ON FULL SUBGROUPS OF CHEVALLEY GROUPS*

LEONID N. VASERSTEIN

(Received July 16, 1984)

Introduction. Let G be a split algebraic absolutely almost simple group defined over a field k. For a split maximal k-subtorus T of G let $\Sigma = \Sigma(G, T)$ denote the root system of G with respect to T. Let $\{x_{\epsilon}, \epsilon \in \Sigma\}$ be a system of isomorphisms, normalized as usual (see, for example, Steinberg [4]), from the additive group onto the root subgroups with respect to T.

We say (in the spirit of O'Meara [2, 3]) that a subgroup H of G(k)is *full* if for every g in G(k) and ε in Σ there exists a non-zero $c = c(g, \varepsilon)$ in k such that $g^{-1}x_i(c)g \in H$. Thus, H is full if and only if its intersection with any root subgroup (relative to any maximal split k-torus) contains at least two elements.

For a subset R of k we denote by $G^{\mathbb{E}}(R)$ the subgroup of G(k) generated by all $x_{\varepsilon}(a)$, where $\varepsilon \in \Sigma$ and $a \in R$. Here "E" stands for "elementary".

A subset R of k is called *full* (cf., Vaserstein [7]) if for every y in k there is a non-zero r in R such that $yr \in R$. For a subring R it means that k is its field of fractions. Note that in this paper a ring is not required to have identity.

The results of the present paper are modeled on the results of Vaserstein [7], the methods are also similar. However the situation for groups of type C_n in characteristic 2 turns out to be more complicated.

We assume throughout (except in the last section) that the rank of G is greater than one. If $\operatorname{rank}(G) = 1$, i.e., G is of type A_1 , then the conclusions of Theorems 1-5 below are false, see [7] and the last section, where we also discuss possible generalizations of our results.

The following Theorems 1-5 summarize our main results. More precise and detailed statements are given in the corresponding sections.

THEOREM 1. For every full subring R of k, the subgroup $G^{E}(R)$ of G(k) is full.

THEOREM 2. ("Arithmeticity Theorem"). Every full subgroup H of G(k) contains $G^{E}(A)$ for some full subring A of k with the exception of

* This research was supported in part by NSF grants.

the case when G is of type C_n $(n \ge 2)$, char(k) = 2 and the dimension of k over k^2 is uncountable.

Here, for a field k of characteristic 2, k^2 denotes the subfield of k, consisting of all squares. In the exceptional case we will show that not every full subgroup H contains $G^{E}(A)$ for a full subring A (see Sections 8 and 9 for details).

THEOREM 3. If H is a full subgroup of G(k) and g_1, \dots, g_m are in G(k) then the intersection of all $g_iHg_i^{-1}$ is a full subgroup of G(k).

THEOREM 4. Assume that k does not consist of 2 elements when G is of type B_2 or G_2 . If H is a full subgroup of G(k) and M is a subgroup of G(k) normalized by H then either $H \cap M$ is full or M lies in the center of G.

Theorems 1-4 for $G = SL_n$ were proved by Vaserstein [7]. According to [10], Serezhkin considered subgroups H of $G(k) = SL_n(k)$, $n \ge 3$, more general than full subgroups. Assuming that H is irreducible (in the standard representation) he proves that a conjugate of H either contains $G^E(A) = E_n(A)$ for a full subring A of k or is contained in $HSp_n(k)$, the group of symplectic similitudes. Since a full H is irreducible and $HSp_n(k)$ is not full, this result combined with our Theorem 8.4 gives Theorem 2 for $G = SL_n$, $n \ge 3$. He also tried to prove Theorem 2 for $G = Sp_{2n}$ with char $(k) \ne 2$, see [11].

THEOREM 5. Let H be a subgroup of G(k). Set $R_{\epsilon}(H) := \{t \in k: x_{\epsilon}(t) \in H\}$. Suppose that $R_{\epsilon} := R_{\epsilon}(H) \neq 0$ for every root ϵ in Σ . Suppose further that G is not of type B_n , C_n , or F_4 when $\operatorname{char}(k) = 2$, and that G is not of type G_2 when $\operatorname{char}(k) = 3$. Then there is a non-zero subring A of k such that $R_{\epsilon}A \subset R_{\epsilon}$ (i.e. R_{ϵ} is an A-module) and $(AR_{\epsilon})(AR_{-\epsilon}) \subset A$ for every root ϵ in Σ .

We do not assume here that H is full. Here and throughout the paper $BC := \{bc: b \in B, c \in C\}$ for any subsets $B, C \subset k$. About the cases excluded from Theorem 5, see the next section.

The groups H in Theorem 5 are similar to "tableau", "carpet" or "net" groups considered in many papers including Riehm [12], [13], James [14], Borevich [15], Vavilov [16]. The main two differences are that our $R_{\epsilon}(H)$ need not be ideals of A and are not allowed to be 0.

ACKNOWLEDGEMENTS. I thank S. Simpson and T. Jech for giving the reference [1] and D. James and a referee for many corrections. The work was started in the fall of 1981 jointly with B. Weisfeiler, and later he made a few corrections.

424

FULL SUBGROUPS OF CHEVALLEY GROUPS

NOTATIONS AND CONVENTIONS. If all roots in Σ have the same length, we set $\Sigma_i := \Sigma_s := \Sigma$. Otherwise there are roots of only two lengths in Σ (see, for example, [4]). We denote then by Σ_i (resp., Σ_s) the set of long (resp., short) roots in Σ . Always, Σ_i is a subsystem of Σ .

Let $e(\Sigma)$ be the square ratio of lengths of long and short roots. Recall that $e(\Sigma) = 1$ when Σ is of type A_n , D_n , or E_n ; $e(\Sigma) = 2$ when Σ is of type B_n , C_n or F_4 ; $e(\Sigma) = 3$ when Σ is of type G_2 .

We say that a subset of Σ is *connected* if it is not a union of two orthogonal non-empty subsets.

If α , β are in Σ and $\alpha \neq \beta \neq -\alpha$, then we have a commutation relation of the form $[x_{\alpha}(t), x_{\beta}(u)] = \prod x_{i\alpha+j\beta}(\pm p_{\alpha,\beta,i,j}t^{i}u^{j})$ for all t, u in k, where the product is taken over all roots $i\alpha + j\beta$ in Σ with natural $i, j \geq 1$, the factors in the product are ordered lexicographically (i and, for fixed i, also j increase from the left to the right), $p_{\alpha,\beta,i,j}$ are natural numbers, and the signs \pm do not depend on t and u but only on α, β, i, j (once the parametrizations x_{φ} were chosen). When $\alpha + \beta$ is not a root, the product is taken over an empty set and equals 1.

For a subset $A \subset k$ and an integer *n* we set $A^n := \{a^n : a \in A\}$. For $A, B \subset k$ we set $AB := \{ab : a \in A, b \in B\}$.

We define p as follows: if $char(k) \neq e(\Sigma)$, then p := 1; otherwise, $p := char(k) = e(\Sigma)$.

For a subgroup H of G(k) and a root ε in Σ we set $R_{\varepsilon}(H) := \{t \in k: x_{\varepsilon}(t) \in H\}.$

1. A generalization of Theorem 5.

1.1. THEOREM. Let H be a subgroup of G(k) such that $R_{\epsilon}(H) \neq \{0\}$ for every root ε in Σ . Set $R_{\epsilon} := R_{\epsilon}(H)$. Then there exist additive subgroups A and B of k and (for every root ε) non-zero a_{ϵ} , b_{ϵ} in k such that:

(i) $a_{\mathfrak{s}}B \subset R_{\mathfrak{s}} \subset b_{\mathfrak{s}}B$, $R_{\mathfrak{s}}A^{\mathfrak{p}} \subset R_{\mathfrak{s}}$, and $AR_{\mathfrak{s}}R_{-\mathfrak{s}} \subset A$ for every long root δ in Σ ;

(ii) $a_{\gamma}A \subset B_{\gamma} \subset b_{\gamma}A$, $R_{\gamma}B \subset R_{\gamma}$, and $B'(R_{\gamma}R_{-\gamma})^{p} \subset B$ for every short root γ in Σ , where B' := BB when $\operatorname{char}(k) = 2 = e(\Sigma) - 1$, $B' := e(\Sigma)! B$ when $\operatorname{char}(k) = 0$, and B' := B otherwise;

(iii) $AB \subset A$, $BA^{p} \subset B$, and $A^{p} \subset B \subset A$;

(iv) B is a subring of k (i.e. $BB \subset B$) when Σ_i is connected; A is a subring of k when Σ_s is connected.

The case p = 1 of this theorem contains Theorem 5 (indeed, (iii) with p = 1 implies that A = B is a subring, and to obtain $AAR_{7}R_{-7} \subset A$ when char(k) = 0, we replace A by $e(\Sigma)!A$. Note that $R_{\epsilon}A \subset R_{\epsilon}$ and $AAR_{\epsilon}R_{-\epsilon} \subset A$

imply $c_{\epsilon}A \subset R_{\epsilon} \subset c_{\epsilon}^{-1}A$ for any c_{ϵ} in R_{ϵ} and $c_{-\epsilon} \neq 0$ in $AAR_{-\epsilon}$. When $p \neq 1$ and k is not algebraic over its prime subfield, the conclusion of Theorem 5 is false for some H with $R_{\epsilon}(H) \neq 0$ for all ϵ in Σ , see Theorem 6.1 below (namely, for $H = G^{\mathbb{E}}(k_0, k_0^p)$ with subfields $k_0^p \subset k_0 \subset k$).

We will prove Theorem 1.1 in Sections 2, 3-4, and 5 in cases $e(\Sigma) = 1, 2$ and 3 respectively. The following technical lemmas will be used in our proof of Theorem 1.1.

1.2. LEMMA. Let $m \ge 2$ be an integer; $A, B \subset k$; $AB \subset A, A^{m}B \subset B$. Then:

(i) if a is in the multiplicative set generated by A and b is in the multiplicative set generated by B, then $Ba^m \subset B$ and $Ab \subset A$; therefore, for $A_1 := Aa$, $B_1 := Bb$ we have $A_1B_1 \subset A_1$, $A_1^mB_1 \subset B_1$;

(ii) if $a \in A$, $b \in B$, then for $A_2 := Aa^{m-1}b$, $B_2 := Ba^m b$ we have $A_2B_2 \subset A_2$, $A_2^m B_2 \subset B_2$, and $B_2 \subset A_2$;

(iii) if $b \in B \subset A$, then for $A_3 := Ab$, $B_3 := Bb^{m-1}$ we have $A_3B_3 \subset A_3$, $A_3^mB_3 \subset B_3$, and $A_3^m \subset B_3 \subset A_3$;

(iv) if $B \neq 0 \neq cAA \subset A$ for some c in k, then there is a non-zero a_0 in A such that $(a_0^{m-1}A)(a_0^{m-1}A) \subset a_0^{m-1}A$;

(v) if $A \neq 0 \neq cBB \subset B$ for some c in k, then there is a non-zero b_0 in B such that $(b_0^{m-1}B)(b_0^{m-1}B) \subset b_0^{m-1}B$.

PROOF. (i) We write $a = a_1 \cdots a_n$ with $a_i \in A$. Then $Ba_1^m \subset BA^m \subset B$ and, by induction on n, $Ba^m = B(a_1 \cdots a_{n-1})^m a_n^m \subset Ba_n^m \subset B$. Similarly $Ab \subset A$.

(ii) Since $a^{m-1}b = a^{m-2}ab \in a^{m-2}AB \subset a^{m-2}A$ and $a^mb \in A^mB \subset B$, by (i) we have $A_2B_2 = A_2$ and $A_2^mB_2 \subset B_2$. Moreover, $B_2 = Ba^mb = (Ba)a^{m-1}b \subset Aa^{m-1}b = A_2$.

(iii) Again, the first two inclusions follow from (i), which implies also that $b^{m-2}B \subset A$. Hence $B_3 = b^{m-1}B \subset Ab = A_3$. Finally, $A_3^m = A^m b^m = A^m b b^{m-1} \subset A^m B b^{m-1} \subset B b^{m-1} = B_3$.

(iv) We have $(cA)(cA) \subset cA$, that is, cA is a multiplicative set in k. In particular, $(cA)^{2m} \subset ((cA)(cA))^m \subset (cA)^m$, so $B(cA)^{2m}A \subset B(cA)^mA = c^mBA^mA \subset c^mBA \subset c^mA$.

On the other hand, $B(cA)^{2m}A = c^{2m}(BA^{2m})A \subset c^{2m}BA \subset c^{2m}A$.

Therefore $c^m A \cap c^{2^m} A \neq 0$, i.e., there are non-zero a_0 and a in A such that $c^m = a_0/a$. Then $a_0^{m-1} = a_0^{m-2}a_0 = a_0^{m-2}ac^m = (a_0c)^{m-2}(ac)c \in (cA)^{m-2}(cA)c \subset (cA)c = c^2A$. Hence $A(a_0^{m-1}A) \subset A(c^2A)A = Ac(cAA) \subset AcA \subset A$. Multiplying both sides by a_0^{m-1} , we get $(a_0^{m-1}A)(a_0^{m-1}A) \subset a_0^{m-1}A$.

(v) From $(cB)(cB) \subset cB$ we deduce that $A(cB)^2 \subset AcB = cAB \subset cA$. On the other hand, $A(cB)^2 = c^2AB^2 \subset c^2(AB)B \subset c^2AB \subset c^2A$.

Therefore, $cA \cap c^2 A \supset A(cB)^2 \neq 0$, hence $a_0 = ac$ for some non-zero a,

426

 a_0 in A. Pick a non-zero b' in B. Then $0 \neq b := a^m b' \in A^m B \subset B$, $0 \neq b_0 := a_0^m b' \in A^m B \subset B$, and $b_0 = c^m b$.

We have $b_0^{m-1} = c^m b b_0^{m-2} = (bc)(b_0 c)^{m-2} c \in (Bc)(Bc)^{m-2} c \subset (Bc)c = Bc^2$. Therefore, $B(b_0^{m-1}B) \subset B(Bc^2)B = Bc(BcB) \subset BcB \subset B$. Multiplying this with b_0^{m-1} , we get $(b_0^{m-1}B)(b_0^{m-1}B) \subset b_0^{m-1}B$.

1.3. LEMMA. Let n, m, N be natural numbers. Let non-empty A, B, $R_i \subset k$, and $c_i, d_i \in k$ for $i = 1, \dots, N$. Assume that $0 \neq AB^n \subset A$, $A^m B \subset B$, $0 \neq c_i A \subset R_i \subset d_i A$ $(i = 1, \dots, N)$. Then there is a non-zero b in B such that $d_i A(bB)^n \subset c_i A$ and, therefore, $R_i(bB)^n \subset R_i$ for $i = 1, \dots, N$.

PROOF. From $c_iA \subset d_iA$ it follows that $A(c_i/d_i) \subset A$. Therefore $A(c_i/d_i)^r \subset A$ for every integer $r \geq 0$. Pick non-zero a_0 in A and b' in B. Set $a_i := a_0c_i/d_i \in A$, $b_i := b'a_i^m \in BA^m \subset B$ for $i = 1, \dots, N$, and $b_0 := b'a_0^m \in B$.

We have: $(c_i/d_i)^m = (a_i/a_0)^m = b_i/b_0$ and $b_i^n A \subset b_i^n A/b_0^n = A(b_i/b_0)^n = A(c_i/d_i)^{m_n} \subset Ac_i/d_i$ for $i = 1, \dots, N$.

Let a be the product of all a_i , $i = 1, \dots, N$, and $b := b'a^m \in BA^m \subset B$. We have: $bB = b_1B$ when N = 1, and $bB \subset b_iA^mB \subset b_iB$ for $i = 1, \dots, N$ when N > 1.

Therefore, $A(bB)^n \subset A(b_iB)^n = AB^n b_i^n \subset Ab_i^n \subset Ac_i/d_i$. Hence $d_i A(bB)^n \subset Ac_i$ and $R_i(bB)^n \subset d_i A(bB)^n \subset Ac_i \subset R_i$ for $i = 1, \dots, N$.

2. Proof of Theorem 1.1 for groups G of type A_n $(n \ge 2)$, D_n $(n \ge 3)$, and E_n (n = 6, 7, 8). Recall that H is a subgroup of G(k) and that the $R_{\epsilon} := R_{\epsilon}(H) := \{t \in k: x_{\epsilon}(t) \in H\}$ are assumed to be non-zero for all roots ϵ in Σ . In this section we consider the case when $\Sigma = \Sigma_i = \Sigma_s$.

2.1. LEMMA. (i) If γ , δ , $\gamma + \delta \in \Sigma$ then $R_{\gamma}R_{\delta} \subset R_{\gamma+\delta}$;

(ii) for any α , β in Σ there exists a non-zero $c_{\alpha,\beta}$ in k such that $c_{\alpha,\beta}R_{\beta} \subset R_{\alpha}$.

PROOF. (i) We have $[x_r(t), x_s(u)] = x_{r+s}(\pm tu)$ for all t, u in k (see, e.g., [4, Examples to Lemma 14]). Taking here $t \in R_r$, $u \in R_s$ we see that $R_r R_s \subset R_{r+s}$.

(ii) There exist $\gamma_1, \dots, \gamma_m$ in Σ such that $\beta + \gamma_1 + \dots + \gamma_i \in \Sigma$ for all $i \leq m$ and $\alpha = \beta + \gamma_1 + \dots + \gamma_m$. Let us proceed by induction on m. If m = 0, then $R_{\alpha} = R_{\beta}$ and we can take $c_{\alpha,\beta} = 1$. For $m \geq 1$, we set $\gamma := \gamma_m$, $\delta = \beta + \gamma_1 + \dots + \gamma_{m-1}$. Pick a non-zero c_{γ} in R_{γ} . Applying (i) and the inductive assumption to δ , we have: $R_{\gamma+\delta} = R_{\alpha} \supset R_{\gamma}R_{\delta} \supset c_{\delta,\beta}R_{\beta}R_{\gamma} \supset c_{\gamma}c_{\delta,\beta}R_{\beta} = c_{\alpha,\beta}R$ with $c_{\alpha,\beta} := c_{\gamma}c_{\delta,\beta} \neq 0$.

