ON FULL SUBGROUPS OF CHEVALLEY GROUPS*

Leonid N. Vaserstein

(Received July 16, 1984)

Introduction. Let G be a split algebraic absolutely almost simple group defined over a field k. For a split maximal k-subtorus T of G let $\Sigma=\Sigma(G, T)$ denote the root system of G with respect to T. Let $\left\{x_{\mathrm{t}}\right.$, $\varepsilon \in \Sigma\}$ be a system of isomorphisms, normalized as usual (see, for example, Steinberg [4]), from the additive group onto the root subgroups with respect to T.

We say (in the spirit of O'Meara [2, 3]) that a subgroup H of $G(k)$ is full if for every g in $G(k)$ and ε in Σ there exists a non-zero $c=c(g, \varepsilon)$ in k such that $g^{-1} x_{\varepsilon}(c) g \in H$. Thus, H is full if and only if its intersection with any root subgroup (relative to any maximal split k-torus) contains at least two elements.

For a subset R of k we denote by $G^{E}(R)$ the subgroup of $G(k)$ generated by all $x_{\varepsilon}(\alpha)$, where $\varepsilon \in \Sigma$ and $a \in R$. Here " E " stands for "elementary".

A subset R of k is called full (cf., Vaserstein [7]) if for every y in k there is a non-zero r in R such that $y r \in R$. For a subring R it means that k is its field of fractions. Note that in this paper a ring is not required to have identity.

The results of the present paper are modeled on the results of Vaserstein [7], the methods are also similar. However the situation for groups of type C_{n} in characteristic 2 turns out to be more complicated.

We assume throughout (except in the last section) that the rank of G is greater than one. If $\operatorname{rank}(G)=1$, i.e., G is of type \boldsymbol{A}_{1}, then the conclusions of Theorems 1-5 below are false, see [7] and the last section, where we also discuss possible generalizations of our results.

The following Theorems 1-5 summarize our main results. More precise and detailed statements are given in the corresponding sections.

Theorem 1. For every full subring R of k, the subgroup $G^{E}(R)$ of $G(k)$ is full.

Theorem 2. ("Arithmeticity Theorem"). Every full subgroup H of $G(k)$ contains $G^{E}(A)$ for some full subring A of k with the exception of

[^0]the case when G is of type $\boldsymbol{C}_{n}(n \geqq 2)$, $\operatorname{char}(k)=2$ and the dimension of k over k^{2} is uncountable.

Here, for a field k of characteristic $2, k^{2}$ denotes the subfield of k, consisting of all squares. In the exceptional case we will show that not every full subgroup H contains $G^{E}(A)$ for a full subring A (see Sections 8 and 9 for details).

Theorem 3. If H is a full subgroup of $G(k)$ and g_{1}, \cdots, g_{m} are in $G(k)$ then the intersection of all $g_{i} H g_{i}^{-1}$ is a full subgroup of $G(k)$.

Theorem 4. Assume that k does not consist of 2 elements when G is of type \boldsymbol{B}_{2} or \boldsymbol{G}_{2}. If H is a full subgroup of $G(k)$ and M is a subgroup of $G(k)$ normalized by H then either $H \cap M$ is full or M lies in the center of G.

Theorems 1-4 for $G=S L_{n}$ were proved by Vaserstein [7]. According to [10], Serezhkin considered subgroups H of $G(k)=S L_{n}(k), n \geqq 3$, more general than full subgroups. Assuming that H is irreducible (in the standard representation) he proves that a conjugate of H either contains $G^{E}(A)=E_{n}(A)$ for a full subring A of k or is contained in $H S p_{n}(k)$, the group of symplectic similitudes. Since a full H is irreducible and $H S p_{n}(k)$ is not full, this result combined with our Theorem 8.4 gives Theorem 2 for $G=S L_{n}, n \geqq 3$. He also tried to prove Theorem 2 for $G=S p_{2 n}$ with $\operatorname{char}(k) \neq 2$, see [11].

Theorem 5. Let H be a subgroup of $G(k)$. Set $R_{\varepsilon}(H):=\left\{t \in k: x_{\varepsilon}(t) \in\right.$ H \}. Suppose that $R_{\varepsilon}:=R_{s}(H) \neq 0$ for every root ε in Σ. Suppose further that G is not of type $\boldsymbol{B}_{n}, \boldsymbol{C}_{n}$, or \boldsymbol{F}_{4} when $\operatorname{char}(k)=2$, and that G is not of type \boldsymbol{G}_{2} when $\operatorname{char}(k)=3$. Then there is a non-zero subring A of k such that $R_{\varepsilon} A \subset R_{\varepsilon}$ (i.e. R_{ε} is an A-module) and $\left(A R_{\varepsilon}\right)\left(A R_{-\varepsilon}\right) \subset A$ for every root ε in Σ.

We do not assume here that H is full. Here and throughout the paper $B C:=\{b c: b \in B, c \in C\}$ for any subsets $B, C \subset k$. About the cases excluded from Theorem 5 , see the next section.

The groups H in Theorem 5 are similar to "tableau", "carpet" or "net" groups considered in many papers including Riehm [12], [13], James [14], Borevich [15], Vavilov [16]. The main two differences are that our $R_{\varepsilon}(H)$ need not be ideals of A and are not allowed to be 0 .

Acknowledgements. I thank S. Simpson and T. Jech for giving the reference [1] and D. James and a referee for many corrections. The work was started in the fall of 1981 jointly with B. Weisfeiler, and later he made a few corrections.

Notations and conventions. If all roots in Σ have the same length, we set $\Sigma_{l}:=\Sigma_{s}:=\Sigma$. Otherwise there are roots of only two lengths in Σ (see, for example, [4]). We denote then by Σ_{l} (resp., Σ_{s}) the set of long (resp., short) roots in Σ. Always, Σ_{l} is a subsystem of Σ.

Let $e(\Sigma)$ be the square ratio of lengths of long and short roots. Recall that $e(\Sigma)=1$ when Σ is of type $\boldsymbol{A}_{n}, \boldsymbol{D}_{n}$, or $\boldsymbol{E}_{n} ; e(\Sigma)=2$ when Σ is of type $\boldsymbol{B}_{n}, \boldsymbol{C}_{n}$ or $\boldsymbol{F}_{4} ; e(\Sigma)=3$ when Σ is of type \boldsymbol{G}_{2}.

We say that a subset of Σ is connected if it is not a union of two orthogonal non-empty subsets.

If α, β are in Σ and $\alpha \neq \beta \neq-\alpha$, then we have a commutation relation of the form $\left[x_{\alpha}(t), x_{\beta}(u)\right]=\Pi x_{i \alpha+j \beta}\left(\pm p_{\alpha, \beta, i, j} t^{i} u^{j}\right)$ for all t, u in k, where the product is taken over all roots $i \alpha+j \beta$ in Σ with natural $i, j \geqq 1$, the factors in the product are ordered lexicographically (i and, for fixed i, also j increase from the left to the right), $p_{\alpha, \beta, i, j}$ are natural numbers, and the signs \pm do not depend on t and u but only on α, β, i, j (once the parametrizations x_{φ} were chosen). When $\alpha+\beta$ is not a root, the product is taken over an empty set and equals 1.

For a subset $A \subset k$ and an integer n we set $A^{n}:=\left\{a^{n}: a \in A\right\}$. For $A, B \subset k$ we set $A B:=\{a b: a \in A, b \in B\}$.

We define p as follows: if $\operatorname{char}(k) \neq e(\Sigma)$, then $p:=1$; otherwise, $p:=\operatorname{char}(k)=e(\Sigma)$.

For a subgroup H of $G(k)$ and a root ε in Σ we set $R_{\varepsilon}(H):=\{t \in k$: $\left.x_{\varepsilon}(t) \in H\right\}$.

1. A generalization of Theorem 5.

1.1. Theorem. Let H be a subgroup of $G(k)$ such that $R_{\varepsilon}(H) \neq\{0\}$ for every root ε in Σ. Set $R_{\varepsilon}:=R_{\varepsilon}(H)$. Then there exist additive subgroups A and B of k and (for every root ε) non-zero a_{ε}, b_{ε} in k such that:
(i) $a_{\hat{\delta}} B \subset R_{\dot{\delta}} \subset b_{\delta} B, R_{\hat{\delta}} A^{p} \subset R_{\delta}$, and $A R_{\delta} R_{-\delta} \subset A$ for every long root δ in Σ;
(ii) $a_{r} A \subset B_{r} \subset b_{r} A, R_{r} B \subset R_{r}$, and $B^{\prime}\left(R_{r} R_{-r}\right)^{p} \subset B$ for every short root γ in Σ, where $B^{\prime}:=B B$ when $\operatorname{char}(k)=2=e(\Sigma)-1, B^{\prime}:=e(\Sigma)!B$ when $\operatorname{char}(k)=0$, and $B^{\prime}:=B$ otherwise;
(iii) $A B \subset A, B A^{p} \subset B$, and $A^{p} \subset B \subset A$;
(iv) B is a subring of k (i.e. $B B \subset B$) when Σ_{l} is connected; A is a subring of k when Σ_{s} is connected.

The case $p=1$ of this theorem contains Theorem 5 (indeed, (iii) with $p=1$ implies that $A=B$ is a subring, and to obtain $A A R_{r} R_{-r} \subset A$ when $\operatorname{char}(k)=0$, we replace A by $e(\Sigma)!A)$. Note that $R_{\varepsilon} A \subset R_{\varepsilon}$ and $A A R_{\varepsilon} R_{-\varepsilon} \subset A$
imply $c_{\varepsilon} A \subset R_{\varepsilon} \subset c_{-\varepsilon}^{-1} A$ for any c_{ε} in R_{ε} and $c_{-\varepsilon} \neq 0$ in $A A R_{-\varepsilon}$. When $p \neq 1$ and k is not algebraic over its prime subfield, the conclusion of Theorem 5 is false for some H with $R_{\varepsilon}(H) \neq 0$ for all ε in Σ, see Theorem 6.1 below (namely, for $H=G^{E}\left(k_{0}, k_{0}^{p}\right.$) with subfields $k_{0}^{p} \subset k_{0} \subset k$).

We will prove Theorem 1.1 in Sections 2, 3-4, and 5 in cases $e(\Sigma)=$ 1,2 and 3 respectively. The following technical lemmas will be used in our proof of Theorem 1.1.
1.2. Lemma. Let $m \geqq 2$ be an integer; $A, B \subset k ; A B \subset A, A^{m} B \subset B$. Then:
(i) if a is in the multiplicative set generated by A and b is in the multiplicative set generated by B, then $B a^{m} \subset B$ and $A b \subset A$; therefore, for $A_{1}:=A a, B_{1}:=B b$ we have $A_{1} B_{1} \subset A_{1}, A_{1}^{m} B_{1} \subset B_{1}$;
(ii) if $a \in A, b \in B$, then for $A_{2}:=A a^{m-1} b, B_{2}:=B a^{m} b$ we have $A_{2} B_{2} \subset A_{2}, A_{2}^{m} B_{2} \subset B_{2}$, and $B_{2} \subset A_{2}$;
(iii) if $b \in B \subset A$, then for $A_{3}:=A b, B_{3}:=B b^{m-1}$ we have $A_{3} B_{3} \subset A_{3}$, $A_{3}^{m} B_{3} \subset B_{3}$, and $A_{3}^{m} \subset B_{3} \subset A_{3} ;$
(iv) if $B \neq 0 \neq c A A \subset A$ for some c in k, then there is a non-zero a_{0} in A such that $\left(a_{0}^{m-1} A\right)\left(a_{0}^{m-1} A\right) \subset a_{0}^{m-1} A$;
(v) if $A \neq 0 \neq c B B \subset B$ for some c in k, then there is a non-zero b_{0} in B such that $\left(b_{0}^{m-1} B\right)\left(b_{0}^{m-1} B\right) \subset b_{0}^{m-1} B$.

Proof. (i) We write $a=a_{1} \cdots a_{n}$ with $\alpha_{i} \in A$. Then $B a_{1}^{m} \subset B A^{m} \subset B$ and, by induction on $n, B a^{m}=B\left(a_{1} \cdots a_{n-1}\right)^{m} a_{n}^{m} \subset B a_{n}^{m} \subset B$. Similarly $A b \subset A$.
(ii) Since $a^{m-1} b=a^{m-2} a b \in a^{m-2} A B \subset a^{m-2} A$ and $a^{m} b \in A^{m} B \subset B$, by (i) we have $A_{2} B_{2}=A_{2}$ and $A_{2}^{m} B_{2} \subset B_{2}$. Moreover, $B_{2}=B a^{m} b=(B a) a^{m-1} b \subset$ $A a^{m-1} b=A_{2}$.
(iii) Again, the first two inclusions follow from (i), which implies also that $b^{m-2} B \subset A$. Hence $B_{3}=b^{m-1} B \subset A b=A_{3}$. Finally, $A_{3}^{m}=A^{m} b^{m}=$ $A^{m} b b^{m-1} \subset A^{m} B b^{m-1} \subset B b^{m-1}=B_{3}$.
(iv) We have $(c A)(c A) \subset c A$, that is, $c A$ is a multiplicative set in k. In particular, $(c A)^{2 m} \subset((c A)(c A))^{m} \subset(c A)^{m}$, so $B(c A)^{2 m} A \subset B(c A)^{m} A=c^{m} B A^{m} A \subset$ $c^{m} B A \subset c^{m} A$.

On the other hand, $B(c A)^{2 m} A=c^{2 m}\left(B A^{2 m}\right) A \subset c^{2 m} B A \subset c^{2 m} A$.
Therefore $c^{m} A \cap c^{2 m} A \neq 0$, i.e., there are non-zero a_{0} and a in A such that $c^{m}=a_{0} / a$. Then $a_{0}^{m-1}=a_{0}^{m-2} a_{0}=a_{0}^{m-2} a c^{m}=\left(a_{0} c\right)^{m-2}(a c) c \in(c A)^{m-2}(c A) c \subset$ $(c A) c=c^{2} A$. Hence $A\left(a_{0}^{m-1} A\right) \subset A\left(c^{2} A\right) A=A c(c A A) \subset A c A \subset A$. Multiplying both sides by a_{0}^{m-1}, we get $\left(a_{0}^{m-1} A\right)\left(a_{0}^{m-1} A\right) \subset a_{0}^{m-1} A$.
(v) From $(c B)(c B) \subset c B$ we deduce that $A(c B)^{2} \subset A c B=c A B \subset c A$. On the other hand, $A(c B)^{2}=c^{2} A B^{2} \subset c^{2}(A B) B \subset c^{2} A B \subset c^{2} A$.

Therefore, $c A \cap c^{2} A \supset A(c B)^{2} \neq 0$, hence $a_{0}=a c$ for some non-zero a,
a_{0} in A. Pick a non-zero b^{\prime} in B. Then $0 \neq b:=a^{m} b^{\prime} \in A^{m} B \subset B, 0 \neq b_{0}:=$ $a_{0}^{m} b^{\prime} \in A^{m} B \subset B$, and $b_{0}=c^{m} b$.

We have $b_{0}^{m-1}=c^{m} b b_{0}^{m-2}=(b c)\left(b_{0} c\right)^{m-2} c \in(B c)(B c)^{m-2} c \subset(B c) c=B c^{2}$. Therefore, $B\left(b_{0}^{m-1} B\right) \subset B\left(B c^{2}\right) B=B c(B c B) \subset B c B \subset B$. Multiplying this with b_{0}^{m-1}, we get $\left(b_{0}^{m-1} B\right)\left(b_{0}^{m-1} B\right) \subset b_{0}^{m-1} B$.
1.3. Lemma. Let n, m, N be natural numbers. Let non-empty $A, B, R_{i} \subset k$, and $c_{i}, d_{i} \in k$ for $i=1, \cdots, N$. Assume that $0 \neq A B^{n} \subset A$, $A^{m} B \subset B, \quad 0 \neq c_{i} A \subset R_{i} \subset d_{i} A(i=1, \cdots, N)$. Then there is a non-zero b in B such that $d_{i} A(b B)^{n} \subset c_{i} A$ and, therefore, $R_{i}(b B)^{n} \subset R_{i}$ for $i=1, \cdots, N$.

Proof. From $c_{i} A \subset d_{i} A$ it follows that $A\left(c_{i} / d_{i}\right) \subset A$. Therefore $A\left(c_{i} / d_{i}\right)^{r} \subset A$ for every integer $r \geqq 0$. Pick non-zero a_{0} in A and b^{\prime} in B. Set $a_{i}:=a_{0} c_{i} / d_{i} \in A, \quad b_{i}:=b^{\prime} a_{i}^{m} \in B A^{m} \subset B$ for $i=1, \cdots, N$, and $b_{0}:=$ $b^{\prime} a_{0}^{m} \in B$.

We have: $\quad\left(c_{i} / d_{i}\right)^{m}=\left(a_{i} / a_{0}\right)^{m}=b_{i} / b_{0} \quad$ and $\quad b_{i}^{n} A \subset b_{i}^{n} A / b_{0}^{n}=A\left(b_{i} / b_{0}\right)^{n}=$ $A\left(c_{i} / d_{i}\right)^{m n} \subset A c_{i} / d_{i}$ for $i=1, \cdots, N$.

Let a be the product of all $a_{i}, i=1, \cdots, N$, and $b:=b^{\prime} a^{m} \in B A^{m} \subset B$. We have: $b B=b_{1} B$ when $N=1$, and $b B \subset b_{i} A^{m} B \subset b_{i} B$ for $i=1, \cdots, N$ when $N>1$.

Therefore, $A(b B)^{n} \subset A\left(b_{i} B\right)^{n}=A B^{n} b_{i}^{n} \subset A b_{i}^{n} \subset A c_{i} / d_{i}$. Hence $d_{i} A(b B)^{n} \subset$ $A c_{i}$ and $R_{i}(b B)^{n} \subset d_{i} A(b B)^{n} \subset A c_{i} \subset R_{i}$ for $i=1, \cdots, N$.
2. Proof of Theorem 1.1 for groups G of type $A_{n}(n \geqq 2)$, D_{n} $(n \geqq 3)$, and $\boldsymbol{E}_{n}(n=6,7,8)$. Recall that H is a subgroup of $G(k)$ and that the $R_{\varepsilon}:=R_{\varepsilon}(H):=\left\{t \in k: x_{\varepsilon}(t) \in H\right\}$ are assumed to be non-zero for all roots ε in Σ. In this section we consider the case when $\Sigma=\Sigma_{l}=\Sigma_{s}$.
2.1. Lemma. (i) If $\gamma, \delta, \gamma+\delta \in \Sigma$ then $R_{r} R_{\dot{\delta}} \subset R_{\gamma+\delta}$;
(ii) for any α, β in Σ there exists a non-zero $c_{\alpha, \beta}$ in k such that $c_{\alpha, \beta} R_{\beta} \subset R_{\alpha}$.

Proof. (i) We have $\left[x_{r}(t), x_{i}(u)\right]=x_{r+\delta}(\pm t u)$ for all t, u in k (see, e.g., [4, Examples to Lemma 14]). Taking here $t \in R_{r}, u \in R_{\delta}$ we see that $R_{\gamma} R_{\delta} \subset R_{\gamma+\delta}$.
(ii) There exist $\gamma_{1}, \cdots, \gamma_{m}$ in Σ such that $\beta+\gamma_{1}+\cdots+\gamma_{i} \in \Sigma$ for all $i \leqq m$ and $\alpha=\beta+\gamma_{1}+\cdots+\gamma_{m}$. Let us proceed by induction on m. If $m=0$, then $R_{\alpha}=R_{\beta}$ and we can take $c_{\alpha, \beta}=1$. For $m \geqq 1$, we set $\gamma:=\gamma_{m}, \delta=\beta+\gamma_{1}+\cdots+\gamma_{m-1}$. Pick a non-zero c_{r} in R_{r}. Applying (i) and the inductive assumption to δ, we have: $R_{\gamma+\delta}=R_{\alpha} \supset R_{\gamma} R_{\dot{\delta}} \supset c_{\delta, \beta} R_{\beta} R_{\gamma} \supset$ $c_{r} c_{\delta, \beta} R_{\beta}=c_{\alpha, \beta} R$ with $c_{\alpha, \beta}:=c_{\gamma} c_{\delta, \beta} \neq 0$.

Now we can complete our proof of Theorem 1.1 in the case $\Sigma=\Sigma_{l}$.

For every pair α, β of roots in Σ we fix a non-zero $c_{\alpha, \beta} \in k$ such that $c_{\alpha, \beta} R_{\beta} \subset R_{\alpha}$ (see, Lemma 2.1 (ii)).

