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ON FULL SUBGROUPS OF CHEVALLEY GROUPS*
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Introduction. Let G be a split algebraic absolutely almost simple
group defined over a field k. For a split maximal ft-subtorus T of G let
Σ = Σ(G, T) denote the root system of G with respect to T. Let {xε,
εeΣ} be a system of isomorphisms, normalized as usual (see, for example,
Steinberg [4]), from the additive group onto the root subgroups with
respect to T.

We say (in the spirit of O'Meara [2, 3]) that a subgroup H of G{k)
is full if for every g in G(k) and ε in Σ there exists a non-zero c = c(g, ε)
in k such that g~ιxt{c)g e H. Thus, H is full if and only if its intersec-
tion with any root subgroup (relative to any maximal split /c-torus) con-
tains at least two elements.

For a subset R of k we denote by GE(R) the subgroup of G(k)
generated by all xε(a), where εeΣ and aeR. Here "E" stands for
"elementary".

A subset R of k is called full (cf., Vaserstein [7]) if for every y in
k there is a non-zero r in R such that yreR. For a subring R it means
that k is its field of fractions. Note that in this paper a ring is not
required to have identity.

The results of the present paper are modeled on the results of
Vaserstein [7], the methods are also similar. However the situation for
groups of type Cn in characteristic 2 turns out to be more complicated.

We assume throughout (except in the last section) that the rank of
G is greater than one. If rank(G) = 1, i.e., G is of type Λlf then the
conclusions of Theorems 1-5 below are false, see [7] and the last section,
where we also discuss possible generalizations of our results.

The following Theorems 1-5 summarize our main results. More pre-
cise and detailed statements are given in the corresponding sections.

THEOREM 1. For every full subring R of k, the subgroup GE(R) of
G{k) is full.

THEOREM 2. ("Arithmeticity Theorem"). Every full subgroup H of
G(k) contains GE(A) for some full subring A of k with the exception of
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the case when G is of type Cn (n^2), char(fc) = 2 and the dimension
of k over k2 is uncountable.

Here, for a field k of characteristic 2, k2 denotes the subfield of fc,
consisting of all squares. In the exceptional case we will show that not
every full subgroup H contains GE(A) for a full subring A (see Sections
8 and 9 for details).

THEOREM 3. If H is a full subgroup of G(k) and glf , gm are in
G(k) then the intersection of all QtHgz1 is a full subgroup of G(k).

THEOREM 4. Assume that k does not consist of 2 elements when G
is of type B2 or G2. If H is a full subgroup of G{k) and M is a sub-
group of G(k) normalized by H then either Hf]M is full or M lies in
the center of G.

Theorems 1-4 for G = SLn were proved by Vaserstein [7]. According
to [10], Serezhkin considered subgroups H of G{k) = SLn(k), w ^ 3, more
general than full subgroups. Assuming that H is irreducible (in the
standard representation) he proves that a conjugate of H either contains
GE(A) = En(A) for a full subring A of k or is contained in HSpn(k), the
group of symplectic similitudes. Since a full H is irreducible and HSpn(k)
is not full, this result combined with our Theorem 8.4 gives Theorem 2
for G = SLn, n^z3. He also tried to prove Theorem 2 for G = Sp2n

with char(fc) Φ 2, see [11].

THEOREM 5. Let H be a subgroup of G(k). Set Rε(H): = {tek: xε(t) e
H}. Suppose that Rε: = Rε(H) Φ 0 for every root e in Σ. Suppose further
that G is not of type Bn, CnJ or F4 when char(fc) = 2, and that G is not
of type G2 when char (A;) = 3. Then there is a non-zero subring A of k
such that RεAdRε (i.e. Rε is an A-module) and (ARε)(AR_ε)(zA for every
root ε in Σ.

We do not assume here that H is full. Here and throughout the
paper BC := {be: beB, ceC} for any subsets B,Cak. About the cases
excluded from Theorem 5, see the next section.

The groups H in Theorem 5 are similar to "tableau", "carpet" or
"net" groups considered in many papers including Riehm [12], [13], James
[14], Borevich [15], Vavilov [16]. The main two differences are that our
Rε(H) need not be ideals of A and are not allowed to be 0.
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reference [1] and D. James and a referee for many corrections. The work
was started in the fall of 1981 jointly with B. Weisfeiler, and later he
made a few corrections.
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NOTATIONS AND CONVENTIONS. If all roots in Σ have the same length,
we set Σt: = Σ8: = Σ. Otherwise there are roots of only two lengths in
Σ (see, for example, [4]). We denote then by Σt (resp., Σ8) the set of
long (resp., short) roots in Σ. Always, Σt is a subsystem of Σ.

Let e(Σ) be the square ratio of lengths of long and short roots.
Recall that e(Σ) = 1 when Σ is of type An, Dn, or En; e(Σ) = 2 when Σ
is of type Bn, Cn or F4; e(Σ) = 3 when Σ is of type G2.

We say that a subset of Σ is connected if it is not a union of two
orthogonal non-empty subsets.

If a, β are in Σ and a Φ β Φ—a, then we have a commutation
relation of the form [xa(t), xβ(u)] = Π %ia+sβ(± Paj^jVu3') for all t, u in &,

where the product is taken over all roots ia + jβ in Σ with natural
i, j ^ 1, the factors in the product are ordered lexicographically (i and,
for fixed i, also j increase from the left to the right), paίβ,ίtj are natural
numbers, and the signs ± do not depend on t and u but only on α, β, i, j
(once the parametrizations xψ were chosen). When a + β is not a root,
the product is taken over an empty set and equals 1.

For a subset Aak and an integer n we set An :— {αn:αeA}. For
A, Bdk we set AB:= {ab: ae A, beB).

We define p as follows: if char(fc) Φ e(Σ), then p:=l; otherwise,

p : = char(fc) = e(Σ).

For a subgroup i ϊ of G(k) and a root ε in Σ we set Rε(H) := {tek:

xε(t)eH}.

1. A generalization of Theorem 5.

1.1. THEOREM. Let H be a subgroup of G(k) such that R&{H) Φ {0}
for every root ε in Σ. Set Rε := Re(H). Then there exist additive sub-
groups A and B of k and (for every root ε) non-zero aε, bε in k such
that:

( i ) aδBaRδc:bδB, RδA
paRδ, and ARδR_δaA for every long root δ

in Σ;
(ii) α r i c ΰ r c 6 r A , RrB(zRr, and B'(RrR_r)

pciB for every short root
Ύ in Σ, where Bf := BB when char(fc) = 2 = e(Σ) - 1, B' := e(Σ)l B when
char(fc) = 0, and Bf: = B otherwise',

(iii) ABaA, BApcB, and Ap(zB(zA;
(iv) B is a subring of k (i.e. BBCLB) when Σι is connected) A is a

subring of k when Σs is connected.

The case p = 1 of this theorem contains Theorem 5 (indeed, (iii) with
p = 1 implies that A = B is a subring, and to obtain AARrR_r(zA when
char(fc) = 0, we replace A by e(Σ)ΪA). Note that RεA<zRε and AABe#_ecA
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imply cεAczRεCLcz\A for any cε in Rε and c_e Φ 0 in AAR_ε. When p Φ 1
and k is not algebraic over its prime subfield, the conclusion of Theorem 5
is false for some H with Rε(H) Φ 0 for all ε in Σ, see Theorem 6.1 below
(namely, for H = GE(kQ,kl) with subfields fc?cfcocfc).

We will prove Theorem 1.1 in Sections 2, 3-4, and 5 in cases e(Σ) =
1, 2 and 3 respectively. The following technical lemmas will be used in
our proof of Theorem 1.1.

1.2. LEMMA. Let m ^ 2 be an integer; A, Bck; ABaA, AmB<zB.
Then:

( i ) if a is in the multiplicative set generated by A and b is in
the multiplicative set generated by B, then BamaB and Aba A; therefore,
for A1 := Aa, B1:= Bb we have A&aAv ATB^B^

(ii) if aeA, beB, then for A2:=Aam~1b, B2:= Bamb we have
A2B2cA2, AfB2dB2J and B2(zA2,

(iii) if beBaA, then for Az\— Ab, Bz:= Bbm~ι we have AzBzaAif

AfBzaB^ and A?aBsc:Az;
(iv) ifBφOΦ cAAdA for some c in k, then there is a non-zero

a0 in A such that (a£~1A)(a™~1A)c:a™~1A;
(v) if A Φ 0 Φ cBB c B for some c in fc, then there is a non-zero

b0 in B such that (6Γ

PROOF. ( i ) We write a = a, an with at e A. Then Ba?aBAmc:B
and, by induction on n, Bam = B(ax an_ύma™(zBa™c:B. Similarly Abe A.

(ii) Since a^'b = am-2abeam-2ABaam-2A and ambeAmBaB, by (i)
we have A2B2 = A2 and AfB2cB2. Moreover, B2 = Bamb = (Ba)am~1bci
Aam~'b = A2.

(iii) Again, the first two inclusions follow from (i), which implies
also that bm~2B(zA. Hence B3 = b^BaAb = A8. Finally, AT = Am6m =
Ambbm-1(zAmBbm-1o.Bbm-1 = B3.

(iv) We have (cA)(cA)ccA, that is, cA is a multiplicative set in k.
In particular, {cA)2ma((cA)(cA))m<z(cA)m, so B{cA)2mAc:B{cA)mA=cmBAmAci
cmBAdcmA.

On the other hand, B(cA)2mA = c2m(BA2m)A(Zc2mBA(Zc2mA.
Therefore cmAf]c2mA Φ 0, i.e., there are non-zero α0 and a in A such

that cm = ao/a. Then αΓ"1 = αo

m~2αo = eC~2αcm = (α0c)w~2(αc)c e (cA)m~2(cA)c(Z
(cA)c = c2A. Hence A(aT~1A)czA(c2A)A = Ac(cAA)cAcAcA. Multiplying
both sides by GC~~\ we get {aT~1A){at~lA)(Z.aT'lA.

(v) From (cB)(cB)czcB we deduce that A(cB)2czAcB = cABczcA. On
the other hand, A(cB)2 = c2AB2(Zc2(AB)B(Zc2ABc:c2A.

Therefore, cAf]c2Az)A(cB)2 Φ 0, hence a0 = αc for some non-zero a,
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α0 in A. Pick a non-zero b' in B. Then 0 ^ 6 : = amb' e AmBaB, 0 Φ b0: =
cC&'e AmBaB, and 60 = cw6.

We have 6J1"1 = cmbbT~2 = (δc)(60c)m-2c e (Bc)(Bc)m-2cc (&>)c = Be2. There-
fore, B(bγ-1B)(zB(Bc2)B = Bc{BcB)(zBcB(zB. Multiplying this with 6J1"1,
we get {bt-ιB){b%-ιB)c:b?-ιB.

1.3. LEMMA. Lei w, m, ΛΓ 6e natural numbers. Let non-empty
A, Bf Ridkf and ci9 dtek for i — 1, , iV. Assume that 0 ^ ABncA,
AmBczB, 0 ^ CiAcRiCidiA (i = 1, , ΛΓ). T%ew ί/iere is α non-zero b
in B such that dtAφBycCiA andf therefore, R^bB)71 aRt for i = 1, , JV.

PROOF. From CiAccίiA it follows that A(ctldt)c:A. Therefore
A for every integer r >̂ 0. Pick non-zero α0 in A and br in i?.