Now we can complete our proof of Theorem 1.1 in the case $\Sigma = \Sigma_i$.

For every pair α , β of roots in Σ we fix a non-zero $c_{\alpha,\beta} \in k$ such that $c_{\alpha,\beta}R_{\beta} \subset R_{\alpha}$ (see, Lemma 2.1 (ii)).

Pick roots α , β , γ in Σ such that $\gamma = \alpha - \beta$. By Lemma 2.1, $R_{\alpha} \supset R_{\beta}R_{\gamma} \supset c_{\beta,\alpha}R_{\alpha}c_{\gamma,\alpha}R_{\alpha} = cR_{\alpha}R_{\alpha}$, where $c := c_{\beta,\alpha}c_{\gamma,\alpha} \neq 0$, hence $A := cR_{\alpha} \supset cR_{\alpha}cR_{\alpha} = AA$ is a subring of k.

For any root ε in Σ set $a_{\varepsilon} := c^{-1}c_{\varepsilon,\alpha}$, $b_{\varepsilon} := c^{-1}c_{\alpha,\varepsilon}^{-1} \neq 0$, hence $R_{\varepsilon} \supset c_{\varepsilon,\alpha}R_{\alpha} = c_{\varepsilon,\alpha}c^{-1}A = a_{\varepsilon}A$ and $R_{\varepsilon} \subset c_{\alpha,\varepsilon}^{-1}R_{\alpha} = c^{-1}c_{\alpha,\varepsilon}^{-1}A = b_{\varepsilon}A$.

By Lemma 1.3 (with A = B, m = n = 1, $N := \operatorname{card}(\Sigma)$), $(aA)R_{\varepsilon} \subset R_{\varepsilon}$ for all ε in Σ with some non-zero a in A. Replace A by aA and a_{ε} , b_{ε} by $a_{\varepsilon}a^{-1}$, $b_{\varepsilon}a^{-1}$ respectively. Then $AR_{\varepsilon} \subset R_{\varepsilon}$ for all ε in Σ and still $a_{\varepsilon}A \subset R_{\varepsilon} \subset b_{\varepsilon}A$ for all ε .

Now for every ε in Σ we can find δ in Σ such that $\varepsilon + \delta \in \Sigma$. Then $R_{\delta}R_{\epsilon}R_{-\epsilon} \subset R_{\delta+\epsilon}R_{-\epsilon} \subset R_{\delta}$ by Lemma 2.1 (i). Take the product R of all R_{δ} over $\delta \in \Sigma$. Then $RR_{\epsilon}R_{-\epsilon} \subset R$ for all ε in Σ .

Since $R_{\epsilon} \subset b_{\epsilon}A$ for all ϵ , we have $R \subset bA$, where $b \neq 0$ is the product of all b_{ϵ} . Replacing A by its subring generated by Rb^{-1} , we have $R_{\epsilon}A \subset R_{\epsilon}$ and $AR_{\epsilon}R_{-\epsilon} \subset A$ for every root ϵ in Σ .

3. Proof of Theorem 1.1 for G of type B_2 . Since G is split over k, it is isogenous to the symplectic group of a non-singular alternating form in dimension 4.

The root system (see, Figure 1) consists of 8 roots. Four of them $(\pm \alpha, \pm (\alpha + 2\beta))$ are long, and four $(\pm \beta, \pm (\alpha + \beta))$ are short.

Let us call a pair (γ, δ) of roots *admissible*, if $\gamma \in \Sigma_s$, $\delta \in \Sigma_i$, and $\delta - \gamma \in \Sigma_s$. In other words, γ is short and δ makes an angle $\pm 45^{\circ}$ with γ . Every root is contained therefore in exactly two admissible pairs.

As in Theorem 1.1, $R_{\epsilon} := R_{\epsilon}(H) \neq \{0\}$. For any pair (γ, δ) of roots we set $R_{\gamma,\delta} := R_{\gamma,\delta}(H) := \{(t, u) \in k \bigoplus k : x_{\gamma}(t)x_{\delta}(u) \in H\}$. Let $R'_{\gamma,\delta}$ (resp., $R''_{\gamma,\delta}$) be the projection of $R_{\gamma,\delta}$ on the first (resp., second) factor. Clearly,

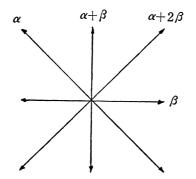


FIGURE 1. System of roots of type B_2 .

428

 $R'_{r,s} \supset R_r$ and $R''_{r,s} \supset R_s$.

3.1 LEMMA. Let (γ, δ) be an admissible pair of roots, $a \in R_{27-\delta}$, $b \in R_{\delta-27}$, $(c, d) \in R_{7,\delta}$, and $t_1, t_2 \in R_{7-\delta}$. Then (i) $(abc, ab^2c^2) \in R_{7,\delta}$; (ii) $2t_1t_2d \in R_{27-\delta}$.

PROOF. Set $\varepsilon := \delta - 2\gamma$.

(i) Since both $x_{\epsilon}(k)$ and $x_{-\epsilon}(k)$ commute with $x_{\delta}(k)$, we have: $H \ni [x_{-\epsilon}(a), [x_{\epsilon}(b), x_{\tau}(c)x_{\delta}(d)]] = [x_{-\epsilon}(a), x_{\delta-\tau}(\pm bc)x_{\delta}(\pm bc^2)] = x_{\tau}(\pm abc)x_{\delta}(\pm ab^2c^2)$. Since $R_{\pm\epsilon}$ are additive subgroups of k, we can, changing if necessary signs of a and b, obtain that $R_{\tau,\delta} \ni (abc, ab^2c^2)$, as claimed.

(ii) We have $H \ni y(t) := [x_{7-\delta}(t), x_7(c)x_{\delta}(d)] = x_7(\pm td)x_{27-\delta}(\pm t^2d \pm 2ct)$ for any t in $R_{7-\beta}$, hence $H \ni y(t_1 + t_2)y(-t_1)y(-t_2) = x_{27-\delta}(\pm 2t_1t_2d)$. Thus, $R_{27-\delta} = -R_{27-\delta} \ni 2t_1t_2d$.

- 3.2. COROLLARY. In the notation of Lemma 3.1:
- (i) $R_{\gamma} \supset 2R_{\varepsilon}R_{-\varepsilon}R'_{\gamma,\delta}$ and $R_{\delta} \supset 8R_{\varepsilon}R_{\varepsilon}R_{-\varepsilon}R_{\gamma}R'_{\gamma,\delta}$, where $\varepsilon := \delta 2\gamma$;
- (ii) $R_{\delta}C_{\gamma-\delta}C_{\gamma-\delta} \subset R_{\delta} \supset 4R_{\delta}C_{\gamma-\delta}C_{\gamma-\delta}, \text{ where } C_{\gamma-\delta} := 2R_{\gamma-\delta}R_{\delta-\gamma}.$

PROOF. (i) Let a, b, c, d be as in Lemma 3.1, and $c' \in R_r$, $b' \in R_\epsilon$. By Lemma 3.1, $R_{r,s} \ni z(c) := (abc, ab^2c^2) \in k \bigoplus k$. Since $x_r(k)$ and $x_s(k)$ commute, $R_{r,s}$ is an additive subgroup of $k \bigoplus k$. Therefore, $R_{r,s} \ni z(c) - z(-c) = (2abc, 0)$, so $R_s \supset 2R_{-\epsilon}R_\epsilon R'_{r,s}$, which proves the first inclusion.

Similarly, $R_{r,s} \ni z(c) + z(-c) = (0, 2ab^2c^2)$, hence $R_s \ni 2ab^2c^2$. Therefore $R_s \ni 2ab^2(c + c')^2 - 2ab^2c^2 - 2ab^2c'^2 = 4ab^2cc'$ and $R_s \ni 4a(b + b')^2cc' - 4ab^2cc' - 4ab^2cc' = 4ab'^2cc' = 8abb'cc'$. This establishes the second inclusion in Corollary 3.2(i).

(ii) By Lemma 3.1 (ii), $R_{7,\delta}''(2R_{7-\delta}R_{7-\delta}) \subset R_{27-\delta}$. Replacing here (γ, δ) by the admissible pair $(\gamma, 2\gamma - \delta)$, we get $R_{7,27-\delta}'(2R_{\delta-\gamma}R_{\delta-\gamma}) \subset R_{\delta}$. Combining the last two inclusions we get $R_{7,\delta}''_{7-\delta}C_{7-\delta} \subset R_{27-\delta}(2R_{\delta-\gamma}R_{\delta-\gamma}) \subset R_{\delta}$.

To prove the second inclusion in (ii) we take arbitrary u in $R_{\tau-\delta}$, vin $R_{\delta-\tau}$, and t in R_{δ} . Then $H \ni [[x_{\delta}(t), x_{\tau-\delta}(u)], x_{\delta-\tau}(v)] = x_{\tau}(\pm tu^2 v) x_{\delta}(\pm 2tuv \pm tu^2 v^2)$, hence (changing if necessary signs of t and u) $R''_{\tau,\delta} \ni 2tuv + u^2 v^2 t$. Since $R''_{\tau,\delta} \supset R_{\delta} \supset R_{\delta} C_{\tau-\delta} C_{\tau-\delta} \ni 4u^2 v^2 t$, it follows that $R''_{\tau,\delta} \ni 8tuv$. Thus, $R''_{\tau,\delta} \supset 4R_{\delta}C_{\tau-\delta}$. Combining this with $R''_{\tau,\delta}C_{\tau-\delta}C_{\tau-\delta} \subset R_{\delta}$, we get Corollary 3.2 (ii).

PROOF OF THEOREM 1.1 FOR TYPE B_2 WHEN char $(k) \neq 2$. For every root φ in Σ we pick a non-zero c_{φ} in R_{φ} .

By Corollary 3.2 (i), $R_7 \supset c_{7,\epsilon}R_{\epsilon}$, $R_7 \supset c_{7,-\epsilon}R_{-\epsilon}$, where $c_{7,\epsilon} := 2c_7c_{-\epsilon}$, $c_{7,-\epsilon} := 2c_7c_{\epsilon}$. Similarly, $R_{\delta} \supset c_{\delta,\epsilon}R_{\epsilon}$, $c_{\delta,-\epsilon}R_{-\epsilon}$, $c_{\delta,7}R_7$ with $c_{\delta,\epsilon} := 8c_{-\epsilon}c_7^2c_{\epsilon}$, $c_{\delta,-\epsilon} := 8c_{\epsilon}^2c_7^2$, $c_{\delta,-\epsilon} := 8c_{\epsilon}^2c_7^2$.

Applying the above inclusions (with other admissible pairs of roots) successively, one easily establishes that for any φ , ψ in Σ there is a

non-zero $c_{\varphi,\psi}$ in k such that $R_{\varphi} \supset c_{\varphi,\psi}R_{\psi}$. Fix such $c_{\varphi,\psi}$.

Let A be the subring of k generated by $2R_{\alpha}R_{-\alpha}$. We have $A \supset 2c_{-\alpha}R_{\alpha}$. Applying Corollary 3.2 (i) with $\gamma := \beta$, $\delta := \alpha + 2\beta$, $\varepsilon := \delta - 2\gamma = \alpha$, we get $R_{\beta} \supset AR_{\beta}$ hence $R_{\beta} \supset c_{\beta}A$. Therefore $a_{\varphi}A \subset R_{\varphi} \subset b_{\varphi}A$ for every root φ in Σ , where $a_{\varphi} := c_{\varphi,\beta}c_{\beta}$, $b_{\varphi} := (2c_{-\alpha}c_{\alpha,\varphi})^{-1}$. Using Lemma 1.3 with m = n = 1, A = B, we find a non-zero a in A such that all R_{φ} are aA-modules. Replacing A by aA and changing a_{φ} , b_{φ} accordingly, we have $R_{\varphi}A \subset R_{\varphi}$

for all φ and still $a_{\varphi}A \subset R_{\varphi} \subset b_{\varphi}A$ for all φ with non-zero a_{φ} , b_{φ} .

By Lemma 3.1 (i), $R_{\varepsilon}R_{-\varepsilon}R'_{\tau,\delta} \subset R'_{\tau,\delta}$ for any admissible pair (γ, δ) , where $\varepsilon := \delta - 2\gamma$. Consider the product A_1 of all $R'_{\tau,\delta}$. Then $A_1R_{\varepsilon}R_{-\varepsilon} \subset A_1$ for every long root ε in Σ . Using Corollary 3.2 (i) and $AA \subset A$, we see that $0 \neq cA_1 \subset A$ for some c in k. Replacing A by its subring generated by cAA_1 , we get $AR_{\delta}R_{-\delta} \subset A$ for all δ in Σ_1 . We still have $R_{\varepsilon}A \subset R_{\varepsilon}$ for all ε in Σ and $R_{\varepsilon} \subset b'_{\varepsilon}A$ for all ε in Σ with some $b'_{\varepsilon} \neq 0$ in k.

Let now (γ, δ) be an admissible pair. Using $R_{\epsilon} \subset b'_{\epsilon}A$ for $\epsilon = \delta - \gamma$ and $\epsilon = \gamma - \delta$, we get $uC_{\tau-\delta} \subset A$, where $u := (b'_{\tau-\delta}b'_{\delta-\tau})^{-1} \neq 0$. Multiplying the inclusions in Corollary 3.2 (ii) by u^2 and u^3 accordingly, we get $R_{\delta} \cap R_{\delta}u^2 \neq 0 \neq R_{\delta} \cap 4R_{\delta}u^3$. Since $R_{\delta} \subset bA$ for some b in k (it follows from $AR_{\delta}R_{-\delta} \subset A \neq 0$), $uA \cap A \neq 0$. Therefore, $0 \neq vC_{\tau-\delta} \subset A$ for some v in A. We have $(R_{\delta} \cup R_{\delta}C_{\tau-\delta})C_{\tau-\delta} \subset R_{\delta} \cup R_{\delta}C_{\tau-\delta}$ and $R_{\delta} \cup R_{\delta}C_{\tau-\delta} \subset bA \cup bAC_{\tau-\delta} \subset b(A \cup C_{\tau-\delta}) \subset bv^{-1}A$, hence $w_{\tau,\delta}(R_{\delta} \cup R_{\delta}C_{\tau-\delta}) \subset A$, where $w_{\tau,\delta} := vb^{-1}$.

Let A_2 be the product of all $w_{r,\delta}(R_{\delta} \cup R_{\delta}C_{r-\delta})$. Then $A_2C_7 \subset A_2 \subset A$ for all γ in Σ_s . Replacing A by its subring generated by AA_2 , we get $AC_7 \subset A$ for all γ in Σ_s . We still have $A(R_{\delta}R_{-\delta}) \subset A$ for all δ in Σ_l and $R_sA \subset R_s$ for all ε in Σ .

Thus, Theorem 1.1 is proved for G of type B_2 when $\operatorname{char}(k) \neq 2$. For the rest of this section we assume that $\operatorname{char}(k) = 2$. Then $[x_{\pm\beta}(k), x_{\pm(\alpha+\beta)}(k)] = 1$.

3.3. LEMMA. Let (γ, δ) be an admissible pair of roots. Then $(rs, rs^2) \in R_{\delta-\gamma,\delta}$ for any s in $R'_{\gamma,\delta}$ and r in $R''_{\delta-\gamma,\delta-2\gamma}$. In particular,

- (i) $R'_{\delta-\tau,\delta} \supset R'_{\tau,\delta} R''_{\delta-\tau,\delta-2\tau}$
- (ii) $R_{\delta-\tau,\delta}^{\prime\prime} \supset R_{\delta-\tau,\delta-2\tau}^{\prime\prime}(R_{\tau,\delta}^{\prime})^2$.

PROOF. Let $(s, t) \in R_{\tau,s}$, $(q, r) \in R_{\delta-\tau,\delta-2\tau}$. Then $H \ni [x_{\tau}(s)x_{\delta}(t), x_{\delta-\tau}(q) \times x_{\delta-2\tau}(r)] = [x_{\tau}(s), x_{\delta-\tau}(q)x_{\delta-2\tau}(r)] = [x_{\tau}(s), x_{\delta-2\tau}(r)] = x_{\delta-\tau}(sr)x_{\delta}(rs^2)$, as claimed.

3.4. NOTATION. For a long root δ in Σ denote by A_{δ} the subring of k generated by $R''_{\delta-\tau,\delta-2\tau}R''_{\tau,2\tau-\delta}$, where $(\delta - \gamma, \delta - 2\gamma)$ and $(\gamma, 2\gamma - \delta)$ are the admissible pairs (γ', δ') such that $2\gamma' - \delta' = \delta$. For a short root γ in Σ we denote by A_{γ} the subring of k generated by $R'_{\delta-\tau,\delta}R'_{\tau-\delta,2\tau-\delta}$, where $(\delta - \gamma, \delta)$ and $(\gamma - \delta, 2\gamma - \delta)$ are the admissible pairs (γ', δ') with

430

 $\delta' - \gamma' = \gamma.$

- 3.5. COROLLARY. Let (γ, δ) be an admissible pair. Then:
- (i) $R'_{\delta-\tau,\delta}$ and $R'_{\tau,\delta}$ are A_{δ} -modules;
- (ii) $R_{\tau,\delta}^{\prime\prime}$ and $R_{\tau,2\tau-\delta}^{\prime\prime}$ are A_{τ}^2 -modules;
- (iii) A_{δ} and $A_{2\gamma-\delta}$ are A_{γ}^2 -modules;
- (iv) A_r and $A_{\delta-r}$ are A_{δ} -modules.

