_;24u*, it follows that R},>8tuv. Thus,
R};,D4R,C,; ;. Combining this with R/,C,_,C,_,CR, we get Corollary
3.2 (ii).

PrROOF OF THEOREM 1.1 FOR TYPE B, WHEN char(k) # 2. For every
root @ in ¥ we pick a non-zero ¢, in R,.

By Corollary 3.2 (i), R,D¢; . R., R;Der,_R_., where ¢, := 2¢,c_, €, _ i =
2¢,¢.. Similarly, R,D¢; R, ¢;_.R_., ¢;yR; with ¢, := 8¢c_.cic,, ¢, _.:= 8cic},
Csr i = 8cic_cCr.

Applying the above inclusions (with other admissible pairs of roots)
successively, one easily establishes that for any @, 4 in Y there is a
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non-zero ¢,y in k such that R,Dc, yRy. Fix such ¢, 4.

Let A be the subring of k generated by 2R,R_,. We have A>2¢_,R,.
Applying Corollary 3.2(i) with v:=8, d:=a + 28, e:=0 — 27 = a, we
get R;DAR; hence R;DcsA. Therefore a,ACR,Cb,A for every root ¢
in ¥, where a,:= ¢, 4Cs, by:= (2¢_4Cap)”'. Using Lemma 1.3 with m =
n =1, A = B, we find a non-zero a in A such that all R, are aA-modules.

Replacing A by a4 and changing a,, b, accordingly, we have R,ACR,
for all @ and still a,ACR,cb,A for all @ with non-zero a,, b,.

By Lemma 3.1 (i), R.R_.R;,CR;, for any admissible pair (7, 6), where
e:=0 — 27. Consider the product A4, of all R;,. Then A,R.R_.CA, for
every long root ¢ in Y. Using Corollary 3.2 (i) and AACA, we see that
0 #cA,CA for some ¢ in k. Replacing A by its subring generated by
cAA,, we get AR,R_;,C A for all 6 in ¥, We still have R, ACR, for all
¢ in Y and R.cblA for all ¢ in ¥ with some b, # 0 in k.

Let now (v, 6) be an admissible pair. Using R.CblA for e =06 — 7
and ¢ = v — 9§, we get uC,_;C A, where u:= (b;_;b;_r)™" = 0. Multiplying
the inclusions in Corollary 8.2 (ii) by #* and u® accordingly, we get
R,NRu* # 0 = R,N4Ru’. Since R;CbA for some b in k (it follows from
AR,R_,CA #0), uANA # 0. Therefore, 0 = vC;,_;CA for some v in A.
We have (R,UR,C;_,)Cr_;cR;UR,C,_;, and R,UR,C,_,CbAUbAC;_,Cb(AU
C,_;)CbvA, hence w;,(R,UR,C;_;)CA, where w;,:= vb™.

Let A, be the product of all w;,(R,UR,C;_;). Then A,C;CA,CA for
all v in ¥,. Replacing A by its subring generated by A4, we get
AC,c A for all v in ¥,. We still have A(R,R_;)C A for all § in ¥, and
R ACR, for all ¢ in 2.

Thus, Theorem 1.1 is proved for G of type B, when char(k) = 2.
For the rest of this section we assume that char(k) = 2. Then [x.,(k),

Ty wrn (k)] = 1.

3.3. LEMMA. Let (7,0) be an admissible pair of roots. Then (rs,
rs)e R,_r; for any s in Ry, and r in Ri_;, ;. In particular,

(1) Rir DR R ;o

(i) Ry DRy (R )

PROOF. Let (s,t)€ Ry, (¢, 7)€ Rs_rs_or. Then H 3 [x,(8)x,(t), 4,_+(q) X
Ts_or(1)] = [21(8), %5_1(Q)%s_0r(1)] = [:(8), X,_3r(1)] = @5_1(sT)5(7S"), as claimed.

8.4. NoTATION. For a long root 6 in Y denote by A; the subring
of k generated by R} ;, R}, , where (0 —7, 0 —27) and (7, 27 — 9)
are the admissible pairs (7/, ') such that 2v' — ¢’ =4d. For a short root
v in ¥ we denote by A; the subring of k generated by R;_;,R;_;._,,
where (6 — v, ) and (v — 0, 27y — 0) are the admissible pairs (7', ') with
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o= =n.

3.5. COROLLARY. Let (v,0) be an admissible pair. Then:
(i) Ri_;, and R;, are A,modules;

(ii) Ry, and Ry,_, are Ai-modules;

(iii) A, and Ay_; are Al-modules;

(iv) A; and A,_; are A,-modules.

ProoF. Applying Lemma 3.3 (i) to the pair (6 — 7, 0) instead of (7, d)
we obtain R;,DR;_;,R!, ,, When we substitute this in the inclusion
3.3 (i), we obtain R;_; ,DR;_; ,(Ri s ;_s+R;:_;). Thus, R;_,,is an A,-module.
Replacing here (6 — v, d) by (v, ) we prove (i).

To prove (ii) we apply Lemma 3.3 (ii) to the pair (—7, 6 — 27) instead
of (v,9). We get R}, , DR} ,(R ;, ) Substituting this in 3.3 (ii)
we obtain R;.,,DR},,(R.,, »R;,? Thus R}, is an A% ,-module. Re-
placing here (6 — 7, 9) by (6 — 7, 06 — 2v) we see that R}, ,, is also an

¢ ~-module. Now it remains to replace 6 — ¥ by v (and keep 6 the same)
to obtain (ii).

Statements (iii) and (iv) are direct consequeces of (ii) and (i) respec-

tively and the definition of the rings A, (see Notation 3.4).

3.6. LEMMA. Let (v,0) be an admissible pair. Then there exist
non-zero ¢, and ¢, in k such that

( i) R,D C%Rél—r,a_zr(R;,a)z-

(ii) Rb—rDczRIs,—r,a—wR;,a-

PROOF. Assume first that card(4,) = 2 for some root ¢ in Y. Since
A, is a ring this implies that A. = {0, 1}. By Corollary 3.5 (iii) and (iv),
A, is a module over A}, where ¢ is the root making an angle 45° with
g. Since A, = {0, 1}, it follows that A% = {0, 1}, hence 4, = {0, 1}. Apply-
ing now the same argument to A, instead of A, and repeating it 7 times,
we obtain that Ay = {0, 1} for all roots 4 in 3. The definition of Ay now
implies that card(R} ;) = card(R};) = 2 for all admissible pairs (v, §). Since
R,,DR;, #0 and R};DR; # 0 we see that R}, = R, and R}, = R, for all
admissible pairs (v, ). Therefore Lemma 3.3 reduces to our claim with
¢, =¢=1

Now we can assume that card(4,_;) > 2. Pick ¢ #0, 1 in A4,_; and
b0 in A,. By Corollary 3.5 (iii), ba*e A,(4;_;)*CA,. By Corollary 3.5 (i)
and (ii), for any » in R} ,, ., and any s in R}, we have: ra’, ra‘c
R}, ,_r and sb, sba’e R} ;.

Set y(u, t) := (ut, tu) ek P k. By Lemma 3.3, y(u, t)e R,_; ; if u € R;

710

te Ry ; ;. Therefore y(sba?, r), y(sk, ra*), y(sb, ra*) € R,_; ;. Since 2, (k)
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and z,(k) commute, R, ,, is an additive subgroup of k@ k. Therefore,
R,_; .2 y(sba*, r) + y(sb, ra*) = (0, rs’a®*(1 + @)®) and R,_;,>y(sba®, r) +
y(sb, ra*) = (rsba’*(1 + a*), 0). Thus, our claim holds withe¢, := ab(1 + @) # 0
and ¢, := ba*(1 + a*) # 0.

3.7. COROLLARY. For each pair (@, ) of roots of the same length
there exists a nom-zero c,y in k such that

(1) R,Dc,wRy if @,y €3,

(ii) RsaDcsa,%R% if @, el

Proor. (i) Lemma 3.6 (i) applied to (7, 9) gives R;DciciR,;_,;, where
0 #c¢,e R,CR;, (we used also the inclusion R, ,,C R} ;, ).

This shows that ¢, ;_,; exists (and can be taken to be ¢,c;). Note that
0 was an arbitrary long root and 6 — 2y makes an angle +90° with ¢ if
¥ makes an angle +45° with 6. Thus, repeating the argument 3 times,
we obtain (i).

(ii) We apply Lemma 3.6 (ii) to (6 — 7, 0) to get that R,Dec,cyr_sR;_r =:
1Ry, Similarly, R, ;D¢;_r,_+R_;, R_;Dc_rr_sRr_sy Ri_sDer_s Ry ,

Now we are prepared to complete our Proof of Theorem 1.1 for G
of type B,.

PrROOF OF THEOREM 1.1 FOR G OF TYPE B, WHEN char(k) = 2. For
every root @ we pick a non-zero ¢, in R,.

By Lemma 3.6 and Corollary 3.7, R, D R, 25(R_5)* D% 125,00 5 ar- s Foa( Barp)’
and R, DCRuiopR_DCoChi08,0C_p 0t pRaRuss.

Set d, =:¢.Cat2p,aCpratpy Aoi= CCiiopaC_parsy A= A Rers, B:i=d,R,.
Then the above inclusions become d;*B>Od;'BA? and di*ADd;*AB. Thus,
BDHOBA*, ADAB.