Pick roots α, β, γ in Σ such that $\gamma=\alpha-\beta$. By Lemma 2.1, $R_{\alpha} \supset$ $R_{\beta} R_{r} \supset c_{\beta, \alpha} R_{\alpha} c_{r, \alpha} R_{\alpha}=c R_{\alpha} R_{\alpha}$, where $c:=c_{\beta, \alpha} c_{r, \alpha} \neq 0$, hence $A:=c R_{\alpha} \supset$ $c R_{\alpha} c R_{\alpha}=A A$ is a subring of k.

For any root ε in Σ set $a_{\varepsilon}:=c^{-1} c_{\varepsilon, \alpha}, \quad b_{\varepsilon}:=c^{-1} c_{\alpha, \varepsilon}^{-1} \neq 0$, hence $R_{\varepsilon} \supset$ $c_{\varepsilon, \alpha} R_{\alpha}=c_{\varepsilon, \alpha} c^{-1} A=a_{\varepsilon} A$ and $R_{\varepsilon} \subset c_{\alpha, \varepsilon}^{-1} R_{\alpha}=c^{-1} c_{\alpha, \varepsilon}^{-1} A=b_{\varepsilon} A$.

By Lemma 1.3 (with $A=B, m=n=1, N:=\operatorname{card}(\Sigma)),(a A) R_{\varepsilon} \subset R_{\varepsilon}$ for all ε in Σ with some non-zero a in A. Replace A by $a A$ and $a_{\varepsilon}, b_{\varepsilon}$ by $a_{\varepsilon} a^{-1}, b_{\varepsilon} a^{-1}$ respectively. Then $A R_{\varepsilon} \subset R_{\varepsilon}$ for all ε in Σ and still $a_{\varepsilon} A \subset R_{\varepsilon} \subset b_{\varepsilon} A$ for all ε.

Now for every ε in Σ we can find δ in Σ such that $\varepsilon+\delta \in \Sigma$. Then $R_{\delta} R_{\varepsilon} R_{-\varepsilon} \subset R_{\delta+\varepsilon} R_{-\varepsilon} \subset R_{\delta}$ by Lemma 2.1 (i). Take the product R of all R_{δ} over $\delta \in \Sigma$. Then $R R_{\varepsilon} R_{-\varepsilon} \subset R$ for all ε in Σ.

Since $R_{\varepsilon} \subset b_{\varepsilon} A$ for all ε, we have $R \subset b A$, where $b \neq 0$ is the product of all b_{ε}. Replacing A by its subring generated by $R b^{-1}$, we have $R_{\varepsilon} A \subset R_{\varepsilon}$ and $A R_{\varepsilon} R_{-\varepsilon} \subset A$ for every root ε in Σ.
3. Proof of Theorem 1.1 for G of type B_{2}. Since G is split over k, it is isogenous to the symplectic group of a non-singular alternating form in dimension 4.

The root system (see, Figure 1) consists of 8 roots. Four of them $(\pm \alpha, \pm(\alpha+2 \beta))$ are long, and four ($\pm \beta, \pm(\alpha+\beta)$) are short.

Let us call a pair (γ, δ) of roots admissible, if $\gamma \in \Sigma_{s}, \delta \in \Sigma_{l}$, and $\delta-\gamma \in \Sigma_{8}$. In other words, γ is short and δ makes an angle $\pm 45^{\circ}$ with γ. Every root is contained therefore in exactly two admissible pairs.

As in Theorem 1.1, $R_{s}:=R_{\varepsilon}(H) \neq\{0\}$. For any pair (γ, δ) of roots we set $R_{r, \delta}:=R_{r, \delta}(H):=\left\{(t, u) \in k \oplus k: x_{r}(t) x_{\delta}(u) \in H\right\}$. Let $R_{r, \delta}^{\prime}$ (resp., $R_{r, \delta}^{\prime \prime}$) be the projection of $R_{r, \delta}$ on the first (resp., second) factor. Clearly,

Figure 1. System of roots of type \boldsymbol{B}_{2}.
$R_{r, \dot{\delta}}^{\prime} \supset R_{r}$ and $R_{r, \dot{\delta}}^{\prime \prime} \supset R_{\dot{\delta}}$.
3.1 Lemma. Let (γ, δ) be an admissible pair of roots, $a \in R_{2 r-\delta}, b \in$ $R_{\delta-2 r},(c, d) \in R_{r, \delta}$, and $t_{1}, t_{2} \in R_{r-\delta}$. Then (i) $\left(a b c, a b^{2} c^{2}\right) \in R_{r, \delta}$; (ii) $2 t_{1} t_{2} d \in$ $R_{2 \gamma_{-\delta} .}$.

Proof. Set $\varepsilon:=\delta-2 \gamma$.
(i) Since both $x_{s}(k)$ and $x_{-\varepsilon}(k)$ commute with $x_{\dot{\delta}}(k)$, we have: $H \ni$ $\left[x_{-\varepsilon}(a),\left[x_{\varepsilon}(b), x_{\gamma}(c) x_{\dot{\delta}}(d)\right]\right]=\left[x_{-\varepsilon}(a), x_{\delta-\gamma}(\pm b c) x_{\dot{\delta}}\left(\pm b c^{2}\right)\right]=x_{r}(\pm a b c) x_{\delta}\left(\pm a b^{2} c^{2}\right)$. Since $R_{ \pm \varepsilon}$ are additive subgroups of k, we can, changing if necessary signs of a and b, obtain that $R_{r, \delta} \ni\left(a b c, a b^{2} c^{2}\right)$, as claimed.
(ii) We have H э $y(t):=\left[x_{r-\delta}(t), x_{r}(c) x_{\delta}(d)\right]=x_{r}(\pm t d) x_{2 \gamma-\delta}\left(\pm t^{2} d \pm 2 c t\right)$ for any t in $R_{r-\beta}$, hence $H \ni y\left(t_{1}+t_{2}\right) y\left(-t_{1}\right) y\left(-t_{2}\right)=x_{2 \gamma_{-\delta}}\left(\pm 2 t_{1} t_{2} d\right)$. Thus, $R_{2 \gamma_{-\delta}}=-R_{2 \gamma_{-\mathrm{s}}}$ Э $2 t_{1} t_{2} d$.
3.2. Corollary. In the notation of Lemma 3.1:
(i) $R_{r} \supset 2 R_{\varepsilon} R_{-\varepsilon} R_{\gamma, \delta}^{\prime}$ and $R_{\dot{\delta}} \supset 8 R_{\varepsilon} R_{\varepsilon} R_{-\varepsilon} R_{\gamma} R_{\gamma, \delta}^{\prime}$, where $\varepsilon:=\delta-2 \gamma$;
(ii) $R_{\dot{\delta}} C_{\gamma_{-\delta}} C_{\gamma_{-\delta}} \subset R_{\dot{\delta}} \supset 4 R_{\dot{\delta}} C_{\gamma_{-\delta}} C_{\gamma_{-j}} C_{\gamma_{-\delta}}$, where $C_{\gamma_{-\delta}}:=2 R_{\gamma_{-\delta}} R_{\delta-\gamma}$.

Proof. (i) Let a, b, c, d be as in Lemma 3.1, and $c^{\prime} \in R_{r}, b^{\prime} \in R_{\varepsilon}$. By Lemma 3.1, $R_{r, \delta} \ni z(c):=\left(a b c, a b^{2} c^{2}\right) \in k \oplus k$. Since $x_{r}(k)$ and $x_{\delta}(k)$ commute, $R_{r, \delta}$ is an additive subgroup of $k \oplus k$. Therefore, $R_{r, \delta} \ni z(c)-z(-c)=$ ($2 a b c, 0$), so $R_{\dot{\delta}} \supset 2 R_{-\varepsilon} R_{\varepsilon} R_{r, \delta}^{\prime}$, which proves the first inclusion.

Similarly, $R_{r, \delta} \ni z(c)+z(-c)=\left(0,2 a b^{2} c^{2}\right)$, hence $R_{\dot{\delta}} \ni 2 a b^{2} c^{2}$. Therefore $R_{\text {万 }}$ Э $2 a b^{2}\left(c+c^{\prime}\right)^{2}-2 a b^{2} c^{2}-2 a b^{2} c^{\prime 2}=4 a b^{2} c c^{\prime}$ and R_{δ} Э $4 a\left(b+b^{\prime}\right)^{2} c c^{\prime}-4 a b^{2} c c^{\prime}-$ $4 a b^{\prime 2} c c^{\prime}=8 a b b^{\prime} c c^{\prime}$. This establishes the second inclusion in Corollary 3.2(i).
(ii) By Lemma 3.1 (ii), $R_{\gamma, \delta}^{\prime \prime}\left(2 R_{\gamma-\delta} R_{\gamma-\delta}\right) \subset R_{2 \gamma-\delta}$. Replacing here (γ, δ) by the admissible pair $(\gamma, 2 \gamma-\delta)$, we get $R_{\gamma, 2 \gamma-\delta}^{\prime \prime}\left(2 R_{\delta-\gamma} R_{\delta-\gamma}\right) \subset R_{\delta}$. Combining the last two inclusions we get $R_{r, \delta}^{\prime \prime} C_{r_{-\delta}} C_{r_{-\delta}} \subset R_{2 T_{-\delta}}\left(2 R_{\dot{\delta}-\gamma} R_{\delta-r}\right) \subset R_{\dot{\delta}}$.

To prove the second inclusion in (ii) we take arbitrary u in $R_{r_{-\delta}}, v$ in $R_{\delta-\gamma}$, and t in $R_{\dot{\delta}}$. Then $H \ni\left[\left[x_{\delta}(t), x_{r-\delta}(u)\right], x_{\dot{\delta}-\gamma}(v)\right]=x_{r}\left(\pm t u^{2} v\right) x_{\delta}(\pm 2 t u v$ $\pm t u^{2} v^{2}$), hence (changing if necessary signs of t and u) $R_{r, \dot{\delta}}^{\prime \prime} \ni 2 t u v+u^{2} v^{2} t$. Since $R_{r, \delta}^{\prime \prime} \supset R_{\dot{\delta}} \supset R_{\delta} C_{r-\delta} C_{r-\delta} \ni 4 u^{2} v^{2} t$, it follows that $R_{r, \delta}^{\prime \prime} \ni 8 t u v$. Thus, $R_{r, \delta}^{\prime \prime} \supset 4 R_{\dot{j}} C_{\tau-\delta}$. Combining this with $R_{r, \delta}^{\prime \prime} C_{\gamma-\dot{\delta}} C_{\gamma-\delta} \subset R_{\dot{\delta}}$, we get Corollary 3.2 (ii).

Proof of Theorem 1.1 for type \boldsymbol{B}_{2} when $\operatorname{char}(k) \neq 2$. For every root φ in Σ we pick a non-zero c_{φ} in R_{φ}.

By Corollary 3.2 (i), $R_{\gamma} \supset c_{r, \varepsilon} R_{\varepsilon}, R_{r} \supset c_{r,-\varepsilon} R_{-\varepsilon}$, where $c_{r, \varepsilon}:=2 c_{r} c_{-\varepsilon}, c_{r,-\varepsilon}:=$ $2 c_{\gamma} c_{\varepsilon}$. Similarly, $R_{\delta} \supset c_{\delta, \varepsilon} R_{\varepsilon}, c_{\delta,-\varepsilon} R_{-\varepsilon}, c_{\delta, r} R_{\gamma}$ with $c_{\delta, \varepsilon}:=8 c_{-\varepsilon} c_{\gamma}^{2} c_{\varepsilon}, c_{\delta,-\varepsilon}:=8 c_{\varepsilon}^{2} c_{r}^{2}$, $c_{\delta, r}:=8 c_{\varepsilon}^{2} c_{-\varepsilon} c_{\gamma}$.

Applying the above inclusions (with other admissible pairs of roots) successively, one easily establishes that for any φ, ψ in Σ there is a
non-zero $c_{\varphi, \psi}$ in k such that $R_{\varphi} \supset c_{\varphi, \psi} R_{\psi}$. Fix such $c_{\varphi, \psi}$.
Let A be the subring of k generated by $2 R_{\alpha} R_{-\alpha}$. We have $A \supset 2 c_{-\alpha} R_{\alpha}$. Applying Corollary 3.2 (i) with $\gamma:=\beta, \delta:=\alpha+2 \beta, \varepsilon:=\delta-2 \gamma=\alpha$, we get $R_{\beta} \supset A R_{\beta}$ hence $R_{\beta} \supset c_{\beta} A$. Therefore $a_{\varphi} A \subset R_{\varphi} \subset b_{\varphi} A$ for every root φ in Σ, where $a_{\varphi}:=c_{\varphi, \beta} c_{\beta}, b_{\varphi}:=\left(2 c_{-\alpha} c_{\alpha, \varphi}\right)^{-1}$. Using Lemma 1.3 with $m=$ $n=1, A=B$, we find a non-zero a in A such that all R_{φ} are $a A$-modules.

Replacing A by $a A$ and changing a_{φ}, b_{φ} accordingly, we have $R_{\varphi} A \subset R_{\varphi}$ for all φ and still $a_{\varphi} A \subset R_{\varphi} \subset b_{\varphi} A$ for all φ with non-zero a_{φ}, b_{φ}.

By Lemma 3.1 (i), $R_{\varepsilon} R_{-\varepsilon} R_{\gamma, \delta}^{\prime} \subset R_{\gamma, \delta}^{\prime}$ for any admissible pair (γ, δ), where $\varepsilon:=\delta-2 \gamma$. Consider the product A_{1} of all $R_{r, \delta}^{\prime}$. Then $A_{1} R_{\varepsilon} R_{-\varepsilon} \subset A_{1}$ for every long root ε in Σ. Using Corollary 3.2 (i) and $A A \subset A$, we see that $0 \neq c A_{1} \subset A$ for some c in k. Replacing A by its subring generated by $c A A_{1}$, we get $A R_{\delta} R_{-\delta} \subset A$ for all δ in Σ_{l}. We still have $R_{\varepsilon} A \subset R_{\varepsilon}$ for all ε in Σ and $R_{\varepsilon} \subset b_{\varepsilon}^{\prime} A$ for all ε in Σ with some $b_{\varepsilon}^{\prime} \neq 0$ in k.

Let now (γ, δ) be an admissible pair. Using $R_{\varepsilon} \subset b_{\varepsilon}^{\prime} A$ for $\varepsilon=\delta-\gamma$ and $\varepsilon=\gamma-\delta$, we get $u C_{\gamma_{-\delta}} \subset A$, where $u:=\left(b_{\gamma-\delta}^{\prime} b_{\delta-\gamma}^{\prime}\right)^{-1} \neq 0$. Multiplying the inclusions in Corollary 3.2 (ii) by u^{2} and u^{3} accordingly, we get $R_{\delta} \cap R_{\delta} u^{2} \neq 0 \neq R_{\delta} \cap 4 R_{\dot{\delta}} u^{3}$. Since $R_{\dot{\delta}} \subset b A$ for some b in k (it follows from $\left.A R_{\dot{\delta}} R_{-\delta} \subset A \neq 0\right), u A \cap A \neq 0$. Therefore, $0 \neq v C_{r_{-\delta}} \subset A$ for some v in A. We have $\left(R_{\delta} \cup R_{\delta} C_{\gamma-\delta}\right) C_{r_{-\delta}} \subset R_{\delta} \cup R_{\delta} C_{r_{-\delta}}$ and $R_{\delta} \cup R_{\delta} C_{r_{-\delta}} \subset b A \cup b A C_{r_{-\delta}} \subset b(A \cup$ $\left.C_{r-\delta}\right) \subset b v^{-1} A$, hence $w_{r, \delta}\left(R_{\delta} \cup R_{\delta} C_{r-\delta}\right) \subset A$, where $w_{r, \delta}:=v b^{-1}$.

Let A_{2} be the product of all $w_{r, \delta}\left(R_{\dot{\delta}} \cup R_{\dot{\delta}} C_{r-\delta}\right)$. Then $A_{2} C_{r} \subset A_{2} \subset A$ for all γ in Σ_{s}. Replacing A by its subring generated by $A A_{2}$, we get $A C_{\gamma} \subset A$ for all γ in Σ_{s}. We still have $A\left(R_{\delta} R_{-\delta}\right) \subset A$ for all δ in Σ_{l} and $R_{\varepsilon} A \subset R_{\varepsilon}$ for all ε in Σ.

Thus, Theorem 1.1 is proved for G of type \boldsymbol{B}_{2} when $\operatorname{char}(k) \neq 2$. For the rest of this section we assume that $\operatorname{char}(k)=2$. Then $\left[x_{ \pm \beta}(k)\right.$, $\left.x_{ \pm(\alpha+\beta)}(k)\right]=1$.
3.3. Lemma. Let (γ, δ) be an admissible pair of roots. Then (rs, $\left.r s^{2}\right) \in R_{\dot{\delta}-\gamma, \delta}$ for any s in $R_{r, \delta}^{\prime}$ and r in $R_{\dot{\delta}-\gamma, \delta-2 r}^{\prime \prime}$. In particular,
(i) $R_{\delta-\gamma, \delta}^{\prime} \supset R_{r, \delta}^{\prime} R_{\delta-r, \delta-2 \gamma}^{\prime \prime}$
(ii) $R_{\dot{\delta}-\gamma, \dot{\delta}}^{\prime \prime} \supset R_{\dot{\delta}-r, \delta-2 r}^{\prime \prime}\left(R_{r, \delta}^{\prime}\right)^{2}$.

Proof. Let $(s, t) \in R_{r, \delta},(q, r) \in R_{\delta-r, \delta-2 r}$. Then $H \ni\left[x_{r}(s) x_{\delta}(t), x_{\delta-r}(q) \times\right.$ $\left.x_{\dot{\delta}-2 r}(r)\right]=\left[x_{r}(s), x_{\dot{\delta}-r}(q) x_{\dot{\delta}-2 r}(r)\right]=\left[x_{r}(s), x_{\delta-2 r}(r)\right]=x_{\delta-r}(s r) x_{\dot{\delta}}\left(r s^{2}\right)$, as claimed.
3.4. Notation. For a long root δ in Σ denote by A_{δ} the subring of k generated by $R_{\delta-\gamma, \delta-2 \gamma}^{\prime \prime} R_{r, 2 \gamma-\delta}^{\prime \prime}$, where $(\delta-\gamma, \delta-2 \gamma)$ and ($\gamma, 2 \gamma-\delta$) are the admissible pairs ($\gamma^{\prime}, \delta^{\prime}$) such that $2 \gamma^{\prime}-\delta^{\prime}=\delta$. For a short root γ in Σ we denote by A_{γ} the subring of k generated by $R_{\delta-\gamma, \delta}^{\prime} R_{\gamma-\delta, 2 \gamma-\delta}^{\prime}$, where $(\delta-\gamma, \delta)$ and ($\gamma-\delta, 2 \gamma-\delta$) are the admissible pairs ($\gamma^{\prime}, \delta^{\prime}$) with

$\delta^{\prime}-\gamma^{\prime}=\gamma$.

3.5. Corollary. Let (γ, δ) be an admissible pair. Then:
(i) $R_{\delta-\gamma, \delta}^{\prime}$ and $R_{r, \delta}^{\prime}$ are A_{δ}-modules;
(ii) $R_{r, \delta}^{\prime \prime}$ and $R_{r, 2 r-\delta}^{\prime \prime}$ are A_{r}^{2}-modules;
(iii) A_{δ} and $A_{2 r_{-\delta}}$ are A_{γ}^{2}-modules;
(iv) A_{r} and $A_{\delta-r}$ are A_{δ}-modules.

Proof. Applying Lemma 3.3 (i) to the pair ($\delta-\gamma, \delta$) instead of (γ, δ) we obtain $R_{r, \delta}^{\prime} \supset R_{\delta-\gamma, \delta}^{\prime} R_{r, 2 \gamma-\delta}^{\prime \prime}$. When we substitute this in the inclusion 3.3 (i), we obtain $R_{\delta-\gamma, \delta}^{\prime} \supset R_{\delta-\gamma, \delta}^{\prime}\left(R_{\delta-\gamma, \delta-2 \gamma}^{\prime \prime} R_{\gamma, 2 \gamma-\delta}^{\prime \prime}\right)$. Thus, $R_{\delta-\gamma, \delta}^{\prime}$ is an A_{δ}-module. Replacing here ($\delta-\gamma, \delta$) by (γ, δ) we prove (i).