PROOF. Applying Lemma 3.3 (i) to the pair $(\delta - \gamma, \delta)$ instead of (γ, δ) we obtain $R'_{r,\delta} \supset R'_{\delta-\gamma,\delta}R''_{\gamma,2\gamma-\delta}$. When we substitute this in the inclusion 3.3 (i), we obtain $R'_{\delta-\gamma,\delta} \supset R'_{\delta-\gamma,\delta}(R''_{\gamma,2\gamma-\delta})$. Thus, $R'_{\delta-\gamma,\delta}$ is an A_{δ} -module. Replacing here $(\delta - \gamma, \delta)$ by (γ, δ) we prove (i).

To prove (ii) we apply Lemma 3.3 (ii) to the pair $(-\gamma, \delta - 2\gamma)$ instead of (γ, δ) . We get $R''_{\delta-\tau,\delta-2\tau} \supset R''_{\delta-\tau,\delta}(R'_{-\tau,\delta-2\tau})^2$. Substituting this in 3.3 (ii) we obtain $R''_{\delta-\tau,\delta} \supset R''_{\delta-\tau,\delta}(R'_{-\tau,\delta-2\tau}R'_{\tau,\delta})^2$. Thus $R''_{\delta-\tau,\delta}$ is an $A^2_{\delta-\tau}$ -module. Replacing here $(\delta - \gamma, \delta)$ by $(\delta - \gamma, \delta - 2\gamma)$ we see that $R''_{\delta-\tau,\delta-2\tau}$ is also an $A^2_{\delta-\tau}$ -module. Now it remains to replace $\delta - \gamma$ by γ (and keep δ the same) to obtain (ii).

Statements (iii) and (iv) are direct consequeces of (ii) and (i) respectively and the definition of the rings A_{ε} (see Notation 3.4).

3.6. LEMMA. Let (γ, δ) be an admissible pair. Then there exist non-zero c_1 and c_2 in k such that

(i)
$$R_{\delta} \supset c_1^2 R_{\delta-\gamma,\delta-2\gamma}^{\prime\prime} (R_{\gamma,\delta}^{\prime})^2$$
.

(ii) $R_{\delta-\tau} \supset c_2 R_{\delta-\tau,\delta-2\tau}'' R_{\tau,\delta}'$.

PROOF. Assume first that $\operatorname{card}(A_{\epsilon}) = 2$ for some root ϵ in Σ . Since A_{ϵ} is a ring this implies that $A_{\epsilon} = \{0, 1\}$. By Corollary 3.5 (iii) and (iv), A_{ϵ} is a module over A_{φ}^2 , where φ is the root making an angle 45° with ϵ . Since $A_{\epsilon} = \{0, 1\}$, it follows that $A_{\varphi}^2 = \{0, 1\}$, hence $A_{\varphi} = \{0, 1\}$. Applying now the same argument to A_{φ} instead of A_{ϵ} and repeating it 7 times, we obtain that $A_{\psi} = \{0, 1\}$ for all roots ψ in Σ . The definition of A_{ψ} now implies that $\operatorname{card}(R'_{\tau,\delta}) = \operatorname{card}(R''_{\tau,\delta}) = 2$ for all admissible pairs (γ, δ) . Since $R'_{\tau,\delta} \supset R_{\gamma} \neq 0$ and $R''_{\tau,\delta} \supset R_{\delta} \neq 0$ we see that $R'_{\tau,\delta} = R_{\gamma}$ and $R''_{\tau,\delta} = R_{\delta}$ for all admissible pairs (γ, δ) . Therefore Lemma 3.3 reduces to our claim with $c_1 = c_2 = 1$.

Now we can assume that $\operatorname{card}(A_{\delta-7}) > 2$. Pick $a \neq 0, 1$ in $A_{\delta-7}$ and $b \neq 0$ in A_{δ} . By Corollary 3.5 (ii), $ba^2 \in A_{\delta}(A_{\delta-7})^2 \subset A_{\delta}$. By Corollary 3.5 (i) and (ii), for any r in $R''_{\delta-7,\delta-27}$ and any s in $R'_{\gamma,\delta}$, we have: ra^2 , $ra^4 \in R''_{\delta-7,\delta-27}$ and sb, $sba^2 \in R'_{\gamma,\delta}$.

Set $y(u, t) := (ut, tu^2) \in k \bigoplus k$. By Lemma 3.3, $y(u, t) \in R_{\delta-7,\delta}$ if $u \in R'_{r,\delta}$, $t \in R''_{\delta-7,\delta-27}$. Therefore $y(sba^2, r)$, $y(sk, ra^2)$, $y(sb, ra^4) \in R_{\delta-7,\delta}$. Since $x_{\delta-r}(k)$

and $x_{\delta}(k)$ commute, $R_{\delta-7,\delta}$ is an additive subgroup of $k \bigoplus k$. Therefore, $R_{\delta-7,\delta} \ni y(sba^2, r) + y(sb, ra^2) = (0, rs^2a^2b^2(1+a)^2)$ and $R_{\delta-7,\delta} \ni y(sba^2, r) + y(sb, ra^4) = (rsba^2(1+a^2), 0)$. Thus, our claim holds with $c_1 := ab(1+a) \neq 0$ and $c_2 := ba^2(1+a^2) \neq 0$.

3.7. COROLLARY. For each pair (φ, ψ) of roots of the same length there exists a non-zero $c_{\varphi,\psi}$ in k such that

(i) $R_{\varphi} \supset c_{\varphi,\psi}^2 R_{\psi}$ if $\varphi, \psi \in \Sigma_l$,

(ii) $R_{\varphi} \supset c_{\varphi,\psi} R_{\psi}$ if $\varphi, \psi \in \Sigma_s$.

PROOF. (i) Lemma 3.6 (i) applied to (γ, δ) gives $R_{\delta} \supset c_{1}^{2}c_{1}^{2}R_{\delta-27}$, where $0 \neq c_{\gamma} \in R_{\gamma} \subset R'_{\gamma,\delta}$ (we used also the inclusion $R_{\delta-27} \subset R''_{\delta-\gamma,\delta-27}$).

This shows that $c_{\delta,\delta-27}$ exists (and can be taken to be c_1c_7). Note that δ was an arbitrary long root and $\delta - 2\gamma$ makes an angle $\pm 90^{\circ}$ with δ if γ makes an angle $\pm 45^{\circ}$ with δ . Thus, repeating the argument 3 times, we obtain (i).

(ii) We apply Lemma 3.6 (ii) to $(\delta - \gamma, \delta)$ to get that $R_{\gamma} \supset c_2 c_{2\gamma-\delta} R_{\delta-\gamma} =: c_{\gamma,\delta-\gamma} R_{\delta-\gamma}$. Similarly, $R_{\delta-\gamma} \supset c_{\delta-\gamma,-\gamma} R_{-\gamma}$, $R_{-\gamma} \supset c_{-\gamma,\gamma-\delta} R_{\gamma-\delta}$, $R_{\gamma-\delta} \supset c_{\gamma-\delta,\gamma} R_{\gamma}$.

Now we are prepared to complete our Proof of Theorem 1.1 for G of type B_2 .

PROOF OF THEOREM 1.1 FOR G OF TYPE B_2 WHEN char(k) = 2. For every root φ we pick a non-zero c_{φ} in R_{φ} .

By Lemma 3.6 and Corollary 3.7, $R_{\alpha} \supset c_1^2 R_{\alpha+2\beta} (R_{-\beta})^2 \supset c_1^2 c_{\alpha+2\beta,\alpha}^2 c_{-\beta,\alpha+\beta}^2 R_{\alpha} (R_{\alpha+\beta})^2$ and $R_{\alpha+\beta} \supset c_2 R_{\alpha+2\beta} R_{-\beta} \supset c_2 c_{\alpha+2\beta,\alpha}^2 c_{-\beta,\alpha+\beta} R_{\alpha} R_{\alpha+\beta}$.

Set $d_1 =: c_1 c_{\alpha+2\beta,\alpha} c_{-\beta,\alpha+\beta}$, $d_2 := c_2 c_{\alpha+2\beta,\alpha}^2 c_{-\beta,\alpha+\beta}$, $A := d_1 R_{\alpha+\beta}$, $B := d_2 R_{\alpha}$. Then the above inclusions become $d_2^{-1} B \supset d_2^{-1} B A^2$ and $d_1^{-1} A \supset d_1^{-1} A B$. Thus, $B \supset B A^2$, $A \supset A B$.

By Corollary 3.7, $d_2^{-1}c_{\delta,\alpha}^2 B \subset R_{\delta} \subset c_{\alpha,\beta}^{-2} d_2^{-1} B$ for $\delta \in \Sigma_l$ and $d_1^{-1}c_{\tau,\alpha+\beta}A \subset R_{\tau} \subset c_{\alpha+\beta,\tau}^{-1} d_1^{-1}A$ for $\gamma \in \Sigma_s$. This proves the existence of a_{ε} , b_{ε} for all ε in Σ .

Consider now $A' := AA_{\alpha}A_{\alpha+2\beta}A_{-\alpha}A_{-\alpha-2\beta}$, $B' := B(A_{\beta}A_{\alpha+\beta}A_{-\beta}A_{-\alpha-\beta})^2$. Using Corollary 3.5 (iii) and (iv), we see that $B' \supset B'A'^2$ and $A' \supset A'B'$. It is clear that $A' \supset a_1A$ and $B' \supset a_2B$ for some non-zero a_i in k. Using Corollary 3.5 (i), (ii), Lemma 3.6, and the inclusions $B \supset BA^2$, $A \supset AB$, we see that $A' \supset b_1A$ and $B' \supset b_2B$ for non-zero b_i in k, i = 1, 2.

Replacing A, B by A', B', we get $AA_{\delta} \subset A$, $BA_{7}^{2} \subset B$ for all $\delta \in \Sigma_{l}$, $\gamma \in \Sigma_{s}$, and we still have $A^{2}B \subset B$, $AB \subset A$ and (after appropriate change of a_{ϵ} , b_{ϵ}) $Aa_{7} \subset R_{7} \subset Ab_{7}$, $Ba_{\delta} \subset R_{\delta} \subset Bb_{\delta}$ for all $\gamma \in \Sigma_{s}$, $\delta \in \Sigma_{l}$.

Using Lemma 1.3 with N = 4, n = 1, m = 2 and with N = 4, n = 2, m = 1, we find non-zero $a \in A$, $b \in B$ such that $R_{\delta}(aA)^2 \subset R_{\delta}$ and $B_r(bB) \subset R_r$ for all $\delta \in \Sigma_i$, $\gamma \in \Sigma_s$. Replacing A, B by aA, bB (and changing accordingly a_{ϵ} , b_{ϵ}) we gain the additional property: $R_{\delta}A^2 \subset R_{\delta}$, $R_rB \subset R_r$ for all $\gamma \in \Sigma_s$, $\delta \in \Sigma_i$.

Now it is time to use Lemma 1.2 (ii) and then (iii) with m = 2 to obtain new A, B satisfying $A^2 \subset B \subset A$.

We do not loose the property that $AA_{\delta} \subset A$ and $BA_{r}^{2} \subset B$ for all $\delta \in \Sigma_{l}$, $\gamma \in \Sigma_{s}$. Since $A_{r} \supset R_{\delta-2r}R_{2r-\delta}$ and $A_{r} \supset R_{\delta-r}R_{r-\delta}$, we have, in particular, that $AR_{\delta}R_{-\delta} \subset A$ and $BR_{r}^{2}R_{-r}^{2} \subset B$ for all $\gamma \in \Sigma_{s}$, $\delta \in \Sigma_{l}$.

4. Proof of Theorem 1.1 for G of type B_n $(n \ge 3)$, C_n $(n \ge 3)$, and F_4 .

4.1. LEMMA. Let $\varphi, \psi \in \Sigma$ have the same length. Then there exists a non-zero $c_{\varphi,\psi}$ in k such that $R_{\varphi} \supset c_{\varphi,\psi}R_{\psi}$. When G is of type $C_n, \varphi, \psi \in \Sigma_l$, and p = 2, we can choose $c_{\varphi,\psi}$ in k^2 .

PROOF. If both φ and ψ lie in a subsystem of type A_2 or B_2 , the first claim was established in Lemma 2.1 (ii) and Theorem 1.1 for G of type B_2 , respectively. In the general case there exist roots $\gamma_1, \dots, \gamma_m$ in Σ of the same length as φ and ψ such that $\varphi = \gamma_1, \psi = \gamma_m$ and γ_i, γ_{i+1} lie in a subsystem Σ_i of type A_2 or B_2 for $i = 1, 2, \dots, m-1$. Since the claim holds in every Σ_i , it holds in Σ as well, by induction on m. When G is of type $C_n, \varphi, \psi \in \Sigma_l$, and p = 2, we can use Lemma 3.7 (i).

4.2. Now we pick $\alpha \in \Sigma_i$ and $\beta \in \Sigma_s$ which are simple roots in a subsystem of type B_2 . By Theorem 1.1, there are additive subgroups A and B of k and elements a_{α} , b_{α} , a_{β} , b_{β} of k such that $a_{\alpha}B \subset R_{\alpha} \subset b_{\alpha}B$, $a_{\beta}A \subset R_{\beta} \subset b_{\beta}A$ and, moreover,

(4.3)
$$AR_{\alpha}R_{-\alpha} \subset A , \qquad B(e(\Sigma)/p)(R_{\beta}R_{-\beta})^{p} \subset B,$$

$$(4.4) AB \subset A , BA^{p} \subset B ,$$

where $e(\Sigma) = 2$, and p = 1 or 2 (are integers depending on char(k)).

By Lemma 4.1, $a_{\delta}B \subset R_{\delta} \subset b_{\delta}B$ and $a_{\gamma}A \subset R_{\gamma} \subset b_{\gamma}A$ for all $\delta \in \Sigma_{\iota}$ and $\gamma \in \Sigma_{s}$, where $a_{\gamma} := a_{\beta}c_{\tau,\beta} \neq 0$, $b_{\gamma} := b_{\beta}c_{\beta,\gamma}^{-1}$, $a_{\delta} := a_{\alpha}c_{\delta,\alpha} \neq 0$, $b_{\delta} := b_{\alpha}c_{\alpha,\delta}^{-1}$.

Applying Lemma 1.3 with $N := \operatorname{card}(\Sigma_s)$, n = 1, m = p and with $N := \operatorname{card}(\Sigma_l)$, n = p, m = 1, we find non-zero a in A and b in B such that $R_s(aA)^p \subset R_s$ and $R_r(bB) \subset R_r$ for all δ in Σ_l and γ in Σ_s .

Replacing A and B by Aa and Bb and changing a_{ϵ} and b_{ϵ} , we have (4.3), (4.4), and:

(4.5) $a_{\beta}B \subset R_{\beta} \subset b_{\beta}B$ and $R_{\beta}A^{p} \subset R_{\beta}$ for all δ in Σ_{i} ;

(4.6)
$$a_{\gamma}A \subset R_{\gamma} \subset b_{\gamma}A$$
 and $R_{\gamma}B \subset R_{\gamma}$ for all γ in Σ_{s} .

Since every short root γ in Σ can be included as a simple root in a subsystem of type B_2 or A_2 , we have $B_r(2/p)(R_rR_{-7})^p \subset B_r$ for an additive subgroup B_r of k such that $u_rB \subset B_r \subset v_rB$ with non-zero u_r , v_r in k (for

 $\gamma = \beta$ we can take $B_{\tau} = B$, see (4.3)). It follows that $B_{\tau}C_{\tau} \subset B_{\tau}$, where C_{τ} is the subring of k generated by $(2/p)(R_{\tau}R_{-\tau})^p$. Let C_s be the product of all C_{τ} , $\gamma \in \Sigma_s$. Then $(BC_s)C_{\tau} \subset BC_s$ for all γ in Σ_s . Replacing B by its additive subgroup generated by BC_sc for some $c \neq 0$ (and changing a_s , b_s), we get $BC_{\tau} \subset B$ for all γ in Σ_s , and we still have (4.3)-(4.6).

Similarly, for every long root δ in Σ there are non-zero u_{δ} , v_{δ} in kand an additive subgroup A_{δ} of k such that $A_{\delta}(R_{\delta}R_{-\delta}) \subset A_{\delta}$ and $u_{\delta}A \subset A_{\delta} \subset$ $v_{\delta}A$, hence $A_{\delta}C_{\delta} \subset A_{\delta}$, where C_{δ} is the subring of k generated by $R_{\delta}R_{-\delta}$. Let C_{l} be the product of all C_{δ} , $\delta \in \Sigma_{l}$. Then $(AC_{l})C_{\delta} \subset (AC_{l})$ for all δ in Σ_{l} . Moreover, $u_{l}A \subset AC_{l} \subset v_{l}A$ for non-zero u_{l} , v_{l} in k. Replacing A by the additive subgroup generated by $AC_{l}v_{l}^{-1}$ (and changing a_{γ} , b_{γ}), we get $AC_{\delta} \subset A$ for all δ in Σ_{l} and we still have (4.3)-(4.6) and $BC_{\gamma} \subset B$ for all γ in Σ_{δ} .

If Σ_i is connected (type B_n , $n \ge 3$, or F_i), then there are long roots φ and ψ in Σ such that $\varphi + \psi$ is also in Σ_i . We have $[x_{\varphi}(t), x_{\psi}(u)] = x_{\varphi+\psi}(\pm tu)$ for all t, u in k, hence $R_{\varphi+\psi} \supset R_{\varphi}R_{\psi}$. By (4.5), $Bb_{\varphi+\psi} \supset R_{\varphi+\psi} \supset R_{\varphi}R_{\psi} \supset a_{\varphi}a_{\psi}BB$, so $cBB \subset B$ with $c := a_{\varphi}a_{\psi}/b_{\varphi+\psi} \neq 0$. By Lemma 1.2 (v) with m := 2, we can find a non-zero b_0 in B such that $(b_0B)(b_0B) \subset (b_0B)$. Replacing B by b_0B (and changing a_{δ} , b_{δ}), we can assume that $BB \subset B$ (when Σ_i is connected).