By Corollary 3.7, d;'c¢} ,BCR,Cc;%d;*B for d€ 2, and di'cr o sACR, C
c:isdiA for veX,. This proves the existence of a., b, for all ¢ in 3.

Consider now A':= AA,A,..pA A . 2 B 1= B(A;A,. A 1A . )
Using Corollary 3.5 (iii) and (iv), we see that B'DB’A” and A'DA'B'.
It is clear that A’>a,A and B’'Da,B for some non-zero a, in k. Using
Corollary 3.5 (i), (ii), Lemma 3.6, and the inclusions BOBA*, ADAB, we
see that A'cb,A and B'cb,B for non-zero b, in k, 7 =1, 2.

Replacing A, B by A’, B’, we get AA,CA, BA:CB for all i3,
ve 3, and we still have A*Bc B, ABC A and (after appropriate change
of a., b) Aa,C R,C Ab,, Ba;,CR,CBb, for all veJ3,, 62,

Using Lemma 1.3 with N=4, n =1, m =2 and with N=4,n =2,
m = 1, we find non-zero a € 4, b e B such that R,(aA)>*CR; and B,(bB)CR;
for all 63, ve€2X, Replacing A4, B by aA, bB (and changing accordingly
a., b,) we gain the additional property: R;A*CR,, R;,BCR, for all v€J%,,
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o€,

Now it is time to use Lemma 1.2 (ii) and then (iii) with m =2 to
obtain new A, B satisfying A*C BCA.

We do not loose the property that AA,CA and BA:CBforalloe X,
veJX, Since A;,DR,_,R,;_;and A;,DR,_;R;_,, we have, in particular, that
AR,R_;C A and BR:R*;CB for all veJ%,, 62X,

4. Proof of Theorem 1.1 for G of type B, (n = 3), C, (n = 3), and F,.

4.1. LEMMA. Let @, €2 have the same length. Then there exists
a NON-2ero Cyp v N k such that R,DOc, yRy. When G is of type C,, @, € 3,
and p = 2, we can choose ¢,y in k.

PrOOF. If both @ and 4 lie in a subsystem of type A, or B, the
first claim was established in Lemma 2.1 (ii) and Theorem 1.1 for G of

type B,, respectively. In the general case there exist roots v, ---, 7,
in 3 of the same length as @ and 4 such that ¢ = v, 4 =7, and 7,
Y.+, lie in a subsystem X; of type 4, or B, for 1 =1,2, -+, m — 1. Since

the claim holds in every X, it holds in X as well, by induction on m.
When G is of type C,, ¢, 4 €3, and p = 2, we can use Lemma 3.7 (i).

4.2. Now we pick o€ X, and g€ 2, which are simple roots in a sub-
system of type B,. By Theorem 1.1, there are additive subgroups A and
B of k and elements a,, b., a; b of k such that ¢, BCR,Cb,B, a,AC
R,cb;A and, moreover,

(4.3) AR,R_,CA,  B(e(2)/p)(R:R_s)*CB,
(4.4) ABcA, BA’CB,

where ¢(3) =2, and p =1 or 2 (are integers depending on char(k)).

By Lemma 4.1, a,BCR,Cb,B and a;ACR,Cb,A foralloe X, and v J,,
where a;:= ascr 5 # 0, by 1= bsCs}, Qs:= @uCs o # 0, b; 1= buC3h.

Applying Lemma 1.8 with N:=card(¥,), n =1, m = p and with
N:=card(X,), n =p, m =1, we find non-zero a¢ in A and b in B such
that R;(aA)’CR, and R,(bB)CR, for all 6 in X, and 7 in J,.

Replacing A and B by Aa and Bb and changing a. and b,, we have
(4.3), (4.4), and:

(4.5) a;BCR;cb,B and R;A?’CR; for all 6 in X, ;
(4.6) a;ACR,Ccb;A and R,BCR, for all v in J,.

Since every short root v in 3 can be included as a simple root in a
subsystem of type B, or A4,, we have B,(2/p)(R;R_,)’CB, for an additive
subgroup B, of k such that w,BCB,Cv,B with non-zero u,, v, in k (for
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Y = B we can take B, = B, see (4.3)). It follows that B,C;CB;, where
C; is the subring of k generated by (2/p)(R.R_;)*. Let C, be the product
of all C,, vye23,. Then (BC,C,cBC, for all v in ¥,. Replacing B by its
additive subgroup generated by BC,c for some ¢ # 0 (and changing a;, b,),
we get BC,CB for all ¥ in ¥,, and we still have (4.3)-(4.6).

Similarly, for every long root é in X there are non-zero u; v, in k
and an additive subgroup A; of &k such that A,(R,R_;)CA; and u,ACA,C
v,A, hence A,C,CA,, where C; is the subring of k generated by R,R_,.
Let C, be the product of all C,, 6€3,. Then (AC,)C,C(AC)) for all § in
2. Moreover, w,ACAC,Cv,A for non-zero u,, v, in k. Replacing A by
the additive subgroup generated by ACv;* (and changing a,, b;), we get
AC;Cc A for all 6 in ¥, and we still have (4.3)-(4.6) and BC,CB for all
v in 2%,.

If 3, is connected (type B,, n = 3, or F,), then there are long roots
® and 4 in I such that @ + 4 is also in ¥,. We have [x,(t), 24(u)] =
Zoiy(+tu) for all ¢, uw in k, hence R,,,DR,Ry. By (4.5), Bby yp DRy pD
R,RyDa,a4BB, so ¢cBBCB with ¢:= a,ay/byiy #0. By Lemma 1.2 (v)
with m := 2, we can find a non-zero b, in B such that (b,B)(b,B)(b,B).
Replacing B by b,B (and changing a,;, b;), we can assume that BBCB
(when 2%, is connected).

Similarly, if 3, is connected (type C,, n» = 3, or F,), then there are
P, ¥, P + 4y €X,, hence R, yvDR,Ry, so ADcAA with ¢ := a,ay/byyyp # 0.
By Lemma 1.2 (iv) with m =2, (a,4)(a,A)Ca,A # 0 for some a, in A.
Replacing A by a,A (and changing a,, b,) we have AACA.

Still (4.3)-(4.6) hold and so do Theorem 1.1 (i) and (ii). To get the last
part of Theorem 1.1 (iii), we use Lemma 1.2 (ii) and (iii) with m = 2 when
p =2, and we just replace both A and B by AB when p = 1 (and change
a., b.).

5. Proof of Theorem 1.1 for G of type G,. The root system ¥ of
type G, consists of 6 short roots (3, =(a + B), =(28 + «)) and 6 long
roots (*+a, +(a + 38), +(2a + 3B)), see Figure 2.

We use, sometimes without explicit reference, commutation relations
given in [4, §10, after Lemma 57].

For every root ¢ in 3, we fix a non-zero ¢, in R, := R,(H).

5.1. LEMMA. There is a subring B of k such that 0 = R,BC R, and
BR;R_,C B for every ¢ in 3.

ProoF. It is a direct consequence of the results of Section 2 (namely,
Theorem 1.1 for G of type A,) applied to the algebraic group generated
by all long root subgroups (which is of type A,).
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FIGURE 2. Root system of type G..

5.2. LEMMA. For every short root ¥ in XY there exist mon-zero a,
br, dy in k such that:
(i) 3b;R,C B; (ii) a;BC R;; (iii) 4d,R:CB.

Proor. Let 6 be a long root forming angle 30° with v. Pick a non-
zero b in B.

We have [x.(t), 2;_r(u)] = 2,(=3tu) for all ¢, u in k. Therefore,
R;D8R;R;_;,D03¢;,_:R;,. By Lemma 5.1, BODBR_,R;Dbc_,R;. Thus, (i) holds
with b, := be_,c;_r # 0.

Part (ii) will be proved separately in the following three cases:
char(k) + 2; card(B) = 2; char(k) = 2 and card(B) > 2.

When char(k) + 2, we take any ¢ in R;_,; and % in R, ;. Then H>
Y&, u) 1= (g 25(t), s r(U)] = Tor_s(Etw) T (LU 2s( L tU®) wer_s(£t*u®), hence
Hoz2(t, uw) := y(—t, —u)"'y(t, u) = 2(F2tu)xy_,(+2t%°) and H s 2(t, w)z(t,
—u) = 2(+4tu*). Therefore, B, D4Ry _,,R:_;D4Bey_o5¢%_y, S0 (ii) holds with
ay i = 4¢3y # 0.

When card(B) = 2, then B = {0, 1} and we have (ii) with a,:= ¢;.

When char(k) = 2 and card(B) > 2, we pick b 0,1 in B. For any
ain R_;, d in R, and % in R, we have: H> y,(a, d) : = [x,(d), [x_,(a), 2, (w)]] =
[2:(d), r_s(ua) iy _ (U2 @)ar_ (W A)Lsr_os(Ula?) | = [5(d), @r_s(wa)|[2:(d), Zor_os(w’a®)] =
L (Uad)ayr _ (WA d)sr_o5(Ua d)2sr_s(U'a’d) g _s(u’a’d), hence H 5 y,(a, d): =y, (ab,
Ay, (a, db*) ™ = x (uad(d + b2))Xsr_os(ua’d(b® + b)) xy_,(Wald* (b + b)), and, finally,
H s y,(ab®, d)y,(ab?, db®)y,(ab, db®)y,(a, db®) = z,(uad(d + b*)(b* + b° + b4+ b%)) =
2 (uadb*(1 + b*)).