Set at:= doCjdieA, &,:= bfaT^BAmc:B for i = 1, •••,#, and 60: =

We have: (c^dj" = (α./αoΓ = 6 A and 6?Ac6?A/6? = A(bJbQ)n =
A(c ί/d i)

mncAc i/d ί for i = 1, , iV.
Let α be the product of all au i = 1, , N, and b : = 6'αm 6 BAm(zB.

We have: &£ = 6 ^ when iSΓ = 1, and bBdb^Bcz^B for i = 1, •••, N
when ΛΓ> 1.

Therefore, AφB)nczA(]btB)n = ABtycAbfciAcJd,. Hence dtA(bB)*cz
Ac, and JB^BJ'c^AίftBJ cACίC^ for i = 1, , N.

2. Proof of Theorem 1.1 for groups G of type An (n ^ 2), /)„
(w ^ 3), and En (n = 6, 7, 8). Recall that if is a subgroup of G(fc) and
that the Rε: = Rε(H) := {te k: xε(t) e H} are assumed to be non-zero for
all roots ε in Σ. In this section we consider the case when Σ — Σι = Σ8.

2.1. LEMMA. ( i ) // 7, δ9 7 + <5 6 Σ then RrRδc:Rΐ+δ;
(ii) for any a, β in Σ there exists a non-zero cafβ in k such that

caβRβc:Ra.

PROOF, ( i ) We have [xr(t),xδ(u)] = xr+δ(±tu) for all t, u in k (see,
e.g., [4, Examples to Lemma 14]). Taking here teRr, ueRδ we see that
RrRδczRr+δ.

(ii) There exist Ύ19 , 7 W in Σ such that β + Ύ1 + + 7, e J? for
all i ^ m and α = /3 + 7X + + 7m. Let us proceed by induction on
m. If m = 0, then Rα = Rβ and we can take cαJ = 1. For m ^ 1, we
set 7 : = 7m, d = /S + 7i + + 7m_i. Pick a non-zero cr in i2r. Applying
(i) and the inductive assumption to <5, we have: Rΐ+δ = RαZ)RrRδZ)cδ>βRβRrZ)
crcδiβRβ = cα>βR with cα>^ : = crcδ)^ Φ 0.

Now we can complete our proof of Theorem 1.1 in the case Σ = 2Ί.
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For every pair a, β of roots in Σ we fix a non-zero cayβ e k such that
ca>βRβc:Ra (see, Lemma 2.1 (ii)).

Pick roots a, β, 7 in Σ such that 7 = a — β. By Lemma 2.1, Raz>
RβRrZ)cβiaRaCr,aRa = cRaRa, where c : = cβiacr>oι Φ 0, hence A : = cRaZD

cRacRa—AA is a subring of &.
For any root s in ^ set α,:=c" 1cβ ϊ β, δδ: = c""1 ,̂1. ^ 0, hence RεZ)

c£,aRa = cε>ac~yA = αεA and Rεdc~^εRa = c~ιc~l,A = bεA.

By Lemma 1.3 (with A = B, m = ra = 1, ΛΓ:= cardU)), (αA).Bεci?e

for all ε in I7 with some non-zero α in A. Replace A by αA and α£, be

by α^' 1 , δεα"1 respectively. Then ARεcRε for all ε in Σ and still
αeAci2ec&εA for all ε.

Now for every ε in Σ we can find δ in Σ such that ε + δ e Σ. Then
RδRεR_ε(zRδ+sR_eczRδ by Lemma 2.1 (i). Take the product R of all Rδ

over δeΣ. Then RRεR_εaR for all ε in 21.
Since RεabεA for all ε, we have RabA, where b Φ 0 is the product

of all 6e. Replacing A by its subring generated by Rb~\ we have RεAdRε

and ARei2_ecA for every root ε in Σ.

3. Proof of Theorem 1.1 for G of type B2. Since G is split over
fc, it is isogenous to the symplectic group of a non-singular alternating
form in dimension 4.

The root system (see, Figure 1) consists of 8 roots. Four of them
(±α, ±(a + 2/3)) are long, and four (±/3, ±(α + β)) are short.

Let us call a pair (7, δ) of roots admissible, if 7 eΣ8, δe Σl9 and
δ — 7eΣ8. In other words, 7 is short and δ makes an angle ±45° with
7. Every root is contained therefore in exactly two admissible pairs.

As in Theorem 1.1, Rε := Rε(H)Φ{0}. For any pair (7, δ) of roots
we set Rr,δ: = RrA

H) = {(*> ^) e A; © fc: <cr(ί)&*(tt) e if}. Let i?;>3 (resp., jβ£d)
be the projection of Rr>δ on the first (resp., second) factor. Clearly,

a+β

FIGURE 1. System of roots of type B2.
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r and R"δZ)Rδ.

3.1 LEMMA. Let (7, δ) be an admissible pair of roots, aeR2r_δ, be
Rδ-2τ, (c, d) e Rr,δ, and t1912 e Rr_δ. Then (i) (abc, ab2c2) e Rry, (ii) 2txt2d e

-ti2r-δ

PROOF. Set ε : = 3 - 27.

(i) Since both xε(k) and x_ε(k) commute with xδ(k), we have: HB
[x-.(a), [xε(b), xr(c)xδ(d)]] = [a_.(α), xδ-r(±bc)xδ(±bc2)] = xr(±abc)xδ(±ab2c2).
Since R±ε are additive subgroups of k, we can, changing if necessary-
signs of a and b, obtain that Rr>δ B (abc, ab2c2), as claimed.

(ii) We have HB y(t): = [xrj(f)f xr(c)xδ{d)] = xr(±td)x2r_δ(±fd±2ct) for
any t in Rr-β, hence HBy(tx + t2)y{—Qy( —12) = x2T-δ(±2t1t2d). Thus,
Rir-δ — — R 2 γ _ δ B 2 t 1 t 2 d

3.2. COROLLARY. In the notation of Lemma 3.1:
(i) RrZ)2RεR_εR'rtδ and RδZ)8RεRεR_εRrRr,δ, where ε : = δ - 2τ;
( i i ) i 2 5 C r _ δ C r ' '

PROOF, (i) Let α, 6, c, cί be as in Lemma 3.1, and c'eRr, b'eRε.
By Lemma 3.1, RTiδBz(c) := (abc, α6V)efc0fc. Since xr(k) and xδ(Jc) com-
mute, Rΐ>δ is an additive subgroup of k φ fc. Therefore, i2r>3 3 «(c) — z( — c) =
(2abc, 0), so i?δZ)2J?_eJBei2^, which proves the first inclusion.

Similarly, RTίδBz(c) + z(-c) = (0, 2α6V), hence RδB2ab2c2. Therefore
i23 9 2α62(c + c')2 - 2α6V - 2α62c'2 - 4αδ2cc' and i2,3 4α(6 + bjcc' - 4α62cc' -
£ab'2cc' — 8α66'cc'. This establishes the second inclusion in Corollary 3.2(i).

(ii) By Lemma 3.1 (ii), JB;;β(22?r_iBr_i)ci22r_ί. Replacing here (Ύ, δ)
by the admissible pair (7, 27 — δ), we get Rf

γ[2r_δ(2Rδ_rRδ_r)CLRδ. Combin-
ing the last two inclusions we get R"δCr_δCr-δ(zR2r_δ(2Rδ_rRδ_r)czRδ.

To prove the second inclusion in (ii) we take arbitrary u in Rr_δ, v
in Rδ_r, and t in Rδ. Then HB [[xδ(t), xr-δ(u)], xδ-r(v)] = xr(±tu2v)xδ(±2tuv
±tu2v2), hence (changing if necessary signs of t and u) R'r'tδB2tuv + u2v2t.
Since Rr/)δZ)RδZ)RδCr^δCr.δBAu2v2t, it follows that R'r'tδsStuv. Thus,
i2^δZ)4i23Cr_δ. Combining this with R'r[δCr_δCr_δ(zRδ, we get Corollary
3.2 (ii).

PROOF OF THEOREM 1.1 FOR TYPE B2 WHEN char(fc) Φ 2. For every
root φ in Σ we pick a non-zero ĉ  in Rφ.

By Corollary 3.2 (i), RrZ)cΐ>εRε, Rγz^crt_εR_ε, where cr>δ : = 2crc_ε, cr,_e : =
2 c r c ε . S i m i l a r l y , Rδz>cδίSRε, cδf_εR_ε, cδJRr w i t h c ί f , : = Sc_εc

2cε, cδt_ε:= 8 c 2 c 2 ,
c δ , r : = 8c2c_εcr.

Applying the above inclusions (with other admissible pairs of roots)
successively, one easily establishes that for any φ, ψ in Σ there is a
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non-zero cΨtψ in k such that RψZ)cφfψRψ. Fix such cψfφ.
Let A be the subring of k generated by 2RaR_a. We have Az)2c_aRa.

Applying Corollary 3.2 (i) with 7 := β, δ : = a + 2/3, ε : = 3 - 27 = α, we
get RβZ)ARβ hence JS^IDC^A. Therefore aψA(zRφcibφA for every root 9)
in Σ, where aφ:=CφtβCβ, bφ : = (2c_aca>φ)~1. Using Lemma 1.3 with m =

n = 1, A = B, we find a non-zero α in A such that all 12̂  are αA-modules.
Replacing A by a A and changing α9> 6̂  accordingly, we have RφAaRφ

for all φ and still a^Acu^c&^A for all φ with non-zero aφ, bφ.
By Lemma 3.1 (i), RεR_εR'rδ(zR'ΐiδ for any admissible pair (7, δ), where

e := δ - 27. Consider the product A, of all R'ΐ)δ. Then A ^ i L e C ^ for
every long root ε in Σ. Using Corollary 3.2 (i) and AAaA, we see that
0 Φ cA1dA for some c in k. Replacing A by its subring generated by
cAA19 we get ARδR_δaA for all δ in 2V We still have RεA(zRε for all
e in J and Rεcb[A for all s in I with some bε Φ 0 in k.

Let now (7, δ) be an admissible pair. Using Rεab[A for ε = δ — 7
and ε = 7 — δ, we get % C r _ 3 c i , where w : = (ft^^Lr)"1 ^ 0. Multiplying
the inclusions in Corollary 3.2 (ii) by u2 and w3 accordingly, we get
Rδp[Rδu

2 Φ 0 Φ Rδf)4:Rδu\ Since i2δc6A for some b in k (it follows from
ARδR_δaA Φ0), uAf]A Φ 0. Therefore, 0 Φ vCr_δc:A for some v in A.
We have {Rδ\jRδCr-δ)Cr_δc:Rδ{lRδCr-δ and i2δUi2,Cr_,c6AUδACr_δc6(AU
Cγ^abv^A, hence ^;r>δ(i2δUi2δCr_δ)cA, where wr>δ:= vb~\

Let A2 be the product of all wr,δ(RδΌRδCr^δ). Then A2CraA2ciA for
all 7 in Σ8. Replacing A by its subring generated by AA2, we get
ACyCiA for all 7 in Σs. We still have A(RδR_δ)c:A for all δ in i:, and
RεAaRε for all ε in Σ.

Thus, Theorem 1.1 is proved for G of type B2 when char(/b) ^ 2.
For the rest of this section we assume that char(fc) = 2. Then [x±β(k)f

x±i«+β)(Jc)] = 1.