Similarly, if Σ_s is connected (type C_n , $n \ge 3$, or F_4), then there are $\varphi, \psi, \varphi + \psi \in \Sigma_s$, hence $R_{\varphi+\psi} \supset R_{\varphi}R_{\psi}$, so $A \supset cAA$ with $c := a_{\varphi}a_{\psi}/b_{\varphi+\psi} \neq 0$. By Lemma 1.2 (iv) with m = 2, $(a_0A)(a_0A) \subset a_0A \neq 0$ for some a_0 in A. Replacing A by a_0A (and changing a_7 , b_7) we have $AA \subset A$.

Still (4.3)-(4.6) hold and so do Theorem 1.1 (i) and (ii). To get the last part of Theorem 1.1 (iii), we use Lemma 1.2 (ii) and (iii) with m = 2 when p = 2, and we just replace both A and B by AB when p = 1 (and change $a_{\epsilon}, b_{\epsilon}$).

5. Proof of Theorem 1.1 for G of type G_2 . The root system Σ of type G_2 consists of 6 short roots $(\pm\beta, \pm(\alpha + \beta), \pm(2\beta + \alpha))$ and 6 long roots $(\pm\alpha, \pm(\alpha + 3\beta), \pm(2\alpha + 3\beta))$, see Figure 2.

We use, sometimes without explicit reference, commutation relations given in [4, \S 10, after Lemma 57].

For every root ε in Σ , we fix a non-zero c_{ε} in $R_{\varepsilon} := R_{\varepsilon}(H)$.

5.1. LEMMA. There is a subring B of k such that $0 \neq R_s B \subset R_s$ and $BR_s R_{-s} \subset B$ for every δ in Σ_1 .

PROOF. It is a direct consequence of the results of Section 2 (namely, Theorem 1.1 for G of type A_2) applied to the algebraic group generated by all long root subgroups (which is of type A_2).

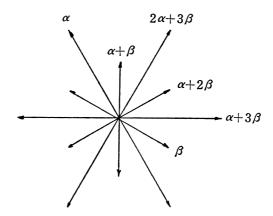


FIGURE 2. Root system of type G_2 .

5.2. LEMMA. For every short root γ in Σ there exist non-zero a_{τ} , b_{τ} , d_{τ} in k such that:

(i) $3b_r R_r \subset B$; (ii) $a_r B \subset R_r$; (iii) $4d_r R_r^3 \subset B$.

PROOF. Let δ be a long root forming angle 30° with γ . Pick a non-zero b in B.

We have $[x_{\tau}(t), x_{\delta-\tau}(u)] = x_{\delta}(\pm 3tu)$ for all t, u in k. Therefore, $R_{\delta} \supset 3R_{\tau}R_{\delta-\tau} \supset 3c_{\delta-\tau}R_{\tau}$. By Lemma 5.1, $B \supset BR_{-\delta}R_{\delta} \supset bc_{-\delta}R_{\delta}$. Thus, (i) holds with $b_{\tau} := bc_{-\delta}c_{\delta-\tau} \neq 0$.

Part (ii) will be proved separately in the following three cases: $char(k) \neq 2$; card(B) = 2; char(k) = 2 and card(B) > 2.

When char(k) $\neq 2$, we take any t in $R_{37-2\delta}$ and u in $R_{\delta-7}$. Then $H \ni y(t, u) := [x_{37-2\delta}(t), x_{\delta-7}(u)] = x_{27-\delta}(\pm tu)x_7(\pm tu^2)x_{\delta}(\pm tu^3)x_{37-\delta}(\pm t^2u^3)$, hence $H \ni z(t, u) := y(-t, -u)^{-1}y(t, u) = x_7(\pm 2tu^2)x_{37-\delta}(\pm 2t^2u^3)$ and $H \ni z(t, u)z(t, -u) = x_7(\pm 4tu^2)$. Therefore, $R_7 \supset 4R_{37-2\delta}R_{\delta-7}^2 \supset 4Bc_{37-2\delta}c_{\delta-7}^2$, so (ii) holds with $a_7 := 4c_{37-\delta}c_{\delta-7}^2 \neq 0$.

When $\operatorname{card}(B) = 2$, then $B = \{0, 1\}$ and we have (ii) with $a_r := c_r$.

When char(k) = 2 and card(B) > 2, we pick $b \neq 0, 1$ in B. For any a in $R_{-\delta}$, d in R_{δ} and u in R_{7} we have: $H \ni y_{1}(a, d) := [x_{\delta}(d), [x_{-\delta}(a), x_{7}(u)]] = [x_{\delta}(d), x_{7-\delta}(ua)x_{27-\delta}(u^{2}a)x_{37-\delta}(u^{3}a)x_{37-2\delta}(u^{3}a^{2})] = [x_{\delta}(d), x_{7-\delta}(ua)][x_{\delta}(d), x_{37-2\delta}(u^{3}a^{2})] = x_{7}(uad)x_{27-\delta}(u^{2}a^{2}d)x_{37-2\delta}(u^{3}a^{3}d)x_{37-\delta}(u^{3}a^{3}d^{2})x_{87-\delta}(u^{3}a^{2}d)$, hence $H \ni y_{2}(a, d) := y_{1}(ab, d)y_{1}(a, db^{2})^{-1} = x_{7}(uad(b+b^{2}))x_{37-2\delta}(u^{3}a^{3}d(b^{3}+b^{2}))x_{37-\delta}(u^{3}a^{3}d^{2}(b^{3}+b^{4}))$, and, finally, $H \ni y_{2}(ab^{3}, d)y_{2}(ab^{2}, db^{3})y_{2}(ab, db^{3})y_{2}(a, db^{6}) = x_{7}(uad(b+b^{2})(b^{3}+b^{5}+b^{4}+b^{6})) = x_{7}(uadb^{4}(1+b^{4})).$

Thus, $R_{\tau} \supset R_{\tau}R_{\delta}R_{-\delta}b^4(1+b^4) \supset c_{\tau}(Bc_{\delta})c_{-\delta}b^4(1+b^4) = Ba_{\tau}$, where $a_{\tau} := c_{\tau}c_{\delta}c_{-\delta}b^4(1+b^4) \neq 0$.

To prove (iii) we consider the same $z(t, u) = x_{\tau}(\pm 2tu^2)x_{3\tau-\delta}(\pm 2t^2u^3) \in H$ as in the proof of (ii). Then $H \ni z(t, u)z(-t, u) = x_{3\tau-\delta}(\pm 4t^2u^3)$. Therefore, $\begin{array}{l} R_{3^{\gamma}-\delta}\supset 4R_{3^{\gamma}-2\delta}^{2}R_{\delta-\gamma}^{3}\supset 4c_{3^{\gamma}-2\delta}^{2}R_{\delta-\gamma}^{3}. \quad \text{Since } bc_{\delta-3^{\gamma}}R_{3^{\gamma}-\delta} \subset BR_{3^{\gamma}-\delta}R_{\delta-3^{\gamma}} \subset B \text{ by Lemma} \\ 5.1, \text{ we get } 4d_{\delta-\gamma}R_{\delta-\gamma}^{3} \subset B \text{ with } d:=bc_{\delta-3^{\gamma}}c_{3^{\gamma}-2\delta}^{2}. \quad \text{Similarly, } 4d_{\gamma}R_{\gamma}^{3} \subset B \text{ with } \\ \text{some } d_{\gamma} \neq 0 \text{ in } k. \end{array}$

5.3. LEMMA. Let γ be a short root in Σ and δ form angle $\pm 150^{\circ}$ with γ . Let $C_{\tau} := 6R_{\tau}R_{-\tau}$. Then $R_{s}C_{\tau}C_{\tau}C_{\tau} \subset R_{s}$.

PROOF. Let $t, t_i \in R_r$, $u \in R_s$, $s, s_i \in R_{-r}$. Then $H \ni z_1(t) := [x_s(u), x_r(t)] = x_{s+r}(\pm tu)x_{s+2r}(\pm t^2u)x_{s+3r}(\pm t^3u)x_{2s+3r}(\pm t^3u^2)$, hence $H \ni z_2(t_1) := z_1(t_1)^{-1} \times z_1(t_2)^{-1}z_1(t_1 + t_2) = x_{s+3r}(\pm 3(t_1 + t_2)t_1t_2u)x_{s+2r}(\pm 2t_1t_2u)x_{2s+3r}(\pm u^23t_1t_2(t_1 + t_2)) \times x_{2s+3r}(\pm 3u^2t_1t_2^2)$, hence $H \ni z_3 := z_2(t_1 + t_3)z_2(t_1)^{-1}z_2(t_3)^{-1} = x_{s+3r}(\pm 6t_1t_2t_3u) \times x_{2s+3r}(\pm 6t_1t_2t_3u^2) = x_{s+3r}(u')x_{2s+3r}(\pm u'u)$, where $u' := \pm 6t_1t_2t_3u$. Similarly, $H \ni z_4(s) := [z_3, x_{-r}(s)] = [x_{s+3r}(u'), x_{-r}(s)]$, hence $H \ni z_5(s_1) := z_4(s_1)^{-1}z_4(s_2)^{-1} \times z_4(s_1 + s_2)$, $H \ni z_6(u) := z_5(s_1 + s_3)z_5(s_1)^{-1}z_5(s_3)^{-1} = x_5(\pm 6s_1s_2s_3u')x_{2s+3r}(\pm 6s_1s_2s_3u')$. Finally, $H \ni z_6(u)z_6(-u)^{-1} = x_6(\pm 12s_1s_2s_3u')$, hence $R_s \ni 12s_1s_2s_3u' = \pm 72s_1s_2s_3 \times t_1t_2t_3u$. Since we have this for arbitrary $t_i \in R_r$, $s_i \in R_{-r}$, $u \in R_s$, it follows that $R_s \supset C_r C_r C_r R_s$.

PROOF OF THEOREM 1.1 FOR G OF TYPE G_2 WHEN $\operatorname{char}(k) \neq 3$. By Lemma 5.2 (i), (ii), $a_r B \subset R_r \subset (3b_r)^{-1}B$ for all short roots γ in Σ . By Lemma 1.3 with A := B, n = m = 1, $N := \operatorname{card}(\Sigma_s) = 6$, we have: $R_r(bB) \subset R_r$ for all short γ with some $b \neq 0$ in B. Replacing B by Bb and $(3b_r b)^{-1}$ by b'_r , we get $R_r B \subset R_r$, $R_r \subset b'_r B$ for all γ in Σ_s and we still have $R_s B \subset R_s$ and $BR_s R_{-s} \subset B$ for all δ in Σ_i .

Let γ be in Σ_s and δ make an angle 30° with γ . Then $3c_{\delta-27}c_{\delta-7} \in 3R_{\delta-27}R_{\delta-7} \subset R_{2\delta-37}$, $3c_7c_{\delta-7} \subset R_{\delta}$, and $3c_{-7}c_{\delta-27} \in R_{\delta-37}$, hence $(3c_7c_{\delta-7})(3c_{-7}c_{\delta-27}) \in R_{\delta}R_{\delta-37} \subset R_{2\delta-37}$. So both $3c_{\delta-27}c_{\delta-7}$ and $(3c_{\delta-27}c_{\delta-7})(3c_{-7}c_{-7})$ are in $R_{2\delta-37}$. Since $BR_{2\delta-37}R_{37-2\delta} \subset B$, we have $R_{2\delta-37} \subset Bd_1$ for some $d_1 \neq 0$ in k. Writing $3c_{\delta-27}c_{\delta-7} = b_1d_1$ and $(3c_{\delta-27}c_{\delta-7})(3c_7c_{-7}) = b_2d_1$ with b_1 and b_2 in B, we see that $c_7c_{-7} = b_2/3b_1$. Since $c_7c_{-7}B \subset R_7R_{-7} \subset Rd_2$ for some $d_2 \neq 0$ in k, we can use Lemma 1.3 with n = m = N = 1, A = B and get $b_3R_7R_{-7} \subset b_3d_2B \subset c_7c_{-7}B$ for some $b_3 \neq 0$ in B. Therefore $3b_1b_3R_7R_{-7} \subset 3b_1c_7c_{-7}B \subset b_2B \subset B$, hence $u_7R_7R_{-7} \subset B$ for $0 \neq u_7 := 3b_1b_3 \in B$.

Let u be the product of all u_{γ} , $\gamma \in \Sigma_s$. Then $uR_{\gamma}R_{-\gamma} \subset B$ for all γ in Σ_s and $0 \neq u \in B$. Replacing B by uB, we have $BBR_{\gamma}R_{-\gamma} \subset B$ for all γ in Σ_s . Still we have $R_sB \subset R_s$ for all ε in Σ and $BR_sR_{-s} \subset B$ for all δ in Σ_l .

If char(k) = 2, we are done. Otherwise, $C_r := 6R_rR_{-r} \neq 0$, and $R_sC_rC_rC_r\subset R_s$ by Lemma 5.3, where δ makes angle 150° with γ , for any short root γ in Σ . Let $B_r := R_s \cup R_sC_r \cup R_sC_rC_r$. Then $B_rC_r \subset B_r$. Since $R_s \subset d_sB$ for some $d_s \neq 0$ in k, we have $B^4B_r \subset d_sB \cup d_sB \cup d_sB = d_sB$, hence $e_rB_r \subset B$ for some $e_r \neq 0$ in k.

Let B' be the product of all $e_r B_r$, $\gamma \in \Sigma_s$. Then $B' \subset B$ and $B' C_r \subset B'$

for all γ in Σ_s . Replacing *B* by its subring generated by *BB'* we have $BC_{\gamma} \subset B$ for all γ in Σ_s . Still we have $R_{\varepsilon}B \subset R_{\varepsilon}$ for all ε in Σ and $BR_sR_{-\delta} \subset B$ for all δ in Σ_l .

PROOF OF THEOREM 1.1 FOR G OF TYPE G_2 WHEN $\operatorname{char}(k) = 3$. Let B be as in Lemma 5.1. Since 3 = 0 in k, the algebraic subgroup of G generated by all short root subgroups is also of type A_2 . So $R_7A \subset R_7$ and $AR_7R_7 \subset A$ for some non-zero subring A of k and all short roots γ in Σ .

Using $R_{\beta}A \subset R_{\beta}$, $AR_{\beta}R_{-\beta} \subset A$, and Lemma 5.2 (ii), (iii) with $\gamma = \beta$, we get $A \supset c_1B$ and $B \supset c_2A^3$ with non-zero c_i in k.

Let B_0 (resp. A_0) be the additive subgroup of k generated by BA^3 (resp., by BA). Then $A_0R_{\varepsilon}R_{-\varepsilon} \subset A_0$, $B_0R_{\delta}R_{-\delta} \subset B_0 \supset B_0(R_7R_{-7})^3$ for all $\varepsilon \in \Sigma$, $\delta \in \Sigma_1$, $\gamma \in \Sigma_s$.

Since $(BA)^{3} \subset BA^{3} \subset BA$, it follows that $A_{0}^{3} \subset B_{0} \subset A_{0}$. From $c_{1}B \subset A$ and $c_{2}A^{3} \subset B$ it follows that $BA \subset AAc_{1}^{-1} \subset Ac_{1}^{-1}$ and $BA^{3} \subset BBc_{2}^{-1} \subset Bc_{2}^{-1}$, hence $c_{2}B_{0} \subset B$, $c_{1}A_{0} \subset A$. Since A and B are subrings of k, so are A_{0} and B_{0} .

Using Lemma 1.3 with N = 6, m = 3, n = 1, $A = A_0$, $B = B_0$ and then with N = 6, m = 1, n = 3, $A = B_0$, $B = A_0$, we find non-zero a in A_0 , b in B_0 such that $R_7(bB_0) \subset R_7$ and $R_\delta(aA_0)^3 \subset R_\delta$ for all $\gamma \in \Sigma_s$, $\delta \in \Sigma_l$. Let $c := a^3b \in A_0^3B_0 \subset B_0B_0 \subset B_0 \subset A_0$. Then $R_\delta(A_0c)^3 \subset R_\delta(A_0a)^3 \subset R_\delta$ and $R_7(cB_0) \subset R_7(bB_0) \subset R_7$. Moreover, $(A_0c)^3 \subset B_0c \subset A_0c$.

Replacing A and B by A_0c and B_0c , we get $A^3 \subset B \subset A$, $BB \subset B$, $AA \subset A$, $R_sA^3 \subset R_s$ for all $\delta \in \Sigma_l$ and $R_rB \subset R_r$ for all $\gamma \in \Sigma_s$. Moreover, $B(R_rR_{-r})^3 \subset B$ and $A(R_sR_{-s}) \subset A$ for all γ in Σ_s and ε in Σ .

6. Existence of groups described by Theorem 1.1. For any subsets A and B of k let $G^{\mathbb{E}}(A, B)$ denote the subgroup of G(k) generated by all $x_{r}(a)$ and $x_{\delta}(b)$ with δ in Σ_{l} , γ in Σ_{s} , a in A, and b in B. In particular, $G^{\mathbb{E}}(A, A) = G^{\mathbb{E}}(A)$, Evidently, $R_{r}(G^{\mathbb{E}}(A, B)) \supset A$ and $R_{\delta}(G^{\mathbb{E}}(A, B)) \supset B$ for all γ in Σ_{s} and δ in Σ_{l} .

6.1. THEOREM. Let A and B be additive subgroups of k satisfying Theorem 1.1 (iii), (iv). Then $R_{\gamma}(G^{E}(A, B)) = A$ and $R_{\delta}((G^{E}(A, B)) = B$ for all long roots δ in Σ and short roots γ in Σ .