Thus, R,DR,R,R_b*(1 + b*)Dec,(Bes)e_b* (1 + b*) = Ba;, where a;:=
creie_b*(1 + b*) # 0.

To prove (iii) we consider the same z(t, u) = x,(+2tu>)wy_,(+2t*u®) € H
as in the proof of (ii). Then H 9 z(t, u)z(—t, u) = xy_,(+4t'u®). Therefore,
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R, D4R, RS Ddch_,,R:_;. Since be;_y Ry ;CBRy_;R; ;B by Lemma
5.1, we get 4d, ,R;_,CB with d:= be,_y¢4_,,. Similarly, 4d,R:C B with
some d; # 0 in k.

5.3. LEMMA. Let v be a short root in X and & form angle +150°
with . Let Cr = 6R7R__7. Then R‘;CrCrCrCRJ.

Proor. Let t¢,t,€R;,, ueR, s,s;,€R_,. Then H>3z(t):= [x;(u),
%y (8)] = Do (UL s 4o (U557 ( £ U o5 r( L E°u%), hence H 3 2,(t,) : = 2,(8,) " X
2(t) 72t + b)) = Tapar(£8(E + )W) T 0r( 28 EU) 0050 (£ UBEE(E, + 1)) X
xza+37(i3u2t1t§): hence H> 2y 1= 2t + ta)zz(tl)—lzz(ts)—l = x6+37(i6t1t2t3u) X
Dograr(E 688U = Tppsr(U) 205 5r(u'n), where u':= +6ftt,u. Similarly,
H 5 2,8) := [25, _1(s)] = [@s10/(), x_1(5)], hence H32y(s)) 1= 2,(8)'2,(8,) " X
2481+ 82), H 2 2o(u) 1= 25(8; + 85)25(81) 7'25(85) ™ = @5(65,8,85U")@ys5r( 1 65,5,8,u).
Finally, H 3 zy(w)z,(—u) ™" = x,(+12s,8,8,u"), hence R; 2 12s,s,8,u’ = +72s,8,s, X
t.t.t;u. Since we have this for arbitrary ¢,€ R;, s;€ R_;, u € R;, it follows
that R,DC,C.C;R;.

PrROOF OF THEOREM 1.1 FOR G OF TYPE G, WHEN char(k) += 3. By
Lemma 5.2 (i), (ii), a,BZ R, C(3b;)~*B for all short roots ¥ in 3. By Lemma
1.8 with A:= B, n =m =1, N:= card(Z,) = 6, we have: R, (bB)CR, for
all short v with some b # 0 in B. Replacing B by Bb and (3b;b)~* by b,
we get R.BCR,, R,CcbB for all v in 5, and we still have R,BC R, and
BR,R_;CB for all § in Z,.

Let v be in ¥, and 6 make an angle 30° with v. Then 3¢, yc;, ;€
3R, R, ;" Ry g, 3cr¢;,_1CR;, and 3c_i¢;_yr € By_yr, hence (3¢,¢;_1)(3c_r¢;_o) €
R,R;,_CR,_5. So both 3¢,_yc;_r and (B¢;_yC;_r)(3cc_y) are in R, .  Since
BR,;_ Ry _,;,CB, we have R,,_,CBd, for some d, #0 in k. Writing
3¢, uCs_r = b,d, and (c;_yC;_r)(8ee_r) = byd, with b, and b, in B, we see
that ¢,c_; = b,/3b,. Since ¢;c_.BC R,R_,C Rd, for some d, # 0 in k, we can
use Lemma 1.3 withn =m = N=1, A = Band get b;R,R_,Cb,d,BCc,c_,B
for some b, #0 in B. Therefore 3bb,R,R_rC3b,c;c_,BCb,BC B, hence
uw,R;R_,C B for 0 # u,:= 3b,b; € B.

Let uw be the product of all u,, ye23,. Then uR,R_,CB for all 7 in
Y,and 0 = u€ B. Replacing B by uB, we have BBR,R_,CB for all 7 in
Y,. Still we have R.BCR, for all ¢ in ¥ and BR,R_,CB for all § in J5,.

If char(k) =2, we are done. Otherwise, C;:=6R,R_, #0, and
R,C,C,C,c R, by Lemma 5.3, where 0 makes angle 150° with v, for any
short root v in ¥. Let B,:= R,UR,C:UR,C,C;. Then B,C,CB,. Since
R;cd,B for some d; # 0 in k, we have B*B,Ccd,BUd,BUd;B = d,B, hence
e;B,C B for some ¢, +# 0 in k.

Let B’ be the product of all ¢,B;,, ve€X,. Then B'cB and B'C,cB’
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for all v in X,. Replacing B by its subring generated by BB’ we have
BC,cB for all v in X,. Still we have R.BCR, for all ¢ in ¥ and
BR,R_,cB for all 6 in J,.

PROOF OF THEOREM 1.1 FOR G OF TYPE G, WHEN char(k) = 3. Let B
be as in Lemma 5.1. Since 3 =0 in k, the algebraic subgroup of G
generated by all short root subgroups is also of type 4,. So R,ACR,
and AR,R_,C A for some non-zero subring A of k and all short roots v
in 3.

Using R;ACR,;, AR;R_;,C A, and Lemma 5.2 (i), (iii) with v = g8, we
get ADe¢,B and BDc¢,A® with non-zero ¢; in k.

Let B, (resp. A,) be the additive subgroup of k generated by BA?®
(resp., by BA). Then AR.R_.C A, B,R,R_,CB,DBy(R;R_;)* for all e X,
0oeX, vel,.

Since (BAC BA*c BA, it follows that Ac B,CA4,. From ¢,BC A and
c,A’CB it follows that BAcCc AAci'c Aci' and BA*C BBe;*C Be;t, hence
¢,B,CB, ¢,A,CcA. Since A and B are subrings of k, so are A, and B,.

Using Lemma 1.3 with N=6, m =3, n=1, A=A, B= B, and
then with N=6, m =1, n =38, A= B,, B= A4, we find non-zero a in
A,, b in B, such that R,bB,)CR; and R,(ad,)’CR, for all veZX,, 6e€23,.
Let ¢:=abc AB,c BBB,CcB,CA,, Then R,(Ac)C R,(Aa)C R; and
R,(¢B,)CR,(bB,)CR;. Moreover, (A,c)’CB,cCA.c.

Replacing A and B by A,c and B,c, we get A°CBC A, BBCB, AACA,
R,A*CR; for all 6 € X, and R,BC R, for all veX,. Moreover, B(R,R_,)*CB
and A(R.R_,)CA for all v in X, and ¢ in 2.

6. Existence of groups described by Theorem 1.1. For any subsets
A and B of k let G®(A4, B) denote the subgroup of G(k) generated by all
2y(a) and z,(b) with 6 in ¥;,, ¥ in ¥,, @ in A, and b in B. In particular,
GE(A, A) = G¥(A), Evidently, R(G*?(A4, B))D A and R;(G*(4, B))D B for all
v in 3, and 6 in J,.

6.1. THEOREM. Let A and B be additive subgroups of k satisfying
Theorem 1.1 (iii), (iv). Then R,(G*(A, B)) = A and R,(G*(A, B)) = B for
all long roots 6 in X and short roots v im .

To prove this theorem, we will exhibit a certain subgroup G(A4, B)
of G(k) such that G(4, B)DG*(A, B) and R,(G(A, B))=A and R,(G(A, B))=B
for all ye€ X, and 6€2%,.

We use here that G defined in the introduction over k& may be defined
as a Chevalley group scheme over the integers Z (see [17]). There is a
matrix representation GCSL, such that G is defined by polynomial equa-
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tions in the matrix entries with integral coefficients.

Given any commutative ring R (with or without 1) we define G(R)
as the group of all ring morphisms from the ring of regular functions
on (G vanishing at the identity of G to the ring R. If R is an ideal of
a ring R’ then G(R) is the kernel of G(R') —» G(R'/R). If R is a subring
of k, the group G(R) can be also defined as G(k) N SLy(R), where SLy(R)
is the group of all matrices (a,; with the determinant 1 such that a,;
a;,; —1eR for all 7 # j.

The monomorphisms z. (¢ €2) are also defined over Z. Moreover, the
corresponding maps of the rings of regular functions are ring morphisms
onto the polynomial ring Z[t]. Therefore we have

6.2. LEMMA. For any subring R of k and any root € in 3, we have
G*(R)CG(R) and R.(G(R)) = R.

This lemma implies Theorem 6.1 in the case A = B. In particular,
the theorem holds when p = 1. To prove it when p # 1, we consider a
few cases separately.

PROOF OF THEOREM 6.1 FOR G OF TYPES F, AND G,. We assume that
char(k) = 2 in the case of type F, and char(k) = 38 in the case of type G,.
Then there is a bijection p: ¥ — 3 and a non-central isogeny (defined over
Z|pZ) t¢: G— G such that o) =23, o2, =2, @) = xz,,(£t), and
exy(t) = xo(t?)) for all 6, Y€, and tek (see, for example, [4]).