3.3. LEMMA. Let (7, δ) be an admissible pair of roots. Then (rs,
rs2) 6 Rδ_r,δ for any s in R[ίδ and r in Rδ-r,δ-2r- In particular,

( i ) R'δ_γtδ1) R'r>δRδ-r,δ-2r

(ii) R"-ryδ~DR"_ryδ_2γ(Rf

r)δ)
2.

PROOF. Let (s, ί) e Rr,i9 (g, r) e i2δ_r,δ_2r. Then He [xr(s)xδ(t), xδ_r{q) x
xδ-2r(r)] = [xr(s), xδ-r(q)xs-2r(r)] = [ajr(s), ^-2r(r)] = ^_r(sr)^(rs2), as claimed.

3.4. NOTATION. For a long root δ in J denote by Aδ the subring
of k generated by RΪ-r,*-2rR'rUr-i9 where (δ - 7, δ - 27) and (7, 27 - δ)
are the admissible pairs (7', δ') such that 27' — δ' = δ. For a short root
7 in Σ we denote by Ar the subring of fc generated by Rr

δ_ryδR'r_δy2r_δ,
where (δ — 7, δ) and (7 — δ, 27 — δ) are the admissible pairs (7', δ') with
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δ' - 7' = 7.

3.5. COROLLARY. Let (7, S) be an admissible pair. Then:
( i ) R'δ-r,δ and Rf

7iδ are Aδ-modules;
(ii) Rγtδ and R",2r_δ are A2

rmodules;
(iii) Aδ and A2T_δ are A2

rmodules;
(iv) Ar and Aδ_r are Aδ-modules.

PROOF. Applying Lemma 3.3 (i) to the pair (δ — 7, δ) instead of (7, δ)
we obtain R'r>δiiRδ_ΐ)δR"2r_δ. When we substitute this in the inclusion
3.3 (i), we obtain RLr,δ^Rδ-rtδ(Rδ-r,δ-2rR'r't2r-δ)- Thus, RLr,δ is an A^-module.
Replacing here (δ — 7, δ) by (7, δ) we prove (i).

To prove (ii) we apply Lemma 3.3 (ii) to the pair ( — 7, δ — 27) instead
of (7, <5). We get R'Lr^r^R'Lr^R'-r^rY- Substituting this in 3.3 (ii)
we obtain R'δ'_ΐ>δ^R'δ'-r,δ(R-r,δ-2rRr,δY. Thus R'δ'_r,δ is an ALr-module. Re-
placing here (δ — 7, δ) by (δ — 7, δ — 27) we see that R"-rtδ_ir is also an
AS_r-module. Now it remains to replace δ — 7 by 7 (and keep δ the same)
to obtain (ii).

Statements (iii) and (iv) are direct consequeces of (ii) and (i) respec-
tively and the definition of the rings A£ (see Notation 3.4).

3.6. LEMMA. Let (7, δ) be an admissible pair. Then there exist
non-zero cx and c2 in k such that

(i) RδZ>clR'δ'-r,δ-AR'r,3Y.
(ii) R

PROOF. Assume first that card(Aε) = 2 for some root ε in Σ. Since
Aε is a ring this implies that Aε = {0, 1}. By Corollary 3.5 (iii) and (iv),
Aε is a module over A2

φ, where φ is the root making an angle 45° with
ε. Since Aε = {0, 1}, it follows that A% = {0, 1}, hence Aφ = {0, 1}. Apply-
ing now the same argument to Aψ instead of Aε and repeating it 7 times,
we obtain that Aψ — {0, 1} for all roots ψ in Σ. The definition of A+ now
implies that card(2ί£fί) = card(i?"a) — 2 for all admissible pairs (7, <5). Since
Rγtδ^Rr Φ 0 and R"δ^Rδ Φ 0 we see that R'r,δ = Rr and R'r'tδ = Rδ for all
admissible pairs (7, δ). Therefore Lemma 3.3 reduces to our claim with
Cx = c2 — 1 .

Now we can assume that card(Aδ_r) > 2. Pick a Φ 0, 1 in Aδ_r and
b Φ 0 in Aδ. By Corollary 3.5 (iii), ba2 e Aδ(A,_r)

2cA,. By Corollary 3.5 (i)
and (ii), for any r in R'δ'-r,δ-.2r and any s in JS£fβ, we have: rα2, r α 4 e
R7-r,δ-2r and s&, sba2eR'r>δ.

Set i/(w, t ) : = (wί, ί^2) 6 k 0 fe. By Lemma 3.3, y(%, t) 6 Rδ_r,δ Hue R'Tfδ,
16 R'/-r,δ-2r Therefore y{sba2, r), ?/(s/c, ra2)> y(sb, rα4) € i2δ_M. Since xδ_r{k)
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and xδ(k) commute, Rδ_r,δ is an additive subgroup of fcφfc. Therefore,
Rδ-r,δ 9 V(sba2, r) + y(8b, ra2) = (0, r s W ( l + a)2) and R9_r,, 3 2/(s6α2, r) +
?/(s&, rα4) = (rsba2(l + α2), 0). Thus, our claim holds with cλ: = ab(l + α) Φ 0
and c 2 : = &α2(l + α2) Φ 0.

3.7. COROLLARY. For eαc/i pair (φ, ψ) of roots of the same length
there exists a non-zero cΨtψ in k such that

(i) Rψi)c2

φ^Rψ if <p,φeΣl9

(ii) Rψz)cφ>irRψ if φ,ψe Σ8.

PROOF, (i) Lemma 3.6 (i) applied to (Ύ,δ) gives RδZ)clc2Rδ_2ΐ, where
0 Φ creRrc:Rγ)δ (we used also the inclusion Rδ_2raR'δLrfδ_2r).

This shows that cM_2 r exists (and can be taken to be C&). Note that
δ was an arbitrary long root and δ — 27 makes an angle ±90° with δ if
7 makes an angle ±45° with <?. Thus, repeating the argument 3 times,
we obtain (i).

(ii) We apply Lemma 3.6 (ii) to (δ — 7, δ) to get that RγZDc2c2r__δRδ_γ = :
Crtδ-rRδ-r Similarly, Rδ_γi)cδ_ri_rR_γ, R_γ~Dc_rj__δRγ_δ, Rr_δz>cr-δjRγ.

Now we are prepared to complete our Proof of Theorem 1.1 for G
of type B2.

PROOF OF THEOREM 1.1 FOR G OF TYPE B2 WHEN char(fc) = 2. For
every root φ we pick a non-zero cφ in Rφ.

By Lemma 3.6 and Corollary 3.7, Ra^clR^βiR^Y^clcU^clβ^βR^R^β)2

and Ra+βDc2Ra+2βR_βDc2cl+2β)ac_β>a+βRaRa+β.
Set eίi = : c1ca+2β}ac_β}a+β, d2: = c2c

2

ϊ+2ig>αc_i8>α+^, A : = d^+β, B : = d2Ra.
Then t h e above inclusions become d^BzDd^BA2 and (Z^AiDdr^-B. Thus,
BziBA2, AziAB.

By Corollary 3.7, d^c^BaR.czc-^d^B for δ e J , and d1-
1cr,β+^ACjBrc

Ca+βjdϊιA for 7 G ^ β . This proves the existence of αe, bε for all ε in Σ.
Consider now A! : = AAaAa+2βA_aA_a_2β, Bf: = B(AβAa+βA_βA_a_β)2.

Using Corollary 3.5 (iii) and (iv), we see that B'z>BΆ'2 and A!z>A!B'.
It is clear that A'~DaλA and B'zjaJB for some non-zero αΐ in k. Using
Corollary 3.5 (i), (ii), Lemma 3.6, and the inclusions Bz)BA2, Az)AB, we
see that A'ab^ and B'abJB for non-zero bt in k, % — 1, 2.

Replacing A, B by A', £ ' , we get AAδaA, BA2

raB for all δeΣlf

7 6 2*3, and we still have A2BaB, ABczA and (after appropriate change
of aε, 6.) AaraRr(zAbr, BaδaRδ<z.Bbδ for all 7 e l ( , <5ei;z.

Using Lemma 1.3 with JV = 4, n = 1, m = 2 and with iV = 4, n = 2,
m = 1, we find non-zero α e A, δ e i ? such that Rδ(aA)2aRδ and Br(bB)dRr

for all δ e J,, 7 e Σ8. Replacing A, B by a A, bB (and changing accordingly
αε, 6.) we gain the additional property: RδA

2cRδ, RrBaRr for all ΎeΣ8,
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Now it is time to use Lemma 1.2 (ii) and then (iii) with m = 2 to
obtain new A, B satisfying A2dBczA.

We do not loose the property that AAδaA and BA2aB for all δeΣt,
7eΣ8. Since ArZ) Rδ_2TR2r_δ and ArZ)Rδ_rRr_δ, we have, in particular, that
ARδR_δciA and BR2

γRLr(zB for all 7 6 ί , , ί e ί , .

4. Proof of Theorem 1.1 for G of type Bn (n ̂  3), Cn (n ̂  3), and F4.

4.1. LEMMA. Let φ,ψeΣ have the same length. Then there exists
a non-zero cψyψ in k such that Rψ'Ώcψ>ψRψ. When G is of type Cn, φ, ψe Σu

and p — 2, we can choose cΨtψ in k2.

PROOF. If both φ and ψ lie in a subsystem of type A2 or B2i the
first claim was established in Lemma 2.1 (ii) and Theorem 1.1 for G of
type B2, respectively. In the general case there exist roots y19 « , 7 m

in Σ of the same length as ψ and ψ such that φ = Ύlf ψ = Ύm and yt9

7 i+i lie in a subsystem Σt of type Az or B2 for i = 1, 2, , m — 1. Since
the claim holds in every Σt, it holds in Σ as well, by induction on m.
When G is of type Cn, φ, f e ί , , and p = 2, we can use Lemma 3.7 (i).

4.2. Now we pick a e Σt and yS 6 Σ8 which are simple roots in a sub-
system of type 2?2. By Theorem 1.1, there are additive subgroups A and
B of k and elements αα, 6α, α ,̂ 6̂  of k such that aaBaRa(zbaB, aβAa
RβCzbβA and, moreover,

(4.3) ARaR_aaA , B

(4.4) AΰcA, BApaB,

where β(2r) = 2, and p = 1 or 2 (are integers depending on char(fc)).
By Lemma 4.1, aδB(zRδ(zbδB and arA(zRr<zbrA for all δ e ̂ , and 7 6 Σ.,

where αr : = α^cr,^ =£ 0, 6r : = δ ^ , α3 : = aacδ>a Φ 0, δδ : = bac~)δ.

Applying Lemma 1.3 with N:= card(J?,), n = 1, m = p and with
JV:= card(^), w = p, m = 1, we find non-zero α in A and 6 in S such
that Rδ{aA)pczRδ and Rr(bB)(zRr for all <5 in Σι and 7 in 2^.

Replacing A and I? by Aa and Bδ and changing αe and 6e, we have
(4.3), (4.4), and:

(4.5) aδBcRδc:bδB and RδA
paRδ for all δ in Σι

(4.6) arAcRr(zbrA and RrBczRr for all 7 in ίβ .