To prove (ii) we apply Lemma 3.3 (ii) to the pair ($-\gamma, \delta-2 \gamma$) instead of (γ, δ). We get $R_{\delta-\gamma, \delta-2 \gamma}^{\prime \prime} \supset R_{\delta-\gamma, \delta}^{\prime \prime}\left(R_{-7, \delta-2 \gamma}^{\prime}\right)^{2}$. Substituting this in 3.3 (ii) we obtain $R_{\delta-\gamma, \delta}^{\prime \prime} \supset R_{\delta-\gamma, \delta}^{\prime \prime}\left(R_{-r, \delta-2 r}^{\prime} R_{\gamma, \delta}^{\prime}\right)^{2}$. Thus $R_{\delta-\gamma, \delta}^{\prime \prime}$ is an $A_{\delta-\gamma-\text {-module. Re- }}^{2}$ placing here $(\delta-\gamma, \delta)$ by ($\delta-\gamma, \delta-2 \gamma$) we see that $R_{\delta-\gamma, \delta-2 \gamma}^{\prime \prime}$ is also an $A_{\delta-\gamma}^{2}$-module. Now it remains to replace $\delta-\gamma$ by γ (and keep δ the same) to obtain (ii).

Statements (iii) and (iv) are direct consequeces of (ii) and (i) respectively and the definition of the rings A_{ε} (see Notation 3.4).
3.6. Lemma. Let (γ, δ) be an admissible pair. Then there exist non-zero c_{1} and c_{2} in k such that
(i) $R_{\dot{\delta}} \supset c_{1}^{2} R_{\delta-r, \delta-2 r}^{\prime \prime}\left(R_{r, \delta}^{\prime}\right)^{2}$.
(ii) $R_{\delta-\gamma} \supset c_{2} R_{\delta-\gamma, \delta-2 r}^{\prime \prime} R_{\gamma, \delta}^{\prime}$.

Proof. Assume first that $\operatorname{card}\left(A_{\varepsilon}\right)=2$ for some root ε in Σ. Since A_{ε} is a ring this implies that $A_{\varepsilon}=\{0,1\}$. By Corollary 3.5 (iii) and (iv), A_{ε} is a module over A_{φ}^{2}, where φ is the root making an angle 45° with ε. Since $A_{\varepsilon}=\{0,1\}$, it follows that $A_{\varphi}^{2}=\{0,1\}$, hence $A_{\varphi}=\{0,1\}$. Applying now the same argument to A_{φ} instead of A_{ε} and repeating it 7 times, we obtain that $A_{\psi}=\{0,1\}$ for all roots ψ in Σ. The definition of A_{ψ} now implies that $\operatorname{card}\left(R_{\gamma, \delta}^{\prime}\right)=\operatorname{card}\left(R_{r, \delta}^{\prime \prime}\right)=2$ for all admissible pairs (γ, δ). Since $R_{r, \delta}^{\prime} \supset R_{r} \neq 0$ and $R_{r, \delta}^{\prime \prime} \supset R_{\delta} \neq 0$ we see that $R_{r, \delta}^{\prime}=R_{r}$ and $R_{r, \delta}^{\prime \prime}=R_{\delta}$ for all admissible pairs (γ, δ). Therefore Lemma 3.3 reduces to our claim with $c_{1}=c_{2}=1$.

Now we can assume that $\operatorname{card}\left(A_{\delta-\gamma}\right)>2$. Pick $a \neq 0,1$ in $A_{\dot{\delta}-\gamma}$ and $b \neq 0$ in A_{δ}. By Corollary 3.5 (iii), $b a^{2} \in A_{\delta}\left(A_{\delta-r}\right)^{2} \subset A_{\dot{\delta}} . \quad$ By Corollary 3.5 (i) and (ii), for any r in $R_{\delta-r, \delta-2 r}^{\prime \prime}$ and any s in $R_{r, \delta}^{\prime}$, we have: $r a^{2}, r a^{4} \in$ $R_{\delta-r, \delta-2 \gamma}^{\prime \prime}$ and $s b, s b a^{2} \in R_{r, \delta}^{\prime}$.

Set $y(u, t):=\left(u t, t u^{2}\right) \in k \oplus k$. By Lemma 3.3, $y(u, t) \in R_{\delta-\gamma, \delta}$ if $u \in R_{r, \delta}^{\prime}$, $t \in R_{\delta-r, \delta-2 r}^{\prime \prime}$. Therefore $y\left(s b a^{2}, r\right), y\left(s k, r a^{2}\right), y\left(s b, r a^{4}\right) \in R_{\delta-r, \delta}$. Since $x_{\delta-r}(k)$
and $x_{j}(k)$ commute, $R_{\delta-\gamma, \delta}$ is an additive subgroup of $k \oplus k$. Therefore, $R_{\delta-\gamma, \delta} \ni y\left(s b a^{2}, r\right)+y\left(s b, r a^{2}\right)=\left(0, r s^{2} a^{2} b^{2}(1+a)^{2}\right)$ and $R_{\delta-\gamma, \delta} \ni y\left(s b a^{2}, r\right)+$ $y\left(s b, r a^{4}\right)=\left(r s b a^{2}\left(1+a^{2}\right), 0\right)$. Thus, our claim holds with $c_{1}:=a b(1+a) \neq 0$ and $c_{2}:=b a^{2}\left(1+a^{2}\right) \neq 0$.
3.7. Corollary. For each pair (φ, ψ) of roots of the same length there exists a non-zero $c_{\varphi, \psi}$ in k such that
(i) $R_{\varphi} \supset c_{\varphi, \psi}^{2} R_{\psi}$ if $\varphi, \psi \in \Sigma_{l}$,
(ii) $R_{\varphi} \supset c_{\varphi, \psi} R_{\psi}$ if $\varphi, \psi \in \Sigma_{s}$.

Proof. (i) Lemma 3.6 (i) applied to (γ, δ) gives $R_{\delta} \supset c_{1}^{2} c_{r}^{2} R_{\delta-27}$, where $0 \neq c_{r} \in R_{r} \subset R_{r, \delta}^{\prime}$ (we used also the inclusion $R_{j-2 \gamma} \subset R_{\delta-T, \delta-2 r}^{\prime \prime}$).

This shows that $c_{\partial, \delta-2 r}$ exists (and can be taken to be $c_{1} c_{r}$). Note that δ was an arbitrary long root and $\delta-2 \gamma$ makes an angle $\pm 90^{\circ}$ with δ if γ makes an angle $\pm 45^{\circ}$ with δ. Thus, repeating the argument 3 times, we obtain (i).
(ii) We apply Lemma 3.6 (ii) to $(\delta-\gamma, \delta)$ to get that $R_{\gamma} \supset c_{2} c_{2 \tau-\delta} R_{\delta-\gamma}=$: $c_{r, \delta-r} R_{\delta-r}$. Similarly, $R_{\delta-r} \supset c_{\delta-r,-r} R_{-r}, R_{-r} \supset c_{-r, \gamma-\delta} R_{\gamma-\delta}, R_{r-\delta} \supset c_{\gamma-\delta, r} R_{r}$.

Now we are prepared to complete our Proof of Theorem 1.1 for G of type \boldsymbol{B}_{2}.

Proof of Theorem 1.1 for G of type \boldsymbol{B}_{2} when $\operatorname{char}(k)=2$. For every root φ we pick a non-zero c_{φ} in R_{φ}.

By Lemma 3.6 and Corollary 3.7, $R_{\alpha} \supset c_{1}^{2} R_{\alpha+2 \beta}\left(R_{-\beta}\right)^{2} \supset c_{1}^{2} c_{\alpha+2 \beta, \alpha}^{2} c_{-\beta, \alpha+\beta}^{2} R_{\alpha}\left(R_{\alpha+\beta}\right)^{2}$ and $R_{\alpha+\beta} \supset c_{2} R_{\alpha+2 \beta} R_{-\beta} \supset c_{2} c_{\alpha+2 \beta, \alpha}^{2} c_{-\beta, \alpha+\beta} R_{\alpha} R_{\alpha+\beta}$.

Set $d_{1}=: c_{1} c_{\alpha+2 \beta, \alpha} c_{-\beta, \alpha+\beta}, \quad d_{2}:=c_{2} c_{\alpha+2 \beta, \alpha}^{2} c_{-\beta, \alpha+\beta}, \quad A:=d_{1} R_{\alpha+\beta}, \quad B:=d_{2} R_{\alpha}$. Then the above inclusions become $d_{2}^{-1} B \supset d_{2}^{-1} B A^{2}$ and $d_{1}^{-1} A \supset d_{1}^{-1} A B$. Thus, $B \supset B A^{2}, A \supset A B$.

By Corollary 3.7, $d_{2}^{-1} c_{\dot{\delta}, \alpha}^{2} B \subset R_{\dot{\delta}} \subset c_{\alpha, \beta}^{-2} d_{2}^{-1} B$ for $\delta \in \Sigma_{l}$ and $d_{1}^{-1} c_{r, \alpha+\beta} A \subset R_{r} \subset$ $c_{\alpha+\beta, \gamma}^{-1} d_{1}^{-1} A$ for $\gamma \in \Sigma_{s}$. This proves the existence of $a_{\varepsilon}, b_{\varepsilon}$ for all ε in Σ.

Consider now $\quad A^{\prime}:=A A_{\alpha} A_{\alpha+2 \beta} A_{-\alpha} A_{-\alpha-2 \beta}, \quad B^{\prime}:=B\left(A_{\beta} A_{\alpha+\beta} A_{-\beta} A_{-\alpha-\beta}\right)^{2}$. Using Corollary 3.5 (iii) and (iv), we see that $B^{\prime} \supset B^{\prime} A^{\prime 2}$ and $A^{\prime} \supset A^{\prime} B^{\prime}$. It is clear that $A^{\prime} \supset a_{1} A$ and $B^{\prime} \supset a_{2} B$ for some non-zero a_{i} in k. Using Corollary 3.5 (i), (ii), Lemma 3.6 , and the inclusions $B \supset B A^{2}, A \supset A B$, we see that $A^{\prime} \subset b_{1} A$ and $B^{\prime} \subset b_{2} B$ for non-zero b_{i} in $k, i=1,2$.

Replacing A, B by A^{\prime}, B^{\prime}, we get $A A_{\delta} \subset A, B A_{r}^{2} \subset B$ for all $\delta \in \Sigma_{l}$, $\gamma \in \Sigma_{s}$, and we still have $A^{2} B \subset B, A B \subset A$ and (after appropriate change of a_{s}, b_{ε}) $A a_{\tau} \subset R_{T} \subset A b_{r}, B a_{\delta} \subset R_{\dot{\delta}} \subset B b_{\delta}$ for all $\gamma \in \Sigma_{s}, \delta \in \Sigma_{l}$.

Using Lemma 1.3 with $N=4, n=1, m=2$ and with $N=4, n=2$, $m=1$, we find non-zero $a \in A, b \in B$ such that $R_{\delta}(a A)^{2} \subset R_{\delta}$ and $B_{r}(b B) \subset R_{r}$ for all $\delta \in \Sigma_{l}, \gamma \in \Sigma_{s}$. Replacing A, B by $a A, b B$ (and changing accordingly a_{s}, b_{ε}) we gain the additional property: $R_{\delta} A^{2} \subset R_{\delta}, R_{r} B \subset R_{r}$ for all $\gamma \in \Sigma_{s}$,
$\delta \in \Sigma_{l}$.
Now it is time to use Lemma 1.2 (ii) and then (iii) with $m=2$ to obtain new A, B satisfying $A^{2} \subset B \subset A$.

We do not loose the property that $A A_{\dot{\delta}} \subset A$ and $B A_{r}^{2} \subset B$ for all $\delta \in \Sigma_{l}$, $\gamma \in \Sigma_{s}$. Since $A_{\gamma} \supset R_{\delta-2 \gamma} R_{2 T_{-\delta}}$ and $A_{\gamma} \supset R_{\delta-\gamma} R_{\gamma-\delta}$, we have, in particular, that $A R_{\delta} R_{-\delta} \subset A$ and $B R_{\gamma}^{2} R_{-r}^{2} \subset B$ for all $\gamma \in \Sigma_{s}, \delta \in \Sigma_{l}$.
4. Proof of Theorem 1.1 for G of type $\boldsymbol{B}_{n}(n \geqq 3), \boldsymbol{C}_{n}(n \geqq 3)$, and \boldsymbol{F}_{4}.
4.1. Lemma. Let $\varphi, \psi \in \Sigma$ have the same length. Then there exists a non-zero $c_{\varphi, \psi}$ in k such that $R_{\varphi} \supset c_{\varphi, \psi} R_{\psi}$. When G is of type $\boldsymbol{C}_{n}, \varphi, \psi \in \Sigma_{l}$, and $p=2$, we can choose $c_{\varphi, \psi}$ in k^{2}.

Proof. If both φ and ψ lie in a subsystem of type \boldsymbol{A}_{2} or \boldsymbol{B}_{2}, the first claim was established in Lemma 2.1 (ii) and Theorem 1.1 for G of type \boldsymbol{B}_{2}, respectively. In the general case there exist roots $\gamma_{1}, \cdots, \gamma_{m}$ in Σ of the same length as φ and ψ such that $\varphi=\gamma_{1}, \psi=\gamma_{m}$ and γ_{i}, γ_{i+1} lie in a subsystem Σ_{i} of type \boldsymbol{A}_{2} or \boldsymbol{B}_{2} for $i=1,2, \cdots, m-1$. Since the claim holds in every Σ_{i}, it holds in Σ as well, by induction on m. When G is of type $\boldsymbol{C}_{n}, \varphi, \psi \in \Sigma_{l}$, and $p=2$, we can use Lemma 3.7 (i).
4.2. Now we pick $\alpha \in \Sigma_{l}$ and $\beta \in \Sigma_{s}$ which are simple roots in a subsystem of type \boldsymbol{B}_{2}. By Theorem 1.1, there are additive subgroups A and B of k and elements $a_{\alpha}, b_{\alpha}, a_{\beta}, b_{\beta}$ of k such that $a_{\alpha} B \subset R_{\alpha} \subset b_{\alpha} B, a_{\beta} A \subset$ $R_{\beta} \subset b_{\beta} A$ and, moreover,

$$
\begin{gather*}
A R_{\alpha} R_{-\alpha} \subset A, \quad B(e(\Sigma) / p)\left(R_{\beta} R_{-\beta}\right)^{p} \subset B, \tag{4.3}\\
A B \subset A, \quad B A^{p} \subset B, \tag{4.4}
\end{gather*}
$$

where $e(\Sigma)=2$, and $p=1$ or 2 (are integers depending on $\operatorname{char}(k)$).
By Lemma 4.1, $a_{\delta} B \subset R_{\delta} \subset b_{\delta} B$ and $a_{r} A \subset R_{r} \subset b_{r} A$ for all $\delta \in \Sigma_{l}$ and $\gamma \in \Sigma_{s}$, where $a_{r}:=a_{\beta} c_{r, \beta} \neq 0, b_{r}:=b_{\beta} c_{\beta, r}^{-1}, \quad a_{\delta}:=a_{\alpha} c_{\delta, \alpha} \neq 0, b_{\delta}:=b_{\alpha} c_{\alpha, \delta}^{-1}$.

Applying Lemma 1.3 with $N:=\operatorname{card}\left(\Sigma_{s}\right), n=1, m=p$ and with $N:=\operatorname{card}\left(\Sigma_{l}\right), n=p, m=1$, we find non-zero a in A and b in B such that $R_{\delta}(a A)^{p} \subset R_{\delta}$ and $R_{r}(b B) \subset R_{r}$ for all δ in Σ_{l} and γ in Σ_{s}.

Replacing A and B by $A a$ and $B b$ and changing a_{ε} and b_{ε}, we have (4.3), (4.4), and:

$$
\begin{align*}
& a_{\delta} B \subset R_{\delta} \subset b_{\delta} B \text { and } R_{\delta} A^{p} \subset R_{\delta} \text { for all } \delta \text { in } \Sigma_{l} ; \tag{4.5}\\
& a_{\gamma} A \subset R_{\gamma} \subset b_{\gamma} A \text { and } R_{\gamma} B \subset R_{r} \text { for all } \gamma \text { in } \Sigma_{s} . \tag{4.6}
\end{align*}
$$

Since every short root γ in Σ can be included as a simple root in a subsystem of type \boldsymbol{B}_{2} or \boldsymbol{A}_{2}, we have $B_{r}(2 / p)\left(R_{r} R_{-\gamma}\right)^{p} \subset B_{r}$ for an additive subgroup B_{r} of k such that $u_{r} B \subset B_{r} \subset v_{r} B$ with non-zero u_{r}, v_{r} in k (for
$\gamma=\beta$ we can take $B_{\gamma}=B$, see (4.3)). It follows that $B_{\gamma} C_{r} \subset B_{r}$, where C_{γ} is the subring of k generated by $(2 / p)\left(R_{r} R_{-r}\right)^{p}$. Let C_{s} be the product of all $C_{\gamma}, \gamma \in \Sigma_{s}$. Then $\left(B C_{s}\right) C_{\gamma} \subset B C_{s}$ for all γ in Σ_{s}. Replacing B by its additive subgroup generated by $B C_{s} c$ for some $c \neq 0$ (and changing a_{δ}, b_{δ}), we get $B C_{\gamma} \subset B$ for all γ in Σ_{s}, and we still have (4.3)-(4.6).

Similarly, for every long root δ in Σ there are non-zero $u_{j}, v_{\dot{\delta}}$ in k and an additive subgroup A_{δ} of k such that $A_{\delta}\left(R_{\delta} R_{-\delta}\right) \subset A_{\delta}$ and $u_{\delta} A \subset A_{\delta} \subset$ $v_{\dot{\delta}} A$, hence $A_{\dot{\delta}} C_{\dot{\delta}} \subset A_{\dot{\delta}}$, where C_{δ} is the subring of k generated by $R_{\dot{\delta}} R_{-\dot{\delta}}$. Let C_{l} be the product of all $C_{\delta}, \delta \in \Sigma_{l}$. Then $\left(A C_{l}\right) C_{\dot{\delta}} \subset\left(A C_{l}\right)$ for all δ in Σ_{l}. Moreover, $u_{l} A \subset A C_{l} \subset v_{l} A$ for non-zero u_{l}, v_{l} in k. Replacing A by the additive subgroup generated by $A C_{l} v_{l}^{-1}$ (and changing a_{r}, b_{r}), we get $A C_{\dot{\delta}} \subset A$ for all δ in Σ_{l} and we still have (4.3)-(4.6) and $B C_{r} \subset B$ for all γ in Σ_{s}.

If Σ_{l} is connected (type $\boldsymbol{B}_{n}, n \geqq 3$, or \boldsymbol{F}_{4}), then there are long roots φ and ψ in Σ such that $\varphi+\psi$ is also in Σ_{l}. We have $\left[x_{\varphi}(t), x_{\psi}(u)\right]=$ $x_{\varphi+\psi}(\pm t u)$ for all t, u in k, hence $R_{\varphi+\psi} \supset R_{\varphi} R_{\psi}$. By (4.5), $B b_{\varphi+\psi} \supset R_{\varphi+\psi} \supset$ $R_{\varphi} R_{\psi} \supset a_{\varphi} a_{\psi} B B$, so $c B B \subset B$ with $c:=a_{\varphi} a_{\psi} / b_{\varphi+\psi} \neq 0$. By Lemma 1.2 (v) with $m:=2$, we can find a non-zero b_{0} in B such that $\left(b_{0} B\right)\left(b_{0} B\right) \subset\left(b_{0} B\right)$. Replacing B by $b_{0} B$ (and changing $a_{\dot{\delta}}, b_{\dot{\delta}}$, we can assume that $B B \subset B$ (when Σ_{l} is connected).

Similarly, if Σ_{s} is connected (type $\boldsymbol{C}_{n}, n \geqq 3$, or \boldsymbol{F}_{4}), then there are $\varphi, \psi, \varphi+\psi \in \Sigma_{s}$, hence $R_{\varphi+\psi} \supset R_{\varphi} R_{\psi}$, so $A \supset c A A$ with $c:=a_{\varphi} a_{\psi} / b_{\varphi+\psi} \neq 0$. By Lemma 1.2 (iv) with $m=2,\left(a_{0} A\right)\left(a_{0} A\right) \subset a_{0} A \neq 0$ for some a_{0} in A. Replacing A by $a_{0} A$ (and changing a_{r}, b_{r}) we have $A A \subset A$.