To prove this theorem, we will exhibit a certain subgroup G(A, B)of G(k) such that $G(A, B) \supset G^{\varepsilon}(A, B)$ and $R_{r}(G(A, B)) = A$ and $R_{\delta}(G(A, B)) = B$ for all $\gamma \in \Sigma_{s}$ and $\delta \in \Sigma_{l}$.

We use here that G defined in the introduction over k may be defined as a Chevalley group scheme over the integers Z (see [17]). There is a matrix representation $G \subset SL_N$ such that G is defined by polynomial equations in the matrix entries with integral coefficients.

Given any commutative ring R (with or without 1) we define G(R)as the group of all ring morphisms from the ring of regular functions on G vanishing at the identity of G to the ring R. If R is an ideal of a ring R' then G(R) is the kernel of $G(R') \rightarrow G(R'/R)$. If R is a subring of k, the group G(R) can be also defined as $G(k) \cap SL_N(R)$, where $SL_N(R)$ is the group of all matrices $(a_{i,j})$ with the determinant 1 such that $a_{i,j}$, $a_{i,i} - 1 \in R$ for all $i \neq j$.

The monomorphisms x_{ϵ} ($\epsilon \in \Sigma$) are also defined over Z. Moreover, the corresponding maps of the rings of regular functions are ring morphisms *onto* the polynomial ring Z[t]. Therefore we have

6.2. LEMMA. For any subring R of k and any root ε in Σ , we have $G^{\mathbb{E}}(R) \subset G(R)$ and $R_{\varepsilon}(G(R)) = R$.

This lemma implies Theorem 6.1 in the case A = B. In particular, the theorem holds when p = 1. To prove it when $p \neq 1$, we consider a few cases separately.

PROOF OF THEOREM 6.1 FOR G OF TYPES F_4 AND G_2 . We assume that $\operatorname{char}(k) = 2$ in the case of type F_4 and $\operatorname{char}(k) = 3$ in the case of type G_2 . Then there is a bijection $\rho: \Sigma \to \Sigma$ and a non-central isogeny (defined over $\mathbb{Z}/p\mathbb{Z}$) $\iota: G \to G$ such that $\rho(\Sigma_l) = \Sigma_s$, $\rho(\Sigma_s) = \Sigma_l$, $\iota x_\delta(t) = x_{\rho\delta}(\pm t)$, and $\iota x_{\gamma}(t) = x_{\rho\gamma}(\pm t^p)$) for all $\delta \in \Sigma_l$, $\gamma \in \Sigma_s$, and $t \in k$ (see, for example, [4]).

For any subrings A and B of k such that $A^{p} \subset B \subset A$, let G(A, B) be the set of all g in G(A) such that $\iota(g) \in G(B)$. Then $G(A, B) \supset G^{\mathbb{E}}(A, B)$, $R_{\delta}(G(A, B)) = B$ (since $B \subset A$), and $R_{\gamma}(G(A, B)) = A$ (since $A^{p} \subset B$), for all $\gamma \in \Sigma_{\delta}$ and $\delta \in \Sigma_{l}$.

Therefore $R_{\delta}(G^{E}(A, B)) = B$ and $R_{\gamma}(G^{E}(A, B)) = A$.

6.3. "PSEUDO-ORTHOGONAL" GROUPS. To prove Theorem 6.1 for G of types B_n and C_n (with p = 2) we use some of (*, ε , A)-orthogonal groups of [8].

Namely, let $n \ge 1$, Q a n by n integral matrix, A a commutative ring (with or without 1), B an A^2 -submodule of A containing 2A. Then let O(Q; A, B) denote the set of matrices g in $GL_n(A)$ such that $g^*Qg - Q \in \mathscr{D}$, where * means transposition and \mathscr{D} is the set of all symmetric matrices over A with the diagonal entries in B.

Since \mathscr{D} is an additive subgroup and $a^*ba \in \mathscr{D}$ for any $b \in \mathscr{D}$ and any matrix *a* over *A*, the set O(Q; A, B) is a subgroup of $GL_n(A)$.

6.4. PROOF OF THEOREM 6.1 FOR G OF TYPES B_2 WITH $AA \subset A$ AND C_n $(n \geq 3)$. Consider the ring of 2n by 2n integral matrices with the usual matrix units $e_{i,j}$ and the matrix $Q := \sum_{i=1}^{n} e_{i,2n+1-i}$. The group

438

 $Sp_{2n} = \{g \in SL_{2n}: g^*(Q-Q^*)g = Q-Q^*\}$ can be considered as an affine group scheme over Z. It is a simply connected almost simple Chevalley group scheme of type C_n ($C_2 = B_2$ when n = 2). The root elements with respect to the torus of diagonal matrices are $y_{i,2n+1-1}(t) := 1_{2n} + te_{i,2n+1-i}$ (correspond to the long roots) and $y_{i,j}(t) := 1_{2n} + te_{i,j} \pm te_{2n+1-j,2n+1-i}$ with i + j < 2n + 1(correspond to the short roots).

Let now A and B be as in Theorem 6.1 and char(k) = 2.

For any G of type C_n there is a bijection ρ from Σ to the set $\{(i, j): 1 \leq i, j \leq 2n, i + j \leq 2n + 1\}$ and a central isogeny $\iota: Sp_{2n} \to G$ over Z such that $\iota y_{\rho_{\varepsilon}}(t) = x_{\varepsilon}(t)$ for all ε in and all t. The kernel of ι is either trivial or isomorphic to the algebraic group of square roots of 1.

Let now A and B be as in Theorem 6.1, $AA \subset A$, and char(k) = 2. Set $G(A, B) := \iota(Sp_{2n}(A, B))$, where $Sp_{2n}(A, B) := O(Q; A, B)$ (see 6.3). Then $G(A, B) \supset G^{\mathbb{E}}(A, B)$, $R_{r}(G(A, B)) = \{t \in k: y_{\rho_{T}}(t) \in O(Q; A, B)\} = A$, and $R_{\delta}(G(A, B)) = \{t \in k: y_{\rho_{\delta}}(t) \in O(Q; A, B)\} = B$ for all γ in Σ_{s} and δ in Σ_{l} .

6.5. PROOF OF THEOREM 6.1 FOR G OF TYPE B_2 WITH $BB \subset B$ AND TYPE B_n $(n \ge 3)$. Let $Q := \sum_{i=1}^n e_{i,2n+1-i} + e_{2n+1,2n+1}$. For any commutative ring R, let $SO_{2n+1}(R) := O(Q; R, 0) \cap SL_{2n+1}(R)$ (see 6.3).

Then SO_{2n+1} can be considered as an affine group scheme over Z. It is a simple Chevalley group of type B_n . The root elements with respect to the torus of diagonal matrices are

$$z_{i,2n+1-i}(t) := 1_{2n+1} - t^2 e_{i,2n+1-i} + t e_{2n+1,2n+1-i} - 2t e_{i,2n+1}$$

(correspond to the short roots) and

 $z_{i,j}(t) := 1_{2n+1} + te_{i,j} - te_{2n+1-j,2n+1-i} \hspace{0.2cm} ext{with} \hspace{0.2cm} i+j < 2n+1$

(correspond to the long roots).

For any G of type B_n there is a bijection ρ from Σ to the set $\{(i, j): 1 \leq i, j \leq 2n, i + j \leq 2n + 1\}$ and a central isogeny $\iota: G \to SO_{2n+1}$ over Z such that $\iota z_{\rho_{\ell}}(t) = x_{\epsilon}(t)$ for all ϵ in Σ and all t. The kernel of ι is either trivial or isomorphic to the algebraic group of square roots of 1.

For any commutative ring R of characteristic 2, every matrix in $SO_{2n+1}(R)$ has the form $\begin{pmatrix} g & 0 \\ u & 1 \end{pmatrix}$, where g is in $Sp_{2n}(R)$ and u is a 2*n*-row over R. It gives a non-central isogeny $\iota': SO_{2n+1} \to Sp_{2n}$ over $\mathbb{Z}/2\mathbb{Z}$. We have

$$\mathfrak{c}' z_{i,j}(t) = egin{cases} y_{i,j}(t) & ext{when} \quad i+j < 2n+1 \ y_{i,j}(t^2) & ext{when} \quad i+j = 2n+1 \end{cases}$$

for all t in k.

Let now A and B be as in Theorem 6.1 and p = 2. char(k) = 2 and

 $BB \subset B$. Set $G(A, B) := \{g \in G(A): \iota'\iota(g) \in Sp_{2n}(B, A^2)\}$ (see 6.4).

Then $G(A, B) \supset G^{E}(A, B)$, $R_{r}(G(A, B)) = A$, and $R_{\delta}(G(A, B)) = B$ for all γ in Σ_{s} and δ in Σ_{l} .

6.6. PROOF OF THEOREM 6.1 FOR G OF TYPE B_2 WITH p = 2. Let A' (resp. B') be the subring of k generated by A (resp. B). By 6.4, there is a subgroup H_1 of G(k) such that $H_1 \supset G^E(A', B)$, $R_r(H_1) = A'$, and $R_{\delta}(H_1) = B$ for all γ in Σ_s and δ in Σ_l . By 6.5, there is a subgroup H_2 of G(k) such that $H_2 \supset G^E(A, B')$, $R_r(H_2) = A$, and $R_{\delta}(H_2) = B'$ for all γ in Σ_s and δ in Σ_l .

Set $G(A, B) := H_1 \cap H_2$. Then $G(A, B) \supset G^{\mathbb{E}}(A, B)$, $R_r(G(A, B)) = A$, and $R_{\delta}(G(A, B)) = B$ for all γ in Σ_s and δ in Σ_l .

7. Full subsets of k. The following lemmas will be used in next sections.

7.1. LEMMA. (i) If R is a full subset of k, then so is tR for any non-zero t in k;

(ii) if C is a full subring of k and t_1, \dots, t_m are non-zero elements of k, then there exists a non-zero c in C such that $t_iC \supset cC$ for $i = 1, \dots, m$.

PROOF. The statement (i) is evident; (ii) is contained in [7, Lemma 4].

7.2. LEMMA. Let A and B be subsets of k such that A is full, $BA^2 \subset B$, and $Bk^2 = k$. Then:

(i) B is a full subset of k;

(ii) for any non-zero t_1, \dots, t_m in k, the intersection B' of all Bt_i is full and $B'k^2 = k$.

PROOF. (i) Fix a non-zero b_0 in *B*. Given any *t* in *k*, we can write $tb_0 = bu^2$ with *b* in *B* and *u* in *k*. Since *A* is full in *k*, we can write $u = a_1/a_2$ with a_i in *A* and $a_2 \neq 0$. Then $t = ba_1^2/b_0a_2^2$ with both ba_1^2 and $b_0a_2^2$ in *B*. Thus, *B* is full.

(ii) Let z be in k. Since $Bk^2 = k$, we can write $z/t_i = b_i u_i^2$ for $i = 1, \dots, m$ with b_i in B and u_i in k. Since A is full, $u_i = v_i/w_i$ with v_i , w_i in A. Let w be the product of all w_i . Then $zw^2 = t_i b_i v_i^2 (w/w_i)^2 \in t_i B$ for all $i = 1, \dots, m$, so $zw^2 \in B'$, hence $z \in B'k^2$. Thus, $k = B'k^2$. It is clear that $B'A^2 \subset B'$. By (i), B' is full.

7.3. LEMMA. Let F be a field but not an algebraic extension of a finite field. Then there exists a full subring A of k and a non-trivial homomorphism N of the multiplicative group of F into the additive group Q of the rational numbers such that $N(a) \ge 0$ for all a in A.

PROOF. Let X be a trancendence basis of F over its prime subfield

 F_0 . Let A_0 be the integers when X is empty, and $A_0 = F_0[X]$, the polynomial ring, otherwise. Let A be the integral closure of A_0 in F, i.e. the set of all roots in F of all monic polynomials in t with coefficients in A_0 .

Fix $x \in X$ when X is not empty and set $x = 2 \in A_0$ otherwise. We define $N_0(a) = n$ for $0 \neq a \in A_0$, if x^n is the maximal power of x dividing a in A_0 . We define $N_0(a_1/a_2) := N_0(a_1) - N_0(a_2)$ for non-zero a_i in A_0 .

For any z in F, $z \neq 0$, let $f_z(t)$ be the monic polynomial in t, with coefficients in the field of fractions of A_0 , of the minimal degree deg(z) such that $f_z(z) = 0$. We define $N(z) := N_0(f_z(0))/\text{deg}(z)$; it is a rational number.

If $a \in A$, then $f_a(t) \in A_0[t]$, so $f_a(0) \in A$ hence $N(a) = N_0(f_a(0))/\deg(a) \ge 0$.

For any non-zero z, z' in F we have $f_z(0)^{d/\deg(z)}f_{z'}(0)^{d/\deg(z')} = f_{zz'}(0)^{d/\deg(zz')}$ with some $d \neq 0$ divisible by deg(z), deg(z'), deg(zz'), so N(zz') = N(z) + N(z'). The homomorphism N is not trivial, because $N(x) = 1 \neq 0$.

Let us check now that A is full in F. For any $z \neq 0$ in F we can find a non-zero a_0 in A_0 such that $a_0 f_z(t) \in A_0[t]$. Let a be the leading coefficient of $a_0 f_z(t)$. Then $0 \neq a \in A$ and $a^{\deg(z)-1} f_z(t/a) a_0$ is a monic polynomial in t with coefficients from A_0 with a root za, so $za \in A$. Thus, A is full and Lemma 7.3 is proved.

For the rest of this section, char(k) = 2.

7.4. NOTATION. For any finite subset $S \subset k$, let v_s denote the product of all y in S. In particular, $v_s = 1$ for the empty subset S.

7.5. LEMMA. There is a set $Y_0 \subset k$ such that the all v_s , finite $S \subset Y_0$, form a basis for the vector space k over k^2 .

PROOF. We call a subset $Y \subset k$ algebraically almost independent (AAI), if all v_s , S a finite subset of Y, are linearly independent over k^2 . (Note that k is an algebraic extension of k^2 .) It is clear, that the union of any chain of AAI subsets of k is again AAI. Also the empty subset of k is AAI. By Zorn's lemma, there is a maximal AAI $Y_0 \subset k$.

Let V be the linear subspace of k over k^2 spanned by all v_s with finite $S \subset Y_0$. We have to prove that V = k.

Since Y_0 is a maximal AAI subset, for every $z \notin Y_0$ in k we have a linear relation (because $Y_0 \cup \{z\}$ is not AAI): $\sum a_s v_s + z \sum b_s v_s = 0$ with coefficients a_s , b_s in k^2 , only finitely many of them $\neq 0$, both sums are taken over all finite $S \subset Y_0$, and the second sum $\neq 0$ (because Y_0 is AAI). Then $z = \sum a_s v_s / \sum b_s v_s = (\sum a_s v_s) (\sum b_s v_s) / a^2 \in VVk^2 \subset Vk^2 \subset V$, where $a := \sum b_s v_s \in V \subset k$. Thus, V = k.

L.N. VASERSTEIN

7.6. LEMMA. The following two statements are equivalent:

- (a) R = k for every full vector subspace $R \subset k$ over k^2 ;
- (b) the dimension of k over k^2 is 1 or 2.

PROOF. Implication (b) \Rightarrow (a). Since R is full in k, $R \ni y_1 \neq 0$. If $k^2 = k$, then $R = Rk^2 = Rk \supset y_1k = k$. When $k \neq k^2$, $R \ni y_2$ outside y_1k^2 (otherwise, only elements of k^2 can be written as r_1/r_2 with $r_i \in R = y_1k^2$). Therefore, $k^2y_1 + k^2y_2 = k$ when the dimension of k over k^2 is 2.

Implication (a) \Rightarrow (b). We assume that the dimension of k over k^2 is larger than 2 and will find a full vector subspace $R \neq k$. First, we find Y_0 as in Lemma 7.5. Pick distinct x, y in Y_0 , and let Y be the complement of $\{x, y\}$ in Y_0 . Consider the linear subspace V spanned by all v_s with finite $S \subset Y$; V is a subfield of k, containing k^2 .

Put R:=V+xV+yV; $R\neq k$, because xy is outside R. We have to prove that R is full in k. Every z in k-R can be written as $z=c_0(xy+c_1x+c_2y+c_3)$ with $c_i\in V$, $c_0\neq 0$. Then $0\neq r_1:=x+c_2\in R$, $r_2:=c_0(yr_1^2+x(c_3+c_1c_2)+c_1r_1^2+c_2(c_3+c_1c_2))\in R$, and $z=r_2/r_1$.

7.7. LEMMA. (i) If the dimension of k over k^2 is finite or countable, then, for any full subring C of k and any C²-submodule B of k such that $Bk^2 = k$, B contains a full subring of k.

(ii) If the dimension of k over k^2 is uncountable, then there is a full subring A of k and an A^2 -submodule B in A such that $Bk^2 = k$, $B \supset A^2$, and B does not contain any full subset of k closed under multiplication.

PROOF. (i) Let $X \subset B$ be a basis for k over k^2 . For every finite $S \subset X$ we can find a non-zero a_s in C such that $v_s a_s^2 \in B \cap C$ (see, Notation 7.4).

If X is finite, let c be the product of all a_s^2 . Then $0 \neq c \in C^2$ and $v_s c \in B \cap C$ for all $S \subset X$ (recall that $BC^2 \subset B$). The C^2 -submodule R of B generated by all $v_s c^2$ is a subring of k (namely, $(v_s c^2)(v_{s'}c^2) = (v_{s+s'}c^2)(v_{s\cap s'}c)^2 \in v_{s+s'}c^2C^2 \subset R$, where $S + S' := S \cup S' - S \cap S'$).