Since every short root 7 in Σ can be included as a simple root in a
subsystem of type 2?2 or A2, we have Br(2/p)(RrR_r)

paBr for an additive
subgroup I?r of k such that urBc:Brc:vrB with non-zero wr, vr in k (for
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7 = /3we can take Br = B, see (4.3)). It follows that BrCγcBr, where
Cr is the subring of k generated by (2/p)(RrR_r)

p. Let C8 be the product
of all C7, 7eΣ8. Then {BC8)CrciBC8 for all 7 in Σ8. Replacing B by its
additive subgroup generated by BC8c for some c Φ 0 (and changing aδ9 bδ),
we get BCraB for all 7 in Σ8, and we still have (4.3)-(4.6).

Similarly, for every long root δ in Σ there are non-zero uif vδ in k
and an additive subgroup Aδ of & such that Aδ(RδR_δ)dAδ and ^ i c ^ c
vδA, hence A3C3cA3, where C3 is the subring of k generated by RδR_δ.
Let d be the product of all Cδ, δGΣt. Then (AC z)C 3c(AQ for all δ in
J?j. Moreover, ^ A c A C j C ^ A for non-zero ulf v% in k. Replacing A by
the additive subgroup generated by ACiVT1 (and changing αr, δr), we get
ACδaA for all δ in Σt and we still have (4.3)-(4.6) and BCrczB for all
7 in 2V

If Σι is connected (type 2?n, n ϊ> 3, or F4), then there are long roots
φ and f in I such that φ + α/r is also in 2V We have [a?y(i), x+(u)] =
xφ++(±tu) for all ί, i6 in fc, hence Rφ+ψΌRφRψ. By (4.5), Bbφ+^Z)Rψ+ψZD
RψRψZ^aψaψBB, so cBBaB with c : = aφaψ/bφ+ψ Φ 0. By Lemma 1.2 (v)
with m : = 2, we can find a non-zero b0 in J5 such that (b0B)(bQB)cz(b0B).
Replacing B by b0B (and changing αό, 63), we can assume that BBdB
(when Σι is connected).

Similarly, if Σ8 is connected (type Cn, n ^ 3, or F4), then there are
9> ΨJ ψ + ψ£Σ8f hence Rφ+f IDRφRψ, so AIDCAA with c : = aφa+/bφ++Φ 0.
By Lemma 1.2 (iv) with m = 2, (α0A)(α0A)cα0A =£ 0 for some α0 in A.
Replacing A by a0A (and changing αr, 6r) we have AA(zA.

Still (4.3)-(4.6) hold and so do Theorem 1.1 (i) and (ii). To get the last
part of Theorem 1.1 (iii), we use Lemma 1.2 (ii) and (iii) with m = 2 when
p = 2, and we just replace both A and B by AB when p = 1 (and change
αε, 6,).

5. Proof of Theorem 1.1 for G of type 6?2. The root system Σ of
type 6?2 consists of 6 short roots (±β, ±(a + β), ±(2/3 + α)) and 6 long
roots ( ± α , ± ( α + 3/3), ±(2α + 3/3)), see Figure 2.

We use, sometimes without explicit reference, commutation relations
given in [4, § 10, after Lemma 57].

For every root ε in Σ, we fix a non-zero cε in Rε: = Rε(H).

5.1. LEMMA. There is a subring B of k such that 0 Φ RδBcRδ and
BRδR_δaB for every δ in Σt.

PROOF. It is a direct consequence of the results of Section 2 (namely,
Theorem 1.1 for G of type A2) applied to the algebraic group generated
by all long root subgroups (which is of type Λ2).
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FIGURE 2. Root system of type G2.

5.2. LEMMA. For every short root 7 in Σ there exist non-zero ar,
br, dr in k such that:

(i) SbrRr<^B; (ii) arBc:Rr; (iii) 4drRrc:B.

PROOF. Let d be a long root forming angle 30° with 7. Pick a non-
zero 6 in B.

We have [xr(t)f xδ-r(u)] = xδ(±Stu) for all t, u in fe. Therefore,
RδZD3RrRδ-r^3cδ_rRr. By Lemma 5.1, Bz)BR_δRδZ)bc_δRδ. Thus, (i) holds
with br := bc_δcδ_r Φ 0.

Part (ii) will be proved separately in the following three cases:
char(fc) Φ 2; card(B) = 2; char(fc) = 2 and card(B) > 2.

When char(fc) Φ 2, we take any t in R3r-2δ and u in Rδ_r. Then HB
y(t, u) : = [xZr-2δ(t), xδ-r(u)] = x2γ_δ{±tu)xγ{±tu2)xδ{±tuz)xzr_δ{±tuz)1 hence
Hsz(t, u):= y(-t, —u)-ιy(t, u) = xr(±2tu2)xsr-δ(±2t2u3) and Hsz(t, u)z(t,
—u) — xr{±Uu2). Therefore, RrZ)4:Rzr_2δR

2

δ_rZ)4:BcΆr_2δc
2

δ_ry so (ii) holds with
ar : = 4c3r_δc

2

δ_r ^ 0.
When card(B) = 2, then B — {0, 1} and we have (ii) with ar : = cr.
When char(fc) = 2 and card(B) > 2, we pick 6 ^ 0, 1 in B. For any

α in R_δ, d in iϋδ and u in i2r we have: HB yλ{a, d): = [xδ(d)9 [x-δ(a), xr(u)]] =
[xδ(d), Xr-S(ua)x2r^δ(u2a)x3r-δ(uda)xΆr-2δ(/^a2)] = [xδ(d)f xr-δ(ua)][xδ(d),xsr-2δ(u5a2)] =
xr{uad)x2γ_δ{u2a2d)Xsγ_2δ(uzazd)xzγ_δ{u^ hence i J θ j/2(α, d): = y1(ab,

ad(6 + 6 2 ))^r- 2 X^Vd(6 3 + 6 2 ))^ r _,(^ 3 a 3 (i 2 (6 3 +6 4 )), and, finally,
2, dbz)y2(aby dbz)y2(ay db6) = a?r(%αd(6 + 62)(63 + δδ + 6 4 + δ6)) =

Thus, RrZ)RrRδR_δb\l + 64)z)cr(Bcδ)c_δδ
4(l + 64) = Bar, where αr : =

crcδc_δb\l + b*) ΦO.
To prove (iii) we consider the same z(t, u) = ίcr(±2ί^2)a;3r_δ(±2ίV) e i ί

as in the proof of (ii). Then Hsz(t, u)z(-t, u) = a?8r-ί(±4tV). Therefore,
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2βlίS_r Since bcδ_3rR3r-δ<^BRzr_δRδ_3r(zB by Lemma
5.1, we get 4:dδ_rRl_r(zB with d: = bcδ_zrc\γ_2δ. Similarly, AdrR

3

rcB with
some dr Φ 0 in fc.

5.3. LEMMA. Lei Ί be a short root in Σ and δ form angle ±150°
with 7. Let Cr:= 6RrR_r. Then RδCrCrCraRδ.

PROOF. Let t, tt eRr, ue Rδ, s, st e R_r. Then H 3 z,(t): = [xδ(u)f

Xr(t)] = Xδ+r(±tu)xδ+2r(±t2u)xδ+3ΐ(±t5u)x2wr(±fu2), hβΠCβ H 3 Z2(t,) I = Z^)'1 X

*!(&-%& + ί.) = a w ^ f e + t2)t1t2u)xδ+2r(±2t1t2n)x2δ+A±u2St1t2(t1 + ί.))x
x2δ+A±3u%tl), hence H3zB:= z2(t, + Qz^Q^z^Q-1 = ^ + 3 r (±6ί 1 ί 2 ί 3 ^) x
x2δ+A±6tJ2t3u

2) = xδ+zr(u')x2δ+sr(±u'u), where u' : = ± 6 ^ ^ . Similarly,
i ϊ a 24(s): = [z3, a;_r(s)] = [ajί+8r(w'), »-r(s)], hence H3zh{sι): = zM^zfa)-1 x
z4(Si + s2), H3zQ(u): = ^(βi + s^zM^zM'1 = x3(±6s1s2s3^')^+3r(±6s1s2s3^'2).
Finally, H3zβ(u)zQ(—u)~1 = ίcδ(±12s1s2s3t6'), hence i2δ 9 125^283 '̂ = ±72s1s2s3x
t{t2tzu. Since we have this for arbitrary ίi e i2r, sf e i2_r, u e Rδ, it follows
that RδZ)CrCrCrRδ.

PROOF OF THEOREM 1.1 FOR G OF TYPE G2 WHEN char(A ) ^ 3 . By
Lemma 5.2 (i), (ii), α rJ5ci2 rc(36 r)~1β for all short roots 7 in Σ. By Lemma
1.3 with A:= B, n = m = 1, JV:= cardCE.) = 6, we have: Rr(bB)aRr for
all short 7 with some b Φ 0 in i?. Replacing 1? by 56 and (Sbγb)-1 by δ£,
we get RγBaRr, Rrab'rB for all 7 in Σ8 and we still have RδBaRδ and
BRδR-δaB for all δ in 2^.

Let 7 be in J , and δ make an angle 30° with 7. Then 3cδ_2rcδ_re

3_3r, 3crcδ_rci2δ, and Sc_rcδ_2r e Rδ_sr, hence (3crcί_r)(3c_rcί_27-) e
So both 3c,_2rcδ_r and (3c,_2rc3_r)(3crc_r) are in i223_3Γ. Since

BR2δ_3rRzΐ-2δc:B, we have R^^γdBd^^ for some cZ2 ̂  0 in fc. Writing
3cδ_2rC3_r = M i and (3cδ_2rcδ_r)(3crc_r) = 6 ^ with 6X and 62 in B, we see
that crc_r = δz/Sδi. Since crc_rBczRrR_rc:Rd2 for some d2 ^ 0 in fc, we can
use Lemma 1.3 with n — m = N = lf A — B and get bzRrR_rc:bzd2B(Zcrc_rB
for some 63 =£ 0 in B. Therefore ZblbzRrR_rCL^b1CrC_rBc:b2Bc:B, hence
UyRrR-r^B for 0 ^ % : = 36A e B.

Let u be the product of all ur, ΎeΣ8. Then uRrR_rc:B for all 7 in
Σ8 and 0 ^ t^eB. Replacing B by uJ5, we have BBRrR_r(zB for all 7 in
Σ8. Still we have ReBaRε for all ε in Σ and BRδR_δdB for all <5 in ^,.

If char(fc) = 2, we are done. Otherwise, Cr: = 6RrR-r Φ 0, and
RδCrCγCγ(zRδ by Lemma 5.3, where δ makes angle 150° with 7, for any
short root 7 in Σ. Let Br:= Rδ{lRδCr{jRδCrCr. Then BrCrc:Br. Since
RδadzB for some d3 7̂  0 in A;, we have B*Brad3BUdzB\Jd3B = dzB, hence
erBrczB for some er Φ 0 in &.

Let £ ' be the product of all erBr, ΎeΣ8. Then B'aB and B'Cr(zB'
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for all 7 in ί s. Replacing B by its subring generated by BB' we have
BCydB for all 7 in Σ8. Still we have RεBcRε for all e in 2 and
BRδR_δcB for all δ in Σt.

PROOF OF THEOREM 1.1 FOR G OF TYPE G2 WHEN char(fc) = 3. Let B
be as in Lemma 5.1. Since 3 = 0 in k, the algebraic subgroup of G
generated by all short root subgroups is also of type A2. So RrAcRr

and ARrR_7cA for some non-zero subring A of k and all short roots 7
in Σ.

Using RβA(zRβ, ARβR_βcA, and Lemma 5.2 (ii), (iii) with 7 = β, we
get Az)cxB and Bz)c2A* with non-zero ct in k.