Still (4.3)-(4.6) hold and so do Theorem 1.1 (i) and (ii). To get the last part of Theorem 1.1 (iii), we use Lemma 1.2 (ii) and (iii) with $m=2$ when $p=2$, and we just replace both A and B by $A B$ when $p=1$ (and change $\left.a_{\varepsilon}, b_{\varepsilon}\right)$.
5. Proof of Theorem 1.1 for G of type \boldsymbol{G}_{2}. The root system Σ of type \boldsymbol{G}_{2} consists of 6 short roots $(\pm \beta, \pm(\alpha+\beta), \pm(2 \beta+\alpha)$) and 6 long roots $(\pm \alpha, \pm(\alpha+3 \beta), \pm(2 \alpha+3 \beta))$, see Figure 2.

We use, sometimes without explicit reference, commutation relations given in [4, §10, after Lemma 57].

For every root ε in Σ, we fix a non-zero c_{ε} in $R_{\varepsilon}:=R_{\varepsilon}(H)$.
5.1. Lemma. There is a subring B of k such that $0 \neq R_{\delta} B \subset R_{\delta}$ and $B R_{\delta} R_{-\delta} \subset B$ for every δ in Σ_{l}.

Proof. It is a direct consequence of the results of Section 2 (namely, Theorem 1.1 for G of type \boldsymbol{A}_{2}) applied to the algebraic group generated by all long root subgroups (which is of type \boldsymbol{A}_{2}).

Figure 2. Root system of type \boldsymbol{G}_{2}.
5.2. Lemma. For every short root γ in Σ there exist non-zero a_{r}, b_{r}, d_{r} in k such that:
(i) $3 b_{r} R_{r} \subset B$; (ii) $a_{r} B \subset R_{r}$; (iii) $4 d_{r} R_{r}^{3} \subset B$.

Proof. Let δ be a long root forming angle 30° with γ. Pick a nonzero b in B.

We have $\left[x_{r}(t), x_{i-r}(u)\right]=x_{j}(\pm 3 t u)$ for all t, u in k. Therefore, $R_{\delta} \supset 3 R_{\gamma} R_{\dot{\delta}-\gamma} \supset 3 c_{\delta-\gamma} R_{\gamma}$. By Lemma 5.1, $B \supset B R_{-\delta} R_{\dot{\delta}} \supset b c_{-\delta} R_{\delta}$. Thus, (i) holds with $b_{r}:=b c_{-\delta} c_{\delta-r} \neq 0$.

Part (ii) will be proved separately in the following three cases: $\operatorname{char}(k) \neq 2 ; \operatorname{card}(B)=2 ; \operatorname{char}(k)=2$ and $\operatorname{card}(B)>2$.

When $\operatorname{char}(k) \neq 2$, we take any t in $R_{37-2 \delta}$ and u in $R_{\delta-r}$. Then $H \ni$ $y(t, u):=\left[x_{37-2 \delta}(t), x_{\delta-\gamma}(u)\right]=x_{2 \gamma_{-\delta}}(\pm t u) x_{r}\left(\pm t u^{2}\right) x_{\delta}\left(\pm t u^{3}\right) x_{3 \gamma_{-\delta}}\left(\pm t^{2} u^{3}\right)$, hence $H \ni z(t, u):=y(-t,-u)^{-1} y(t, u)=x_{r}\left(\pm 2 t u^{2}\right) x_{3 r_{-\delta}}\left(\pm 2 t^{2} u^{3}\right)$ and $H \ni z(t, u) z(t$, $-u)=x_{r}\left(\pm 4 t u^{2}\right)$. Therefore, $R_{r} \supset 4 R_{3 r_{-2}} R_{\delta-r}^{2} \supset 4 B c_{3 \gamma_{-2}} c_{\delta-r}^{2}$, so (ii) holds with $a_{r}:=4 c_{3 T-\delta} c_{\delta-r}^{2} \neq 0$.

When $\operatorname{card}(B)=2$, then $B=\{0,1\}$ and we have (ii) with $a_{r}:=c_{r}$.
When $\operatorname{char}(k)=2$ and $\operatorname{card}(B)>2$, we pick $b \neq 0,1$ in B. For any a in $R_{-\delta}, d$ in R_{δ} and u in R_{r} we have: $H \ni y_{1}(a, d):=\left[x_{\delta}(d),\left[x_{-\delta}(a), x_{r}(u)\right]\right]=$ $\left[x_{\delta}(d), x_{T-\delta}(u a) x_{2 \gamma_{-\delta}}\left(u^{2} a\right) x_{3 T_{-\delta}}\left(u^{3} a\right) x_{3 T-2 \delta}\left(u^{3} a^{2}\right)\right]=\left[x_{\delta}(d), x_{\gamma-\delta}(u a)\right]\left[x_{\delta}(d), x_{3 T-2 \delta}\left(u^{3} a^{2}\right)\right]=$ $x_{r}(u a d) x_{2 \gamma_{-\delta}}\left(u^{2} a^{2} d\right) x_{3 \gamma_{-2 \delta}}\left(u^{3} a^{3} d\right) x_{3 \gamma_{-\delta}}\left(u^{3} a^{3} d^{2}\right) x_{3 r_{-\delta}}\left(u^{3} a^{2} d\right)$, hence H э $y_{2}(a, d):=y_{1}(a b$, d) $y_{1}\left(a, d b^{2}\right)^{-1}=x_{r}\left(u a d\left(b+b^{2}\right)\right) x_{3 \uparrow-2 \delta}\left(u^{3} a^{3} d\left(b^{3}+b^{2}\right)\right) x_{3 T-\delta}\left(u^{3} a^{3} d^{2}\left(b^{3}+b^{4}\right)\right)$, and, finally, H э $y_{2}\left(a b^{3}, d\right) y_{2}\left(a b^{2}, d b^{3}\right) y_{2}\left(a b, d b^{3}\right) y_{2}\left(a, d b^{6}\right)=x_{r}\left(u a d\left(b+b^{2}\right)\left(b^{3}+b^{5}+b^{4}+b^{6}\right)\right)=$ $x_{r}\left(u a d b^{4}\left(1+b^{4}\right)\right)$.

Thus, $\quad R_{r} \supset R_{r} R_{\delta} R_{-\delta} b^{4}\left(1+b^{4}\right) \supset c_{r}\left(B c_{\delta}\right) c_{-\delta} b^{4}\left(1+b^{4}\right)=B a_{r}, \quad$ where $\quad a_{r}:=$ $c_{T} c_{\delta} c_{-\delta} b^{4}\left(1+b^{4}\right) \neq 0$.

To prove (iii) we consider the same $z(t, u)=x_{r}\left(\pm 2 t u^{2}\right) x_{3 r_{-\delta}}\left(\pm 2 t^{2} u^{3}\right) \in H$ as in the proof of (ii). Then $H \ni z(t, u) z(-t, u)=x_{3 \gamma_{-\delta}}\left(\pm 4 t^{2} u^{3}\right)$. Therefore,
$R_{3 T-\delta} \supset 4 R_{3 \gamma-2 \delta}^{2} R_{\delta-\gamma}^{3} \supset 4 c_{3 \gamma-2 \delta}^{2} R_{\delta-\gamma}^{3}$. Since $b c_{\delta-3 \gamma} R_{3 T-\delta} \subset B R_{3 T-\delta} R_{\delta-3 \gamma} \subset B$ by Lemma 5.1, we get $4 d_{\delta-r} R_{\delta-r}^{3} \subset B$ with $d:=b c_{\delta-3 r} C_{3 r-2 \delta}^{2}$. Similarly, $4 d_{r} R_{r}^{3} \subset B$ with some $d_{r} \neq 0$ in k.
5.3. Lemma. Let γ be a short root in Σ and δ form angle $\pm 150^{\circ}$ with γ. Let $C_{r}:=6 R_{r} R_{-r}$. Then $R_{\delta} C_{\gamma} C_{\gamma} C_{r} \subset R_{\delta}$.

Proof. Let $t, t_{i} \in R_{r}, u \in R_{\delta}, \quad s, s_{i} \in R_{-r}$. Then $H \ni z_{1}(t):=\left[x_{\delta}(u)\right.$, $\left.x_{r}(t)\right]=x_{\delta+r}(\pm t u) x_{\delta+2 r}\left(\pm t^{2} u\right) x_{\dot{\delta}+3 r}\left(\pm t^{3} u\right) x_{2 \delta+3 r}\left(\pm t^{3} u^{2}\right)$, hence $H \ni z_{2}\left(t_{1}\right):=z_{1}\left(t_{1}\right)^{-1} \times$ $z_{1}\left(t_{2}\right)^{-1} z_{1}\left(t_{1}+t_{2}\right)=x_{\delta+3 r}\left(\pm 3\left(t_{1}+t_{2}\right) t_{1} t_{2} u\right) x_{\delta+2 r}\left(\pm 2 t_{1} t_{2} u\right) x_{2 \delta+3 r}\left(\pm u^{2} 3 t_{1} t_{2}\left(t_{1}+t_{2}\right)\right) \times$ $x_{2 \sigma+3 r}\left(\pm 3 u^{2} t_{1} t_{2}^{2}\right)$, hence H Э $z_{3}:=z_{2}\left(t_{1}+t_{3}\right) z_{2}\left(t_{1}\right)^{-1} z_{2}\left(t_{3}\right)^{-1}=x_{i+3 r}\left(\pm 6 t_{1} t_{2} t_{3} u\right) \times$ $x_{2 \delta+37}\left(\pm 6 t_{1} t_{2} t_{3} u^{2}\right)=x_{\delta+37}\left(u^{\prime}\right) x_{2 \delta+37}\left(\pm u^{\prime} u\right)$, where $u^{\prime}:= \pm 6 t_{1} t_{2} t_{3} u$. Similarly, $H \ni z_{4}(s):=\left[z_{3}, x_{-r}(s)\right]=\left[x_{\delta+3 r}\left(u^{\prime}\right), x_{-r}(s)\right]$, hence $H \ni z_{5}\left(s_{1}\right):=z_{4}\left(s_{1}\right)^{-1} z_{4}\left(s_{2}\right)^{-1} \times$ $z_{4}\left(s_{1}+s_{2}\right), H \ni z_{8}(u):=z_{5}\left(s_{1}+s_{3}\right) z_{5}\left(s_{1}\right)^{-1} z_{5}\left(s_{3}\right)^{-1}=x_{\delta}\left(\pm 6 s_{1} s_{2} s_{3} u^{\prime}\right) x_{2 \delta+3 r}\left(\pm 6 s_{1} s_{2} s_{3} u^{\prime 2}\right)$. Finally, $H \ni z_{8}(u) z_{8}(-u)^{-1}=x_{\delta}\left(\pm 12 s_{1} s_{2} s_{3} u^{\prime}\right)$, hence $R_{\delta} \ni 12 s_{1} s_{2} s_{3} u^{\prime}= \pm 72 s_{1} s_{2} s_{3} \times$ $t_{1} t_{2} t_{3} u$. Since we have this for arbitrary $t_{i} \in R_{r}, s_{i} \in R_{-r}, u \in R_{\delta}$, it follows that $R_{s} \supset C_{r} C_{r} C_{r} R_{\delta}$.

Proof of Theorem 1.1 for G of type G_{2} when $\operatorname{char}(k) \neq 3$. By Lemma 5.2 (i), (ii), $a_{r} B \subset R_{r} \subset\left(3 b_{r}\right)^{-1} B$ for all short roots γ in Σ. By Lemma 1.3 with $A:=B, n=m=1, N:=\operatorname{card}\left(\Sigma_{s}\right)=6$, we have: $R_{r}(b B) \subset R_{r}$ for all short γ with some $b \neq 0$ in B. Replacing B by $B b$ and $\left(3 b_{r} b\right)^{-1}$ by b_{r}^{\prime}, we get $R_{r} B \subset R_{r}, R_{r} \subset b_{r}^{\prime} B$ for all γ in Σ_{s} and we still have $R_{\delta} B \subset R_{\delta}$ and $B R_{\delta} R_{-\delta} \subset B$ for all δ in Σ_{l}.

Let γ be in Σ_{s} and δ make an angle 30° with γ. Then $3 c_{\delta-2 \gamma} c_{\delta-\gamma} \in$ $3 R_{\delta-2 r} R_{\delta-\gamma} \subset R_{2 \delta-37}, 3 c_{\gamma} c_{\delta-r} \subset R_{\delta}$, and $3 c_{-r} c_{\delta-2 \gamma} \in R_{\delta-37}$, hence $\left(3 c_{\gamma} c_{\delta-\gamma}\right)\left(3 c_{-\gamma} c_{\delta-2 \gamma}\right) \in$ $R_{\delta} R_{\delta-3 r} \subset R_{2 \delta-37}$. So both $3 c_{\delta-2 r} c_{\delta-\gamma}$ and $\left(3 c_{\delta-2 r} c_{\delta-\gamma}\right)\left(3 c_{\gamma} c_{-r}\right)$ are in $R_{2 \delta-37}$. Since $B R_{2 \delta-3 r} R_{3 r-2 \delta} \subset B$, we have $R_{2 \delta-3 r} \subset B d_{1}$ for some $d_{1} \neq 0$ in k. Writing $3 c_{\delta-2 r} c_{\delta-r}=b_{1} d_{1}$ and $\left(3 c_{\delta-2 r} c_{j-r}\right)\left(3 c_{r} c_{-r}\right)=b_{2} d_{1}$ with b_{1} and b_{2} in B, we see that $c_{r} c_{-r}=b_{2} / 3 b_{1}$. Since $c_{r} c_{-r} B \subset R_{r} R_{-r} \subset R d_{2}$ for some $d_{2} \neq 0$ in k, we can use Lemma 1.3 with $n=m=N=1, A=B$ and get $b_{3} R_{r} R_{-r} \subset b_{3} d_{2} B \subset c_{r} c_{-r} B$ for some $b_{3} \neq 0$ in B. Therefore $3 b_{1} b_{3} R_{r} R_{-r} \subset 3 b_{1} c_{r} c_{-r} B \subset b_{2} B \subset B$, hence $u_{r} R_{r} R_{-r} \subset B$ for $0 \neq u_{r}:=3 b_{1} b_{3} \in B$.

Let u be the product of all $u_{r}, \gamma \in \Sigma_{s}$. Then $u R_{r} R_{-r} \subset B$ for all γ in Σ_{s} and $0 \neq u \in B$. Replacing B by $u B$, we have $B B R_{r} R_{-r} \subset B$ for all γ in Σ_{8}. Still we have $R_{\varepsilon} B \subset R_{\varepsilon}$ for all ε in Σ and $B R_{\delta} R_{-\delta} \subset B$ for all δ in Σ_{l}.

If $\operatorname{char}(k)=2$, we are done. Otherwise, $C_{r}:=6 R_{r} R_{-r} \neq 0$, and $R_{\delta} C_{\gamma} C_{\gamma} C_{r} \subset R_{\delta}$ by Lemma 5.3, where δ makes angle 150° with γ, for any short root γ in Σ. Let $B_{r}:=R_{\delta} \cup R_{\delta} C_{r} \cup R_{\delta} C_{r} C_{\gamma}$. Then $B_{r} C_{r} \subset B_{r}$. Since $R_{\delta} \subset d_{3} B$ for some $d_{3} \neq 0$ in k, we have $B^{4} B_{r} \subset d_{3} B \cup d_{3} B \cup d_{3} B=d_{3} B$, hence $e_{r} B_{r} \subset B$ for some $e_{r} \neq 0$ in k.

Let B^{\prime} be the product of all $e_{r} B_{r}, \gamma \in \Sigma_{s}$. Then $B^{\prime} \subset B$ and $B^{\prime} C_{r} \subset B^{\prime}$
for all γ in Σ_{s}. Replacing B by its subring generated by $B B^{\prime}$ we have $B C_{r} \subset B$ for all γ in Σ_{8}. Still we have $R_{\varepsilon} B \subset R_{\varepsilon}$ for all ε in Σ and $B R_{\delta} R_{-\delta} \subset B$ for all δ in Σ_{l}.

Proof of Theorem 1.1 for G of TYPe G_{2} when $\operatorname{char}(k)=3$. Let B be as in Lemma 5.1. Since $3=0$ in k, the algebraic subgroup of G generated by all short root subgroups is also of type A_{2}. So $R_{r} A \subset R_{r}$ and $A R_{\gamma} R_{-\gamma} \subset A$ for some non-zero subring A of k and all short roots γ in Σ.

Using $R_{\beta} A \subset R_{\beta}, A R_{\beta} R_{-\beta} \subset A$, and Lemma 5.2 (ii), (iii) with $\gamma=\beta$, we get $A \supset c_{1} B$ and $B \supset c_{2} A^{3}$ with non-zero c_{i} in k.

Let B_{0} (resp. A_{0}) be the additive subgroup of k generated by $B A^{3}$ (resp., by BA). Then $A_{0} R_{\varepsilon} R_{-\varepsilon} \subset A_{0}, B_{0} R_{\delta} R_{-\delta} \subset B_{0} \supset B_{0}\left(R_{r} R_{-r}\right)^{3}$ for all $\varepsilon \in \Sigma$, $\delta \in \Sigma_{l}, \gamma \in \Sigma_{s}$.

Since $(B A)^{3} \subset B A^{3} \subset B A$, it follows that $A_{0}^{3} \subset B_{0} \subset A_{0}$. From $c_{1} B \subset A$ and $c_{2} A^{3} \subset B$ it follows that $B A \subset A A c_{1}^{-1} \subset A c_{1}^{-1}$ and $B A^{3} \subset B B c_{2}^{-1} \subset B c_{2}^{-1}$, hence $c_{2} B_{0} \subset B, c_{1} A_{0} \subset A$. Since A and B are subrings of k, so are A_{0} and B_{0}.

Using Lemma 1.3 with $N=6, m=3, n=1, A=A_{0}, B=B_{0}$ and then with $N=6, m=1, n=3, A=B_{0}, B=A_{0}$, we find non-zero a in A_{0}, b in B_{0} such that $R_{r}\left(b B_{0}\right) \subset R_{r}$ and $R_{\delta}\left(a A_{0}\right)^{3} \subset R_{\delta}$ for all $\gamma \in \Sigma_{s}, \delta \in \Sigma_{l}$. Let $c:=a^{3} b \in A_{0}^{3} B_{0} \subset B_{0} B_{0} \subset B_{0} \subset A_{0}$. Then $R_{\delta}\left(A_{0} c\right)^{3} \subset R_{\delta}\left(A_{0} a\right)^{3} \subset R_{\delta}$ and $R_{r}\left(c B_{0}\right) \subset R_{r}\left(b B_{0}\right) \subset R_{r}$. Moreover, $\left(A_{0} c\right)^{3} \subset B_{0} c \subset A_{0} c$.

Replacing A and B by $A_{0} c$ and $B_{0} c$, we get $A^{3} \subset B \subset A, B B \subset B, A A \subset A$, $R_{\delta} A^{3} \subset R_{\delta}$ for all $\delta \in \Sigma_{l}$ and $R_{\gamma} B \subset R_{\gamma}$ for all $\gamma \in \Sigma_{s}$. Moreover, $B\left(R_{\gamma} R_{-\gamma}\right)^{3} \subset B$ and $A\left(R_{\varepsilon} R_{-\varepsilon}\right) \subset A$ for all γ in Σ_{s} and ε in Σ.
6. Existence of groups described by Theorem 1.1. For any subsets A and B of k let $G^{E}(A, B)$ denote the subgroup of $G(k)$ generated by all $x_{\gamma}(a)$ and $x_{\delta}(b)$ with δ in Σ_{l}, γ in Σ_{s}, a in A, and b in B. In particular, $G^{E}(A, A)=G^{E}(A), \quad$ Evidently, $R_{r}\left(G^{E}(A, B)\right) \supset A$ and $R_{\delta}\left(G^{E}(A, B)\right) \supset B$ for all γ in Σ_{s} and δ in Σ_{l}.
6.1. Theorem. Let A and B be additive subgroups of k satisfying Theorem 1.1 (iii), (iv). Then $R_{r}\left(G^{E}(A, B)\right)=A$ and $R_{\delta}\left(\left(G^{E}(A, B)\right)=B\right.$ for all long roots δ in Σ and short roots γ in Σ.

To prove this theorem, we will exhibit a certain subgroup $G(A, B)$ of $G(k)$ such that $G(A, B) \supset G^{E}(A, B)$ and $R_{r}(G(A, B))=A$ and $R_{\delta}(G(A, B))=B$ for all $\gamma \in \Sigma_{s}$ and $\delta \in \Sigma_{l}$.