For any subrings A and B of k such that A?Cc BCA, let G(4, B) be
the set of all g in G(A) such that ¢(g) € G(B). Then G(A4, B)DG*(A, B),
R,G(A, B)) = B (since BC A), and R,(G(A, B)) = A (since A?’CB), for all
veZX, and 0€ X,

Therefore R,(GE(4, B)) = B and R,(G%(A, B)) = A.

6.3. “PSEUDO-ORTHOGONAL” GROUPS. To prove Theorem 6.1 for G
of types B, and C, (with p = 2) we use some of (*, ¢, A)-orthogonal groups
of [8].

Namely, let n =1, Q a » by » integral matrix, A a commutative
ring (with or without 1), B an A*submodule of A containing 24. Then
let O(Q; A, B) denote the set of matrices g in GL,(A) such that g*Qg —
Qe <, where * means transposition and & is the set of all symmetric
matrices over A with the diagonal entries in B.

Since & is an additive subgroup and a*ba e < for any be < and
any matrix a over A, the set O(Q; A, B) is a subgroup of GL,(A4).

6.4. PRrROOF OF THEOREM 6.1 FOR G OF TYPES B, WITH AACA AND
C. (n = 3). Consider the ring of 2n by 2n integral matrices with the
usual matrix units e,; and the matrix Q:= >’ €;,.,;. The group
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Sp., = {9 € SL,,: g*(Q — @*)g = Q@ — @*} can be considered as an affine group
scheme over Z. It is a simply connected almost simple Chevalley group
scheme of type C, (C, = B, when n = 2). The root elements with respect
to the torus of diagonal matrices are ¥, ,,.,_,(t) := 1,, + t€; 2,4, (correspond
to the long roots) and y, ;(t) := 1,, + te,; &= tesi1_jontis With @ + J <2n + 1
(correspond to the short roots).

Let now A and B be as in Theorem 6.1 and char(k) = 2.

For any G of type C, there is a bijection o from I to the set {(¢, 7):
154,520,171+ 7 =2n + 1} and a central isogeny ¢ Sp,, —» G over Z
such that c¢y,.(t) = x.(t) for all ¢ in and all £. The kernel of ¢ is either
trivial or isomorphic to the algebraic group of square roots of 1.

Let now A and B be as in Theorem 6.1, AACA, and char(k) = 2.
Set G(A, B) := ¢(Sp,.(A, B)), where Sp,,(A, B) := O(Q; A, B) (see 6.3). Then
G(A, BDG*(A, B, RAG(A, B)) = {tek: y,(t)e0(Q; A, B} = A, and
Ry (G(A, B)) = {tek: y,(t) e O(Q; A, B)} = B for all v in 3, and é in J3,.

6.5. Proor or THEOREM 6.1 FOR G OF TYPE B, WITH BBCB AND
TYPE B, (n = 3). Let Q:= > € sr1s + €ny10.0:- FoOr any commutative
ring R, let SO,,.,(R):= 0(Q; R, 0)NSL,,..(R) (see 6.3).

Then SO,,,, can be considered as an affine group scheme over Z. It
is a simple Chevalley group of type B,. The root elements with respect
to the torus of diagonal matrices are

Zions1—i(t) 1= Lopsy — T 2nt1i + tlonisgnins — 285 0,4
(correspond to the short roots) and
2, ;) 1= 1y + te; — tesiijones With 4+ 7 <2n +1
(correspond to the long roots).

For any G of type B, there is a bijection o from X to the set
{@,):1£4,5=<2n,1+ 5 <2n + 1} and a central isogeny ¢: G — SO,,,,
over Z such that ¢z,,(t) = x.(t) for all ¢ in ¥ and all ¢. The kernel of ¢ is
either trivial or isomorphic to the algebraic group of square roots of 1.

For any commutative ring R of characteristic 2, every matrix in

SO,,,.(R) has the form (Z g), where ¢ is in Sp,,(R) and u is a 2n-row

over R. It gives a non-central isogeny ¢: SO,,,, — Sp,, over Z/2Z. We
have
y,;,j(t) When i +4 j < 2n =+ 1

'y (1) =
“2u4(t) {yi,j(tz) when 1+ j7=2n+1

for all ¢ in k.
Let now A and B be as in Theorem 6.1 and p = 2. char(k) = 2 and
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BBCB. Set G(A, B) := {ge G(A): /'«(g) € Sp,.(B, A} (see 6.4).
Then G(4, B)DG*(A, B), R(G(4, B)) = A, and R,(G(A, B)) = B for all
v in Y, and 0 in X

6.6. PROOF OF THEOREM 6.1 FOR G OF TYPE B, WITH p = 2. Let
A’ (resp. B’) be the subring of k generated by A (resp. B). By 6.4,
there is a subgroup H, of G(k) such that H,DG*(A’, B), R,(H,) = A’, and
R,(H) = B for all v in ¥, and 6 in X,. By 6.5, there is a subgroup H,
of G(k) such that H,>G*(A, B"), R,(H,) = A, and R,(H,) = B’ for all 7 in
Y, and 6 in X,.

Set G(A, B):= H,NH,. Then G(4, B)>G*(4, B), R,(G(A, B)) = A, and
R;(G(A, B)) = B for all v in 3, and 6 in X,.

7. Full subsets of k. The following lemmas will be used in next
sections.

7.1. LEMMA. (i) If R is a full subset of k, then so is tR for any
non-zero t in k;

(i) f C is a full subring of k and t,, - - -, t, are non-zero elements of
k, then there exists a non-zero ¢ imn C such that t,Co>cC for 1 =1,---, m.

ProOF. The statement (i) is evident; (ii) is contained in [7, Lemma 4].

7.2. LEMMA. Let A and B be subsets of k such that A s full,
BA*CB, and Bk* = k. Then:

(i) B is a full subset of k;

(ii) for any mon-zero t, +--,t, in k, the intersection B’ of all Bt,
18 full and B'k* = k.

PrROOF. (i) Fix a non-zero b, in B. Given any t in k, we can write
th, = bu® with b in B and # in k. Since A is full in k, we can write
% = a,/a, with a;, in A and a, # 0. Then ¢t = ba?/b,a; with both ba? and
ba: in B. Thus, B is full.

(ii) Let z be in k. Since Bk* = k, we can write z/t, = bu? for ¢ =
1, .-+, m with b, in B and %, in k. Since A is full, u, = v,/w, with v,
w; in A. Let w be the product of all w,. Then zw* = tbvi(w/w,)*et,B
for all 1 =1, .-., m, so zw*e B’, hence ze B'k*. Thus, k = B'l*. It is
clear that B’A*cB’. By (i), B’ is full.

7.3. LEMMA. Let F be a field but not an algebraic extension of a
finite field. Then there exists a full subring A of k and a non-trivial
homomorphism N of the multiplicative group of F into the additive group
Q of the rational numbers such that N(a) = 0 for all a in A.

Proor. Let X be a trancendence basis of F over its prime subfield
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F,. Let A, be the integers when X is empty, and A, = F,[X], the poly-
nomial ring, otherwise. Let A be the integral closure of A, in F, i.e.
the set of all roots in F' of all monic polynomials in ¢ with coefficients
in A,.

Fix e X when X is not empty and set # = 2¢ A, otherwise. We
define Ny(a) = n for 0 # a € 4,, if " is the maximal power of z dividing
a in A,. We define Ny(a,/a,) := Nya,) — Ny(a;) for non-zero a, in A,.

For any z in F, z # 0, let f,(t) be the monic polynomial in ¢, with
coefficients in the field of fractions of A, of the minimal degree deg(z)
such that f,(z) =0. We define N(z):= N,(f,(0))/deg(z); it is a rational
number,

If a€ A, then f,(t) € Ajt], so f,(0)€ A hence N(a) = N,(f,(0))/deg(a) =
0.

For any non-zero z, 2’ in F' we have f,(0)¥%8%f,,(0)%%e=" = f ,((0)%deslzz"
with some d # 0 divisible by deg(z), deg(z’), deg(zz’), so N(zz') = N(z) +
N(z'). The homomorphism N is not trivial, because N(z) =1 = 0.

Let us check now that A is full in F. For any z # 0 in F' we can
find a non-zero a, in A, such that a,f,(t) € Ajt]. Let a be the leading
coefficient of a,f,(t). Then 0 # ac A and a®**“'~'f,(t/a)a, is a monic poly-
nomial in ¢ with coefficients from A4, with a root za, so za€ A. Thus,
A is full and Lemma 7.3 is proved.

For the rest of this section, char(k) = 2.

7.4. NoOTATION. For any finite subset SCk, let vy denote the product
of all y in S. In particular, v = 1 for the empty subset S.

7.5. LEMMA. There is a set Y,Ck such that the all vg, finite SCY,,
form a basis for the vector space k over k.

Proor. We call a subset YCk algebraically almost independent
(AAI), if all vg, S a finite subset of Y, are linearly independent over k*.
(Note that k is an algebraic extension of k%) It is clear, that the union
of any chain of AAI subsets of k is again AAI. Also the empty subset
of k is AAI. By Zorn’s lemma, there is a maximal AAI Y,Ck.

Let V be the linear subspace of k over k* spanned by all vy with
finite SCY,. We have to prove that V = k.