Let JB0 (resp. Ao) be the additive subgroup of k generated by BAZ

(resp., by BA). Then A0RεR_εcA0, B0RδR_δ(zB0Z)B0(RrR_rf for all ε e 2 ,

Since (BA)BczBAzc:BA, it follows that A3

0cB0c:A0. From c ^ c i and
c2A

3cB it follows that BAcAAc^cAcϊ1 and BA'aBBc^ciBc,1, hence
c2B0aB, CiAocA. Since A and i? are subrings of fc, so are Ao and Bo.

Using Lemma 1.3 with N = 6, m = 3, n = 1, A = Ao, B = Bo and
then with N = 6, m = 1, w = 3, A = Bo, B = AOf we find non-zero a in
Ao, b in β0 such that Rr(bB0)czRr and Rb{aA^(zR9 for all 7 6J,, δ€ J,.
Let c : = α36 e A3

0B0c5050cΰoc Ao. Then i23(Aoc)3c J?δ(A0α)3cRδ and
Rr(cB0)c:Rr(bB0)c:Rΐ. Moreover, (A0C)3CJB0CCA0C.

Replacing A and J5 by AQc and 2?oc, we get A 3 c 5 c A , BBczB, A Ac A,
RδA

scRδ for all i e ί , and RrBcRr for all 762V Moreover, B(RrR.rfc:B
and A(i2ei2_ε)cA for all 7 in J , and ε in Σ.

6. Existence of groups described by Theorem 1.1. For any subsets
A and B of k let GE(A, B) denote the subgroup of G(k) generated by all
xr(a) and xδ(b) with 3 in Σu 7 in .Γ,, a in A, and 6 in B. In particular,
G*(A, A) = GE{A)y Evidently, Rr(GE{A, B))z>A and Rδ(GE(A, B))ZDB for all
7 in 2^ and δ in 2Z.

6.1. THEOREM. Let A and B be additive subgroups of k satisfying
Theorem 1.1 (iii), (iv). Then Rr(GE(A, B)) = A and Rδ((GE(A, B)) = B for
all long roots δ in Σ and short roots Ύ in Σ.

To prove this theorem, we will exhibit a certain subgroup G(A, B)
of G{k) such that G(A, B)z>GE(A, B) and Rr(G(A, B)) = A and Rδ(G(A, B))=B
for all 7 e Σ8 and δ e 2ί

z.
We use here that G defined in the introduction over k may be defined

as a Che valley group scheme over the integers Z (see [17]). There is a
matrix representation GaSLN such that G is defined by polynomial equa-
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tions in the matrix entries with integral coefficients.
Given any commutative ring R (with or without 1) we define G{R)

as the group of all ring morphisms from the ring of regular functions
on G vanishing at the identity of G to the ring R. If R is an ideal of
a ring R' then G{R) is the kernel of G{R') -• G(R'/R). If R is a subring
of k, the group G(R) can be also defined as G(k)f)SLN(R), where SLN(R)
is the group of all matrices (aitί) with the determinant 1 such that aitj,
aiti — 1 6 R for all i Φ j .

The monomorphisms xε (ε e Σ) are also defined over Z. Moreover, the
corresponding maps of the rings of regular functions are ring morphisms
onto the polynomial ring Z[i\. Therefore we have

6.2. LEMMA. For any subring R of k and any root ε in Σ, we have
GE(R)(zG{R) and Rε(G(R)) = R.

This lemma implies Theorem 6.1 in the case A = B. In particular,
the theorem holds when p = 1. To prove it when p Φ 1, we consider a
few cases separately.

PROOF OF THEOREM 6.1 FOR G OF TYPES F4 AND 6?2. We assume that
char(fc) = 2 in the case of type F4 and char(Λ ) — 3 in the case of type G2.
Then there is a bisection p: Σ -»Σ and a non-central isogeny (defined over
Z/pZ) c:G-*G such that p(Σt) = Σs, p(Σ8) = Σl9 cxδ(t) = xP9(±f), and
ίxr{t) = xpr(±tp)) for all deΣlf 7eΣs, and tek (see, for example, [4]).

For any subrings A and B of k such t h a t 4 p c ΰ c A , let G(A, B) be
the set of all g in G(A) such that c(g)eG(B). Then G(A, B)z)GE(A, B),
Rδ(G(A, B)) = B (since Be A), and Rr(G(A, B)) = A (since i p c ΰ ) , for all
7 G Σ. and <5 6 Σt.

Therefore Rδ(GE(A, B)) - B and i2r(G*(A, 5)) = A.

6.3. "PSEUDO-ORTHOGONAL" GROUPS. TO prove Theorem 6.1 for G
of types Bn and Cn (with p = 2) we use some of (*, ε, A)-orthogonal groups
of [8].

Namely, let n ^ 1, Q a n by n integral matrix, A a commutative
ring (with or without 1), S a n A2-submodule of A containing 2A. Then
let O(Q; A, B) denote the set of matrices g in GLn(A) such that g*Qg —
Q e 3ί, where * means transposition and 3ί is the set of all symmetric
matrices over A with the diagonal entries in B.

Since 3f is an additive subgroup and a*ba e & for any b e & and
any matrix a over A, the set O(Q; A, B) is a subgroup of GLn(A).

6.4. PROOF OF THEOREM 6.1 FOR G OF TYPES B2 WITH AACZA AND

Cn (n*zS). Consider the ring of 2n by 2n integral matrices with the
usual matrix units eifj and the matrix Q: = Σ?=i ei,2n+i-i The group
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Sp2n = {Q e SL2n: g*(Q — Q*)g = Q — Q*} can be considered as an affine group
scheme over Z. It is a simply connected almost simple Chevalley group
scheme of type Cn (C2 = B2 when n = 2). The root elements with respect
to the torus of diagonal matrices are y^n+i-^t): = l2 n + ίβ i f2n+1_< (correspond
to the long roots) and ^-(ί) : = l2 n + ie<>y ± ίβ2n+w,2n+i-t with i + j" < 2n + 1
(correspond to the short roots).

Let now A and B be as in Theorem 6.1 and char(fc) = 2.
For any G of type Cn there is a bijection ^ from I7 to the set {(i, j ) :

1 ^ i, i ^ 2n, ί + j" ̂  2n + 1} and a central isogeny *: Sp2n —• G over Z
such that cyPε(t) = a?,(ί) for all ε in and all ί. The kernel of e is either
trivial or isomorphic to the algebraic group of square roots of 1.

Let now A and B be as in Theorem 6.1, AAaA, and char(fc) = 2.
Set G(A, B): = c(Sp2n{A, B)), where Sp2n(A, B): = O(Q; A, B) (see 6.3). Then
G(A, B)z)GE(A, B), Rr{G(A, B)) = {tek: yPΐ(t)e0(Q; A, B)} = A, and
Rδ(G(A, B)) = {tek: yPδ(t) eO(Q; A, B)} = β for all 7 in Σ. and δ in ^ .

6.5. PROOF OF THEOREM 6.1 FOR G OF TYPE B2 WITH BBCZB AND

TYPE /?„ (n ^ 3). Let Q : = Σ?=i ei,2n+i-i + β2n+lf2n+1. For any commutative
ring Λ, let SO2n+1(R) : = O(Q; J?, 0) Π SL2n+1(R) (see 6.3).

Then SO2n+1 can be considered as an affine group scheme over Z. It
is a simple Chevalley group of type Bn. The root elements with respect
to the torus of diagonal matrices are

(correspond to the short roots) and

zi}j(t): = l 2 n + 1 + teuj - te2n+1_ji2n+1_i wi th i + j < 2n + 1

(correspond to the long roots).

For any G of type Bn there is a bijection p from Σ to the set
{(i9 j)' 1 ^ i, i ^ 2w, i + j ^ 2^ + 1} and a central isogeny c:G-^ SO2n+1

over Z such that czPε(t) = a;β(ί) for all ε in 21 and all t. The kernel of * is
either trivial or isomorphic to the algebraic group of square roots of 1.

For any commutative ring R of characteristic 2, every matrix in

SO2n+1(R) has the form (^ jj, where g is in Sp2n(R) and u is a 2w-row

over R. It gives a non-central isogeny *': SO2n+1 —• Sp2n over Z/2Z. We
have

_ (yt,j(t) when i + j < 2n + 1
ι'° \yi,j(t2) when i + j = 2w + 1

for all ί in k.
Let now A and B be as in Theorem 6.1 and p — 2. char(&) = 2 and
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BBaB. Set G(A, B):= {ge G(A): c'c(g) e Sp2n(B, A2)} (see 6.4).
Then G(A, B)i)GE(A, B), Rr(G{A, B)) = A, and Rδ(G(A, B)) = B for all

7 in Σ, and δ in Σt.

6.6. PROOF OF THEOREM 6.1 FOR G OF TYPE B2 WITH p = 2. Let

A' (resp. J3') be the subring of k generated by A (resp. B). By 6.4,
there is a subgroup Hx of G(fc) such that HιZ)GE{At, B), Rr(HJ = A', and
Rδ(H^ = B for all 7 in J , and δ in IV By 6.5, there is a subgroup i?2

of G(k) such that # 2 : D G % 4 , B'), Rr(H2) = A, and Rδ(H2) = Bf for all 7 in
J , and <5 in Σx.

Set G(A, B):=H1f]H2. Then G(A, S J D G ^ A , 5), Λr(G(A, B)) = A, and
Rδ(G(A, B)) = β for all 7 in J , and δ in IV

7. Full subsets of k. The following lemmas will be used in next
sections.

7.1. LEMMA, (i) If R is a full subset of k, then so is tR for any
non-zero t in k;

(ii) if C is a full subring of k and tly , tm are non-zero elements of
k, then there exists a non-zero c in C such that tjCz^cC for i = 1, , m.

PROOF. The statement (i) is evident; (ii) is contained in [7, Lemma 4].

7.2. LEMMA. Let A and B be subsets of k such that A is full,
BA2aB, and Bk2 = k. Then:

(i) B is a full subset of k;
(ii) for any non-zero tlf , tm in k, the intersection Bf of all Btt

is full and Bfk2 — k.

PROOF, (i) Fix a non-zero b0 in B. Given any t in k, we can write
tb0 = bu2 with b in B and u in k. Since A is full in k, we can write
u = aja2 with α* in A and α2 Φ 0. Then t = bal/boal with both ba\ and
b0a

2

2 in B. Thus, B is full.
(ii) Let z be in k. Since Bk2 = fc, we can write z/tt = b{iι\ for i —

1, , m with bi in B and ut in &. Since A is full, ut = vjwt with vi9

Wi in A. Let w be the product of all wt. Then zw2 = tJbiVKw/Wi)2 e £{i?
for all i = 1, « ,m, so zw2eB', hence zeB'k2. Thus, k = Bfk2. It is
clear that £ Ά 2 c £ \ By (i), 5 ' is full.

7.3. LEMMA. Le£ F be a field but not an algebraic extension of a
finite field. Then there exists a full subring A of k and a non-trivial
homomorphism N of the multiplicative group of F into the additive group
Q of the rational numbers such that N(a) ^ 0 for all a in A.

PROOF. Let X be a trancendence basis of F over its prime subfield
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Fo. Let AQ be the integers when X is empty, and Ao = F0[X], the poly-
nomial ring, otherwise. Let A be the integral closure of Ao in F, i.e.
the set of all roots in F of all monic polynomials in t with coefficients
in A Q .