We claim that R is full. Indeed, every y in k can be written as $y = \sum xt_x^2$ with t_x in k, where the summation is taken over x in X. Since C is full, we can find a non-zero a_0 in C such that $t_xa_0 \in C$ for all x in X (see, Lemma 7.1 (ii)). Then $yc^2a_0^2 \in R$ and $0 \neq c^2a_0^2 \in R$. So R is full.

If X is infinite, let us enumerate it, $X = \{u_1, u_2, \dots\}$. For any $i \ge 1$, let a_i be the product of all a_T with $T \subset \{u_1, \dots, u_i\}$. Then, for any finite $S \subset X$, we have $\prod_{u_i \in S} (u_i a_i^2) = v_S \prod_{u_i \in S} a_i^2 \in B$, because $\prod a_i \in a_S C$ and $BC^2 \subset B$.

Therefore, the C²-submodule R of B generated by a_0^2 and all $u_i a_i^2$

with u_i in X lies in B. As before, we see that R is full in k.

(ii) Find Y_0 as in Lemma 7.5. Since the dimension of k over k^2 is uncountable Y_0 is uncountable. By Jech [1], there is a function $r: Y_0 \times Y_0 \to \mathbf{Q}$ (with values in the rational numbers) with the property that for every function $t: Y_0 \to \mathbf{Q}$ there are x, y in Y_0 such that r(x, y) > t(x) and r(x, y) > t(y).

Find A and N as in Lemma 7.3 with F = k. For any finite $S \subset Y_0$ choose a non-zero a_s in A such that $v_s a_s \in A$ and $N(a_s) > 2r(x, y)$ in the case $S = \{x, y\}$ consisting of two distinct elements. Define B as the A^2 -submodule in k generated by all $v_s a_s^2$ and A^2 .

Let us check that $Bk^2 = k$. If we write any z in k as $\sum b_s^2 v_s$ with b_s in k and only finitely many $b_s \neq 0$, then we see that $za^2 \in R$ for some non-zero a in A hence $z \in Bk^2$.

Let now C be a full subset of k closed under multiplication. Since it is full in k, every x in Y_0 can be written as $x = c/c_x = cc_x/c_x^2$, where c and c_x are in C. So $C \ni cc_x = xc_x^2$ with $0 \neq c_x \in C$. Let $t(x) := N(c_x)$.

By the choice $r: Y_0 \times Y_0 \to Q$ above, there are x, y in Y_0 such that r(x, y) > t(x), t(y). For these x, y we have $N(c_x c_y) = N(c_x) + N(c_y) = t(x) + t(y) < 2r(x, y)$ and $C \supset CC \ni xc_x^2 yc_y^2 = xy(c_x c_y)^2$, so $xy(c_x c_y)^2$ is not in B by the definition of B, but it is in C. Thus, C is not contained in B.

8. Proof of Theorem 1.

8.1. LEMMA. Let A and B be additive subgroups of k such that $A^{p} \subset B \subset A$, $BA^{p} \subset B$, $BA \subset A$, where p is as in Section 1. Assume that $BB \subset B$ when Σ_{l} is connected. Let $u \in k$, $b \in B$, and $\varphi, \varepsilon \in \Sigma$. Assume that $bu \in B^{2}$. Set $D_{\varepsilon} := B$ when ε is long and $D_{\varepsilon} := A$ otherwise. For any t in k we set $y(t) := [x_{\varphi}(u), x_{\varepsilon}(t)]$. Then:

(i) $y(t) \in G^{\mathbb{E}}(A, B)$ if $\varphi + \varepsilon \neq 0$ and t is in $b^{4}D_{\varepsilon}$;

(ii) $y(t) \in G^{E}(A, B)$ if t is in $b^{16}(b-1)^{2}(b^{2}-1)D_{\epsilon}$.

PROOF. We can assume that $y(t) \neq 1$ for some t in k (otherwise the statement is trivial). Pick a connected subsystem $\Sigma' \subset \Sigma$ of rank 2 containing both φ and ε . Then $\varphi + \varepsilon$ is in Σ' or else $\varphi + \varepsilon = 0$. We will prove (i) (and then (ii)) for the three possible cases, when Σ' is of type A_2 , B_2 , or G_2 , separately.

Type A_2 with $\varepsilon + \varphi \neq 0$. Then $y(b^2t) = x_{\varepsilon+\varphi}(\pm b^2tu) = [x_{\varphi}(b), x_{\varepsilon}(tbu)] \in G^{\mathbb{E}}(A, B)$ for all t in D_{ε} , because $b \in B \subset D_{\varphi}$ and $tbu \in D_{\varepsilon}B^2 \subset D_{\varepsilon}$ for all t in D_{ε} . Thus, $y(b^2D_{\varepsilon}) \subset G^{\mathbb{E}}(A, B)$, hence $y(b^4D_{\varepsilon}) \subset y(b^2D) \subset G^{\mathbb{E}}(A, B)$.

Type B_2 with $\varepsilon + \varphi \neq 0$. If $\varepsilon, \varphi \in \Sigma_s$, then $y(t) = x_{\varepsilon+\varphi}(\pm 2tu) \in G^{\mathbb{E}}(B)$ provided $t \in bA = bD_{\varepsilon}$. In particular, we can take any t in $b^*D_{\varepsilon} = b^*A \subset bA$ (the last inclusion follows from $BA \subset A$). If $\varepsilon \in \Sigma_s$ and $\varphi \in \Sigma_l$, then $y(t) = x_{\varphi+\varepsilon}(\pm tu)x_{\varphi+2\varepsilon}(\pm t^2u) \in G^E(A, B)$ provided $t \in bA = bD_{\varepsilon}$ (because $Abu \subset AB^2 \subset A$ and $(bA)^2u = bA^2bu \subset BA^2B^2 \subset B = D_{\varphi+2\varepsilon}$). In particular, $y(t) \in G^E(A, B)$ for any t in $b^4A \subset bA$.

If $\varepsilon \in \Sigma_l$ and $\varphi \in \Sigma_s$, then $y(t) = x_{\varphi+\varepsilon}(\pm tu)x_{2\varphi+\varepsilon}(\pm tu^2) \in G^E(A, B)$ provided $t \in b^2B = b^2D_{\varepsilon}$ (because $(b^2B)u = bBbu \subset BBB^2 \subset A = D_{\varphi+\varepsilon}$ and $(b^2B)u^2 = B(bu)^2 \subset BB^4 \subset BB^2 \subset B = D_{2\varphi+\varepsilon}$). In particular, $y(t) \in G^E(A, B)$ for any t in $b^4D_{\varepsilon} = b^4B \subset b^2B$.

Type G_2 with $\varphi + \varepsilon \neq 0$. If φ and ε are long, they lie in Σ'_l of type A_2 . Therefore, as shown above, $y(b^*D_{\varepsilon}) \subset y(b^2D_{\varepsilon}) \subset G^E(A, B)$.

If φ and ε are short and make the angle $\pm 60^{\circ}$ then $y(t) = x_{\varphi+\varepsilon}(\pm 3ut) \in G^{\mathbb{E}}(B)$ provided $t \in bA \supset b^{4}A = b^{4}D_{\varepsilon}$ (recall that $3A \subset B$).

If φ and ε are short and make the angle $\pm 120^{\circ}$, then $y(t) = x_{\varphi+\varepsilon}(\pm 2tu)x_{2\varphi+\varepsilon}(\pm 3tu^2)x_{\varphi+2\varepsilon}(\pm 3t^2u) \in G^E(B) \subset G^E(A, B)$ provided $t \in b^2A \supset b^4A = b^4D_{\varepsilon}$ (because then $tu \in B$, $3tu^2 \subset 3A \subset B$, and $3t^2u \subset 3A \subset B$).

If φ is short and ε is long, then $y(t)^{-1} = x_{\varphi+\epsilon}(\pm tu)x_{2\varphi+\epsilon}(\pm u^2t)x_{3\varphi+\epsilon}(\pm u^3t) \times x_{3\varphi+2\epsilon}(\pm u^3t^2) \in G^E(B) \subset G^E(A, B)$ provided $t \in b^3B$ (because then $tu \in BB^2 \subset B$, $u^2t \subset B^4BB \subset B$, $u^3t \in B^6B \subset B$, $u^3t^2 \in B^3B^3B \subset B$). In particular, $y(t) \in G^E(A, B)$ when $t \in b^4B \subset b^3B$.

Finally, if φ is long and ε is short, then $y(t) = x_{\varphi+\varepsilon}(\pm tu)x_{\varphi+2\varepsilon}(\pm t^2u) \times x_{\varphi+3\varepsilon}(\pm ut^3)x_{2\varphi+3\varepsilon}(\pm u^2t^3) \in G^E(A, B)$ provided $t \in b^3A$ (because then $tu \in A = D_{\varphi+\varepsilon}$, $t^2u \in A = D_{\varphi+2\varepsilon}$, $t^3u \in B = D_{\varphi+3\varepsilon}$, and $t^3u^2 \in b^3B \subset B = D_{2\varphi+3\varepsilon}$). In particular, we can take any t in $b^4D_{\varepsilon} = b^4A \subset b^3A$.

Thus, (i) is proved in all cases. Since $b^4D_{\epsilon} \subset D_{\epsilon}$ for all ϵ in Σ , (i) can be stated also as follows: the subgroup $H := x_{\varphi}(u)^{-1}G^{\mathbb{E}}(A, B)x_{\varphi}(u)$ contains all $x_{\epsilon}(b^4D_{\epsilon})$ with $\epsilon \neq -\varphi$. Now we want to prove (ii), i.e., $H \supset x_{\epsilon}(b^{16}(b - 1)^2(b^2 - 1)D_{\epsilon})$ for all ϵ . When $\epsilon + \varphi \neq 0$, this has been proved, because $b^{16}(b - 1)^2(b^2 - 1)D_{\epsilon} \subset b^4D_{\epsilon}$. So we assume that $\epsilon = -\varphi$ and consider again separately the cases when Σ' is of type A_2 , B_2 , or G_2 .

 $\begin{array}{l} Type \ A_2 \ with \ \varepsilon = -\varphi. \ \ \text{Pick} \ \alpha \ \ \text{and} \ \ \beta \ \ \text{in} \ \ \Sigma' \ \ \text{such that} \ \ \alpha + \beta = \varepsilon. \\ \text{From} \ \ H \supset x_{\alpha}(b^4D_{\alpha}), \ x_{\beta}(b^4D_{\beta}) \ \ \text{it follows that} \ \ H \supset [x_{\alpha}(b^4D_{\beta}), \ x_{\beta}(b^4D_{\beta})] = \\ x_{\epsilon}(b^8D_{\alpha}D_{\beta}) = x_{\epsilon}(b^8D_{\epsilon}D_{\epsilon}) \supset x_{\epsilon}(b^{10}(b-1)^2(b^2-1)D_{\epsilon}). \end{array}$

Type B_2 with $\varepsilon = -\varphi$. Pick α in Σ'_i and β in Σ'_s such that $\varepsilon = \alpha + \beta$ when ε is short and $\varepsilon = \alpha + 2\beta$ when ε is long. Then $H \ni z(v, w) := [x_{\alpha}(v), x_{\beta}(w)] = x_{\alpha+\beta}(\pm vw)x_{\alpha+2\beta}(\pm vw^2)$ provided $v \in b^4B = b^4D_{\alpha}$ and $w \in b^4A = b^4D_{\beta}$. Therefore, $H \ni z(b^4c, b^7)z(b^6c, b^5)^{-1} = x_{\alpha+2\beta}(\pm c(b^{18} - b^{16}))$ for all c in B and $H \ni z(b^7, db^4)z(b^5, db^5)^{-1} = x_{\alpha+\beta}(\pm d(b^{11} - b^{10}))$ for all d in A.

Thus, $R_{\alpha+2\beta}(H) \supset B(b^{18}-b^{16}) = D_{\alpha+2\beta}b^{16}(b^2-1) \supset D_{\alpha+2\beta}b^{16}(b^2-1)(b-1)^2$ and $R_{\alpha+\beta}(H) \supset A(b^{11}-b^{10}) = D_{\alpha+\beta}b^{10}(b-1) \supset D_{\alpha+\beta}b^{16}(b-1)^2(b^2-1).$

 $Type \ G_2 \ with \ \varepsilon = -\varphi. \ \text{ If } \varepsilon \text{ is long, we can include } \varepsilon \text{ and } \varphi \text{ in a subsystem of type } A_2 \ (\text{namely, } \Sigma'_l), \ \text{ so } H \supset x_{\varepsilon}(Bb^{\theta}) = x_{\varepsilon}(D_{\varepsilon}b^{\theta}) \supset x_{\varepsilon}(D_{\varepsilon}(b - \varepsilon))$

 $(b^2 - 1)b^{16}$).

If ε is short, we find α in Σ'_i and β in Σ'_s such that $\varepsilon = \alpha + \beta$. Then $H \supset x_{\alpha}(b^4B)$, $x_{\beta}(Ab^4)$, hence $H \ni z_1(v, w) := [x_{\alpha}(v), x_{\beta}(w)] = x_{\alpha+\beta}(\pm vw) \times x_{\alpha+2\beta}(\pm vw^3)x_{2\alpha+3\beta}(\pm v^2w^3)$ for any v in b^4B and w in b^4A . Therefore, for such v and w, we have $H \ni z_2(v, w) := z_1(vb^2, w)z_1(v, wb)^{-1} = x_{\alpha+\beta}(\pm vw(b^2 - b))x_{\alpha+3\beta}(\pm vw^3(b^2 - b^3))x_{2\alpha+3\beta}(\pm v^2w^3(b^4 - b^3))$, so $H \ni z_3(v, w) := z_2(vb^3, w)z_2(v, wb^2)^{-1} = x_{\alpha+\beta}(\pm vw(b^2 - b)(b^3 - b^2))x_{\alpha+3\beta}(\pm vw^3(b^2 - b^3))$, hence $H \ni z_3(vb^3, w)z_3(v, wb)^{-1} = x_{\alpha+\beta}(\pm vw(b^2 - b)(b^3 - b^2)(b^3 - b))$.

Thus, $R_{\epsilon}(H) \supset (b^4B)(b^4A)(b^2-b)(b^3-b^2)(b^3-b) = ABb^{12}(b-1)^2(b^2-1) \supset D_{\epsilon}b^{16}(b-1)^2(b^2-1)$, because $AB \supset Ab^4 = D_{\epsilon}b^4$.

8.2. COROLLARY. Let A and B be as in Lemma 8.1. Assume that B is full and $Bk^2 = k$. Then for any g in $G^{E}(k)$ there is a non-zero b_{g} in B such that $gG^{E}(A, B)g^{-1} \supset G^{E}(Ab_{g}^{2}, Bb_{g}^{2})$.

PROOF. If $card(B) \leq 9$, then B = A = k and $G^{E}(k) = G^{E}(A, B) \ni g$, so we can take $b_{g} = 1$.

Otherwise we pick some $b_1 \neq b_1^9$ in B.

Consider first the case $g = x_{\varphi}(u)$ with φ in Σ and u in k. Since $Bk^2 = k$ and B is full, we can find b_i in B such that $u = b_2(b_3/b_4)^2$ and $b_2b_4 \neq 0$. For $b_5 := b_2^3b_4^2 \in BB^2B^2 \subset BB^2 \subset B$ we have $b_5 \neq 0$ and $b_5u = (b_3b_2^2)^2 \in B^2$.

Let $b := b_5$ when $b_5 \neq \pm 1$ and $b := b_5 b_1^4$ otherwise. Then $bu \in B^2$ and $0 \neq b \in B$. Set $b_0 := b^8(b-1)(b^2-1) \in B$. Then $b_0 \neq 0$ and, by Lemma 8.1, $gG^E(A, B)g^{-1} =: H \supset G^E(Ab_0^2/(b^2-1), Bb_0^2/(b^2-1))$. Since $B(b^2-1) \subset B$ and $A(b^2-1) \subset A$, it follows that $H \supset G^E(Ab_0^2, Bb_0^2)$. Thus, we can take $b_g = b_0$ in the case $g = x_{\varphi}(u)$.

In the general case we write $g = g_1 \cdots g_m$ and proceed by induction on m, where every g_i is a root element. The case m = 1 has been considered, so let $m \ge 2$. By induction, for $g' = g_1^{-1}g$ there is a non-zero b'in B such that $g'G^E(A, B)g'^{-1} \supset G^E(Ab'^2, Bb'^2)$. Since Ab'^2 and Bb'^2 enjoy the same properties as A and B, there is a non-zero b'' in Bb'^2 , such that $g_1G^E(Ab'^2, Bb'^2)g_1^{-1} \supset G^E(Ab'^2b''^2, Bb'^2b''^2)$. Set $b_g := b'^2b'' \in b'^4B \subset B$ to obtain the statement. $gG^E(A, B)g^{-1} \supset G^E(Ab'^2b''^2, Bb'^2b''^2, Bb'^2b''^2) \supset G^E(Ab_g^2, Bb_g^2)$.

8.3. LEMMA. In the situation of Theorem 1.1, assume that B is full and $Bk^2 = k$ (both conditions evidently do not depend on the choice of A and B). Then there is a non-zero b_0 in B such that $b_0B \subset R_s \subset b_0^{-1}B$ and $b_0A \subset R_7 \subset b_0^{-1}A$ for all δ in Σ_1 and γ in Σ_s .

PROOF. If $BB \subset B$, then, by Lemma 7.1 (ii) with C = B, we can find a non-zero b_0 in the intersection of B with all $Ba_{\epsilon} \cap Bb_{\epsilon}^{-1}$, where $\epsilon \in \Sigma$. Therefore, $b_0B \subset a_{\delta}B \subset R_{\delta} \subset Bb_{\delta}^{-1}$ and $b_0A \subset a_{\gamma}A \subset R_{\gamma} \subset Ab_{\gamma} \subset Ab_{0}^{-1}$ for all δ in Σ_{ι} and γ in Σ_{ϵ} . If BB is not contained in B, then Σ is of type C_n $(n \ge 2)$, and p = 2. Fix a long root α in Σ . By Lemma 1.3, $b_{\alpha}B(aA)^2 \subset a_{\alpha}B \subset R_{\alpha}$ for some $a \ne 0$ in A. In particular, $a^4b_{\alpha}B \subset R_{\alpha}$.