We use here that G defined in the introduction over k may be defined as a Chevalley group scheme over the integers \boldsymbol{Z} (see [17]). There is a matrix representation $G \subset S L_{N}$ such that G is defined by polynomial equa-
tions in the matrix entries with integral coefficients.
Given any commutative ring R (with or without 1) we define $G(R)$ as the group of all ring morphisms from the ring of regular functions on G vanishing at the identity of G to the ring R. If R is an ideal of a ring R^{\prime} then $G(R)$ is the kernel of $G\left(R^{\prime}\right) \rightarrow G\left(R^{\prime} / R\right)$. If R is a subring of k, the group $G(R)$ can be also defined as $G(k) \cap S L_{N}(R)$, where $S L_{N}(R)$ is the group of all matrices ($a_{i, j}$) with the determinant 1 such that $a_{i, j}$, $a_{i, i}-1 \in R$ for all $i \neq j$.

The monomorphisms $x_{\varepsilon}(\varepsilon \in \Sigma)$ are also defined over \boldsymbol{Z}. Moreover, the corresponding maps of the rings of regular functions are ring morphisms onto the polynomial ring $\boldsymbol{Z}[t]$. Therefore we have
6.2. Lemma. For any subring R of k and any root ε in Σ, we have $G^{E}(R) \subset G(R)$ and $R_{\varepsilon}(G(R))=R$.

This lemma implies Theorem 6.1 in the case $A=B$. In particular, the theorem holds when $p=1$. To prove it when $p \neq 1$, we consider a few cases separately.

Proof of Theorem 6.1 for G of types \boldsymbol{F}_{4} and \boldsymbol{G}_{2}. We assume that $\operatorname{char}(k)=2$ in the case of type \boldsymbol{F}_{4} and $\operatorname{char}(k)=3$ in the case of type \boldsymbol{G}_{2}. Then there is a bijection $\rho: \Sigma \rightarrow \Sigma$ and a non-central isogeny (defined over $\boldsymbol{Z} / p \boldsymbol{Z}) \quad \iota: G \rightarrow G$ such that $\rho\left(\Sigma_{l}\right)=\Sigma_{s}, \rho\left(\Sigma_{s}\right)=\Sigma_{l}, \quad c x_{\delta}(t)=x_{\rho_{s}}(\pm t)$, and $\iota x_{r}(t)=x_{\rho r}\left(\pm t^{p}\right)$ for all $\delta \in \Sigma_{l}, \gamma \in \Sigma_{s}$, and $t \in k$ (see, for example, [4]).

For any subrings A and B of k such that $A^{p} \subset B \subset A$, let $G(A, B)$ be the set of all g in $G(A)$ such that $\iota(g) \in G(B)$. Then $G(A, B) \supset G^{E}(A, B)$, $R_{\delta}(G(A, B))=B$ (since $\left.B \subset A\right)$, and $R_{r}(G(A, B))=A$ (since $A^{p} \subset B$), for all $\gamma \in \Sigma_{s}$ and $\delta \in \Sigma_{l}$.

Therefore $R_{\delta}\left(G^{E}(A, B)\right)=B$ and $R_{r}\left(G^{E}(A, B)\right)=A$.
6.3. "PSEUDO-ORTHOGONAL" GROUPS. To prove Theorem 6.1 for G of types \boldsymbol{B}_{n} and \boldsymbol{C}_{n} (with $p=2$) we use some of (${ }^{*}, \varepsilon, A$)-orthogonal groups of [8].

Namely, let $n \geqq 1, Q$ a n by n integral matrix, A a commutative ring (with or without 1), B an A^{2}-submodule of A containing $2 A$. Then let $O(Q ; A, B)$ denote the set of matrices g in $G L_{n}(A)$ such that $g^{*} Q g-$ $Q \in \mathscr{D}$, where ${ }^{*}$ means transposition and \mathscr{D} is the set of all symmetric matrices over A with the diagonal entries in B.

Since \mathscr{D} is an additive subgroup and $a^{*} b a \in \mathscr{D}$ for any $b \in \mathscr{D}$ and any matrix a over A, the set $O(Q ; A, B)$ is a subgroup of $G L_{n}(A)$.
6.4. Proof of Theorem 6.1 for G of types B_{2} With $A A \subset A$ and $\boldsymbol{C}_{n}(n \geqq 3)$. Consider the ring of $2 n$ by $2 n$ integral matrices with the usual matrix units $e_{i, j}$ and the matrix $Q:=\sum_{i=1}^{n} e_{i, 2 n+1-i}$. The group
$S p_{2 n}=\left\{g \in S L_{2 n}: g^{*}\left(Q-Q^{*}\right) g=Q-Q^{*}\right\}$ can be considered as an affine group scheme over \boldsymbol{Z}. It is a simply connected almost simple Chevalley group scheme of type $\boldsymbol{C}_{n}\left(\boldsymbol{C}_{2}=\boldsymbol{B}_{2}\right.$ when $\left.n=2\right)$. The root elements with respect to the torus of diagonal matrices are $y_{i, 2 n+1-1}(t):=1_{2 n}+t e_{i, 2 n+1-i}$ (correspond to the long roots) and $y_{i, j}(t):=1_{2 n}+t e_{i, j} \pm t e_{2 n+1-j, 2 n+1-i}$ with $i+j<2 n+1$ (correspond to the short roots).

Let now A and B be as in Theorem 6.1 and $\operatorname{char}(k)=2$.
For any G of type C_{n} there is a bijection ρ from Σ to the set $\{(i, j)$: $1 \leqq i, j \leqq 2 n, i+j \leqq 2 n+1\}$ and a central isogeny $c: S p_{2 n} \rightarrow G$ over \boldsymbol{Z} such that $c y_{\rho_{\varepsilon}}(t)=x_{\varepsilon}(t)$ for all ε in and all t. The kernel of c is either trivial or isomorphic to the algebraic group of square roots of 1.

Let now A and B be as in Theorem 6.1, $A A \subset A$, and $\operatorname{char}(k)=2$. Set $G(A, B):=\iota\left(S p_{2 n}(A, B)\right)$, where $S p_{2 n}(A, B):=O(Q ; A, B)$ (see 6.3). Then $G(A, B) \supset G^{E}(A, B), \quad R_{r}(G(A, B))=\left\{t \in k: y_{\rho r}(t) \in O(Q ; A, B)\right\}=A, \quad$ and $R_{\delta}(G(A, B))=\left\{t \in k: y_{\rho \delta}(t) \in O(Q ; A, B)\right\}=B$ for all γ in Σ_{s} and δ in Σ_{l}.
6.5. Proof of Theorem 6.1 for G of type \boldsymbol{B}_{2} with $B B \subset B$ and TYPE $\boldsymbol{B}_{n}(n \geqq 3)$. Let $Q:=\sum_{i=1}^{n} e_{i, 2 n+1-i}+e_{2 n+1,2 n+1}$. For any commutative ring R, let $S O_{2 n+1}(R):=O(Q ; R, 0) \cap S L_{2 n+1}(R)$ (see 6.3).

Then $S O_{2 n+1}$ can be considered as an affine group scheme over \boldsymbol{Z}. It is a simple Chevalley group of type \boldsymbol{B}_{n}. The root elements with respect to the torus of diagonal matrices are

$$
z_{i, 2 n+1-i}(t):=1_{2 n+1}-t^{2} e_{i, 2 n+1-i}+t e_{2 n+1,2 n+1-i}-2 t e_{i, 2 n+1}
$$

(correspond to the short roots) and

$$
z_{i, j}(t):=1_{2 n+1}+t e_{i, j}-t e_{2 n+1-j, 2 n+1-i} \quad \text { with } \quad i+j<2 n+1
$$

(correspond to the long roots).
For any G of type \boldsymbol{B}_{n} there is a bijection ρ from Σ to the set $\{(i, j): 1 \leqq i, j \leqq 2 n, i+j \leqq 2 n+1\}$ and a central isogeny $c: G \rightarrow S O_{2 n+1}$ over \boldsymbol{Z} such that $\iota z_{\rho_{\varepsilon}}(t)=x_{\varepsilon}(t)$ for all ε in Σ and all t. The kernel of ι is either trivial or isomorphic to the algebraic group of square roots of 1.

For any commutative ring R of characteristic 2, every matrix in $S O_{2 n+1}(R)$ has the form $\left(\begin{array}{ll}g & 0 \\ u & 1\end{array}\right)$, where g is in $S p_{2 n}(R)$ and u is a $2 n$-row over R. It gives a non-central isogeny $\iota^{\prime}: S O_{2 n+1} \rightarrow S p_{2 n}$ over $\boldsymbol{Z} / 2 \boldsymbol{Z}$. We have

$$
\iota^{\prime} z_{i, j}(t)= \begin{cases}y_{i, j}(t) & \text { when } \quad i+j<2 n+1 \\ y_{i, j}\left(t^{2}\right) & \text { when } \quad i+j=2 n+1\end{cases}
$$

for all t in k.
Let now A and B be as in Theorem 6.1 and $p=2 . \quad \operatorname{char}(k)=2$ and
$B B \subset B$. Set $G(A, B):=\left\{g \in G(A): c^{\prime} \varepsilon(g) \in S p_{2 n}\left(B, A^{2}\right)\right\}$ (see 6.4).
Then $G(A, B) \supset G^{E}(A, B), R_{r}(G(A, B))=A$, and $R_{j}(G(A, B))=B$ for all γ in Σ_{s} and δ in Σ_{l}.
6.6. Proof of Theorem 6.1 for G of type \boldsymbol{B}_{2} With $p=2$. Let A^{\prime} (resp. B^{\prime}) be the subring of k generated by A (resp. B). By 6.4, there is a subgroup H_{1} of $G(k)$ such that $H_{1} \supset G^{E}\left(A^{\prime}, B\right), R_{r}\left(H_{1}\right)=A^{\prime}$, and $R_{\delta}\left(H_{1}\right)=B$ for all γ in Σ_{s} and δ in Σ_{l}. By 6.5, there is a subgroup H_{2} of $G(k)$ such that $H_{2} \supset G^{E}\left(A, B^{\prime}\right), R_{r}\left(H_{2}\right)=A$, and $R_{\delta}\left(H_{2}\right)=B^{\prime}$ for all γ in Σ_{s} and δ in Σ_{l}.

Set $G(A, B):=H_{1} \cap H_{2} . \quad$ Then $G(A, B) \supset G^{E}(A, B), R_{r}(G(A, B))=A$, and $R_{j}(G(A, B))=B$ for all γ in Σ_{s} and δ in Σ_{l}.
7. Full subsets of k. The following lemmas will be used in next sections.
7.1. Lemma. (i) If R is a full subset of k, then so is $t R$ for any non-zero t in k;
(ii) if C is a full subring of k and t_{1}, \cdots, t_{m} are non-zero elements of k, then there exists a non-zero c in C such that $t_{i} C \supset c C$ for $i=1, \cdots, m$.

Proof. The statement (i) is evident; (ii) is contained in [7, Lemma 4].
7.2. Lemma. Let A and B be subsets of k such that A is full, $B A^{2} \subset B$, and $B k^{2}=k$. Then:
(i) B is a full subset of k;
(ii) for any non-zero t_{1}, \cdots, t_{m} in k, the intersection B^{\prime} of all $B t_{i}$ is full and $B^{\prime} k^{2}=k$.

Proof. (i) Fix a non-zero b_{0} in B. Given any t in k, we can write $t b_{0}=b u^{2}$ with b in B and u in k. Since A is full in k, we can write $u=a_{1} / a_{2}$ with a_{i} in A and $a_{2} \neq 0$. Then $t=b a_{1}^{2} / b_{0} a_{2}^{2}$ with both $b a_{1}^{2}$ and $b_{0} a_{2}^{2}$ in B. Thus, B is full.
(ii) Let z be in k. Since $B k^{2}=k$, we can write $z / t_{i}=b_{i} u_{i}^{2}$ for $i=$ $1, \cdots, m$ with b_{i} in B and u_{i} in k. Since A is full, $u_{i}=v_{i} / w_{i}$ with v_{i}, w_{i} in A. Let w be the product of all w_{i}. Then $z w^{2}=t_{i} b_{i} v_{i}^{2}\left(w / w_{i}\right)^{2} \in t_{i} B$ for all $i=1, \cdots, m$, so $z w^{2} \in B^{\prime}$, hence $z \in B^{\prime} k^{2}$. Thus, $k=B^{\prime} k^{2}$. It is clear that $B^{\prime} A^{2} \subset B^{\prime} . \quad$ By (i), B^{\prime} is full.
7.3. Lemma. Let F be a field but not an algebraic extension of a finite field. Then there exists a full subring A of k and a non-trivial homomorphism N of the multiplicative group of F into the additive group \boldsymbol{Q} of the rational numbers such that $N(a) \geqq 0$ for all a in A.

Proof. Let X be a trancendence basis of F over its prime subfield
F_{0}. Let A_{0} be the integers when X is empty, and $A_{0}=F_{0}[X]$, the polynomial ring, otherwise. Let A be the integral closure of A_{0} in F, i.e. the set of all roots in F of all monic polynomials in t with coefficients in A_{0}.

Fix $x \in X$ when X is not empty and set $x=2 \in A_{0}$ otherwise. We define $N_{0}(a)=n$ for $0 \neq a \in A_{0}$, if x^{n} is the maximal power of x dividing a in A_{0}. We define $N_{0}\left(a_{1} / a_{2}\right):=N_{0}\left(a_{1}\right)-N_{0}\left(a_{2}\right)$ for non-zero a_{i} in A_{0}.

For any z in $F, z \neq 0$, let $f_{z}(t)$ be the monic polynomial in t, with coefficients in the field of fractions of A_{0}, of the minimal degree $\operatorname{deg}(z)$ such that $f_{z}(z)=0$. We define $N(z):=N_{0}\left(f_{z}(0)\right) / \operatorname{deg}(z)$; it is a rational number.

If $a \in A$, then $f_{a}(t) \in A_{0}[t]$, so $f_{a}(0) \in A$ hence $N(a)=N_{0}\left(f_{a}(0)\right) / \operatorname{deg}(a) \geqq$ 0.

For any non-zero z, z^{\prime} in F we have $f_{z}(0)^{d / \operatorname{deg}(z)} f_{z^{\prime}}(0)^{d / \operatorname{deg}\left(z^{\prime}\right)}=f_{z z^{\prime}}(0)^{d / \operatorname{deg}\left(z z^{\prime}\right)}$ with some $d \neq 0$ divisible by $\operatorname{deg}(z), \operatorname{deg}\left(z^{\prime}\right), \operatorname{deg}\left(z z^{\prime}\right)$, so $N\left(z z^{\prime}\right)=N(z)+$ $N\left(z^{\prime}\right)$. The homomorphism N is not trivial, because $N(x)=1 \neq 0$.

Let us check now that A is full in F. For any $z \neq 0$ in F we can find a non-zero a_{0} in A_{0} such that $a_{0} f_{z}(t) \in A_{0}[t]$. Let a be the leading coefficient of $a_{0} f_{z}(t)$. Then $0 \neq a \in A$ and $a^{\operatorname{deg}(z)-1} f_{z}(t / a) a_{0}$ is a monic polynomial in t with coefficients from A_{0} with a root $z a$, so $z a \in A$. Thus, A is full and Lemma 7.3 is proved.

For the rest of this section, $\operatorname{char}(k)=2$.
7.4. Notation. For any finite subset $S \subset k$, let v_{s} denote the product of all y in S. In particular, $v_{S}=1$ for the empty subset S.
7.5. Lemma. There is a set $Y_{0} \subset k$ such that the all v_{S}, finite $S \subset Y_{0}$, form a basis for the vector space k over k^{2}.

Proof. We call a subset $Y \subset k$ algebraically almost independent (AAI), if all v_{S}, S a finite subset of Y, are linearly independent over k^{2}. (Note that k is an algebraic extension of k^{2}.) It is clear, that the union of any chain of AAI subsets of k is again AAI. Also the empty subset of k is AAI. By Zorn's lemma, there is a maximal AAI $Y_{0} \subset k$.

Let V be the linear subspace of k over k^{2} spanned by all v_{S} with finite $S \subset Y_{0}$. We have to prove that $V=k$.

Since Y_{0} is a maximal AAI subset, for every $z \notin Y_{0}$ in k we have a linear relation (because $Y_{0} \cup\{z\}$ is not AAI): $\sum a_{s} v_{s}+z \sum b_{s} v_{s}=0$ with coefficients a_{s}, b_{s} in k^{2}, only finitely many of them $\neq 0$, both sums are taken over all finite $S \subset Y_{0}$, and the second sum $\neq 0$ (because Y_{0} is AAI). Then $z=\sum a_{s} v_{s} / \sum b_{s} v_{s}=\left(\sum a_{s} v_{S}\right)\left(\sum b_{s} v_{s}\right) / a^{2} \in V V k^{2} \subset V k^{2} \subset V$, where $a:=$ $\sum b_{s} v_{s} \in V \subset k$. Thus, $V=k$.
7.6. Lemma. The following two statements are equivalent:
(a) $R=k$ for every full vector subspace $R \subset k$ over k^{2};
(b) the dimension of k over k^{2} is 1 or 2.

Proof. Implication $(\mathrm{b}) \Rightarrow(\mathrm{a})$. Since R is full in $k, R \ni y_{1} \neq 0$. If $k^{2}=k$, then $R=R k^{2}=R k \supset y_{1} k=k$. When $k \neq k^{2}, R \ni y_{2}$ outside $y_{1} k^{2}$ (otherwise, only elements of k^{2} can be written as r_{1} / r_{2} with $r_{i} \in R=y_{1} k^{2}$). Therefore, $k^{2} y_{1}+k^{2} y_{2}=k$ when the dimension of k over k^{2} is 2 .

Implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$. We assume that the dimension of k over k^{2} is larger than 2 and will find a full vector subspace $R \neq k$. First, we find Y_{0} as in Lemma 7.5. Pick distinct x, y in Y_{0}, and let Y be the complement of $\{x, y\}$ in Y_{0}. Consider the linear subspace V spanned by all v_{S} with finite $S \subset Y ; V$ is a subfield of k, containing k^{2}.

Put $R:=V+x V+y V ; R \neq k$, because $x y$ is outside R. We have to prove that R is full in k. Every z in $k-R$ can be written as $z=c_{0}\left(x y+c_{1} x+c_{2} y+c_{3}\right)$ with $c_{i} \in V, c_{0} \neq 0$. Then $0 \neq r_{1}:=x+c_{2} \in R$, $r_{2}:=c_{0}\left(y r_{1}^{2}+x\left(c_{3}+c_{1} c_{2}\right)+c_{1} r_{1}^{2}+c_{2}\left(c_{3}+c_{1} c_{2}\right)\right) \in R$, and $z=r_{2} / r_{1}$.
7.7. Lemma. (i) If the dimension of k over k^{2} is finite or countable, then, for any full subring C of k and any C^{2}-submodule B of k such that $B k^{2}=k, B$ contains a full subring of k.
(ii) If the dimension of k over k^{2} is uncountable, then there is a full subring A of k and an A^{2}-submodule B in A such that $B k^{2}=k, B \supset A^{2}$, and B does not contain any full subset of k closed under multiplication.

Proof. (i) Let $X \subset B$ be a basis for k over k^{2}. For every finite $S \subset X$ we can find a non-zero a_{s} in C such that $v_{S} a_{S}^{2} \in B \cap C$ (see, Notation 7.4).

If X is finite, let c be the product of all a_{S}^{2}. Then $0 \neq c \in C^{2}$ and $v_{s} c \in B \cap C$ for all $S \subset X$ (recall that $B C^{2} \subset B$). The C^{2}-submodule R of B generated by all $v_{s} c^{2}$ is a subring of k (namely, $\left(v_{S} c^{2}\right)\left(v_{S^{\prime}} c^{2}\right)=\left(v_{S+S^{\prime}} c^{2}\right)\left(v_{S \cap S^{\prime}} c\right)^{2} \in$ $v_{S+S^{\prime}} c^{2} C^{2} \subset R$, where $\left.S+S^{\prime}:=S \cup S^{\prime}-S \cap S^{\prime}\right)$.

We claim that R is full. Indeed, every y in k can be written as $y=\sum x t_{x}^{2}$ with t_{x} in k, where the summation is taken over x in X. Since C is full, we can find a non-zero a_{0} in C such that $t_{x} a_{0} \in C$ for all x in X (see, Lemma 7.1 (ii)). Then $y c^{2} a_{0}^{2} \in R$ and $0 \neq c^{2} a_{0}^{2} \in R$. So R is full.