Fix xe X when X is not empty and set x = 2 e Ao otherwise. We
define N0(a) = n for 0 Φ a e Ao, if xn is the maximal power of x dividing
a in AQ. We define N0(aJa2) : — N0(aλ) — N0(a2) for non-zero at in Ao.

For any z m F, z Φ 0, let /g(ί) be the monic polynomial in t, with
coefficients in the field of fractions of Ao, of the minimal degree deg(z)
such that fz{z) = 0. We define iV(z) : = NQ(fz(0))/deg(z); it is a rational
number.

If α e A, then /β(ί) 6 AQ[t], so /β(0) e A hence JV(α) = 2NΓ0(/.(0))/deg(α) ^
0.

For any non-zero z, zf in ί7 we have fz(oγ^^fzf(θ)d/άes{zf) = fzz,(0)d/aee{zz']

with some d Φ 0 divisible by deg(z), deg(z')> deg(zz')> s ° N(zz') = JV(2) +
N(«') The homomorphism iV is not trivial, because N(x) = 1 ^ 0 .

Let us check now that A is full in F. For any z Φ 0 in F we can
find a non-zero α0 in Ao such that aofz(t)eAo[t\. Let α be the leading
coefficient of αo/,(ί) Then O ^ α e A and a^{z)~ιfz{tla)aQ is a monic poly-
nomial in t with coefficients from Ao with a root zα, so zaeA. Thus,
A is full and Lemma 7.3 is proved.

For the rest of this section, char(fc) = 2.

7.4. NOTATION. For any finite subset Sak, let vs denote the product
of all y in S. In particular, vs = 1 for the empty subset S.

7.5. LEMMA. Γfcerβ is a set Yocik such that the all v89 finite SaY0,
form a basis for the vector space k over k2.

PROOF. We call a subset Y(zk algebraically almost independent
(AAI), if all vs, S a finite subset of Y, are linearly independent over k2.
(Note that k is an algebraic extension of k2.) It is clear, that the union
of any chain of AAI subsets of k is again AAI. Also the empty subset
of k is AAI. By Zorn's lemma, there is a maximal AAI Yoczk.

Let V be the linear subspace of k over k2 spanned by all vs with
finite SaY0. We have to prove that V = k.

Since Yo is a maximal AAI subset, for every zg Yo in k we have a
linear relation (because YOU {2} is not AAI): Σ asVs + # Σ bsvs = 0 with
coefficients as, bs in fc2, only finitely many of them Φ 0, both sums are
taken over all finite Sc. Yo, and the second sum ^ 0 (because Yo is AAI).
Then z = Σ tt/Σ Me = (Σ asvs)(Σ bsvs)/a2 e VVk2aVk2cz V, where a : -

Thus, 7=fc.
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7.6. LEMMA. The following two statements are equivalent:
(a) R — k for every full vector subspace Rak over k2;
(b) the dimension of k over k2 is 1 or 2.

PROOF. Implication (b)=>(a). Since R is full in k, Rsy^O. If
k2 = k, then R = Rk2 = RkiDy.k = k. When k Φ k2, R3y2 outside yjc2

(otherwise, only elements of k2 can be written as rjr2 with rteR = yjc2).
Therefore, k2y^ + k2y2 — k when the dimension of k over k2 is 2.

Implication (a) => (b). We assume that the dimension of k over A;2

is larger than 2 and will find a full vector subspace R Φ k. First, we
find Yo as in Lemma 7.5. Pick distinct x, y in Yo, and let F be the
complement of {x, y} in Yo. Consider the linear subspace V spanned by
all vs with finite S c Γ ; V is a subfield of fc, containing k2.

Put i2 : = V + a F + yV; R Φ h, because xy is outside R. We have
to prove that R is full in fc. Every s in k — i? can be written as
z — co(xy + c& + c2?/ + c 3 ) w i t h c t 6 V, c0 Φ 0 . T h e n 0 Φ rλ:= x + c2eRf

r2: = co(i/rϊ + α fe + dc2) + cλr\ + c2(c3 + CA)) e i2, and « = r ^ .

7.7. LEMMA, (i) 7/ the dimension of k over k2 is finite or count-
able, then, for any full subring C of k and any C2-submodule B of k
such that Bk2 = k, B contains a full subring of k.

(ii) // the dimension of k over k2 is uncountable, then there is a full
subring A of k and an A2-submodule B in A such that Bk2 = k, Bz)A2,
and B does not contain any full subset of k closed under multiplication.

PROOF, (i) Let XaB be a basis for k over k2. For every finite
S c J we can find a non-zero as in C such that vsa

2

seBπC (see, Notation
7.4).

If X is finite, let c be the product of all α|. Then 0 ΦceC2 and
vsceBf]C for all S c l (recall that BC2cB). The C2-submodule R of B
generated by all vsc

2 is a subring of k (namely, {vsc
2){vs>c2) = (vs+S'C

2)(vsf]S'C)2 e
vs+s,c

2C2c:R, where S + S' := S u S ' - SnS').
We claim that R is full. Indeed, every y in k can be written as

y = Σ xt\ with tx in k, where the summation is taken over x in X
Since C is full, we can find a non-zero α0 in C such that txa0 e C for all
x in X (see, Lemma 7.1 (ii)). Then yc2a2

0eR and 0 Φc2a\eR. So R is
full.

If X is infinite, let us enumerate it, X = {u19 u2f •}. For any i ^ 1,
let a; be the product of all aτ with Γcf^, , u j . Then, for any finite
SaX, we have Π^es (^α?) = vs HUίesάΪ€B> because Y[aiβasC and
BC2czB.

Therefore, the C2-submodule R of B generated by α2 and all
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with ut in X lies in B. As before, we see that R is full in ft.
(ii) Find Yo as in Lemma 7.5. Since the dimension of ft over k2 is

uncountable Yo is uncountable. By Jech [1], there is a function r:YoxYo—>Q
(with values in the rational numbers) with the property that for every
function t: Yo-+Q there are x, y in Yo such that r(x, y) > t(x) and
r(x, y) > t(y).

Find A and N as in Lemma 7.3 with F = k. For any finite S c Γo

choose a non-zero as in A such that vsas e A and iVfe) > 2r(x, y) in the
case S = {x, y) consisting of two distinct elements. Define B as the A2-
submodule in k generated by all v8a\ and A2.

Let us check that Bk2 = ft. If we write any z in k as Σ 6 ^ s with
bs in ft and only finitely many bs Φ 0, then we see that za2 e R for some
non-zero α in A hence zeBk2.

Let now C be a full subset of k closed under multiplication. Since
it is full in ft, every % in Yo can be written as x = c/cx = ccjcl, where c
and cx are in C. So Cacc^ = xc\ with 0 ^ c^eC. Let ί(ίc) : = N(cx).

By the choice r: Fo x Fo —> Q above, there are x, y in Yo such that
r(x, y) > t(x), t(y). For these x, y we have N(cxcy) = iV(cβ) + iV(cy) = ί(α;) +
t(y)<2r(x,y) and Cz>CCBxclyc2

y = xy(c9cy)
2, so xy(cxcy)

2 is not in I? by
the definition of 5, but it is in C. Thus, C is not contained in B.

8. Proof of Theorem 1.

8.1. LEMMA. Let A and B be additive subgroups of ft such that
Av(zB(zAy BApcB, BAaA, where p is as in Section 1. Assume that
BBdB when Σι is connected. Let uek, beB, and φ,εeΣ. Assume
that bueB2. Set Dε:=B when ε is long and Dε:=A otherwise. For
any t in ft we set y(t) : = [xφ(u)9 x£t)]. Then:

(i) y(t) 6 GE(A, B) if φ + ε Φ 0 and t is in b*Dε;
(ii) y(t) 6 GE(A, B) if t is in bι\b - ϊ)\b2 - l)Dε.

PROOF. We can assume that y(t) Φ 1 for some t in ft (otherwise the
statement is trivial). Pick a connected subsystem Σ'aΣ of rank 2 con-
taining both ψ and ε. Then <p + ε is in Σf or else φ + ε = 0. We will
prove (i) (and then (ii)) for the three possible cases, when Σf is of type
A2, B2, or G2, separately.

Type A2 with ε + φ Φ 0. Then y(b2t) = xε+ψ(±b2tu) = [&/&), α?,(ί&%)] e

G^(A, β) for all t in D,, because beBaDψ and tbueDεB
2(zDε for all t in

D.. Thus, y(b2Dε)aGE{A,B), hence y(VD.)c:y(f>tD)c:GE<<A,B).
Type B2 with ε + φ ΦQ. If ε, <p 6 Σ8J then #(ί) = xε+φ(±2tu) e GE{B)

provided tebA = bDε. In particular, we can take any t in b*Dε =
(the last inclusion follows from BAdA).
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If ε e Σ8 and φ e Σu then y{t) = xφ+ε(±tu)xφ+2ε(±t2u) e GE(A, B) provided
16 bA = bDε (because AbuczAB2(zA and (bAfu = bA2buaBA2B2cB = Dψ+2ε).
In particular, y(t)eGE(A,B) for any t in b'AabA.

If ε e Σι and φ e JFβ, then j/(ί) = xΨ+ε(±tu)x2ψ+ε(±tu2) e GE{A, B) provided
te¥B = ¥Dε (because (b2B)u = bBbuciBBB'czA = Dφ+ε and (b2B)u2 =
B(bu)2c:BB*c:BB2aB = D2ψ+ε). In particular, y(t)eGE(A,B) for any t in
64A - VBczVB.

Type G2 with φ + ε Φ 0. If ^ and ε are long, they lie in Σ\ of type
Λ Therefore, as shown above, y(b*Dε)czy(b2Dε)czGE(A, B).

If φ and ε are short and make the angle ±60° then y(t) = xφ+ε(±Sut) e
GE{B) provided tebAz)b*A = VDε (recall that 3AaB).

If φ and ε are short and make the angle ±120°, then y(t) —
xΨU±2tu)x2ψ+£±3tu2)xφ+2ε(±3t2u) 6 GE(B)aGE(A, B) provided t e b*Az>b'A =
64A (because then tueB, 3tu2^3AczB, and WuczSAczB).

If φ is short and ε is long, then y(t)~ι = Xφ+ε(±tu)x2φ+ε(±uH)xΆφ+ε(±uH) x
xsψ+2ε(±uH2)eGE(B)c:GE(A, B) provided teVB (because then tueBB2aB,
uHdB'BBczB, uH e B*BczB, uΨ e B'B'BciB). In particular, y(t) 6 GE(A, B)
when tetfBczVB.

Finally, if φ is long and ε is short, then y(t) = xΨ+ε(±tu)xφ+2ε(±t2u)x
xφ+zε(±utf)x2φ+Zε(±u2tf)eGE(A, B) provided te¥A (because then tueA =
Dφ+ε, t2ueA = Dφ+2ε, fueB = Dψ+3ε, and fu2ebBBczB = D2ψ+Sε). In par-
ticular, we can take any t in 64Z>e = δMc&M..

Thus, (i) is proved in all cases. Since b*DεaDε for all ε in Σ, (i) can
be stated also as follows: the subgroup H: — xφ(u)~1GE(Ay B)xψ{n) contains
all xε(b*Dε) with ε Φ — <p. Now we want to prove (ii), i.e., Hz)xε(b1Q(b —
1)2(62 — ί)Dε) for all ε. When ε + φ Φ 0, this has been proved, because
616(6 — 1)2(62 — l)DεczbiDε. So we assume that ε = — φ and consider again
separately the cases when Σf is of type A2, B2, or G2.