Since Y, is a maximal AAI subset, for every z¢ Y, in £k we have a
linear relation (because Y,U{z} is not AAI): > agws + 2>, bsvs = 0 with
coefficients ag, bg in k?, only finitely many of them == 0, both sums are
taken over all finite SCY,, and the second sum =0 (because Y, is AAI).
Then z = 3, asvs/>, bsvs = O asvs)(S bsvg)/a* e VVEECVEC V, where a :=
SbwseVck. Thus, V=E.
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7.6. LEMMA. The following two statements are equivalent:
(a) R =k for every full vector subspace RCk over k*
(b) the dimension of k over k* is 1 or 2.

ProOOF. Implication (b)= (a). Since R is full in k, Roy, #0. If
k*=Fk, then R = Rk* = RkDy.k =k. When k #k* R>y, outside y,k*
(otherwise, only elements of %* can be written as r,/r, with r,€ R = y.k?.
Therefore, k*y, + k*y, = k when the dimension of k over k* is 2.

Implication (a) = (b). We assume that the dimension of %k over &
is larger than 2 and will find a full vector subspace R = k. First, we
find Y, as in Lemma 7.5. Pick distinet z, ¥ in Y,, and let Y be the
complement of {x, y} in Y,. Consider the linear subspace V spanned by
all vy with finite SCY; V is a subfield of k, containing £°.

Put R:=V +xV + yV; R #+ k, because xy is outside R. We have
to prove that R is full in k. Every 2z in £ — R can be written as
z=cay +cx + ¢y +¢;) with ¢;eV, ¢,#0. Then 0 #r,:=2 + ¢c,eR,
7y = c(yrt + x(e; + e.6,) + 1t + cye, + ¢.6) € R, and z = 7y/r,.

7.7. LEMMA. (i) If the dimension of k over k* is finite or count-
able, then, for any full subring C of k and any C*submodule B of k
such that Bk* = k, B contains a full subring of k.

(ii) If the dimension of k over k* is uncountable, then there is a full
subring A of k and an A’-submodule B in A such that Bk* =k, BDA?
and B does mot contain any full subset of k closed wnder multiplication.

Proor. (i) Let XcB be a basis for k over k*. For every finite
Sc X we can find a non-zero ag in C such that v,a% € BNC (see, Notation
7.4).

If X is finite, let ¢ be the product of all a%. Then 0 # ¢eC? and
vse e BNC for all SCX (recall that BC*cB). The C*submodule R of B
generated by all vge® is a subring of k£ (namely, (vse*)(vs€®) = (Wgr5€*)(VgnsC)® €
Vg5 C*C R, where S + 8" :=SUS’' —Sn¥S’).

We claim that R is full. Indeed, every y in k can be written as
y = >, xt: with ¢, in k, where the summation is taken over z in X.
Since C is full, we can find a non-zero a, in C such that ¢.a,€ C for all
2 in X (see, Lemma 7.1(ii)). Then ycai€ R and 0 # caic R. So R is
full.

If X is infinite, let us enumerate it, X = {u,, %,, ---}. Forany ¢ =1,
let a; be the product of all a, with Tc{u,, +--, w;}. Then, for any finite
ScX, we have [[,csw:a}) = vsI[s,esai€B, because [[a,ca,C and
BC*CB.

Therefore, the C*-submodule R of B generated by a: and all u.a?
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with %, in X lies in B. As before, we see that R is full in k.

(ii) Find Y, as in Lemma 7.5. Since the dimension of k over k* is
uncountable Y, is uncountable. By Jech [1], there is a function »:Y,x Y,—Q
(with values in the rational numbers) with the property that for every
function ¢: Y, — @ there are z, y in Y, such that »(x, y) > t(x) and
r(x, ¥) > t(y).

Find A and N as in Lemma 7.3 with F =k. For any finite SCY,
choose a non-zero ag in A such that vsagse A and N(ag) > 2r(x, ¥) in the
case S = {x, y} consisting of two distinct elements. Define B as the A*
submodule in k& generated by all v,a% and A%

Let us check that Bk* = k. If we write any 2z in k as >, bivg with
bs in k and only finitely many bs # 0, then we see that za®>c R for some
non-zero ¢ in A hence z e BF’.

Let now C be a full subset of k& closed under multiplication. Since
it is full in k, every x in Y, can be written as x = ¢/e, = cc,/c2, where ¢
and ¢, are in C. So C3c¢c, = ¢ with 0 #¢,€C. Let t(x):= N(c,).

By the choice r: Y,x Y, — Q above, there are z, ¥y in Y, such that
r(x, ¥) > t(x), t(y). For these x, y we have N(c,¢c,) = N(c,) + N(c,) = t(x) +
t(y) < 2r(x, y) and COCC > xciyc: = xyle,c,)’, so zy(c,c,)’ is not in B by
the definition of B, but it is in C. Thus, C is not contained in B.

8. Proof of Theorem 1.

8.1. LEMMA. Let A and B be additive subgroups of k such that
A?cBCc A, BA*c B, BACA, where p is as in Section 1. Assume that
BBc B when 3, is connected. Let uwek, beB, and p,ecX. Assume
that buc B®:. Set D,:= B when ¢ 1s long and D,:= A otherwise. For
any t in k we set y(t) := [x,(w), x(t)]. Then:

(i) yt)eG%(A,B) if o +¢e+#0 and t is in b*D,;

(i) yt)eGE(A, B) if t is in b — 1)*(* — 1)D..

PrOOF. We can assume that y(¢) = 1 for some ¢ in k (otherwise the
statement is trivial). Pick a connected subsystem Y’'C3Y of rank 2 con-
taining both @ and e. Then @ + e isin 3’ or else ¢ + ¢ =0. We will
prove (i) (and then (ii)) for the three possible cases, when 3’ is of type
A,, B,, or G,, separately.

Type A, with ¢ + @ # 0. Then y(b*t) = x, (Fbtu) = [2,(b), x.(tbu)] €
GE(A, B) for all t in D,, because b€ BC D, and tbu € D.B*C D, for all ¢ in
D.. Thus, yb*D,)CG*(A, B), hence y(b*D,) Cy(b*D)CG®(A, B).

Type B, with ¢ + ¢ 0. If ¢, pe X, then y(t) = x...(£2tu) € G*(B)
provided tebA = bD,.. In particular, we can take any ¢ in b*D, = b*ACbA
(the last inclusion follows from BAcCA).
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If ce 3, and @ € 3, then y(t) = &y, (£ tU)T, (= t"u) € GF(A, B) provided
tebA = bD, (because AbuCc AB*C A and (bA)*u = bA*duCBA’B*CB = D,,,).
In particular, y(t) € G(A, B) for any ¢t in b*ACDbA.

If ee 3, and p e X, then y(t) = @pr(EtU)Ts..(E£tu’) € GF(A, B) provided
teb’B = b*D, (because (b*B)u = bBbucBBB*CA =D,,, and B’ =
Bbuw)cBB*cBB*CB = D,,,,). In particular, y(t) e G*(4, B) for any ¢ in
b*D, = b*BCb*B.

Type G, with @ + ¢ # 0. If @ and ¢ are long, they lie in 3] of type
A,. Therefore, as shown above, y(b*D,)Cy(b*D,)CG*(A, B).

If » and ¢ are short and make the angle £60° then y(t) = #,,.(+3ut) €
G%(B) provided t€bADb*A = b*D, (recall that 3BACB).

If ® and ¢ are short and make the angle +120°, then () =
Lo F26U) 2001 (F3EUD %L,y (+3Eu) € GE(B)C GE(A, B) provided t € PADb*A =
b*D, (because then tu € B, 3tu*C3ACB, and 3t*uc3ACB).

If @ is short and ¢ is long, then y()™ = Xy (FtU)Top i (FUE) 250, (FUE) X
Tapro( UL € GE(B)CG*(A, B) provided teb’B (because then tu € BB*CB,
wtC B*BBC B, u’t € B°BC B, u*t*€ B'B:BC B). In particular, y(t) € GZ(4, B)
when t e b*BCb®B.

Finally, if @ is long and ¢ is short, then y(t) = @, tu)Lp o (£ tu) X
L pae( EUL) X004 5. (FU’t?) € GF(A, B) provided teb’A (because then tuec A =
D,,., tue A = D,,,, ttue B= D,,,, and tu’€b>BCB = D,,,;). In par-
ticular, we can take any ¢ in b*D. = b*ACb’A.

Thus, (i) is proved in all cases. Since b*D,c D, for all ¢ in ¥, (i) can
be stated also as follows: the subgroup H := z,(u)'G*(A, B)x,(u) contains
all z(b*D,) with ¢ # —@. Now we want to prove (ii), i.e., HDOx. (0" —
1)%b* — 1)D.) for all e. When ¢ + @ # 0, this has been proved, because
bbb — 1)b* — 1)D,cCb*D,. So we assume that ¢ = —¢ and consider again
separately the cases when 3’ is of type 4,, B,, or G,.

Type A, with e = —@. Pick @ and 8 in 3’ such that a + 8 = .
From HDux,(b*D,), xs(b*Ds) it follows that HD[x,(b*D;), 25(b*D;y)] =
x.(6°D,D;) = x,(b°D.D,)Dx.(b°D,) Dx.(b*(b — 1)*(b* — 1)D,).