If X is infinite, let us enumerate it, $X=\left\{u_{1}, u_{2}, \cdots\right\}$. For any $i \geqq 1$, let a_{i} be the product of all a_{T} with $T \subset\left\{u_{1}, \cdots, u_{i}\right\}$. Then, for any finite $S \subset X$, we have $\Pi_{u_{i} \in S}\left(u_{i} a_{i}^{2}\right)=v_{S} \Pi_{u_{i} \in S} a_{i}^{2} \in B$, because $\Pi a_{i} \in a_{S} C$ and $B C^{2} \subset B$.

Therefore, the C^{2}-submodule R of B generated by a_{0}^{2} and all $u_{i} a_{i}^{2}$
with u_{i} in X lies in B. As before, we see that R is full in k.
(ii) Find Y_{0} as in Lemma 7.5. Since the dimension of k over k^{2} is uncountable Y_{0} is uncountable. By Jech [1], there is a function $r: Y_{0} \times Y_{0} \rightarrow \boldsymbol{Q}$ (with values in the rational numbers) with the property that for every function $t: Y_{0} \rightarrow \boldsymbol{Q}$ there are x, y in Y_{0} such that $r(x, y)>t(x)$ and $r(x, y)>t(y)$.

Find A and N as in Lemma 7.3 with $F=k$. For any finite $S \subset Y_{0}$ choose a non-zero a_{s} in A such that $v_{s} a_{s} \in A$ and $N\left(a_{s}\right)>2 r(x, y)$ in the case $S=\{x, y\}$ consisting of two distinct elements. Define B as the A^{2} submodule in k generated by all $v_{s} a_{S}^{2}$ and A^{2}.

Let us check that $B k^{2}=k$. If we write any z in k as $\sum b_{s}^{2} v_{s}$ with b_{s} in k and only finitely many $b_{s} \neq 0$, then we see that $z a^{2} \in R$ for some non-zero a in A hence $z \in B k^{2}$.

Let now C be a full subset of k closed under multiplication. Since it is full in k, every x in Y_{0} can be written as $x=c / c_{x}=c c_{x} / c_{x}^{2}$, where c and c_{x} are in C. So $C \ni c c_{x}=x c_{x}^{2}$ with $0 \neq c_{x} \in C$. Let $t(x):=N\left(c_{x}\right)$.

By the choice $r: Y_{0} \times Y_{0} \rightarrow \boldsymbol{Q}$ above, there are x, y in Y_{0} such that $r(x, y)>t(x), t(y)$. For these x, y we have $N\left(c_{x} c_{y}\right)=N\left(c_{x}\right)+N\left(c_{y}\right)=t(x)+$ $t(y)<2 r(x, y)$ and $C \supset C C \ni x c_{x}^{2} y c_{y}^{2}=x y\left(c_{x} c_{y}\right)^{2}$, so $x y\left(c_{x} c_{y}\right)^{2}$ is not in B by the definition of B, but it is in C. Thus, C is not contained in B.

8. Proof of Theorem 1.

8.1. Lemma. Let A and B be additive subgroups of k such that $A^{p} \subset B \subset A, B A^{p} \subset B, B A \subset A$, where p is as in Section 1. Assume that $B B \subset B$ when Σ_{l} is connected. Let $u \in k, b \in B$, and $\varphi, \varepsilon \in \Sigma$. Assume that $b u \in B^{2}$. Set $D_{\varepsilon}:=B$ when ε is long and $D_{\varepsilon}:=A$ otherwise. For any t in k we set $y(t):=\left[x_{\varphi}(u), x_{\varepsilon}(t)\right]$. Then:
(i) $y(t) \in G^{E}(A, B)$ if $\varphi+\varepsilon \neq 0$ and t is in $b^{4} D_{\varepsilon}$;
(ii) $y(t) \in G^{E}(A, B)$ if t is in $b^{18}(b-1)^{2}\left(b^{2}-1\right) D_{\varepsilon}$.

Proof. We can assume that $y(t) \neq 1$ for some t in k (otherwise the statement is trivial). Pick a connected subsystem $\Sigma^{\prime} \subset \Sigma$ of rank 2 containing both φ and ε. Then $\varphi+\varepsilon$ is in Σ^{\prime} or else $\varphi+\varepsilon=0$. We will prove (i) (and then (ii)) for the three possible cases, when Σ^{\prime} is of type A_{2}, B_{2}, or G_{2}, separately.

Type \boldsymbol{A}_{2} with $\varepsilon+\varphi \neq 0$. Then $y\left(b^{2} t\right)=x_{\varepsilon+\varphi}\left(\pm b^{2} t u\right)=\left[x_{\varphi}(b), x_{\varepsilon}(t b u)\right] \in$ $G^{E}(A, B)$ for all t in D_{ε}, because $b \in B \subset D_{\varphi}$ and $t b u \in D_{\varepsilon} B^{2} \subset D_{\varepsilon}$ for all t in D_{ε}. Thus, $y\left(b^{2} D_{\varepsilon}\right) \subset G^{E}(A, B)$, hence $y\left(b^{4} D_{\varepsilon}\right) \subset y\left(b^{2} D\right) \subset G^{E}(A, B)$.

Type \boldsymbol{B}_{2} with $\varepsilon+\varphi \neq 0$. If $\varepsilon, \varphi \in \Sigma_{s}$, then $y(t)=x_{\varepsilon+\varphi}(\pm 2 t u) \in G^{E}(B)$ provided $t \in b A=b D_{\varepsilon}$. In particular, we can take any t in $b^{4} D_{\varepsilon}=b^{4} A \subset b A$ (the last inclusion follows from $B A \subset A$).

If $\varepsilon \in \Sigma_{s}$ and $\varphi \in \Sigma_{l}$, then $y(t)=x_{\varphi+\varepsilon}(\pm t u) x_{\varphi+2 \varepsilon}\left(\pm t^{2} u\right) \in G^{E}(A, B)$ provided $t \in b A=b D_{\varepsilon}$ (because $A b u \subset A B^{2} \subset A$ and $(b A)^{2} u=b A^{2} b u \subset B A^{2} B^{2} \subset B=D_{\varphi+2 \varepsilon}$). In particular, $y(t) \in G^{E}(A, B)$ for any t in $b^{4} A \subset b A$.

If $\varepsilon \in \Sigma_{l}$ and $\varphi \in \Sigma_{s}$, then $y(t)=x_{\varphi+\varepsilon}(\pm t u) x_{2 \varphi+\varepsilon}\left(\pm t u^{2}\right) \in G^{E}(A, B)$ provided $t \in b^{2} B=b^{2} D_{\varepsilon} \quad$ (because $\quad\left(b^{2} B\right) u=b B b u \subset B B B^{2} \subset A=D_{\varphi+\varepsilon} \quad$ and $\quad\left(b^{2} B\right) u^{2}=$ $\left.B(b u)^{2} \subset B B^{4} \subset B B^{2} \subset B=D_{2 \varphi+\varepsilon}\right)$. In particular, $y(t) \in G^{E}(A, B)$ for any t in $b^{4} D_{\varepsilon}=b^{4} B \subset b^{2} B$.

Type \boldsymbol{G}_{2} with $\varphi+\varepsilon \neq 0$. If φ and ε are long, they lie in Σ_{l}^{\prime} of type \boldsymbol{A}_{2}. Therefore, as shown above, $y\left(b^{4} D_{\varepsilon}\right) \subset y\left(b^{2} D_{\varepsilon}\right) \subset G^{E}(A, B)$.

If φ and ε are short and make the angle $\pm 60^{\circ}$ then $y(t)=x_{\varphi_{+\varepsilon}}(\pm 3 u t) \in$ $G^{E}(B)$ provided $t \in b A \supset b^{4} A=b^{4} D_{\varepsilon}$ (recall that $3 A \subset B$).

If φ and ε are short and make the angle $\pm 120^{\circ}$, then $y(t)=$ $x_{\varphi+\varepsilon}(\pm 2 t u) x_{2 \varphi+\varepsilon}\left(\pm 3 t u^{2}\right) x_{\varphi+2 \varepsilon}\left(\pm 3 t^{2} u\right) \in G^{E}(B) \subset G^{E}(A, B)$ provided $t \in b^{2} A \supset b^{4} A=$ $b^{4} D_{\epsilon}$ (because then $t u \in B, 3 t u^{2} \subset 3 A \subset B$, and $3 t^{2} u \subset 3 A \subset B$).

If φ is short and ε is long, then $y(t)^{-1}=x_{\varphi+\varepsilon}(\pm t u) x_{2 \varphi+\varepsilon}\left(\pm u^{2} t\right) x_{3 \varphi+\varepsilon}\left(\pm u^{3} t\right) \times$ $x_{3 \varphi+2 \varepsilon}\left(\pm u^{3} t^{2}\right) \in G^{E}(B) \subset G^{E}(A, B)$ provided $t \in b^{3} B$ (because then $t u \in B B^{2} \subset B$, $\left.u^{2} t \subset B^{4} B B \subset B, u^{3} t \in B^{8} B \subset B, u^{3} t^{2} \in B^{3} B^{3} B \subset B\right)$. In particular, $y(t) \in G^{E}(A, B)$ when $t \in b^{4} B \subset b^{3} B$.

Finally, if φ is long and ε is short, then $y(t)=x_{\varphi+\varepsilon}(\pm t u) x_{\varphi+2 \varepsilon}\left(\pm t^{2} u\right) \times$ $x_{\varphi+3 \varepsilon}\left(\pm u t^{3}\right) x_{2 \varphi+3 \varepsilon}\left(\pm u^{2} t^{3}\right) \in G^{E}(A, B)$ provided $t \in b^{3} A$ (because then $t u \in A=$ $D_{\varphi+\varepsilon}, t^{2} u \in A=D_{\varphi+2 \varepsilon}, t^{3} u \in B=D_{\varphi+3 c}$, and $t^{3} u^{2} \in b^{3} B \subset B=D_{2 \varphi+3 \varepsilon}$). In particular, we can take any t in $b^{4} D_{\varepsilon}=b^{4} A \subset b^{3} A$.

Thus, (i) is proved in all cases. Since $b^{4} D_{\varepsilon} \subset D_{\varepsilon}$ for all ε in Σ, (i) can be stated also as follows: the subgroup $H:=x_{\varphi}(u)^{-1} G^{E}(A, B) x_{\varphi}(u)$ contains all $x_{\varepsilon}\left(b^{4} D_{\varepsilon}\right)$ with $\varepsilon \neq-\varphi$. Now we want to prove (ii), i.e., $H \supset x_{\varepsilon}\left(b^{18}(b-\right.$ $1)^{2}\left(b^{2}-1\right) D_{\epsilon}$) for all ε. When $\varepsilon+\varphi \neq 0$, this has been proved, because $b^{18}(b-1)^{2}\left(b^{2}-1\right) D_{\varepsilon} \subset b^{4} D_{\varepsilon}$. So we assume that $\varepsilon=-\varphi$ and consider again separately the cases when Σ^{\prime} is of type $\boldsymbol{A}_{2}, \boldsymbol{B}_{2}$, or \boldsymbol{G}_{2}.

Type \boldsymbol{A}_{2} with $\varepsilon=-\varphi$. Pick α and β in Σ^{\prime} such that $\alpha+\beta=\varepsilon$. From $H \supset x_{\alpha}\left(b^{4} D_{\alpha}\right), x_{\beta}\left(b^{4} D_{\beta}\right) \quad$ it follows that $H \supset\left[x_{\alpha}\left(b^{4} D_{\beta}\right), x_{\beta}\left(b^{4} D_{\beta}\right)\right]=$ $x_{\varepsilon}\left(b^{8} D_{\alpha} D_{\beta}\right)=x_{\varepsilon}\left(b^{8} D_{\varepsilon} D_{\varepsilon}\right) \supset x_{\varepsilon}\left(b^{9} D_{\varepsilon}\right) \supset x_{\varepsilon}\left(b^{18}(b-1)^{2}\left(b^{2}-1\right) D_{\varepsilon}\right)$.

Type \boldsymbol{B}_{2} with $\varepsilon=-\varphi$. Pick α in Σ_{l}^{\prime} and β in Σ_{s}^{\prime} such that $\varepsilon=\alpha+\beta$ when ε is short and $\varepsilon=\alpha+2 \beta$ when ε is long. Then $H \ni z(v, w):=$ $\left[x_{\alpha}(v), x_{\beta}(w)\right]=x_{\alpha+\beta}(\pm v w) x_{\alpha+2 \beta}\left(\pm v w^{2}\right)$ provided $v \in b^{4} B=b^{4} D_{\alpha}$ and $w \in b^{4} A=$ $b^{4} D_{\beta}$. Therefore, $H \ni z\left(b^{4} c, b^{7}\right) z\left(b^{6} c, b^{5}\right)^{-1}=x_{\alpha+2 \beta}\left(\pm c\left(b^{18}-b^{18}\right)\right)$ for all c in B and $H \ni z\left(b^{7}, d b^{4}\right) z\left(b^{5}, d b^{5}\right)^{-1}=x_{\alpha+\beta}\left(\pm d\left(b^{11}-b^{10}\right)\right)$ for all d in A.

Thus, $\quad R_{\alpha+2 \beta}(H) \supset B\left(b^{18}-b^{18}\right)=D_{\alpha+2 \beta} b^{18}\left(b^{2}-1\right) \supset D_{\alpha+2 \beta} b^{18}\left(b^{2}-1\right)(b-1)^{2}$ and $R_{\alpha+\beta}(H) \supset A\left(b^{11}-b^{10}\right)=D_{\alpha+\beta} b^{10}(b-1) \supset D_{\alpha+\beta} b^{18}(b-1)^{2}\left(b^{2}-1\right)$.

Type \boldsymbol{G}_{2} with $\varepsilon=-\varphi$. If ε is long, we can include ε and φ in a subsystem of type \boldsymbol{A}_{2} (namely, $\left.\Sigma_{l}^{\prime}\right)$, so $H \supset x_{\varepsilon}\left(B b^{\theta}\right)=x_{\varepsilon}\left(D_{\varepsilon} b^{9}\right) \supset x_{\varepsilon}\left(D_{\varepsilon}(b-\right.$
$\left.1)^{2}\left(b^{2}-1\right) b^{16}\right)$.
If ε is short, we find α in Σ_{l}^{\prime} and β in Σ_{s}^{\prime} such that $\varepsilon=\alpha+\beta$. Then $H \supset x_{\alpha}\left(b^{4} B\right), x_{\beta}\left(A b^{4}\right)$, hence $H \ni z_{1}(v, w):=\left[x_{\alpha}(v), x_{\beta}(w)\right]=x_{\alpha+\beta}(\pm v w) \times$ $x_{\alpha+2 \beta}\left(\pm v w^{2}\right) x_{\alpha+3 \beta}\left(\pm v w^{3}\right) x_{2 \alpha+3 \beta}\left(\pm v^{2} w^{3}\right)$ for any v in $b^{4} B$ and w in $b^{4} A$. Therefore, for such v and w, we have $H \ni z_{2}(v, w):=z_{1}\left(v b^{2}, w\right) z_{1}(v, w b)^{-1}=$ $x_{\alpha+\beta}\left(\pm v w\left(b^{2}-b\right)\right) x_{\alpha+3 \beta}\left(\pm v w^{3}\left(b^{2}-b^{3}\right)\right) x_{2 \alpha+3 \beta}\left(\pm v^{2} w^{3}\left(b^{4}-b^{3}\right)\right)$, so $H \ni z_{3}(v, w):=$ $z_{2}\left(v b^{3}, w\right) z_{2}\left(v, w b^{2}\right)^{-1}=x_{\alpha+\beta}\left(\pm v w\left(b^{2}-b\right)\left(b^{3}-b^{2}\right)\right) x_{\alpha+3 \beta}\left(\pm v w^{3}\left(b^{2}-b^{3}\right)\left(b^{3}-b^{\beta}\right)\right)$, hence H э $z_{3}\left(v b^{3}, w\right) z_{3}(v, w b)^{-1}=x_{\alpha+\beta}\left(\pm v w\left(b^{2}-b\right)\left(b^{3}-b^{2}\right)\left(b^{3}-b\right)\right)$.

Thus, $R_{\varepsilon}(H) \supset\left(b^{4} B\right)\left(b^{4} A\right)\left(b^{2}-b\right)\left(b^{3}-b^{2}\right)\left(b^{3}-b\right)=A B b^{12}(b-1)^{2}\left(b^{2}-1\right) \supset$ $D_{\varepsilon} b^{16}(b-1)^{2}\left(b^{2}-1\right)$, because $A B \supset A b^{4}=D_{\varepsilon} b^{4}$.
8.2. Corollary. Let A and B be as in Lemma 8.1. Assume that B is full and $B k^{2}=k$. Then for any g in $G^{E}(k)$ there is a non-zero b_{g} in B such that $g G^{E}(A, B) g^{-1} \supset G^{E}\left(A b_{g}^{2}, B b_{g}^{2}\right)$.

Proof. If $\operatorname{card}(B) \leqq 9$, then $B=A=k$ and $G^{E}(k)=G^{E}(A, B) \ni g$, so we can take $b_{g}=1$.

Otherwise we pick some $b_{1} \neq b_{1}^{9}$ in B.
Consider first the case $g=x_{\varphi}(u)$ with φ in Σ and u in k. Since $B k^{2}=k$ and B is full, we can find b_{i} in B such that $u=b_{2}\left(b_{3} / b_{4}\right)^{2}$ and $b_{2} b_{4} \neq 0$. For $b_{5}:=b_{2}^{3} b_{4}^{2} \in B B^{2} B^{2} \subset B B^{2} \subset B$ we have $b_{5} \neq 0$ and $b_{5} u=\left(b_{3} b_{2}^{2}\right)^{2} \in B^{2}$.

Let $b:=b_{5}$ when $b_{5} \neq \pm 1$ and $b:=b_{5} b_{1}^{4}$ otherwise. Then $b u \in B^{2}$ and $0 \neq b \in B$. Set $b_{0}:=b^{8}(b-1)\left(b^{2}-1\right) \in B$. Then $b_{0} \neq 0$ and, by Lemma 8.1, $g G^{E}(A, B) g^{-1}=: H \supset G^{E}\left(A b_{0}^{2} /\left(b^{2}-1\right), B b_{0}^{2} /\left(b^{2}-1\right)\right)$. Since $B\left(b^{2}-1\right) \subset B$ and $A\left(b^{2}-1\right) \subset A$, it follows that $H \supset G^{E}\left(A b_{0}^{2}, B b_{0}^{2}\right)$. Thus, we can take $b_{g}=b_{0}$ in the case $g=x_{\varphi}(u)$.

In the general case we write $g=g_{1} \cdots g_{m}$ and proceed by induction on m, where every g_{i} is a root element. The case $m=1$ has been considered, so let $m \geqq 2$. By induction, for $g^{\prime}=g_{1}^{-1} g$ there is a non-zero b^{\prime} in B such that $g^{\prime} G^{E}(A, B) g^{\prime-1} \supset G^{E}\left(A b^{\prime 2}, B b^{\prime 2}\right)$. Since $A b^{\prime 2}$ and $B b^{\prime 2}$ enjoy the same properties as A and B, there is a non-zero $b^{\prime \prime}$ in $B b^{\prime 2}$, such that $g_{1} G^{E}\left(A b^{\prime 2}, B b^{\prime 2}\right) g_{1}^{-1} \supset G^{E}\left(A b^{\prime 2} b^{\prime \prime 2}, B b^{\prime 2} b^{\prime 2}\right)$. Set $b_{g}:=b^{\prime 2} b^{\prime \prime} \in b^{\prime 4} B \subset B$ to obtain the statement. $g G^{E}(A, B) g^{-1} \supset G^{E}\left(A b^{\prime 2} b^{\prime 2}, B b^{\prime 2} b^{\prime 2}\right) \supset G^{E}\left(A b_{g}^{2}, B b_{g}^{2}\right)$.
8.3. Lemma. In the situation of Theorem 1.1, assume that B is full and $B k^{2}=k$ (both conditions evidently do not depend on the choice of A and B). Then there is a non-zero b_{0} in B such that $b_{0} B \subset R_{\delta} \subset b_{0}^{-1} B$ and $b_{0} A \subset R_{r} \subset b_{0}^{-1} A$ for all δ in Σ_{l} and γ in Σ_{s}.