Type A2 with ε = — φ. Pick a and β in 2" such that a + β = ε.
From Hz>xa(b'Da),xβ(b'Dβ) it follows that Hi)[xa(b'Dβ), xβ(fi'Dβ)] =
xε(b»DaDβ) = xε{VDεDε)z>xε{b»Dε)z>xε{V\b - l)\b2 - ΐ)D§).

Type B2 with ε = — φ. Pick a in Σ\ and β in Σ'Λ such that ε = a + β
when ε is short and ε = a + 2β when ε is long. Then Hsz(v,w) : =
[Xa(v), xβ(w)] = xa+β(±vw)xa+2β(±vw2) provided veb*B = b*Da and w e b*A =
b'Dβ. Therefore, H3z(b% b7)z(bec, b5)-1 = xa+2β(±c(b18 - b16)) for all c in B
and Hszφ7, dV)z(b\ db5)-1 = xa+β(±d(bn - b10)) for all d in A.

Thus, Ra+2β(H) z) B(b1Q - 6lβ) = Da+2βb
ι\b2 - 1) 3 Da+2β¥\b2 - 1)(6 - I)2

and Ra+β(H)z)A(bn - b10) = Da+βb
10(b - l)z)Da+βb

lβ(b - l)\b2 - 1).
Γ /̂pe G2 with ε = — φ. If ε is long, we can include ε and 9 in a

subsystem of type A2 (namely, ΣΪ), so Hi)xε(Bb9) = xε(Dεb
Q)i)xε(Dε(b -
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l)2(δ2 - l)δ lβ).
If ε is short, we find a in Σ[ and β in Σ's such that ε = a + β.

Then H'DxJPB), xβ(Ab*), hence HBZ^V, W) : = [a?β(t;), α/w)] = α?β+f(±vw)x
^a+2i3(±/yιι;2)a;a+3i9(±'?;t(;3)a;2a+3^(±'2;2i(;3) for any v in b*B and w in δM.. There-
fore, for such v and w, we have HBZ2(V, W) : = z^vb2, w)z1(vf wb)"1 =
W±™>(& 2 - 6 ) K + 3 i 3 ( ± ^ 3 ( 6 2 - δ 3))x 2 α + 3/±Λ; 3(δ 4 - δ3)), so i / 9 ^ , w) : =
^(v68, w)28(ι;, wδ2)"1 - xa+β(±vwφ* - δ)(δ3 - b2))xa+3β(±vw\b2 - δ3)(δ3 - δ6)),
hence Hsz3(vb\ w)z3(v, wb)'1 = xa+β(±vw(b2 - b)(¥ - 62)(63 - &)).

Thus, Re{H)^{¥B){b"AW - b){W - b2)(¥ - 6) = AS612(6 - 1)2(62 - 1)=)

A6lβ(6 ~ 1)2(&2 - 1), because ABIDAV = DJb*.

8.2. COROLLARY. Let A and B be as in Lemma 8.1. Assume that
B is full and Bk2 = k. Then for any g in GE(k) there is a non-zero bg

in B such that gGE(A, B)g~1Z)GE(Ab2

gy Bb2

9).

PROOF. If card(B) g 9, then B = A = k and GE{k) = GE(A, B) 3 g, so
we can take 6̂  = 1.

Otherwise we pick some bλ Φ b\ in B.
Consider first the case g = xψ(u) with φ in Σ and u in k. Since

Bk2 — k and B is full, we can find bi in B such that u = 62(68/δ4)
2 and

δ2δ4 ^ 0. For δ 5 : = δ2

3δ2 e BB2B2aBB2(zB we have bδ Φ 0 and M = (63&2)2 e B2.
Let b:= b5 when 65 =£ ± 1 and δ : = δ5δί otherwise. Then bueB2 and

0 Φ b e £ . Set δ 0 : = δ8(δ - l)(δ2 - l ) e ΰ . Then δ0 Φ 0 and, by Lemma 8.1,
gGE(A, B)g~ι = : H^GE{Ab2l{b2 - 1), 5δ2/(δ2 - 1)). Since ΰ(δ2 - I ) c 5 and
A(δ2 - ΐ)cA, it follows that ίί3G^(^δ?, Bb2). Thus, we can take bg = δ0

in the case g = ^ ( u ) .
In the general case we write g = g1 - #m and proceed by induction

on m, where every ŝ  is a root element. The case m = 1 has been con-
sidered, so let m ^ 2. By induction, for g' = gγxg there is a non-zero δ'
in B such that g'GE(A, B)gf~1Z)GE(Abt2

f Bbf2). Since Aδ'2 and Bδ'2 enjoy
the same properties as A and B, there is a non-zero δ" in Bδ'2, such that
g1G

E(Ab'2,Bb'2)gϊ1z>GE(Ab'2b"2,Bb'2b"2). Set bg:= δ ' 2 δ " e b n B a B t o o b t a i n
t h e s t a t e m e n t . ^G^(A, B)g~1Z)GE(Ab'2b"2, Bb'2b"2)z>GE(Ab2

g, Bb2

g).

8.3. LEMMA, iw the situation of Theorem 1.1, assume that B is
full and Bk2 = k (both conditions evidently do not depend on the choice
of A and B). Then there is a non-zero δ0 in B such that bQB(zRδdbQlB
and boAaRγdb^A for all d in Σt and 7 in Σ8.

PROOF. If BBaB, then, by Lemma 7.1 (ii) with C = B, we can find
a non-zero δ0 in the intersection of B with all Baεf]Bb7\ where εeΣ.
Therefore, bQBaaδB(zRδ<z.Bbδ(zBb^1 and b0A<zarAc^cAδ^cAδo"1 for all
d in Σt and 7 in Σ8.
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If BB is not contained in B, then Σ is of type Cn (n*>2)9 and p = 2.
Fix a long root α in J , By Lemma 1.3, baB(aA)2c.aaBc:Ra for some
a Φ 0 in A. In particular, a*baBaRa.

By Lemma 4.1, RφZ)cψfψRψ with 0 =£ cφ>ψek2 for all <£>, α̂  in 2V Let
C be the ring generated by B. Then ΰ c C c i , CAcA, and BC2czB.

Since C is full in &, C2 is full in k2. By Lemma 7.1 (ii) there is a
non-zero c in C such that c2 ec5yaa

4C2f]ca\C2 for all δ in 2Ί andc 2 eα 2 C 2 Π
b~2C2 for all 7 in Σ..

So for such δ and 7 we have cAd(arC)A(zaΐAc:Rrc:brAc:(c-1C)Ac:c~1A
and 6/5c6α(cδ,αα 4C 2)JScb ac δ > aa'Bdc δ > aR adR δdc^ δR acBb a/c* t 8cBb a{C 2c 2)c

Since J5&2 = 5 and B is full, there are non-zero 6* in i? such that
ba = btfjbs)2 = bjb2, where 64: = 6 $ e BB2czB. Set 60: - 64c

262 e BC2B2aB.
Then ftoAccAc^cc-'Acft^A for all 7 in ^ and b0B = bab\c2Bcibae

2BcL
Rδ(zBbac~2 - Bblbo'aBbo1 for all δ in 2V

8.4. THEOREM. Lβί A αm£ 5 6e additive subgroups of k satisfying
Theorem 1.1 (iii), (iv). Assume that B is full and Bk2 — k. Then for any g
in G(k) there is a non-zero b0 in B such that gGE(A, B)g~1Z)GE(Ab0, Bb0).
In particular, GE{A, B) is full.

PROOF. Every g in G{k) can be written as g = hgf with h in T{k)
and g' in GE(k) (see, Tits [5] and Borel-Tits [9, Prop. 6.2]). Set H': =
g'GE{Ay B)^-1 and H:= gGE(A, B)g~1 = hH'hr1.

By Corollary 8.2, H'z)GE(Ab2, Bb2) with 0 Φ beB. Since heT(k), we
have Rε(H) = Rε(H')tε for all e in ί with non-zero tε in fc. Therefore
Rε(H)z)Dεb%, where Dε:= B when εeΣt and Dε : = A when s e l , .

Applying Lemma 8.3 to H, we find additive subgroups A' and i?' of
k and a non-zero 6' in B' such that bfB'c:Rδ{H)ciB'b'-1 and b'Afa.Rr{H)ci
A'b'-1 for all <5 in J , and 7 in I 8 .

Fix a in Σt and /3 in 2 ^ Then Rδ{H)zibrB'zDb'2Ra{H)z>b'2b2taB and
Rr(H)Z)b'A'z)b'2Rβ(H)^b'ΨtβA for all δ in J , and 7 in J 8 .

Since J5 is full and Bk2 = fc, there are non-zero 6X and b2 in β such
that 63: =' bjb% e B and b4: = &$% 6 5. Set δ 0 : = bjφ2 e BB2B2aBB2aB.

Then Λ,CEΓ) =) 6'262ίαΰ D bf2b2ta{b\b\B) = b0B and Λr(fΓ) 3 6'2δ2^A 3
b'2b2tβ(b3b4biA) = b0A for all S in J , and 7 in Σ8. Thus H^GE(Ab0, BbQ)
with 0 =£ 60 € S.

PROOF OF THEOREM 1. Let A be a full subring of k. Set B:= A.
Then Theorem 1.1 (iii), (iv) are satisfied. Moreover, given any u in k we can
write u = bjb2 with bt in B and b2 Φ 0, hence % = δΛ&Γ2 6 2?&2. Thus,
Bk2 = k. By Theorem 8.4, GE{A) = GE{A, B) is full.
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9. Proof of Theorems 2 and 3.

9.1. LEMMA. Let H be a full subgroup of G(k). Then
(i) Rε(H) is full, if ε lies in a subsystem Σ'aΣ of type A2;
(ii) Rr(H) is full for any short root 7 in Σ.

PROOF, (i) We apply an argument of [7], Namely, we find a root
Ψ in 2" such that φ + ε is in Σf too. Fix non-zero cx in R_Ψ(H) and c2

in RΨ(H). Take an arbitrary t in k. Since H is full, HB xΨ{t)xε{u)xψ(t)~ι =
xε+Ψ(±tu)xε(u) = : g for a non-zero u in fc. Therefore, HB [g, x_φ(c1)] =
a.^ίMCi) and if 9 [[#, av(c2)], a^fo)] = |>e+ί0(wc2), α^fo)] = xt{±ucxc^. Thus,
22β(iί) contains both tucγ : = αx and ^cxc2 : = α2 ^ 0. Since α ^ " 1 = ίcg"1 can
be an arbitrary element of fc, Rε{H) is full in k.

(ii) If J£ contains a system of type -A2, then we can use (i) and, by
Theorem 1.1, conclude that A and all Rγ{H) with 7 in Σ8 are full. Other-
wise, Σ is of type B2.

Let <5 in Σ make an angle 45° with 7. Since H is full, for any t in
k there exists a non-zero u in k such that i?3#5_2r(£)#r(w)#δ_2r( — ί) =
xr(u)xδ_r(±tu)xδ(±tu2) =:g, where the signs ± depend on 7 and δ.