Type B, with ¢ = —@. Pick a in Y] and Bin X, such thate = a +
when ¢ is short and ¢ = @ + 2@ when ¢ is long. Then H3z(v, w):=
[2.(v), 2a(W)] = Toys( FVW) Lo yop(Evw?) provided v e b*B = b*D, and w e b4 =
b*Ds. Therefore, H 3 z(bc, b")z(b°c, b°)™ = ®pyos(Lc(d® — b)) for all ¢ in B
and H 32", db*)z(d°, db®)™ = x,.,(£d(d" — b)) for all d in A.

Thus, R,(H) D B(0b® — ) = D, ,sb"(0* — 1) D D, ,sb"(b* — 1)(b — 1)
and R, s(H)DA®D" — b"°) = D, :"® — 1)DD,, (b — 1)’ — 1).

Type G, with ¢ = —p. If ¢ is long, we can include ¢ and @ in a
subsystem of type A, (namely, 3}), so HDuz.(Bb®) = x.(D.b%)>x.(D.(b —
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1)%b* — 1)b*).

If ¢ is short, we find @ in 3, and B in 3! such that ¢ =a + 3.
Then H>ox,(b*B), x,(Ab*), hence H 3 z,(v, w) := [2,(v), Zs(w)] = Xpyp(FEvW) X
L i op{ VW)L g1 35( VW) Ly 56( = V*W®) for any v in b*B and w in b*A. There-
fore, for such v and w, we have H3z,(v, w):= 2z,(vb? w)z,(v, wh)™ =
Lo p( VWD — B))Xaras( VW (D? — 1%)Xseysp( VWD — b%), s0 H 3 2z,(v, w):=
2,(v0°, w)zy(v, WH) ™ = Wy p(FVW(b® — B)(B® — 0))Tayss( LVWA(D® — b*)(B° — DY),
hence H 3 z,(vb®, w)zy(v, wb)™ = X, s(vw® — b)(H* — b*)(B® — b)).

Thus, R.(H)Db*B)(b*A)(b* — b)(b®* — b*)(b* — b) = ABb™(b — 1)*(b* — 1)D
Db (b — 1)%(b* — 1), because ABDAb* = D.b.

8.2. COROLLARY. Let A and B be as in Lemma 8.1. Assume that
B is full and Bk*=k. Then for any g in G*(k) there is a mon-zero b,
in B such that gGF(A, B)g— D GF(Ab:, Bb?).

Proor. If card(B) £9, then B= A =k and G*k) = G%(A, B)> g, so
we can take b, = 1.

Otherwise we pick some b, # b} in B.

Consider first the case g = z,(u) with @ in ¥ and u in k. Since
Bk* =k and B is full, we can find b, in B such that u = b,(b,/b,)* and
bb, = 0. For b,:= blbie€ BB*B*C BB*C B we have b, = 0 and b;u = (b;b2)* € B:.

Let b:= b, when b, # +1 and b :=bb! otherwise. Then bu e B? and
0+beB. Set b,:=0b%b — 1)(»* — 1)e B. Then b, # 0 and, by Lemma 8.1,
9G*(A, B)g™ =: HOG*(Ab/(b* — 1), BbY(d* — 1)). Since B®* — 1)c B and
A(b® — 1) A4, it follows that HDOG"(Ab;, Bb;). Thus, we can take b, = b,
in the case g = z,(u).

In the general case we write g = ¢, --- ¢,, and proceed by induction
on m, where every g, is a root element. The case m = 1 has been con-
sidered, so let m = 2. By induction, for ¢’ = ¢g;'g there is a non-zero b’
in B such that ¢'G*(A, B)g''DGF(Ab* Bb'?). Since Ab”? and Bb” enjoy
the same properties as A and B, there is a non-zero b in Bb", such that
9.GF(Ab™, Bb™)g' DGE(Ab™'"*, Bb'*b"*). Set b,:=b"b"e€b*BCB to obtain
the statement. ¢gG*(A4, B)g'DG*(Ab™'", Bb"b'"*) D> G*(Ab2, Bb%).

8.3. LEMMA. In the situation of Theorem 1.1, assume that B is
full and BE* =k (both conditions evidently do mot depend on the choice
of A and B). Then there is a non-zero b, in B such that b BC R,Cb;'B
and byACR,Cb;*A for all 6 in X, and v in X,.

Proor. If BBCB, then, by Lemma 7.1 (ii) with C = B, we can find
a non-zero b, in the intersection of B with all Ba,N Bb ', where c¢€ 2.
Therefore, b,BCa;BC R,CBb,C Bb;' and b,ACa,ACR,C Ab,C Ab;* for all
0in ¥, and v in J,.
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If BB is not contained in B, then Y is of type C, (n = 2), and p = 2.
Fix a long root « in 3. By Lemma 1.3, b.B(aA)}Ca,BCR, for some
a #0 in A. In particular, a*b,BCR,.

By Lemma 4.1, R,Dc¢, Ry with 0 # ¢, v €k* for all @, 4 in ¥,. Let
C be the ring generated by B. Then BcCcA, CAcA, and BC*CB.

Since C is full in k, C? is full in k*. By Lemma 7.1 (ii) there is a
non-zero ¢ in C such that ¢’ec, a‘C*Ne, ,C* for all 6 in ¥, and ¢* € a2C*N
b*C* for all v in %,.

So for such 6 and ¥ we have cAC(a;C)ACa,ACR,Cb,AcC(c'C)AcCc A
and b.,’BCb,(c; a'C*)BCb,c; 0'BCe, R, CR,Cc; 3R, CBb,/c,,,C Bb,(C*¢™*)C
Bb,c™*.

Since Bk* = B and B is full, there are non-zero b, in B such that
b, = b,(b,/b,)* = b,/b%, where b,:=bbie BB*CB. Set b,:= b,c®:ec BC*B*CB.
Then b, ACcACR,Cc*ACb;*A for all v in X, and b,B = b,bic*BC b e*BC
R, Bb,c™* = Bbib;'C Bb;* for all § in X,.

8.4. THEOREM. Let A and B be additive subgroups of k satisfying
Theorem 1.1 (iii), (iv). Assume that B is full and Bk* = k. Then for any g
in G(k) there is a mon-zero b, in B such that gG*(A, B)g™*D>GE(Ab,, Bb,).
In particular, G*(A, B) is full.

PrROOF. Every g in G(k) can be written as g = hg’ with & in T(k)
and ¢’ in G%(k) (see, Tits [5] and Borel-Tits [9, Prop. 6.2]). Set H':=
g'G?(A, B)g'™* and H:= gG*(A, B)g™* = hH'h™.

By Corollary 8.2, H'DG*(Ab?, Bb*) with 0 £ be B. Since he T(k), we
have R.(H) = R,(H")t, for all ¢ in 3 with non-zero ¢, in k. Therefore
R.(H)D D.b*t., where D,:= B when ¢c X, and D,:= A when ¢€J3,.

Applying Lemma 8.3 to H, we find additive subgroups A’ and B’ of
k and a non-zero b’ in B’ such that b’'B'C R,(H)CB'b'* and b'A’'CR,(H)C
A7t for all 6 in ¥, and 7 in X,.

Fix a in Y, and B in ¥,. Then R,(H)Db B DOb*R,(H)Db"*b*t,B and
R,(H)DV' A'Db*Ry(H)Db"*t;A for all 6 in 3, and v in Z,.

Since B is full and Bk®* =k, there are non-zero b, and b, in B such
that b,:= bb""t;€ B and b,:= b}"*t, € B. Set b,:= bbib*c BB2B*C BB*CB.

Then R;(H) D b"b*,B D b"b%,(bi:B) = b,B and R.(H) D b"b*,A D
b"*b%*t4(bbb,A) = b,A for all 6 in 3, and v in X,. Thus H>G?(Ab, Bb,)
with 0 # b, € B.

PrROOF OF THEOREM 1. Let A be a full subring of k. Set B:= A.
Then Theorem 1.1 (iii), (iv) are satisfied. Moreover, given any « in k we can
write % = b,/b, with b, in B and b, #+ 0, hence w = b,b,b;2e Bk*. Thus,
Bk* = k. By Theorem 8.4, G*(A) = G*(A, B) is full.
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9. Proof of Theorems 2 and 3.

9.1. LEMMA. Let H be a full subgroup of G(k). Then
(i) R.(H) s full, if € lies in a subsystem 3'C3 of type A,
(i) R,(H) s full for any short root v in 3.

Proor. (i) We apply an argument of [7]. Namely, we find a root
@ in Y’ such that @ + ¢ is in 3’ too. Fix non-zero ¢, in R_,(H) and ¢,
in R,(H). Take an arbitrary ¢in k. Since H is full, H 5 z,(¢)x.(u)x,(t)™ =
Tio(tu)x.(u) =: g for a non-zero w in k. Therefore, H3|[g, z_,(c,)]=
w.(xtuc,) and H 3 [[g, x,(c.)], z_o(c)] = [#erp(uc,), x_o(c)] = w.(+ucec,). Thus,
R.(H) contains both tuc, := a, and uc,c, := a, # 0. Since a,a;' = tc;* can
be an arbitrary element of k, R.(H) is full in k.

(i) If ¥ contains a system of type A,, then we can use (i) and, by
Theorem 1.1, conclude that A and all R.(H) with v in 3, are full. Other-
wise, X is of type B,.

Let 6 in Y make an angle 45° with v. Sinece H is full, for any ¢ in
k there exists a non-zero # in k such that H sz, &)z, (w)x;_n(—t) =
Xy (u)x,_r(Etu)e;(+tu®) =: g, where the signs + depend on 7 and 4.