Proof. If $B B \subset B$, then, by Lemma 7.1 (ii) with $C=B$, we can find a non-zero b_{0} in the intersection of B with all $B a_{\varepsilon} \cap B b_{\varepsilon}^{-1}$, where $\varepsilon \in \Sigma$. Therefore, $b_{0} B \subset a_{\dot{\delta}} B \subset R_{\dot{\delta}} \subset B b_{\dot{\delta}} \subset B b_{0}^{-1}$ and $b_{0} A \subset a_{r} A \subset R_{r} \subset A b_{r} \subset A b_{0}^{-1}$ for all δ in Σ_{l} and γ in Σ_{s}.

If $B B$ is not contained in B, then Σ is of type $C_{n}(n \geqq 2)$, and $p=2$. Fix a long root α in Σ. By Lemma 1.3, $b_{\alpha} B(a A)^{2} \subset a_{\alpha} B \subset R_{\alpha}$ for some $a \neq 0$ in A. In particular, $a^{4} b_{\alpha} B \subset R_{\alpha}$.

By Lemma 4.1, $R_{\varphi} \supset c_{\varphi, \psi} R_{\psi}$ with $0 \neq c_{\varphi, \psi} \in k^{2}$ for all φ, ψ in Σ_{l}. Let C be the ring generated by B. Then $B \subset C \subset A, C A \subset A$, and $B C^{2} \subset B$.

Since C is full in k, C^{2} is full in k^{2}. By Lemma 7.1 (ii) there is a non-zero c in C such that $c^{2} \in c_{\delta, \alpha} a^{4} C^{2} \cap c_{\alpha}{ }_{\delta} C^{2}$ for all δ in Σ_{l} and $c^{2} \in a_{r}^{2} C^{2} \cap$ $b_{r}^{-2} C^{2}$ for all γ in Σ_{s}.

So for such δ and γ we have $c A \subset\left(a_{r} C\right) A \subset a_{r} A \subset R_{r} \subset b_{r} A \subset\left(c^{-1} C\right) A \subset c^{-1} A$ and $\quad b_{\alpha} c^{2} B \subset b_{\alpha}\left(c_{\delta, \alpha} a^{4} C^{2}\right) B \subset b_{\alpha} c_{\delta, \alpha} a^{4} B \subset c_{\delta, \alpha} R_{\alpha} \subset R_{\dot{\delta}} \subset c_{\alpha, \delta}^{-1} R_{\alpha} \subset B b_{\alpha} / c_{\alpha, \dot{\delta}} \subset B b_{\alpha}\left(C^{2} c^{-2}\right) \subset$ $B b_{\alpha} c^{-2}$.

Since $B k^{2}=B$ and B is full, there are non-zero b_{i} in B such that $b_{\alpha}=b_{1}\left(b_{2} / b_{3}\right)^{2}=b_{4} / b_{3}^{2}$, where $b_{4}:=b_{1} b_{2}^{2} \in B B^{2} \subset B$. Set $b_{0}:=b_{4} c^{2} b_{3}^{2} \in B C^{2} B^{2} \subset B$. Then $b_{0} A \subset c A \subset R_{r} \subset c^{-1} A \subset b_{0}^{-1} A$ for all γ in Σ_{s} and $b_{0} B=b_{\alpha} b_{3}^{4} c^{2} B \subset b_{\alpha} e^{2} B \subset$ $R_{\delta} \subset B b_{\alpha} c^{-2}=B b_{4}^{2} b_{0}^{-1} \subset B b_{0}^{-1}$ for all δ in Σ_{l}.
8.4. Theorem. Let A and B be additive subgroups of k satisfying Theorem 1.1 (iii), (iv). Assume that B is full and $B k^{2}=k$. Then for any g in $G(k)$ there is a non-zero b_{0} in B such that $g G^{E}(A, B) g^{-1} \supset G^{E}\left(A b_{0}, B b_{0}\right)$. In particular, $G^{E}(A, B)$ is full.

Proof. Every g in $G(k)$ can be written as $g=h g^{\prime}$ with h in $T(k)$ and g^{\prime} in $G^{E}(k)$ (see, Tits [5] and Borel-Tits [9, Prop. 6.2]). Set $H^{\prime}:=$ $g^{\prime} G^{E}(A, B) g^{\prime-1}$ and $H:=g G^{E}(A, B) g^{-1}=h H^{\prime} h^{-1}$.

By Corollary 8.2, $H^{\prime} \supset G^{E}\left(A b^{2}, B b^{2}\right)$ with $0 \neq b \in B$. Since $h \in T(k)$, we have $R_{\varepsilon}(H)=R_{\varepsilon}\left(H^{\prime}\right) t_{\varepsilon}$ for all ε in Σ with non-zero t_{ε} in k. Therefore $R_{\varepsilon}(H) \supset D_{\varepsilon} b^{2} t_{\varepsilon}$, where $D_{\varepsilon}:=B$ when $\varepsilon \in \Sigma_{l}$ and $D_{\varepsilon}:=A$ when $\varepsilon \in \Sigma_{s}$.

Applying Lemma 8.3 to H, we find additive subgroups A^{\prime} and B^{\prime} of k and a non-zero b^{\prime} in B^{\prime} such that $b^{\prime} B^{\prime} \subset R_{\delta}(H) \subset B^{\prime} b^{\prime-1}$ and $b^{\prime} A^{\prime} \subset R_{r}(H) \subset$ $A^{\prime} b^{\prime-1}$ for all δ in Σ_{l} and γ in Σ_{s}.

Fix α in Σ_{l} and β in Σ_{s}. Then $R_{\delta}(H) \supset b^{\prime} B^{\prime} \supset b^{\prime 2} R_{\alpha}(H) \supset b^{\prime 2} b^{2} t_{\alpha} B$ and $R_{\gamma}(H) \supset b^{\prime} A^{\prime} \supset b^{\prime 2} R_{\beta}(H) \supset b^{\prime 2} b^{2} t_{\beta} A$ for all δ in Σ_{l} and γ in Σ_{s}.

Since B is full and $B k^{2}=k$, there are non-zero b_{1} and b_{2} in B such that $b_{3}:=b_{1} b^{\prime 2} t_{\beta} \in B$ and $b_{4}:=b_{2}^{2} b^{\prime 2} t_{\alpha} \in B$. Set $b_{0}:=b_{4} b_{3}^{2} b^{2} \in B B^{2} B^{2} \subset B B^{2} \subset B$.

Then $\quad R_{\delta}(H) \supset b^{\prime 2} b^{2} t_{\alpha} B \supset b^{\prime 2} b^{2} t_{\alpha}\left(b_{2}^{2} b_{3}^{2} B\right)=b_{0} B \quad$ and $\quad R_{r}(H) \supset b^{\prime 2} b^{2} t_{\beta} A \supset$ $b^{\prime 2} b^{2} t_{\beta}\left(b_{3} b_{4} b_{1} A\right)=b_{0} A$ for all δ in Σ_{l} and γ in Σ_{s}. Thus $H \supset G^{E}\left(A b_{0}, B b_{0}\right)$ with $0 \neq b_{0} \in B$.

Proof of Theorem 1. Let A be a full subring of k. Set $B:=A$. Then Theorem 1.1 (iii), (iv) are satisfied. Moreover, given any u in k we can write $u=b_{1} / b_{2}$ with b_{i} in B and $b_{2} \neq 0$, hence $u=b_{1} b_{2} b_{2}^{-2} \in B k^{2}$. Thus, $B k^{2}=k$. By Theorem 8.4, $G^{E}(A)=G^{E}(A, B)$ is full.

9. Proof of Theorems 2 and 3.

9.1. Lemma. Let H be a full subgroup of $G(k)$. Then
(i) $R_{\varepsilon}(H)$ is full, if ε lies in a subsystem $\Sigma^{\prime} \subset \Sigma$ of type \boldsymbol{A}_{2};
(ii) $R_{r}(H)$ is full for any short root γ in Σ.

Proof. (i) We apply an argument of [7]. Namely, we find a root φ in Σ^{\prime} such that $\varphi+\varepsilon$ is in Σ^{\prime} too. Fix non-zero c_{1} in $R_{-\varphi}(H)$ and c_{2} in $R_{\varphi}(H)$. Take an arbitrary t in k. Since H is full, $H \ni x_{\varphi}(t) x_{\varepsilon}(u) x_{\varphi}(t)^{-1}=$ $x_{\varepsilon+\varphi}(\pm t u) x_{\varepsilon}(u)=: g$ for a non-zero u in k. Therefore, $H \ni\left[g, x_{-\varphi}\left(c_{1}\right)\right]=$ $x_{\varepsilon}\left(\pm t u c_{1}\right)$ and H э $\left[\left[g, x_{\varphi}\left(c_{2}\right)\right], x_{-\varphi}\left(c_{1}\right)\right]=\left[x_{\varepsilon+\varphi}\left(u c_{2}\right), x_{-\varphi}\left(c_{1}\right)\right]=x_{\varepsilon}\left(\pm u c_{1} c_{2}\right)$. Thus, $R_{\varepsilon}(H)$ contains both $t u c_{1}:=a_{1}$ and $u c_{1} c_{2}:=a_{2} \neq 0$. Since $a_{1} a_{2}^{-1}=t c_{2}^{-1}$ can be an arbitrary element of $k, R_{s}(H)$ is full in k.
(ii) If Σ contains a system of type \boldsymbol{A}_{2}, then we can use (i) and, by Theorem 1.1, conclude that A and all $R_{r}(H)$ with γ in Σ_{s} are full. Otherwise, Σ is of type \boldsymbol{B}_{2}.

Let δ in Σ make an angle 45° with γ. Since H is full, for any t in k there exists a non-zero u in k such that $H \ni x_{\dot{\delta}-2 r}(t) x_{r}(u) x_{\delta-2 r}(-t)=$ $x_{r}(u) x_{\delta-r}(\pm t u) x_{\dot{\delta}}\left(\pm t u^{2}\right)=: g$, where the signs \pm depend on γ and δ.

Now we pick non-zero c_{1} in $R_{\delta-2 r}(H)$ and c_{2} in $R_{2 \gamma_{-\delta}}(H)$. We have successively $\quad H \ni\left[x_{\delta-2 r}\left(c_{1}\right), g\right]=\left[x_{\delta-2 r}\left(c_{1}\right), x_{r}(u)\right]=x_{\delta-r}\left(\pm c_{1} u\right) x_{\delta}\left(\pm c_{1} u^{2}\right)=: g^{\prime}$; $H \ni\left[x_{2 \tau-\delta}\left(c_{2}\right), g^{\prime}\right]=x_{r}\left(\pm c_{1} c_{2} u\right) x_{\dot{\delta}}\left(\pm c_{1}^{2} c_{2} u^{2}\right) ;$ and $H \ni\left[x_{2 \tau-\delta}\left(c_{2}\right), g\right]=x_{r}\left(\pm c_{2} t u\right) \times$ $x_{\delta}\left(\pm c_{2} t^{2} u^{2}\right)$.

Thus, $R_{\gamma, \delta} \ni\left(c_{2} c_{1} u, \pm c_{2} c_{1}^{2} u^{2}\right),\left(c_{2} t u, \pm c_{2} t^{2} u^{2}\right)$, hence $R_{r, \delta}^{\prime} \ni c_{2} c_{1} u=: a_{2}$ and $R_{r, \delta}^{\prime} \ni c_{2} t u=: a_{1}$ (see, the beginning of Section 3 for notation). Since $a_{1} / a_{2}=t / c_{1}$ is arbitrary, $R_{\gamma, \delta}^{\prime}$ is full.

By Corollary 3.2 (i) it follows that $R_{r}(H)$ is full when $2 \neq 0$ in k. If $\operatorname{char}(k)=2, R_{\delta-r}(H)$ is full by Lemma 3.6 (ii). Replacing here (γ, δ) by ($\delta-\gamma, \delta$), we obtain that $R_{r}(H)$ is full.
9.2. Lemma. Let H be a full subgroup of $G(k)$. Then $R_{\varepsilon}(H)$ is full and $R_{\varepsilon}(H) k^{2}=k$ for any root ε in Σ.

Proof. Find A and B as in Theorem 1.1. Since $a_{\varepsilon} B \subset R_{\varepsilon}(H)$ for every ε in Σ with $a_{\varepsilon} \neq 0$, the statement of Lemma 9.2 will follow from: B is full and $B k^{2}=k$. By Lemma 9.1 (ii), A is full.

If $B=A$ (for example, $p=1$), then $B B=B A \subset A=B$, so B is a subring of k. When B is a full subring of k (for example, if $B=A$), every t in k can be written as $t=b_{1} / b_{2}=\left(b_{1} b_{2}\right)\left(b_{2}\right)^{-2} \in B k^{2}$ with b_{i} in B, $b_{2} \neq 0$, hence $k=B k^{2}$.

If B is not a full subring of k, then (using Lemma 9.1 (i) to exclude type \boldsymbol{D}_{n} and $\left.\boldsymbol{G}_{2}\right) G$ is of type $\boldsymbol{C}_{n}(n \geqq 2)$ and $p=2$.

Then we pick a subsystem $\Sigma^{\prime} \subset \Sigma$ of type \boldsymbol{B}_{2} and an admissible pair (γ, δ) in Σ^{\prime}. Take an arbitrary t in k and set $g:=x_{\delta}(t)$.

Applying Theorem 1.1 to $H^{\prime}:=g H g^{-1}$, we find a non-zero u in k such that $R_{r}\left(H^{\prime}\right) \subset u R_{-r}\left(H^{\prime}\right)$. Then $a_{r} A \subset R_{r}(H)=R_{\gamma}\left(H^{\prime}\right) \subset u R_{-r}\left(H^{\prime}\right)$. Since A is full, $a_{-r} u / a_{r}=a_{1} / a_{2}$ with non-zero a_{i} in A. Then $0 \neq v:=a_{r} a_{1} / u=$ $a_{2} a_{-r} \in A a_{r} / u \cap A a_{-r} \subset R_{-r}\left(H^{\prime}\right) \cap R_{-r}(H)$, hence $x_{-r}(v) \in H \cap H^{\prime}$.

Therefore $H=g^{-1} H^{\prime} g \ni g^{-1} x_{-\gamma}(v) g=: g^{\prime}$ and $H \ni g^{\prime} x_{-r}(v)^{-1}=\left[g^{-1}, x_{-r}(v)\right]=$ $x_{\dot{\delta}-r}(t v) x_{\dot{\delta}-2 r}\left(t v^{2}\right)$, hence $R_{\dot{\delta}-r, \delta-2 r}^{\prime \prime} \ni t v^{2}$.

By Lemma 3.6 (i), $R_{\delta}(H) \ni c^{2} t$ for some $c \neq 0$ in k (c depends on H and t), so $t \in R_{\delta}(H) k^{2}$. Thus, $R_{\delta}(H) k^{2}=k$, i.e. $B k^{2}=k$. By Lemma 7.2 (using that B is a module over the ring generated by A^{2}), B is full, so $R_{\varepsilon}(H)$ is full for every root ε in Σ.
9.3. Theorem. Let H be a full subgroup of $G(k)$. Then there are additive subgroups A and B of k and a non-zero c in B such that B is full, $B k^{2}=k$, and Theorem 1.1 (i)-(iv) hold with $a_{\varepsilon}=1$ and $b_{\varepsilon}=c^{-1}$ for all ε in Σ.

Proof. Find A and B by Theorem 1.1. By Lemma $9.2, B$ is full and $B k^{2}=k$. By Lemma 8.3, there is a non-zero b_{0} in B such that $b_{0} B \subset R_{\dot{\delta}} \subset B b_{0}^{-1}$ and $b_{0} A \subset R_{r} \subset A b_{0}^{-1}$ for all δ in Σ_{l} and γ in Σ_{s}. Set $A^{\prime}:=$ $A b_{0}, B^{\prime}:=B b_{0}$, and $c:=b_{0}^{2} \in B^{\prime}$. Replacing A and B by A^{\prime} and B^{\prime}, we obtain our statement.
9.4. Corollary. Let H be a subgroup of $G(k)$. Then the following three statements are equivalent: (a) H is full; (b) $H \supset G^{E}(B)$ for a full additive subgroup B of k such that $B B^{2} \subset B$ and $B k^{2}=k$; (c) $H \supset G^{E}(R)$ for a full subset R of k such that $R k^{2}=k$.

Proof. By Theorem 9.3, (a) implies (b). Clearly, (b) implies (c). Now assume (c). Find A and B as in Theorem 1.1. Since $R \subset R_{\delta}(H) \subset b_{\delta} B$ for any δ in Σ_{l} with $b_{\delta} \neq 0$, our assumption on R implies that B is full and $B k^{2}=k$. By Lemma $8.3, H \supset G^{E}\left(A b_{0}, B b_{0}\right)$ with $0 \neq b_{0} \in B$. By Theorem 8.4, H is full. Thus, (c) implies (a).
9.5. Corollary. Let H be a subgroup of $G(k)$. If G is of type \boldsymbol{C}_{n}, assume that $\operatorname{char}(k) \neq 2$. Then the following three statements are equivalent:
(a) H is full;
(b) $H \supset G^{E}(B)$ for a full subring B of k;
(c) $H \supset G^{E}(R)$ for a full subset R of k.

Proof. By Theorem 9.3, (a) implies (b). The implication (b) \Rightarrow (c) is trivial. Now assume (c). Since we excluded type C_{n} with $p=2$, we
can find A, B as in Theorem 1.1 with $B B \subset B$. Since $R \subset R_{\delta}(H) \subset b_{\dot{\delta}} B$ with $\delta \in \Sigma_{l}, b_{\delta} \neq 0$, it follows that B is a full subring of k. So $B k^{2}=k$. In view of the implication 9.4 (c) $\Rightarrow 9.4$ (a), H is full.
9.6. Corollary. Assume that G is of type $\boldsymbol{C}_{n}(n \geqq 2)$ and $\operatorname{char}(k)=$ 2. Then:
(i) every full subgroup H of $G(k)$ contains $G^{E}(B)$ for a full subring B of k, if and only if the dimension of k over k^{2} is finite or countable;
(ii) $G^{E}(R)$ is full in $G(k)$ for every full subset R of k, if and only if the dimension over k^{2} is 1 or 2.

Proof. (i) Assume first that H is full. By Theorem 9.3, $H \supset$ $G^{E}(A, B)$ with full B such that $B k^{2}=k, B A^{2} \subset B \subset A$. By Lemma 7.7 (i), B contains a full subring R of k, provided the dimension of k over k^{2} is countable. So, $H \supset G^{E}(R)$.

Assume now that the dimension is uncountable. Then we can find A and B as in Lemma 7.7 (ii). Then for $H:=G^{E}(A ; B)$ we have $R_{\delta}(H)=B$ for all δ in Σ_{l} (see, Theorem 6.1). So, by Lemma 7.7 (ii), H does not contain $G^{E}(C)$ for any subring C.
(ii) Let first R be full. By Lemma 7.6, then $R k^{2}=k$ provided the dimension is 1 or 2. By Corollary 9.4, $G^{E}(R)$ is full.

Assume now that the dimension is larger than 2. By Lemma 7.6, we find a proper full subspace R of k. Replacing R by $R y^{-1}$ with $0 \neq y$ in R, we can assume that $R \ni$. By Theorem 6.1, $R_{\delta}\left(G^{E}(k, R)\right)=R$ for any δ in Σ_{l}. By Theorem 9.3, $G^{E}(k, R)$ is not full. So its subgroup $G^{E}(R)$ is not full.

Remark. Theorem 2 is contained in Corollaries 9.5 and 9.6.
Proof of Theorem 3. Let H and g_{i} be as in Theorem 3. By Theorem 9.3, $H \supset G^{E}(A, B)$, where B is full and $B k^{2}=k$. By Theorem 8.4, $H_{i}:=g_{i} H g_{i}^{-1} \supset G^{E}\left(A b_{i}, B b_{i}\right)$ for $i=1, \cdots, m$ with $0 \neq b_{i} \in B$. By Lemma 7.2 (i), the intersection B^{\prime} of all $B b_{i}$ is full and $B^{\prime} k^{2}=k$. Since $A \supset B$, we have $H_{i} \supset G^{E}\left(B^{\prime}\right)$ for all $i=1, \cdots, m$. By Corollary 9.4, $G^{E}\left(B^{\prime}\right)$ is full, so the intersection of H_{i} is full.

Remark. If all $g_{i} \in G^{E}(k)$, then the intersection of all H_{i} contains $G^{E}\left(A b_{0}, B b_{0}\right)$ for some $b_{0} \neq 0$ in B, see Corollary 8.2.