By Lemma 4.1, $R_{\varphi} \supset c_{\varphi,\psi} R_{\psi}$ with $0 \neq c_{\varphi,\psi} \in k^2$ for all φ , ψ in Σ_l . Let C be the ring generated by B. Then $B \subset C \subset A$, $CA \subset A$, and $BC^2 \subset B$.

Since C is full in k, C^2 is full in k^2 . By Lemma 7.1 (ii) there is a non-zero c in C such that $c^2 \in c_{\delta,\alpha} a^4 C^2 \cap c_{\alpha} \delta^2 C^2$ for all δ in Σ_l and $c^2 \in a_r^2 C^2 \cap b_r^{-2} C^2$ for all γ in Σ_s .

So for such δ and γ we have $cA \subset (a_{\gamma}C)A \subset a_{\gamma}A \subset R_{\gamma} \subset b_{\gamma}A \subset (c^{-1}C)A \subset c^{-1}A$ and $b_{\alpha}c^{2}B \subset b_{\alpha}(c_{\delta,\alpha}a^{4}C^{2})B \subset b_{\alpha}c_{\delta,\alpha}a^{4}B \subset c_{\delta,\alpha}R_{\alpha} \subset R_{\delta} \subset c_{\alpha,\delta}^{-1}R_{\alpha} \subset Bb_{\alpha}/c_{\alpha,\delta} \subset Bb_{\alpha}(C^{2}c^{-2}) \subset Bb_{\alpha}c^{-2}$.

Since $Bk^2 = B$ and B is full, there are non-zero b_i in B such that $b_{\alpha} = b_1(b_2/b_3)^2 = b_4/b_3^2$, where $b_4 := b_1b_2^2 \in BB^2 \subset B$. Set $b_0 := b_4c^2b_3^2 \in BC^2B^2 \subset B$. Then $b_0A \subset cA \subset R_{\gamma} \subset c^{-1}A \subset b_0^{-1}A$ for all γ in Σ_s and $b_0B = b_{\alpha}b_3^4c^2B \subset b_{\alpha}e^2B \subset R_s \subset Bb_{\alpha}c^{-2} = Bb_4^2b_0^{-1} \subset Bb_0^{-1}$ for all δ in Σ_i .

8.4. THEOREM. Let A and B be additive subgroups of k satisfying Theorem 1.1 (iii), (iv). Assume that B is full and $Bk^2 = k$. Then for any g in G(k) there is a non-zero b_0 in B such that $gG^{E}(A, B)g^{-1} \supset G^{E}(Ab_0, Bb_0)$. In particular, $G^{E}(A, B)$ is full.

PROOF. Every g in G(k) can be written as g = hg' with h in T(k) and g' in $G^{E}(k)$ (see, Tits [5] and Borel-Tits [9, Prop. 6.2]). Set $H' := g'G^{E}(A, B)g'^{-1}$ and $H := gG^{E}(A, B)g^{-1} = hH'h^{-1}$.

By Corollary 8.2, $H' \supset G^{\mathbb{E}}(Ab^2, Bb^2)$ with $0 \neq b \in B$. Since $h \in T(k)$, we have $R_{\varepsilon}(H) = R_{\varepsilon}(H')t_{\varepsilon}$ for all ε in Σ with non-zero t_{ε} in k. Therefore $R_{\varepsilon}(H) \supset D_{\varepsilon}b^2t_{\varepsilon}$, where $D_{\varepsilon} := B$ when $\varepsilon \in \Sigma_{\iota}$ and $D_{\varepsilon} := A$ when $\varepsilon \in \Sigma_{\varepsilon}$.

Applying Lemma 8.3 to H, we find additive subgroups A' and B' of k and a non-zero b' in B' such that $b'B' \subset R_{\delta}(H) \subset B'b'^{-1}$ and $b'A' \subset R_{r}(H) \subset A'b'^{-1}$ for all δ in Σ_{l} and γ in Σ_{s} .

Fix α in Σ_{ι} and β in Σ_{s} . Then $R_{\delta}(H) \supset b'B' \supset b'^{2}R_{\alpha}(H) \supset b'^{2}b^{2}t_{\alpha}B$ and $R_{\tau}(H) \supset b'A' \supset b'^{2}R_{\beta}(H) \supset b'^{2}b^{2}t_{\beta}A$ for all δ in Σ_{ι} and γ in Σ_{s} .

Since B is full and $Bk^2 = k$, there are non-zero b_1 and b_2 in B such that $b_3 := b_1 b'^2 t_\beta \in B$ and $b_4 := b_2^2 b'^2 t_\alpha \in B$. Set $b_0 := b_4 b_3^2 b^2 \in BB^2 B^2 \subset BB^2 \subset B$.

Then $R_{\delta}(H) \supset b'^2 b^2 t_{\alpha} B \supset b'^2 b^2 t_{\alpha}(b_2^2 b_3^2 B) = b_0 B$ and $R_r(H) \supset b'^2 b^2 t_{\beta} A \supset b'^2 b^2 t_{\beta}(b_3 b_4 b_1 A) = b_0 A$ for all δ in Σ_l and γ in Σ_s . Thus $H \supset G^E(Ab_0, Bb_0)$ with $0 \neq b_0 \in B$.

PROOF OF THEOREM 1. Let A be a full subring of k. Set B:=A. Then Theorem 1.1 (iii), (iv) are satisfied. Moreover, given any u in k we can write $u = b_1/b_2$ with b_i in B and $b_2 \neq 0$, hence $u = b_1b_2b_2^{-2} \in Bk^2$. Thus, $Bk^2 = k$. By Theorem 8.4, $G^E(A) = G^E(A, B)$ is full.

9. Proof of Theorems 2 and 3.

9.1. LEMMA. Let H be a full subgroup of G(k). Then

- (i) $R_{\varepsilon}(H)$ is full, if ε lies in a subsystem $\Sigma' \subset \Sigma$ of type A_{2} ;
- (ii) $R_{\tau}(H)$ is full for any short root γ in Σ .

PROOF. (i) We apply an argument of [7]. Namely, we find a root φ in Σ' such that $\varphi + \varepsilon$ is in Σ' too. Fix non-zero c_1 in $R_{-\varphi}(H)$ and c_2 in $R_{\varphi}(H)$. Take an arbitrary t in k. Since H is full, $H \ni x_{\varphi}(t)x_{\varepsilon}(u)x_{\varphi}(t)^{-1} = x_{\varepsilon+\varphi}(\pm tu)x_{\varepsilon}(u) =: g$ for a non-zero u in k. Therefore, $H \ni [g, x_{-\varphi}(c_1)] = x_{\varepsilon}(\pm tuc_1)$ and $H \ni [[g, x_{\varphi}(c_2)], x_{-\varphi}(c_1)] = [x_{\varepsilon+\varphi}(uc_2), x_{-\varphi}(c_1)] = x_{\varepsilon}(\pm uc_1c_2)$. Thus, $R_{\varepsilon}(H)$ contains both $tuc_1 := a_1$ and $uc_1c_2 := a_2 \neq 0$. Since $a_1a_2^{-1} = tc_2^{-1}$ can be an arbitrary element of k, $R_{\varepsilon}(H)$ is full in k.

(ii) If Σ contains a system of type A_2 , then we can use (i) and, by Theorem 1.1, conclude that A and all $R_7(H)$ with γ in Σ_s are full. Otherwise, Σ is of type B_2 .

Let δ in Σ make an angle 45° with γ . Since H is full, for any t in k there exists a non-zero u in k such that $H \ni x_{\delta-27}(t)x_7(u)x_{\delta-27}(-t) = x_7(u)x_{\delta-7}(\pm tu)x_{\delta}(\pm tu^2) =: g$, where the signs \pm depend on γ and δ .

Now we pick non-zero c_1 in $R_{\delta-27}(H)$ and c_2 in $R_{27-\delta}(H)$. We have successively $H \ni [x_{\delta-27}(c_1), g] = [x_{\delta-27}(c_1), x_7(u)] = x_{\delta-7}(\pm c_1 u)x_{\delta}(\pm c_1 u^2) =: g';$ $H \ni [x_{27-\delta}(c_2), g'] = x_7(\pm c_1 c_2 u)x_{\delta}(\pm c_1^2 c_2 u^2);$ and $H \ni [x_{27-\delta}(c_2), g] = x_7(\pm c_2 t u) \times x_{\delta}(\pm c_2 t^2 u^2).$

Thus, $R_{7,\delta} \ni (c_2c_1u, \pm c_2c_1^2u^2)$, $(c_2tu, \pm c_2t^2u^2)$, hence $R'_{7,\delta} \ni c_2c_1u =: a_2$ and $R'_{7,\delta} \ni c_2tu =: a_1$ (see, the beginning of Section 3 for notation). Since $a_1/a_2 = t/c_1$ is arbitrary, $R'_{7,\delta}$ is full.

By Corollary 3.2 (i) it follows that $R_{\gamma}(H)$ is full when $2 \neq 0$ in k. If $\operatorname{char}(k)=2$, $R_{\delta-\gamma}(H)$ is full by Lemma 3.6 (ii). Replacing here (γ, δ) by $(\delta - \gamma, \delta)$, we obtain that $R_{\gamma}(H)$ is full.

9.2. LEMMA. Let H be a full subgroup of G(k). Then $R_{\varepsilon}(H)$ is full and $R_{\varepsilon}(H)k^2 = k$ for any root ε in Σ .

PROOF. Find A and B as in Theorem 1.1. Since $a_{\epsilon}B \subset R_{\epsilon}(H)$ for every ε in Σ with $a_{\epsilon} \neq 0$, the statement of Lemma 9.2 will follow from: B is full and $Bk^2 = k$. By Lemma 9.1 (ii), A is full.

If B = A (for example, p = 1), then $BB = BA \subset A = B$, so B is a subring of k. When B is a full subring of k (for example, if B = A), every t in k can be written as $t = b_1/b_2 = (b_1b_2)(b_2)^{-2} \in Bk^2$ with b_i in B, $b_2 \neq 0$, hence $k = Bk^2$.

If B is not a full subring of k, then (using Lemma 9.1 (i) to exclude type D_n and G_2) G is of type C_n $(n \ge 2)$ and p = 2.

Then we pick a subsystem $\Sigma' \subset \Sigma$ of type B_2 and an admissible pair (γ, δ) in Σ' . Take an arbitrary t in k and set $g := x_{\delta}(t)$.

Applying Theorem 1.1 to $H' := gHg^{-1}$, we find a non-zero u in ksuch that $R_r(H') \subset uR_{-r}(H')$. Then $a_rA \subset R_r(H) = R_r(H') \subset uR_{-r}(H')$. Since A is full, $a_{-r}u/a_r = a_1/a_2$ with non-zero a_i in A. Then $0 \neq v := a_ra_1/u = a_2a_{-r} \in Aa_r/u \cap Aa_{-r} \subset R_{-r}(H') \cap R_{-r}(H)$, hence $x_{-r}(v) \in H \cap H'$.

Therefore $H = g^{-1}H'g \ni g^{-1}x_{-r}(v)g = : g'$ and $H \ni g'x_{-r}(v)^{-1} = [g^{-1}, x_{-r}(v)] = x_{\delta-r}(tv)x_{\delta-2r}(tv^2)$, hence $R''_{\delta-r,\delta-2r} \ni tv^2$.

By Lemma 3.6 (i), $R_{\delta}(H) \ni c^2 t$ for some $c \neq 0$ in k (c depends on H and t), so $t \in R_{\delta}(H)k^2$. Thus, $R_{\delta}(H)k^2 = k$, i.e. $Bk^2 = k$. By Lemma 7.2 (using that B is a module over the ring generated by A^2), B is full, so $R_{\delta}(H)$ is full for every root ε in Σ .

9.3. THEOREM. Let H be a full subgroup of G(k). Then there are additive subgroups A and B of k and a non-zero c in B such that B is full, $Bk^2 = k$, and Theorem 1.1 (i)-(iv) hold with $a_{\varepsilon} = 1$ and $b_{\varepsilon} = c^{-1}$ for all ε in Σ .

PROOF. Find A and B by Theorem 1.1. By Lemma 9.2, B is full and $Bk^2 = k$. By Lemma 8.3, there is a non-zero b_0 in B such that $b_0B \subset R_\delta \subset Bb_0^{-1}$ and $b_0A \subset R_7 \subset Ab_0^{-1}$ for all δ in Σ_l and γ in Σ_s . Set A' := Ab_0 , $B' := Bb_0$, and $c := b_0^2 \in B'$. Replacing A and B by A' and B', we obtain our statement.

9.4. COROLLARY. Let H be a subgroup of G(k). Then the following three statements are equivalent: (a) H is full; (b) $H \supset G^{\mathbb{E}}(B)$ for a full additive subgroup B of k such that $BB^2 \subset B$ and $Bk^2 = k$; (c) $H \supset G^{\mathbb{E}}(R)$ for a full subset R of k such that $Rk^2 = k$.

PROOF. By Theorem 9.3, (a) implies (b). Clearly, (b) implies (c). Now assume (c). Find A and B as in Theorem 1.1. Since $R \subset R_{\delta}(H) \subset b_{\delta}B$ for any δ in Σ_{ι} with $b_{\delta} \neq 0$, our assumption on R implies that B is full and $Bk^2 = k$. By Lemma 8.3, $H \supset G^{\mathbb{E}}(Ab_0, Bb_0)$ with $0 \neq b_0 \in B$. By Theorem 8.4, H is full. Thus, (c) implies (a).

9.5. COROLLARY. Let H be a subgroup of G(k). If G is of type C_n , assume that $char(k) \neq 2$. Then the following three statements are equivalent:

(a) H is full;

(b) $H \supset G^{E}(B)$ for a full subring B of k;

(c) $H \supset G^{\mathbb{E}}(R)$ for a full subset R of k.

PROOF. By Theorem 9.3, (a) implies (b). The implication $(b) \Rightarrow (c)$ is trivial. Now assume (c). Since we excluded type C_n with p = 2, we

can find A, B as in Theorem 1.1 with $BB \subset B$. Since $R \subset R_{\delta}(H) \subset b_{\delta}B$ with $\delta \in \Sigma_{l}$, $b_{\delta} \neq 0$, it follows that B is a full subring of k. So $Bk^{2} = k$. In view of the implication 9.4 (c) \Rightarrow 9.4 (a), H is full.

9.6. COROLLARY. Assume that G is of type C_n $(n \ge 2)$ and char(k) = 2. Then:

(i) every full subgroup H of G(k) contains $G^{E}(B)$ for a full subring B of k, if and only if the dimension of k over k^{2} is finite or countable;

(ii) $G^{\mathbb{E}}(R)$ is full in G(k) for every full subset R of k, if and only if the dimension over k^2 is 1 or 2.

PROOF. (i) Assume first that H is full. By Theorem 9.3, $H \supset G^{E}(A, B)$ with full B such that $Bk^{2} = k$, $BA^{2} \subset B \subset A$. By Lemma 7.7 (i), B contains a full subring R of k, provided the dimension of k over k^{2} is countable. So, $H \supset G^{E}(R)$.

Assume now that the dimension is uncountable. Then we can find A and B as in Lemma 7.7 (ii). Then for $H := G^{E}(A, B)$ we have $R_{\delta}(H) = B$ for all δ in Σ_{l} (see, Theorem 6.1). So, by Lemma 7.7 (ii), H does not contain $G^{E}(C)$ for any subring C.

(ii) Let first R be full. By Lemma 7.6, then $Rk^2 = k$ provided the dimension is 1 or 2. By Corollary 9.4, $G^{\mathbb{E}}(R)$ is full.

Assume now that the dimension is larger than 2. By Lemma 7.6, we find a proper full subspace R of k. Replacing R by Ry^{-1} with $0 \neq y$ in R, we can assume that $R \ni 1$. By Theorem 6.1, $R_{\delta}(G^{E}(k, R)) = R$ for any δ in Σ_{l} . By Theorem 9.3, $G^{E}(k, R)$ is not full. So its subgroup $G^{E}(R)$ is not full.

REMARK. Theorem 2 is contained in Corollaries 9.5 and 9.6.

PROOF OF THEOREM 3. Let H and g_i be as in Theorem 3. By Theorem 9.3, $H \supset G^{\mathbb{E}}(A, B)$, where B is full and $Bk^2 = k$. By Theorem 8.4, $H_i := g_i H g_i^{-1} \supset G^{\mathbb{E}}(Ab_i, Bb_i)$ for $i = 1, \dots, m$ with $0 \neq b_i \in B$. By Lemma 7.2 (i), the intersection B' of all Bb_i is full and $B'k^2 = k$. Since $A \supset B$, we have $H_i \supset G^{\mathbb{E}}(B')$ for all $i = 1, \dots, m$. By Corollary 9.4, $G^{\mathbb{E}}(B')$ is full, so the intersection of H_i is full.

REMARK. If all $g_i \in G^{\mathbb{E}}(k)$, then the intersection of all H_i contains $G^{\mathbb{E}}(Ab_0, Bb_0)$ for some $b_0 \neq 0$ in B, see Corollary 8.2.

10. Proof of Theorem 4.

10.1. THEOREM. Assume that k contains at least 3 elements, if G is of type B_2 or G_2 . Let A and B be additive subgroups of k satisfying Theorem 1.1 (iii), (iv). Assume that B is full and $Bk^2 = k$. Let M be a

non-central subgroup of G(k) normalized by $G^{E}(A, B)$. Then $M \supset G^{E}(dA, dB)$ for a non-zero d in B.