Now we pick non-zero ¢, in R, ,,(H) and ¢, in R, _,(H). We have
successively  H 3 [x,_y(c)), 9] = [#s_u(c)), z(w)] = @, (Eew)a,(L£ew’) =: ¢';
H 3 [wyr_5(c2), 9'] = x(E£ecu)ms(£cicw’); and H 3 [wyr_4(¢.), 9] = 2:(Le,tu) X
x;( e tu?).

Thus, R; ;3 (c.eu, Eeciu?), (etu, tet*u’), hence R;,3ccu =:a, and

1i9¢ctu =:a, (see, the beginning of Section 3 for notation). Since
a,/a, = tle, is arbitrary, R;, is full.

By Corollary 3.2 (i) it follows that R,(H) is full when 2 #0in k. If
char(k)=2, R, ;(H) is full by Lemma 3.6 (ii). Replacing here (v, d) by
(06 — v, 0), we obtain that R,(H) is full.

9.2. LEMMA. Let H be a full subgroup of G(k). Then R.(H) is full
and R.(H)k* =k for any root ¢ in X.

ProOF. Find A and B as in Theorem 1.1. Since a.BCR.(H) for
every ¢ in Y with a, # 0, the statement of Lemma 9.2 will follow from:
B is full and Bk*=k. By Lemma 9.1 (ii), A is full.

If B= A (for example, p = 1), then BB= BACA =B, so B is a
subring of k. When B is a full subring of k& (for example, if B = A),
every t in k can be written as t = b,/b, = (b,b,)(b,)"*€ BK* with b, in B,
b, # 0, hence k = Bk’.

If B is not a full subring of k, then (using Lemma 9.1 (i) to exclude
type D, and @,) G is of type C, (n = 2) and p = 2.
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Then we pick a subsystem 3'CJX of type B, and an admissible pair
(v,0) in X'. Take an arbitrary ¢ in k and set g:= x,(2).

Applying Theorem 1.1 to H':= gHg™', we find a non-zero % in k
such that R,(H") cuR_,(H'). Then a;,ACR.(H) = R,(H')CuR_.(H'). Since
A is full, a_u/a; = a,/a, with non-zero a, in A. Then 0 # v:= a;a,/u =
a,0_r € Aa;Junda_,CR_,(H)NR_,(H), hence x_,(v) e HNH'.

Therefore H=g 'H'gs g9 x_;(v)g=:9"and Ho g'z_,(v) ' =[g7", z_,(v)] =
X,y (t0)x;_or(tv%), hence R}, ; . 3t

By Lemma 3.6 (i), R;,(H)>c for some ¢ #0 in k& (¢ depends on H
and t), so te R,(H)k*. Thus, R,(H)kK* =k, i.e. BK* = k. By Lemma 7.2
(using that B is a module over the ring generated by A%, B is full, so
R.(H) is full for every root ¢ in 2.

9.8. THEOREM. Let H be a full subgroup of G(k). Then there are
additive subgroups A and B of k and a mon-zero ¢ in B such that B is
Jull, Bk* = k, and Theorem 1.1 (i)-(iv) hold with a. =1 and b, = c™* for
all € in 3.

ProoF. Find A and B by Theorem 1.1. By Lemma 9.2, B is full
and Bk*=k. By Lemma 8.3, there is a non-zero b, in B such that
bBCc R;,CBb;' and b,ACR,CAb;* for all 6 in X, and v in ¥,. Set A :=
Ab,, B':= Bb,, and ¢c:=0biec B’. Replacing A and B by A’ and B’, we
obtain our statement.

9.4. COROLLARY. Let H be a subgroup of G(k). Then the following
three statements are equivalent: (a) H s full; (b) HDOGE(B) for a full
additive subgroup B of k such that BB*CB and Bk*=Fk; (¢) HOGE(R)
for a full subset R of k such that RE* = k.

Proor. By Theorem 9.3, (a) implies (b). Clearly, (b) implies (c).
Now assume (¢). Find A and B as in Theorem 1.1. Since RCR,(H)Cb,B
for any 6 in 3, with b, = 0, our assumption on R implies that B is full
and Bk* = k. By Lemma 8.3, HOG*(Ab,, Bb,) with 0 = b,€ B. By Theo-
rem 8.4, H is full. Thus, (¢) implies (a).

9.5. COROLLARY. Let H be a subgroup of Gk). If G is of type
C,, assume that char(k) # 2. Then the following three statements are
equivalent:

(a) H s full;

(b) HDOGE(B) for a full subring B of k;

(¢) HDGE(R) for a full subset R of k.

PrOOF. By Theorem 9.3, (a) implies (b). The implication (b)= (c)
is trivial. Now assume (¢). Since we excluded type C, with p = 2, we
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can find A, B as in Theorem 1.1 with BBCB. Since RCR,(H)cb,B with
0el, b,#0, it follows that B is a full subring of k. So Bk*=1Fk. In
view of the implication 9.4 (¢) = 9.4 (a), H is full.

9.6. COROLLARY. Assume that G is of type C, (n = 2) and char(k) =
2. Then:

(1) every full subgroup H of G(k) contains GE(B) for a full subring
B of k, if and only if the dimension of k over k* is finite or countabdle;

(i) GE(R) s full in G(k) for every full subset R of k, if and only
if the dimension over k* is 1 or 2.

ProOOF. (i) Assume first that H is full. By Theorem 9.3, HD
G®(A, B) with full B such that Bk* =k, BA*CBCA. By Lemma 7.7 (i),
B contains a full subring R of k, provided the dimension of k over & is
countable. So, HDOG*(R).

Assume now that the dimension is uncountable. Then we can find
A and B as in Lemma 7.7 (ii). Then for H := G*(4, B) we have R;(H) = B
for all 6 in X, (see, Theorem 6.1). So, by Lemma 7.7 (ii), H does not
contain G*(C) for any subring C.

(ii) Let first R be full. By Lemma 7.6, then Rk* =k provided the
dimension is 1 or 2. By Corollary 9.4, G*(R) is full.

Assume now that the dimension is larger than 2. By Lemma 7.6,
we find a proper full subspace R of k. Replacing R by Ry with 0 =y
in R, we can assume that R>1. By Theorem 6.1, R;(G%(k, R)) = R for
any 0 in 3;. By Theorem 9.3, G*(k, R) is not full. So its subgroup G*(R)
is not full.

REMARK. Theorem 2 is contained in Corollaries 9.5 and 9.6.

Proor or THEOREM 3. Let H and g; be as in Theorem 8. By Theo-
rem 9.8, HOG*?(A, B), where B is full and Bk* = k. By Theorem 8.4,
H,:= g.Hg:*>G*(Ab,, Bb,) for 1 =1, --., m with 0 #=b,€ B. By Lemma
7.2 (i), the intersection B’ of all Bb, is full and B'k* = k. Since ADB,
we have H,OG%(B') forall1 =1, ---, m. By Corollary 9.4, G*(B’) is full,
so the intersection of H, is full.

REMARK. If all g,€ G*(k), then the intersection of all H, contains
GZ(Ab,, Bb,) for some b, = 0 in B, see Corollary 8.2.
10. Proof of Theorem 4.

10.1. THEOREM. Assume that k contains at least 3 elements, if G
18 of type B, or G,. Let A and B be additive subgroups of k satisfying
Theorem 1.1 (iil), (iv). Assume that B is full and Bk* =k. Let M be a
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non-central subgroup of G(k) normalized by GE(A, B). Then MDGF(dA, dB)
for a non-zero d in B.

In view of Corollary 9.4, this theorem implies Theorem 4. Indeed,
let M be a non-central subgroup of G(k) normalized by a full subgroup
H of G(k). By Theorem 9.3, HDG?(A, B), where A and B are as in
Theorem 10.1. By Theorem 10.1, there is a non-zero d in B such that
M>GE(Ad, Bd). By Lemma 7.2 (ii), BNBd := B’ is a full additive sub-
group of k& such that B'B*c B’ and B'k* = k. By Corollary 9.4, GE(B’) is
full in G(k), Thus, HNM>G*(B’) is full.

REMARK. If G is of type B,=C, or G, and k = {0, 1}, then G*(k)
contains a normal subgroup M of index 2 (see, for example, [4, Remark
after Theorem 5]). Since GZ(k) is the smallest full subgroup of G(k), M
is not full (and M does not sit in the center of G(k)).

10.2. LEMMA. Theorem 10.1 holds if k is finite.

ProOF. Any full subring of a finite k is k£ itself. In particular, if
B and A are as in Theorem 10.1, then the subring of k& generated by B
is k. It follows easily that A =%k and B = k.

Therefore, G*(A, B) = G*(k). By Theorem 8.4, G*(k) is normal in
G(k). It is well-known (see, for example, [5]) that every non-central
subgroup M of G(k) normalized by GF(k) contains G*(k). In particular,
M>GE(k) = G®(dA, dB) for any d #0 in B=k.

For the rest of this section we assume that k is infinite.

10.3. LEMMA. Fix an ordering on 3. Let a be the maximal root
and U the algebraic subgroup of G gemerated by all x.(k) with positive €
in Y. Then there are w in G%(k) and ¢ in k such that UwTU s Zariski
open in G and wx w™" = x_,(ct) for all t in k.