10. Proof of Theorem 4.

10.1. Theorem. Assume that k contains at least 3 elements, if G is of type \boldsymbol{B}_{2} or \boldsymbol{G}_{2}. Let A and B be additive subgroups of k satisfying Theorem 1.1 (iii), (iv). Assume that B is full and $B k^{2}=k$. Let M be a
non-central subgroup of $G(k)$ normalized by $G^{E}(A, B)$. Then $M \supset G^{E}(d A, d B)$ for a non-zero d in B.

In view of Corollary 9.4, this theorem implies Theorem 4. Indeed, let M be a non-central subgroup of $G(k)$ normalized by a full subgroup H of $G(k)$. By Theorem 9.3, $H \supset G^{E}(A, B)$, where A and B are as in Theorem 10.1. By Theorem 10.1, there is a non-zero d in B such that $M \supset G^{E}(A d, B d)$. By Lemma 7.2 (ii), $B \cap B d:=B^{\prime}$ is a full additive subgroup of k such that $B^{\prime} B^{2} \subset B^{\prime}$ and $B^{\prime} k^{2}=k$. By Corollary $9.4, G^{E}\left(B^{\prime}\right)$ is full in $G(k)$, Thus, $H \cap M \supset G^{E}\left(B^{\prime}\right)$ is full.

Remark. If G is of type $\boldsymbol{B}_{2}=\boldsymbol{C}_{2}$ or \boldsymbol{G}_{2} and $k=\{0,1\}$, then $G^{E}(k)$ contains a normal subgroup M of index 2 (see, for example, [4, Remark after Theorem 5]). Since $G^{E}(k)$ is the smallest full subgroup of $G(k), M$ is not full (and M does not sit in the center of $G(k)$).

10.2. Lemma. Theorem 10.1 holds if k is finite.

Proof. Any full subring of a finite k is k itself. In particular, if B and A are as in Theorem 10.1, then the subring of k generated by B is k. It follows easily that $A=k$ and $B=k$.

Therefore, $G^{E}(A, B)=G^{E}(k)$. By Theorem 8.4, $G^{E}(k)$ is normal in $G(k)$. It is well-known (see, for example, [5]) that every non-central subgroup M of $G(k)$ normalized by $G^{E}(k)$ contains $G^{E}(k)$. In particular, $M \supset G^{E}(k)=G^{E}(d A, d B)$ for any $d \neq 0$ in $B=k$.

For the rest of this section we assume that k is infinite.
10.3. Lemma. Fix an ordering on Σ. Let α be the maximal root and U the algebraic subgroup of G generated by all $x_{\epsilon}(k)$ with positive ε in Σ. Then there are w in $G^{E}(k)$ and c in k such that UwTU is Zariski open in G and $w x_{\alpha}(t) w^{-1}=x_{-\alpha}(c t)$ for all t in k.

Proof. Let U^{\prime} be the algebraic subgroup of G generated by all $x_{\varepsilon}(k)$ with negative ε. Then $U^{\prime} T U$ is open in G (see, for example, [4, Theorem 7 (a)]).

We pick any w in $G^{E}(k)$ such that $w T w^{-1}=T$ and $w U^{\prime} w^{-1}=U$. Then $w x_{\alpha}(t) w^{-1}=x_{-\alpha}(c t)$ for some c in k.
10.4. Lemma. In the conditions of Theorem 10.1, M is Zariski dense in G.

Proof. Since k is infinite, so is B. Therefore $x_{s}(B)$ is Zariski dense in $x_{\varepsilon}(k)$ for each root ε in Σ and $H:=G^{E}(A, B) \supset G^{E}(B)$ is Zariski dense in G. Since H normalizes M, it follows that G normalizes the Zariski closure of M in G. Since G is almost simple and M is not central, the
closure is G, so M is dense in G.
10.5. Lemma. In the conditions of Theorem 10.1, let $\alpha \in \Sigma_{l}$. Then there are g in $G^{E}(k)$ and u in k such that g commutes with $x_{\alpha}(k)$ and $x_{\alpha}(b) x_{-\alpha}(u b) \in g M g^{-1}$ for all b in B.

Proof. We can choose an ordering on Σ in such a way that α becomes the maximal root (because the maximal root is always long and the Weyl group acts transitively on the long roots). Let U, w, and c be as in Lemma 10.3.

Since $U w T U$ is open in G and M is dense in G (see, Lemma 10.4), there is some m in $U w T U \cap M$. We write $m=g^{-1} w h g^{\prime}$ with $g, g^{\prime} \in U(k)$ and $h \in T(k)$. Since $\left[U, x_{\alpha}(k)\right]=1$ and $h x_{\alpha}(t) h^{-1}=x_{\alpha}(\alpha(h) t)$ for all t in k, we have M э $\left[x_{\alpha}(b), m\right]=x_{\alpha}(b) g^{-1} w h g^{\prime} x_{\alpha}(-b) g^{\prime-1} h^{-1} w^{-1} g=x_{\alpha}(b) g^{-1} x_{-\alpha}(-c \alpha(h) b) g=$ $g^{-1}\left(x_{\alpha}(b) x_{-\alpha}(-c \alpha(h) b)\right) g$ for all b in B. Thus, $g M g^{-1} \ni x_{\alpha}(b) x_{-\alpha}(u b)$ for all b in B with $u:=-c \alpha(h)$.
10.6. Corollary. In the conditions of Lemma 10.5, there is a nonzero d_{α} in k such that $M \supset x_{\alpha}\left(d_{\alpha} B\right)$.

Proof. Let g and u be as in Lemma 10.5. Let $b_{g} \in B$ be as in Corollary 8.2. Then $g M g^{-1}=: M^{\prime}$ is normalized by $g G^{E}(A, B) g^{-1} \supset G^{E}\left(A b_{g}^{2}\right.$, $B b_{g}^{2}$). Pick a $b^{\prime} \neq b^{\prime 3}$ in $B b_{g}^{2}$.

If α belongs to a subsystem $\Sigma^{\prime} \subset \Sigma$ of type \boldsymbol{A}_{2}, we find $\delta \in \Sigma^{\prime}$ such that $\alpha+\delta \in \Sigma^{\prime}$. Since $g M g^{-1}$ contains $x_{\alpha}(b) x_{\alpha}(b u)$ for all b in B and is normalized by $x_{\dot{\delta}}\left(B b_{g}^{2}\right)$ and $x_{-\delta}\left(B b_{g}^{2}\right)$, we have $M^{\prime} \ni y:=\left[x_{\dot{\delta}}\left(b^{\prime}\right), x_{\alpha}(b) x_{-\alpha}(b u)\right]=$ $x_{\delta+\alpha}\left(\pm b b^{\prime}\right)$ and $\quad M^{\prime} \ni\left[x_{-\delta}\left(b^{\prime}\right), y\right]=x_{\alpha}\left(\pm b^{\prime 2} b\right)$. So, $\quad M^{\prime} \supset x_{\alpha}\left(b^{\prime 2} B\right)$. \quad Since $\left[g, x_{\alpha}(k)\right]=1$, it follows that $M \supset x_{\alpha}\left(b^{\prime 2} B\right)$. Thus, we can take $d:=b^{\prime 2}$.

If α does not belong to a subsystem of type \boldsymbol{A}_{2}, then it belongs to a subsystem Σ^{\prime} of type \boldsymbol{B}_{2}. We pick a short root β in Σ^{\prime} such that $\alpha+\beta \in \Sigma^{\prime}$. Then $\left[x_{\beta}(k), x_{-\alpha}(k)\right]=1$.

Since M^{\prime} is normalized by $x_{\beta}\left(B b_{g}^{2}\right)$, we have $M^{\prime} \ni z_{1}(v, t):=\left[x_{\beta}(v)\right.$, $\left.x_{\alpha}(b) x_{-\alpha}(b u)\right]=x_{\beta+\alpha}(\pm v t) x_{2 \beta+\alpha}\left(\pm v^{2} b\right)$ for all v in $B b_{g}^{2}$ and b in B, hence $M^{\prime} \ni z_{1}\left(b^{\prime 3}, b\right) z_{1}\left(b^{\prime}, b^{\prime 2} b\right)^{-1}=x_{\alpha+2 \beta}\left(\pm b^{\prime 4}\left(b^{\prime 2}-1\right) b\right)$ for all b in B. So, $M^{\prime} \supset$ $x_{\alpha+2 \beta}\left(B b^{\prime 4}\left(b^{\prime}\left(b^{\prime 2}-1\right)\right)\right.$.

Since M^{\prime} is normalized by $x_{-\beta}\left(b_{g}^{2} B\right)$, we have $M^{\prime} \ni z_{2}(v, t)=\left[x_{-\beta}(v)\right.$, $\left.x_{2 \beta+\alpha}(t)\right]=x_{\beta+\alpha}(\pm v t) x_{\alpha}\left(\pm v^{2} t\right)$ for all v in $b_{g}^{2} B$ and t in $b^{\prime 4}\left(b^{\prime 2}-1\right) B$, hence $M^{\prime} \ni z_{2}\left(b^{\prime 3}, t\right) z_{2}\left(b^{\prime}, b^{\prime 2} t\right)^{-1}=x_{\alpha}\left(\pm b^{\prime 4}\left(b^{\prime 2}-1\right) t\right)$ for all t in $b^{\prime 4}\left(b^{\prime 2}-1\right) B$. Thus, $M^{\prime} \supset x_{\alpha}\left(d_{\alpha} B\right)$ for $d_{\alpha}:=b^{\prime 8}\left(b^{\prime 2}-1\right)^{2} \neq 0$, hence $M \supset x_{\alpha}\left(d_{\alpha} B\right)$.
10.7. Lemma. For any $\beta \in \Sigma_{\text {s }}$ there is a non-zero d_{β} in k such that $M \supset x_{\beta}\left(d_{\beta} A\right)$.

Proof. If β is long, we can use Corollary 10.6. Otherwise, β lies
in a subsystem $\Sigma^{\prime} \subset \Sigma$ of type \boldsymbol{B}_{2} or \boldsymbol{G}_{2}. Pick $b \neq b^{3}$ in B.
If Σ^{\prime} is of type \boldsymbol{B}_{2}, we pick a short root γ in Σ^{\prime} such that $\gamma+\beta \in \Sigma_{l}^{\prime}$. Since M is normalized by $G^{E}(A, B)$ and $M \supset x_{r+\beta}\left(d_{\gamma+\beta} B\right)$ (see, Corollary 10.6), we have $M \ni z(u, t):=\left[x_{-r}(u), x_{r+\beta}(t)\right]=x_{\beta}(\pm u t) x_{\beta-r}\left(\pm u^{2} t\right)$ for all u in A and t in $d_{\gamma+\beta} B$. Therefore, $M \ni z\left(u, b^{3} d_{\gamma+\beta}\right) z\left(u b, b d_{\gamma+\beta}\right)^{-1}=x_{\beta}\left(\pm u\left(b^{3}-b^{2}\right) d_{\gamma+\beta}\right)$. Thus, $M \supset x_{\beta}\left(d_{\beta} A\right)$ with $d_{\beta}:=b^{2}(b-1) d_{r+\beta} \neq 0$.

If Σ^{\prime} is of type \boldsymbol{G}_{2}, then we find a long α in Σ^{\prime} such that $\alpha+\beta \in \Sigma_{s}^{\prime}$. Since $M \supset x_{-\alpha}\left(d_{-\alpha} B\right)$ and M is normalized by $G^{E}(A, B) \supset x_{\alpha+\beta}(A)$, we have $M \ni z_{1}(t, u):=\left[x_{-\alpha}(t), x_{\alpha+\beta}(u)\right]=x_{\beta}(\pm t u) x_{\alpha+2 \beta}\left(\pm t u^{2}\right) x_{2 \alpha+3 \beta}\left(\pm t u^{3}\right) x_{\alpha+3 \beta}\left(t^{2} u^{3}\right)$ for all t in $d_{-\alpha} B$ and u in A.

Therefore, $M \ni z_{2}(t, u):=z_{1}(t, u b) z_{1}\left(t b^{3}, u\right)^{-1}=x_{\beta}\left(\pm t u\left(b-b^{3}\right) x_{\alpha+2 \beta}\left(\pm t u^{2} \times\right.\right.$ $\left.\left(b^{2}-b^{3}\right)\right) x_{\alpha+3 \beta}\left(\pm t^{2} u^{3}\left(b^{3}-b^{6}\right)\right)$, hence, $\quad M \ni z_{3}(t, u):=z_{2}\left(t b^{3}, u\right) z_{2}\left(t, u b^{2}\right)^{-1}=$ $x_{\beta}\left(\pm t u\left(b-b^{3}\right)\left(b^{3}-b^{2}\right)\right) x_{\alpha+2 \beta}\left(\pm t u^{2}\left(b^{2}-b^{3}\right)\left(b^{3}-b^{4}\right)\right)$, so M э $z_{3}\left(t b^{2}, u\right) z_{3}(t, u b)^{-1}=$ $x_{\beta}\left(\pm t u\left(b-b^{3}\right)\left(b^{3}-b^{2}\right)\left(b^{2}-b\right)\right)$ for all $t \in d_{-\alpha} B$ and $u \in A$.

Thus, $M \supset x_{\beta}\left(A d_{\beta}\right)$ with $d_{\beta}:=d_{-\alpha} b^{4}\left(b^{2}-1\right)(b-1)^{2} \neq 0$.
Proof of Theorem 10.1. Now we are ready to complete our Proof of Theorem 10.1 (for infinite k).

By Theorem 1.1, Lemma 8.3, and Corollaries 10.6 and 10.7, $M \supset G^{E}\left(A^{\prime}, B^{\prime}\right)$ with additive subgroups A^{\prime} and B^{\prime} of k satisfying $A^{\prime} \subset d_{1} A$ and $B^{\prime} \subset d_{1} B$, where $0 \neq d_{1}, d_{2} \in k$.

Since $B k^{2}=k$, we have $d_{2}=b_{1} c^{2}$ with $0 \neq b_{1} \in B$ and $0 \neq c \in k$. Since B is full, $c=b_{2} / b_{3}$ and $d_{1}=b_{4} / b_{5}$ with non-zero b_{i} in B. Therefore, $A^{\prime} \supset$ $d_{1} A=b_{4} A / b_{5} \supset b_{4} A \supset b_{4}^{2} b_{1} b_{2}^{2} A$ (since $B A \subset B$) and $B^{\prime} \supset d_{2} B=b_{1} c^{2} B=b_{1} b_{2}^{2} B / b_{3}^{2} \supset$ $b_{1} b_{2}^{2} B \supset b_{4}^{2} b_{1} b_{2}^{2} B$ (since $B B^{2} \subset B$).

Thus, $A^{\prime} \supset d A$ and $B^{\prime} \supset d B$, where $0 \neq d:=b_{4}^{2} b_{1} b_{2}^{2} \in B$, hence $M \supset$ $G^{E}(A d, B d)$.
11. Type A_{1} and non-split groups. First we give counter examples to Theorems 1-4 for $G=S L_{2}$.
11.1. A counter example to Theorem 1. See [7, the last section].
11.2. A counter example to Theorems 2 and 9.3. Let k be a field such that $\operatorname{char}(k)=2$ and $k \neq k^{2}$. Let $T(k)$ be the subgroup of diagonal matrices in $S L_{2}(k)$. Here is our choice of parametrizations of the root subgroups: $x_{\alpha}(t)=\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right)$ and $x_{\beta}(t)=\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)$ for all t in k.

Set $H:=\left\{h g: h \in T(k), g \in S L_{2}\left(k^{2}\right)\right\}$. Since $T(k)$ normalizes $S L_{2}\left(k^{2}\right), H$ is a subgroup of $S L_{2}(k)$. We claim that it is a full subgroup. Indeed, given any $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $S L_{2}(k)$, we set $u:=1 /(1+a c)$ when $a c \neq 1$ and $u:=1 /\left(1+z^{2}\right)$ with any $z \neq 0,1$ when $a c=1$. Then $v:=u /(1+a u c) \in k^{2}$, hence

$$
\begin{aligned}
g\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) g^{-1} & =\left(\begin{array}{cc}
1+a u c & a u a \\
c u c & 1+c u a
\end{array}\right) \\
& =\left(\begin{array}{cc}
u / v & 0 \\
0 & v / u
\end{array}\right)\left(\begin{array}{cc}
1 & a v a \\
u c u c / v & (u / v)^{2}
\end{array}\right) \in T(k) S L_{2}\left(k^{2}\right)=H .
\end{aligned}
$$

Similarly, there is a non-zero u^{\prime} in k such that $H \ni g x_{\beta}\left(u^{\prime}\right) g^{-1}$. Thus, H is full.

But $R_{\alpha}(H)=k^{2}$ is not full when $k \neq k^{2}$. Therefore, H does not contain $E_{2}(R)$ with a full subset R of k.
11.3. A counter example to Theorem 3. Let k and H be as in 11.2. Take any w in k outside k^{2}. Set $g:=x_{\alpha}(w)$. Then H is full, but $H \cap g H g^{-1} \cap x_{\beta}(k)$ is trivial, so $H \cap g H g^{-1}$ is not full.
11.4. A counter example to Theorem 4. Let k and H be as in 11.2. Then $S L_{2}\left(k^{2}\right)$ is normalized by full H, but $S L_{2}\left(k^{2}\right)$ is not full and is not contained in the center of $S L_{2}(k)$.

Now we will discuss extensions of our results to non-split groups. Let G be an almost simple algebraic group defined over a field k. Fixing a maximal k-split torus T and a matrix representation $G \subset S L_{N}$, we have "root" subgroups U_{ε}. Given any subset R of k, we can define $G^{E}(R)$ to be the subgroup of $G(k)$ generated by all root elements with (non-diagonal) entries in R. We can call a subgroup H of $G(k)$ full, if for any g in $G(k)$ the intersection of $g H^{-1}$ with each root subgroup is not trivial. I believe that Theorems 1-5 hold (for this more general class of G's), if the k-rank of G is at least 2 and G is absolutely (almost) simple, and have checked this for all classical G. For some groups it follows from results of [7].

Remark. It is easy to see that when k is a number field every arithmetic (or, more generally, S-arithmetic) subgroup of $G(k)$ is full. I believe that, conversely, every full subgroup contains an arithmetic subgroup, and have checked this for all classical G.

Remark. Some of our groups $G^{E}(A, B)$ for Chevalley groups G were introduced by Abe [18] and studied by Abe-Suzuki [19].

Refereces

[1] T. J. Jech, On a problem of L. Nachbin, Proc. Amer. Math. Soc. 79 (1980), 341-342.
[2] O. T. O'Meara, Lectures on linear groups, Providence, R.I. 1978.
[3] O. T. O'Meara, Symplectic groups, Providence, R.I. 1978.
[4] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967.
[5] J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329.
[6] J. Tits, Systemes generateurs de groupes de congruence, C.R. Acad. Sc. Paris, 283 (1976), A693-695.
[7] L. N. Vaserstein, On full subgroups in the sense of O'Meara, J. of Algebra, 75 (1982), 437-444.
[8] L. N. Vaserstein, Stabilization for classical groups over rings, Mat. Sbornik, $93: 2$ (1974), 268-295; Math. USSR Sb. 22 (1974), 271-303.
[9] A. Borel and J. Tits, Homomorphismes "abstraits" de groupes algebriques simples, Annals of Math. $97: 3$ (1973), 499-571.
[10] Zentralblatt 481 (1982) 20031; Math. Rev. 83b, 20047.
[11] Zentralblatt 466 (1981) 20022; Math. Rev. 82j, 10043.
[12] C. RIEHM, Structure of the symplectic group over a valuation ring, Amer. J. Math. 88 (1966), 106-128.
[13] C. RIEHM, Orthogonal groups over the integers of a local field. II, Amer. J. Math. 89 (1967), 549-577.
[14] D. James, The structure of local integral orthogonal groups, Trans. AMS, 228 (1977), 165-186.
[15] Z. Borevich, A description of the subgroups of the general linear group containing the group of diagonal matrices, Zapiski LOMI, 64 (1976), 12-29 (in Russian).
[16] N. Vavilov, On parabolic subgroups of Chevalley groups over semi-local rings, Zapiski LOMI 75 (1978), 43-58 (in Russian); Zentralblatt 488.20046.
[17] A. Borel, Properties and linear representations of Chevalley groups, in Lecture Notes in Math. 131 (1970), 1-55, Springer-Verlag, Berlin, Heidleberg, New York.
[18] E. Abe, Chevalley groups over local rings, Tôhoku Math. J. 21 (1969), 474-494.
[19] E. Abe and K. Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tôhoku Math. J. 28 (1976), 185-198.
Department of Mathematics
The Pennsylvania State University
University Park, PA 16802,
USA

[^0]: * This research was supported in part by NSF grants.