In view of Corollary 9.4, this theorem implies Theorem 4. Indeed, let M be a non-central subgroup of G(k) normalized by a full subgroup H of G(k). By Theorem 9.3, $H \supset G^{\mathbb{E}}(A, B)$, where A and B are as in Theorem 10.1. By Theorem 10.1, there is a non-zero d in B such that $M \supset G^{\mathbb{E}}(Ad, Bd)$. By Lemma 7.2 (ii), $B \cap Bd := B'$ is a full additive subgroup of k such that $B'B^2 \subset B'$ and $B'k^2 = k$. By Corollary 9.4, $G^{\mathbb{E}}(B')$ is full in G(k), Thus, $H \cap M \supset G^{\mathbb{E}}(B')$ is full.

REMARK. If G is of type $B_2 = C_2$ or G_2 and $k = \{0, 1\}$, then $G^{E}(k)$ contains a normal subgroup M of index 2 (see, for example, [4, Remark after Theorem 5]). Since $G^{E}(k)$ is the smallest full subgroup of G(k), M is not full (and M does not sit in the center of G(k)).

10.2. LEMMA. Theorem 10.1 holds if k is finite.

PROOF. Any full subring of a finite k is k itself. In particular, if B and A are as in Theorem 10.1, then the subring of k generated by B is k. It follows easily that A = k and B = k.

Therefore, $G^{\mathbb{E}}(A, B) = G^{\mathbb{E}}(k)$. By Theorem 8.4, $G^{\mathbb{E}}(k)$ is normal in G(k). It is well-known (see, for example, [5]) that every non-central subgroup M of G(k) normalized by $G^{\mathbb{E}}(k)$ contains $G^{\mathbb{E}}(k)$. In particular, $M \supset G^{\mathbb{E}}(k) = G^{\mathbb{E}}(dA, dB)$ for any $d \neq 0$ in B = k.

For the rest of this section we assume that k is infinite.

10.3. LEMMA. Fix an ordering on Σ . Let α be the maximal root and U the algebraic subgroup of G generated by all $x_{\epsilon}(k)$ with positive ε in Σ . Then there are w in $G^{E}(k)$ and c in k such that UwTU is Zariski open in G and $wx_{\alpha}(t)w^{-1} = x_{-\alpha}(ct)$ for all t in k.

PROOF. Let U' be the algebraic subgroup of G generated by all $x_{\varepsilon}(k)$ with negative ε . Then U'TU is open in G (see, for example, [4, Theorem 7 (a)]).

We pick any w in $G^{\mathbb{E}}(k)$ such that $wTw^{-1} = T$ and $wU'w^{-1} = U$. Then $wx_{\alpha}(t)w^{-1} = x_{-\alpha}(ct)$ for some c in k.

10.4. LEMMA. In the conditions of Theorem 10.1, M is Zariski dense in G.

PROOF. Since k is infinite, so is B. Therefore $x_{\iota}(B)$ is Zariski dense in $x_{\iota}(k)$ for each root ε in Σ and $H := G^{E}(A, B) \supset G^{E}(B)$ is Zariski dense in G. Since H normalizes M, it follows that G normalizes the Zariski closure of M in G. Since G is almost simple and M is not central, the closure is G, so M is dense in G.

10.5. LEMMA. In the conditions of Theorem 10.1, let $\alpha \in \Sigma_l$. Then there are g in $G^{\mathbb{E}}(k)$ and u in k such that g commutes with $x_{\alpha}(k)$ and $x_{\alpha}(b)x_{-\alpha}(ub) \in gMg^{-1}$ for all b in B.

PROOF. We can choose an ordering on Σ in such a way that α becomes the maximal root (because the maximal root is always long and the Weyl group acts transitively on the long roots). Let U, w, and c be as in Lemma 10.3.

Since UwTU is open in G and M is dense in G (see, Lemma 10.4), there is some m in $UwTU \cap M$. We write $m = g^{-1}whg'$ with $g, g' \in U(k)$ and $h \in T(k)$. Since $[U, x_{\alpha}(k)] = 1$ and $hx_{\alpha}(t)h^{-1} = x_{\alpha}(\alpha(h)t)$ for all t in k, we have $M \ni [x_{\alpha}(b), m] = x_{\alpha}(b)g^{-1}whg'x_{\alpha}(-b)g'^{-1}h^{-1}w^{-1}g = x_{\alpha}(b)g^{-1}x_{-\alpha}(-c\alpha(h)b)g =$ $g^{-1}(x_{\alpha}(b)x_{-\alpha}(-c\alpha(h)b))g$ for all b in B. Thus, $gMg^{-1} \ni x_{\alpha}(b)x_{-\alpha}(ub)$ for all bin B with $u := -c\alpha(h)$.

10.6. COROLLARY. In the conditions of Lemma 10.5, there is a nonzero d_{α} in k such that $M \supset x_{\alpha}(d_{\alpha}B)$.

PROOF. Let g and u be as in Lemma 10.5. Let $b_g \in B$ be as in Corollary 8.2. Then $gMg^{-1} =: M'$ is normalized by $gG^E(A, B)g^{-1} \supset G^E(Ab_g^2, Bb_g^2)$. Pick a $b' \neq b'^3$ in Bb_g^2 .

If α belongs to a subsystem $\Sigma' \subset \Sigma$ of type A_2 , we find $\delta \in \Sigma'$ such that $\alpha + \delta \in \Sigma'$. Since gMg^{-1} contains $x_{\alpha}(b)x_{\alpha}(bu)$ for all b in B and is normalized by $x_{\delta}(Bb_g^2)$ and $x_{-\delta}(Bb_g^2)$, we have $M' \ni y := [x_{\delta}(b'), x_{\alpha}(b)x_{-\alpha}(bu)] = x_{\delta+\alpha}(\pm bb')$ and $M' \ni [x_{-\delta}(b'), y] = x_{\alpha}(\pm b'^2b)$. So, $M' \supset x_{\alpha}(b'^2B)$. Since $[g, x_{\alpha}(k)] = 1$, it follows that $M \supset x_{\alpha}(b'^2B)$. Thus, we can take $d := b'^2$.

If α does not belong to a subsystem of type A_2 , then it belongs to a subsystem Σ' of type B_2 . We pick a short root β in Σ' such that $\alpha + \beta \in \Sigma'$. Then $[x_{\beta}(k), x_{-\alpha}(k)] = 1$.

Since M' is normalized by $x_{\beta}(Bb_{g}^{2})$, we have $M' \ni z_{1}(v, t) := [x_{\beta}(v), x_{\alpha}(b)x_{-\alpha}(bu)] = x_{\beta+\alpha}(\pm vt)x_{2\beta+\alpha}(\pm v^{2}b)$ for all v in Bb_{g}^{2} and b in B, hence $M' \ni z_{1}(b'^{3}, b)z_{1}(b', b'^{2}b)^{-1} = x_{\alpha+2\beta}(\pm b'^{4}(b'^{2}-1)b)$ for all b in B. So, $M' \supset x_{\alpha+2\beta}(Bb'^{4}(b'(b'^{2}-1)))$.

Since M' is normalized by $x_{-\beta}(b_{\sigma}^{2}B)$, we have $M' \ni z_{2}(v, t) = [x_{-\beta}(v), x_{2\beta+\alpha}(t)] = x_{\beta+\alpha}(\pm vt)x_{\alpha}(\pm v^{2}t)$ for all v in $b_{\sigma}^{2}B$ and t in $b'^{4}(b'^{2}-1)B$, hence $M' \ni z_{2}(b'^{3}, t)z_{2}(b', b'^{2}t)^{-1} = x_{\alpha}(\pm b'^{4}(b'^{2}-1)t)$ for all t in $b'^{4}(b'^{2}-1)B$. Thus, $M' \supset x_{\alpha}(d_{\alpha}B)$ for $d_{\alpha} := b'^{6}(b'^{2}-1)^{2} \neq 0$, hence $M \supset x_{\alpha}(d_{\alpha}B)$.

10.7. LEMMA. For any $\beta \in \Sigma_s$ there is a non-zero d_β in k such that $M \supset x_\beta(d_\beta A)$.

PROOF. If β is long, we can use Corollary 10.6. Otherwise, β lies

in a subsystem $\Sigma' \subset \Sigma$ of type B_2 or G_2 . Pick $b \neq b^3$ in B.

If Σ' is of type B_2 , we pick a short root γ in Σ' such that $\gamma + \beta \in \Sigma'_l$. Since M is normalized by $G^{\mathbb{E}}(A, B)$ and $M \supset x_{7+\beta}(d_{7+\beta}B)$ (see, Corollary 10.6), we have $M \ni z(u, t) := [x_{-7}(u), x_{7+\beta}(t)] = x_{\beta}(\pm ut)x_{\beta-7}(\pm u^2t)$ for all u in Aand t in $d_{7+\beta}B$. Therefore, $M \ni z(u, b^3d_{7+\beta})z(ub, bd_{7+\beta})^{-1} = x_{\beta}(\pm u(b^3 - b^2)d_{7+\beta})$. Thus, $M \supset x_{\beta}(d_{\beta}A)$ with $d_{\beta} := b^2(b-1)d_{7+\beta} \neq 0$.

If Σ' is of type G_2 , then we find a long α in Σ' such that $\alpha + \beta \in \Sigma'_s$. Since $M \supset x_{-\alpha}(d_{-\alpha}B)$ and M is normalized by $G^E(A, B) \supset x_{\alpha+\beta}(A)$, we have $M \ni z_1(t, u) := [x_{-\alpha}(t), x_{\alpha+\beta}(u)] = x_{\beta}(\pm tu)x_{\alpha+2\beta}(\pm tu^2)x_{2\alpha+3\beta}(\pm tu^3)x_{\alpha+3\beta}(t^2u^3)$ for all t in $d_{-\alpha}B$ and u in A.

Therefore, $M \ni z_2(t, u) := z_1(t, ub)z_1(tb^3, u)^{-1} = x_\beta(\pm tu(b-b^3)x_{\alpha+2\beta}(\pm tu^2 \times (b^2-b^3))x_{\alpha+3\beta}(\pm t^2u^3(b^3-b^6))$, hence, $M \ni z_3(t, u) := z_2(tb^3, u)z_2(t, ub^2)^{-1} = x_\beta(\pm tu(b-b^3)(b^3-b^2))x_{\alpha+2\beta}(\pm tu^2(b^2-b^3)(b^3-b^4))$, so $M \ni z_3(tb^2, u)z_3(t, ub)^{-1} = x_\beta(\pm tu(b-b^3)(b^3-b^2)(b^2-b))$ for all $t \in d_{-\alpha}B$ and $u \in A$.

Thus, $M \supset x_{\beta}(Ad_{\beta})$ with $d_{\beta} := d_{-\alpha}b^{4}(b^{2}-1)(b-1)^{2} \neq 0$.

PROOF OF THEOREM 10.1. Now we are ready to complete our Proof of Theorem 10.1 (for infinite k).

By Theorem 1.1, Lemma 8.3, and Corollaries 10.6 and 10.7, $M \supset G^{\mathbb{E}}(A', B')$ with additive subgroups A' and B' of k satisfying $A' \subset d_1A$ and $B' \subset d_1B$, where $0 \neq d_1, d_2 \in k$.

Since $Bk^2 = k$, we have $d_2 = b_1c^2$ with $0 \neq b_1 \in B$ and $0 \neq c \in k$. Since *B* is full, $c = b_2/b_3$ and $d_1 = b_4/b_5$ with non-zero b_i in *B*. Therefore, $A' \supset d_1A = b_4A/b_5 \supset b_4A \supset b_4^2b_1b_2^2A$ (since $BA \subset B$) and $B' \supset d_2B = b_1c^2B = b_1b_2^2B/b_3^2 \supset b_1b_2^2B \supset b_4^2b_1b_2^2B$ (since $BB^2 \subset B$).

Thus, $A' \supset dA$ and $B' \supset dB$, where $0 \neq d := b_4^2 b_1 b_2^2 \in B$, hence $M \supset G^{\mathbb{E}}(Ad, Bd)$.

11. Type A_1 and non-split groups. First we give counter examples to Theorems 1-4 for $G = SL_2$.

11.1. A COUNTER EXAMPLE TO THEOREM 1. See [7, the last section].

11.2. A COUNTER EXAMPLE TO THEOREMS 2 AND 9.3. Let k be a field such that char(k) = 2 and $k \neq k^2$. Let T(k) be the subgroup of diagonal matrices in $SL_2(k)$. Here is our choice of parametrizations of the root subgroups: $x_{\alpha}(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ and $x_{\beta}(t) = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$ for all t in k.

Set $H := \{hg: h \in T(k), g \in SL_2(k^2)\}$. Since T(k) normalizes $SL_2(k^2)$, H is a subgroup of $SL_2(k)$. We claim that it is a full subgroup. Indeed, given any $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL_2(k)$, we set u := 1/(1 + ac) when $ac \neq 1$ and $u := 1/(1 + z^2)$ with any $z \neq 0$, 1 when ac = 1. Then $v := u/(1 + auc) \in k^2$, hence

452

$$egin{aligned} ginom{1}{0} & 1 \ g^{-1} &= inom{1+auc}{cuc} & aua \ cuc & 1+cua \ \end{pmatrix} \ &= inom{u/v}{0} & 0 \ 0 & v/u inom{1}{ucuc/v} & (u/v)^2 inom{e}{0} \in T(k)SL_2(k^2) = H \;. \end{aligned}$$

Similarly, there is a non-zero u' in k such that $H \ni gx_{\beta}(u')g^{-1}$. Thus, H is full.

But $R_{\alpha}(H) = k^2$ is not full when $k \neq k^2$. Therefore, H does not contain $E_2(R)$ with a full subset R of k.

11.3. A COUNTER EXAMPLE TO THEOREM 3. Let k and H be as in 11.2. Take any w in k outside k^2 . Set $g := x_{\alpha}(w)$. Then H is full, but $H \cap gHg^{-1} \cap x_{\beta}(k)$ is trivial, so $H \cap gHg^{-1}$ is not full.

11.4. A COUNTER EXAMPLE TO THEOREM 4. Let k and H be as in 11.2. Then $SL_2(k^2)$ is normalized by full H, but $SL_2(k^2)$ is not full and is not contained in the center of $SL_2(k)$.

Now we will discuss extensions of our results to non-split groups. Let G be an almost simple algebraic group defined over a field k. Fixing a maximal k-split torus T and a matrix representation $G \subset SL_N$, we have "root" subgroups U_{ϵ} . Given any subset R of k, we can define $G^E(R)$ to be the subgroup of G(k) generated by all root elements with (non-diagonal) entries in R. We can call a subgroup H of G(k) full, if for any g in G(k) the intersection of gHg^{-1} with each root subgroup is not trivial. I believe that Theorems 1-5 hold (for this more general class of G's), if the k-rank of G is at least 2 and G is absolutely (almost) simple, and have checked this for all classical G. For some groups it follows from results of [7].

REMARK. It is easy to see that when k is a number field every arithmetic (or, more generally, S-arithmetic) subgroup of G(k) is full. I believe that, conversely, every full subgroup contains an arithmetic subgroup, and have checked this for all classical G.

REMARK. Some of our groups $G^{E}(A, B)$ for Chevalley groups G were introduced by Abe [18] and studied by Abe-Suzuki [19].

Refereces

- [1] T.J. JECH, On a problem of L. Nachbin, Proc. Amer. Math. Soc. 79 (1980), 341-342.
- [2] O. T. O'MEARA, Lectures on linear groups, Providence, R.I. 1978.
- [3] O.T. O'MEARA, Symplectic groups, Providence, R.I. 1978.
- [4] R. STEINBERG, Lectures on Chevalley groups, Yale University, 1967.
- [5] J. TITS, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329.

L.N. VASERSTEIN

- [6] J. TITS, Systemes generateurs de groupes de congruence, C.R. Acad. Sc. Paris, 283 (1976), A693-695.
- [7] L. N. VASERSTEIN, On full subgroups in the sense of O'Meara, J. of Algebra, 75 (1982), 437-444.
- [8] L. N. VASERSTEIN, Stabilization for classical groups over rings, Mat. Sbornik, 93:2 (1974), 268-295; Math. USSR Sb. 22 (1974), 271-303.
- [9] A. BOREL AND J. TITS, Homomorphismes "abstraits" de groupes algebriques simples, Annals of Math. 97:3 (1973), 499-571.
- [10] Zentralblatt 481 (1982) 20031; Math. Rev. 83b, 20047.
- [11] Zentralblatt 466 (1981) 20022; Math. Rev. 82j, 10043.
- [12] C. RIEHM, Structure of the symplectic group over a valuation ring, Amer. J. Math. 88 (1966), 106-128.
- [13] C. RIEHM, Orthogonal groups over the integers of a local field. II, Amer. J. Math. 89 (1967), 549-577.
- [14] D. JAMES, The structure of local integral orthogonal groups, Trans. AMS, 228 (1977), 165-186.
- [15] Z. BOREVICH, A description of the subgroups of the general linear group containing the group of diagonal matrices, Zapiski LOMI, 64 (1976), 12-29 (in Russian).
- [16] N. VAVILOV, On parabolic subgroups of Chevalley groups over semi-local rings, Zapiski LOMI 75 (1978), 43-58 (in Russian); Zentralblatt 488.20046.
- [17] A. BOREL, Properties and linear representations of Chevalley groups, in Lecture Notes in Math. 131 (1970), 1-55, Springer-Verlag, Berlin, Heidleberg, New York.
- [18] E. ABE, Chevalley groups over local rings, Tôhoku Math. J. 21 (1969), 474-494.
- [19] E. ABE AND K. SUZUKI, On normal subgroups of Chevalley groups over commutative rings, Tôhoku Math. J. 28 (1976), 185-198.

DEPARTMENT OF MATHEMATICS THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802, USA