PrROOF. Let U’ be the algebraic subgroup of G generated by all x.(k)
with negative ¢. Then U'TU is open in G (see, for example, [4, Theo-
rem 7 (a)]).

We pick any w in G®(k) such that wTw™ =T and wU'w™* = U.
Then wx,(t)w™" = x_,(ct) for some ¢ in k.

10.4. LeEMMA. In the conditions of Theorem 10.1, M is Zariski

dense in G.

PrROOF. Since k is infinite, so is B. Therefore x.(B) is Zariski dense
in x.(k) for each root ¢ in ¥ and H:= G*(4A, B)DG*(B) is Zariski dense
in G. Since H normalizes M, it follows that G normalizes the Zariski
closure of M in G. Since G is almost simple and M is not central, the
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closure is G, so M is dense in G.

10.5. LEMMA. In the conditions of Theorem 10.1, let acX,. Then
there are g in G®(k) and w in k such that g commutes with x,(k) and
2. (D)x_ (ub) € gMg™ for all b in B.

PROOF. We can choose an ordering on I in such a way that «
becomes the maximal root (because the maximal root is always long and
the Weyl group acts transitively on the long roots). Let U, w, and ¢
be as in Lemma 10.3.

Since UwTU is open in G and M is dense in G (see, Lemma 10.4),
there is some m in UwTUNM. We write m = g'whg’ with g, ¢’ € Uk)
and k€ T(k). Since [U, z,(k)] = 1 and hzx,(t)h™" = x,(a(h)t) for all ¢ in k, we
have M 3 [5,(b), m] = x.(b)g 'whg'x.(—b)g' h'w™'g = x,(b)g~*2_(—ca(h)b)g =
9 N (b)x_ (—ca(h)b))g for all b in B. Thus, gMg™ 3 x,(b)x_,(ub) for all b
in B with % := —ca(h).

10.6. COROLLARY. In the conditions of Lemma 10.5, there is a non-
zero d, in k such that M>ux,(d,B).

ProOF. Let g and u be as in Lemma 10.5. Let b,€ B be as in
Corollary 8.2. Then gMg™ =: M’ is normalized by gG*(A, B)g'DGE(Ab:,
Bb%). Pick a b # b™ in Bb:.

If a belongs to a subsystem 3’y of type A,, we find 63’ such
that o« +d€23’. Since gMg~ contains xz,(b)x,(bu) for all b in B and is
normalized by x,(Bb%) and x_,(Bb%), we have M’ sy := [x;(}"), z.(b)x_.(bu)] =
Tora(F00) and M's[x_;®), y] = 2,(+b?). So, M’'>Dx,(0b”B). Since
lg, z.(k)] = 1, it follows that M>x,(b”B). Thus, we can take d := b".

If a does not belong to a subsystem of type A4,, then it belongs to
a subsystem 3’ of type B,. We pick a short root B in 3’ such that
a + Bel'. Then [xyk), x_(k)] = 1.

Since M’ is normalized by z,(Bb%), we have M'sz(v,t):= [x:;(),
Loa(D)2_o(bU)] = pya( L VE) T, o(£2?D) for all v in Bb: and b in B, hence
M’ 22,0, b)z,(b', b)) = 2,p05(b"*0* — 1)b) for all b in B. So, M'D
Tay2s(BO(D' (D" — 1)).

Since M’ is normalized by x_,(B), we have M’ z,(v,t) = [x_(),
Zopra(t)] = Xppo( Evt)2,(E£2*t) for all v in b}B and t in b*(b” — 1)B, hence
M3 2,(b", £)2,(b", b)) = 2 (0™ — 1)t) for all ¢ in (" — 1)B. Thus,
M >x,(d,B) for d,:= b"(b"” — 1)* = 0, hence M>Dx.(d.B).

10.7. LEMMA. For any B€ X, there is a non-zero d; in k such that
M>oxy(dsA).

Proor. If B is long, we can use Corollary 10.6. Otherwise, 8 lies
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in a subsystem X'cJ3 of type B, or G,. Pick b + b* in B.

If 3’ is of type B, we pick a short root v in X’ such that v + g€ 2.
Since M is normalized by GZ(A, B) and MDx;,4(d;.;B) (see, Corollary 10.6),
we have M3 z2(u,t):= [2_,(u), 2 s&)] = xo(Zut)z,_,(u’t) for all » in A
and ¢ in d,,;B. Therefore, M 3 z(u, b®d,,;)2(ud, bd;, ;)" = x(£ud® — b°)d;,p).
Thus, M>Dxs(d,A) with d,;:= b*(b — 1)d;,, # 0.

If 3’ is of type @G,, then we find a long « in X’ such that « + B 3.
Since M>ox_,(d_,B) and M is normalized by G*(4, B)Dx,..s(A), we have
M>32z,(t, u) := [2_o(t), Tarp(U)] = 25 (UL py0p (U Cogysp (FEUP) X, 55(tu°) for
all £ in d_,B and w in A.

Therefore, M s z,(t, u) : = 2,(t, ub)z,(tb®, u)™ = xs(Ftu(d — )X, pop(Ftu* X
0 — V) opap(EuPD® — b%)), hence, M3z (t, u):= 2,(tb% u)z,(¢, ub>)™* =
Za(Etud — BB — b)) Laros( LU (D> — b)(B® — b*)), 50 M 3 2,(tb?, u)z,(t, ub)™ =
Za(Etud — b*)(®* — b3 (B — b)) for all ted_,B and u e A.

Thus, MDxx(Ads) with dg:= d_b*®* — 1)(b — 1)* # 0.

Proor oF THEOREM 10.1. Now we are ready to complete our Proof
of Theorem 10.1 (for infinite k).

By Theorem 1.1, Lemma 8.3, and Corollaries 10.6 and 10.7, MDG*(4’, B’)
with additive subgroups A’ and B’ of k satisfying A’cd,A and B'cd,B,
where 0 = d,, d,€k.

Since Bk* =k, we have d, = b,¢® with 0 #b,€ B and 0 #c€ck. Since
B is full, ¢ = b,/b, and d, = b,/b, with non-zero b, in B. Therefore, A'D
d,A = b,A/b;Db,ADbb,b:A (since BACB) and B'D>d,B = b,¢*B = b,biB/b:D
b,b;:BDObb,biB (since BB*CB).

Thus, A'DdA and B'DdB, where 0 #d:=b®bbicB, hence M>D
G%(Ad, Bd).

11. Type A, and non-split groups. First we give counter examples
to Theorems 1-4 for G = SL,.

11.1. A COUNTER EXAMPLE TO THEOREM 1. See [7, the last section].

11.2. A COUNTER EXAMPLE TO THEOREMS 2 AND 9.3. Let k be a field
such that char(k) = 2 and k # k*. Let T(k) be the subgroup of diagonal
matrices in SL,(k). Here is our choice of parametrizations of the root
subgroups: #,(t) = <(1) {’) and () = <t1 (1)> for all ¢ in k.

Set H:={hg: he T(k), g€ SL,(k*}. Since T(k) normalizes SL,(k?, H

is a subgroup of SL.,(k). We claim that it is a full subgroup. Indeed,
given any g = <‘CL 3) in SL,(k), we set u:=1/1 + ac) when ac # 1 and
% :=1/1 + 2*) with any z = 0, 1 when ac = 1. Then v := w/(1 + auc) € &,

hence
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g(l u) _1_ <1 + auc  aua )
01 9= cuc 1+ cua

_<u/v 0>< 1 ava> S
N0 v \ucue/v (/o) € T(k)SL,(k") = H .

Similarly, there is a non-zero %’ in k such that Hogx,(u')g™'. Thus, H
is full.

But R, (H) = k* is not full when k % k*. Therefore, H does not con-
tain E,(R) with a full subset R of k.

11.3. A COUNTER EXAMPLE TO THEOREM 3. Let k£ and H be as in
11.2. Take any w in k outside k*. Set g:= x,(w). Then H is full, but
HnNgHg™*Nxy(k) is trivial, so HNgHg™ is not full.

11.4. A COUNTER EXAMPLE TO THEOREM 4. Let k and H be as in
11.2. Then SL,(k*) is normalized by full H, but SL,(k? is not full and
is not contained in the center of SL,(k).

Now we will discuss extensions of our results to non-split groups.
Let G be an almost simple algebraic group defined over a field k. Fixing
a maximal k-split torus T and a matrix representation GcSL,, we have
“root” subgroups U.. Given any subset R of k, we can define G%(R) to
be the subgroup of G(k) generated by all root elements with (non-diagonal)
entries in B. We can call a subgroup H of G(k) full, if for any g in
G(k) the intersection of gHg~' with each root subgroup is not trivial. I
believe that Theorems 1-5 hold (for this more general class of G’s), if
the k-rank of G is at least 2 and G is absolutely (almost) simple, and
have checked this for all classical G. For some groups it follows from
results of [7].

REMARK. It is easy to see that when k is a number field every
arithmetic (or, more generally, S-arithmetic) subgroup of G(k) is full. I
believe that, conversely, every full subgroup contains an arithmetic sub-
group, and have checked this for all classical G.

REMARK. Some of our groups G%(A4, B) for Chevalley groups G were
introduced by Abe [18] and studied by Abe-Suzuki [19].
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