Now we pick non-zero cx in Rδ_2T(H) and c2 in R2ϊ_δ(H). We have
successively HB [xδ-2γ(c^, g] = [α?a_2r(c1), a?r(%)] = ^_r(±c 1 ^)α; δ (±c 1 ^ 2 ) = : g'\

[x2r-δ(c2), g'] = x r (±c 1 c 2 ^)^(±c?c 2 ^ 2 ) ; and i ϊ 9 fer_δ(c2), g] = xr(±c2tu) x

Thus, Rγtδ B (CiCiU, ±c2c{u2), (c2tu, ±c 2 ίV), hence jBJfί 9 c2Cit6 = : a2 and
R'rtδBc2tu =:aλ (see, the beginning of Section 3 for notation). Since

aJa2 = t/Ci is arbitrary, R'7ti is full.
By Corollary 3.2 (i) it follows that Rr{H) is full when 2 ^ 0 in k. If

char(fc)=2, Rδ_r(H) is full by Lemma 3.6 (ii). Replacing here (7, δ) by
(g - 7, δ), we obtain that J?r(JΪ) is full.

9.2. LEMMA. Let H be a full subgroup of G(k). Then Rε(H) is full

and Rε(H)k2 — k for any root e in Σ.

PROOF. Find A and B as in Theorem 1.1. Since aεB(zRε(H) for
every ε m Σ with aε Φ 0, the statement of Lemma 9.2 will follow from:
B is full and Bk2 = k. By Lemma 9.1 (ii), A is full.

If B = A (for example, p = 1), then BB = BAczA = B, so B is a
subring of k. When 5 is a full subring of k (for example, if B = A),
every £ in k can be written as t = bjb2 = (bib2)(b2)~2 e Bk2 with bt in Bf

b2 Φ 0, hence k = Bk2.
If B is not a full subring of fc, then (using Lemma 9.1 (i) to exclude

type Dn and G2) G is of type Cn {n ^ 2) and p = 2.
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Then we pick a subsystem Σ'aΣ of type B2 and an admissible pair
(7, δ) in 2". Take an arbitrary t in k and set g : = xδ(t).

Applying Theorem 1.1 to H' : = gHg~\ we find a non-zero u in fc
such that Rr{Hf)auR_r{Hr). Then arA(zRr(H) = Rr(H')(ZuR_r(H'). Since
A is full, a_ru/ar — aja2 with non-zero α* in A. Then 0 Φ v : = araju =
a2a_r e Aar/u Π Aa_rcR_r(H') Π R-r(H), hence £_rCy) eHnH'.

Therefore i ϊ = flr\ff'ff 9 g^xMg = :gfsnadHB gfx^{vYι = [g~\ x^W] =
xδ-r(tv)xδ_2r(tv2), hence R"_γ tδ_2ϊ 3 tv2.

By Lemma 3.6 (i), Rδ(H) 9 c2ί for some c Φ 0 in k (c depends on H
and ί), so ί e Rδ(H)k\ Thus, Rδ(H)k2 = fc, i.e. S/c2 = fc. By Lemma 7.2
(using that β is a module over the ring generated by A2)f B is full, so
Rε(H) is full for every root ε in Σ.

9.3. THEOREM. Let H be a full subgroup of G{k). Then there are
additive subgroups A and B of k and a non-zero c in B such that B is
full, Bk2 = k, and Theorem 1.1 (i)-(iv) hold with at — l and bε = c1 for
all ε in Σ.

PROOF. Find A and B by Theorem 1.1. By Lemma 9.2, B is full
and Bk2 — k. By Lemma 8.3, there is a non-zero b0 in B such that
\B(zRδaBb^ and b,AaRrc:Ab^ for all δ in Σt and 7 in Σs. Set A! : =
A&0, 5 ' : = Bb0, and c : = ί>2

0 6 Bf. Replacing A and B by A' and £' , we
obtain our statement.

9.4. COROLLARY. Let H be a subgroup of G(k). Then the following
three statements are equivalent: (a) H is full; (b) Hz)GE(B) for a full
additive subgroup B of k such that BB2aB and Bk2 = k; (c) Hi)GE(R)
for a full subset R of k such that Rk2 = k.

PROOF. By Theorem 9.3, (a) implies (b). Clearly, (b) implies (c).
Now assume (c). Find A and B as in Theorem 1.1. Since RaRδ(H)(zbδB
for any δ in Σt with bδ Φ 0, our assumption on R implies that B is full
and Bk2 = k. By Lemma 8.3, Hi)GE(Ab0, Bb0) with 0 Φ boeB. By Theo-
rem 8.4, H is full. Thus, (c) implies (a).

9.5. COROLLARY. Let H be a subgroup of G(k). If G is of type
Cn, assume that char(fc) Φ 2. Then the following three statements are
equivalent:

(a) H is full;
(b) Hi)GE(B) for a full subring B of k;
(c) Hz)GE(R) for a full subset R of k.

PROOF. By Theorem 9.3, (a) implies (b). The implication (b) ==> (c)
is trivial. Now assume (c). Since we excluded type Cn with p = 2, we
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can find A, B as in Theorem 1.1 with BBczB. Since RczRδ(H)(zbδB with
δ e Σlf bδ Φ 0, it follows that B is a full subring of k. So Bk2 = k. In
view of the implication 9.4 (c) =• 9.4 (a), H is full.

9.6. COROLLARY. Assume that G is of type Cn {n ^ 2) and char(fc) =
2. Then:

(i) every full subgroup H of G(k) contains GE(B) for a full subring
B of k, if and only if the dimension of k over k2 is finite or countable;

(ii) GE{R) is full in G{k) for every full subset R of k> if and only
if the dimension over k2 is 1 or 2.

PROOF, (i) Assume first that H is full. By Theorem 9.3, HID

GE{A, B) with full B such that Bk2 = k, BA'cBczA. By Lemma 7.7 (i),
B contains a full subring R of k, provided the dimension of k over k2 is
countable. So, HIDGE(R).

Assume now that the dimension is uncountable. Then we can find
A and B as in Lemma 7.7 (ii). Then for H: = GE(A, B) we have Rδ(H) = B
for all δ in Σt (see, Theorem 6.1). So, by Lemma 7.7 (ii), H does not
contain GE(C) for any subring C.

(ii) Let first R be full. By Lemma 7.6, then Rk2 = k provided the
dimension is 1 or 2. By Corollary 9.4, GE{R) is full.

Assume now that the dimension is larger than 2. By Lemma 7.6,
we find a proper full subspace R of k. Replacing R by Ry~ι with 0 Φ y
in R, we can assume that Rsl. By Theorem 6.1, Rδ(GE(k, R)) = R for
any δ in Σt. By Theorem 9.3, GE(k, R) is not full. So its subgroup GE{R)
is not full.

REMARK. Theorem 2 is contained in Corollaries 9.5 and 9.6.

PROOF OF THEOREM 3. Let H and gt be as in Theorem 3. By Theo-
rem 9.3, Hi)GE(A,B), where B is full and Bk2 = k. By Theorem 8.4,
Hi : = giHgτ1i)GE(Abif Bbl) for i = 1, , m with 0 Φ bt 6 J5. By Lemma
7.2 (i), the intersection Bf of all Bbt is full and BV = k. Since A~DB,
we have Hiz>GE(B') for all i = 1, , m. By Corollary 9.4, GE{Bf) is full,
so the intersection of Hi is full.

REMARK. If all gi&GE(k), then the intersection of all Hi contains
GE(AbQ, Bb0) for some b0 Φ 0 in B, see Corollary 8.2.

10. Proof of Theorem 4.

10.1. THEOREM. Assume that k contains at least 3 elements, if G
is of type B2 or G2. Let A and B be additive subgroups of k satisfying
Theorem 1.1 (iii), (iv). Assume that B is full and Bk2 = k. Let M be a
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non-central subgroup of G(k) normalized by GE(A, B). Then Mz>GE(dA, dB)
for a non-zero d in B.

In view of Corollary 9.4, this theorem implies Theorem 4. Indeed,
let M be a non-central subgroup of G(k) normalized by a full subgroup
H of G{k). By Theorem 9.3, HuGE(A, B), where A and B are as in
Theorem 10.1. By Theorem 10.1, there is a non-zero d in B such that
Mz)GE(Ad, Bd). By Lemma 7.2 (ii), BnBd:=B' is a full additive sub-
group of k such that B'B2(zB' and B'W = jfc. By Corollary 9.4, GE(β') is
full in G(fc), Thus, Hf)Mz)GE(B') is full.

REMARK. If G is of type i?2 = C2 or 6?2 and fc = {0,1}, then GE{k)
contains a normal subgroup M of index 2 (see, for example, [4, Remark
after Theorem 5]). Since GE(k) is the smallest full subgroup of G(k), M
is not full (and M does not sit in the center of G{k)).

10.2. LEMMA. Theorem 10.1 holds if k is finite.

PROOF. Any full subring of a finite k is k itself. In particular, if
B and A are as in Theorem 10.1, then the subring of k generated by B
is k. It follows easily that A — k and B — k.

Therefore, GE(Ay B) = GE(k). By Theorem 8.4, GE{k) is normal in
G{k). It is well-known (see, for example, [5]) that every non-central
subgroup M of G(k) normalized by GE{k) contains GE(k). In particular,
Mi)GE{k) = GE{dA, dB) for any d Φ 0 in B = k.

For the rest of this section we assume that k is infinite.

10.3. LEMMA. Fix an ordering on Σ. Let a be the maximal root
and U the algebraic subgroup of G generated by all xε(k) with positive ε
in Σ. Then there are w in GE{k) and c in k such that UwTU is Zariski
open in G and wxa(t)w~λ = X-a{ct) for all t in k.

PROOF. Let U' be the algebraic subgroup of G generated by all xε(k)
with negative ε. Then U'TU is open in G (see, for example, [4, Theo-
rem 7 (a)]).

We pick any w in GE{k) such that wTw~ι = T and wU'w~ι = U.
Then wXaifiw'1 = x_a(ct) for some c in k.

10.4. LEMMA. In the conditions of Theorem 10.1, M is Zariski
dense in G.

PROOF. Since k is infinite, so is B. Therefore x£B) is Zariski dense
in xε{k) for each root s in ί and H:= GE(A, B)ZDGE{B) is Zariski dense
in G. Since H normalizes M, it follows that G normalizes the Zariski
closure of M in G. Since G is almost simple and M is not central, the
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closure is G, so M is dense in G.

10.5. LEMMA. In the conditions of Theorem 10.1, let aeΣt. Then
there are g in GE(k) and u in k such that g commutes with xjjc) and
xa(b)x_a(ub) e gMg'1 for all b in B.

PROOF. We can choose an ordering on Σ in such a way that a
becomes the maximal root (because the maximal root is always long and
the Weyl group acts transitively on the long roots). Let U, w, and c
be as in Lemma 10.3.

Since UwTU is open in G and M is dense in G (see, Lemma 10.4),
there is some m in UwTUΠM. We write m = g~ιwhg' with g, g'e U(k)
and h e T(k). Since [U, xa(k)] = 1 and hxa{t)h~x = xa(a(h)t) for all t in k, we
have MB [xa(b), m] = xa{b)g-1whg'xa{ — b)g'-1h-1w-1g = XaQ^g^x^ — caQi^g =
g-\xa(b)x_a(-ca(h)b))g for all b in B. Thus, gMg"13 x*(b)x_a(ub) for all b
in B with u:= —ca(h).

10.6. COROLLARY. In the conditions of Lemma 10.5, there is a non-
zero da in k such that Mi)xa(daB).

PROOF. Let g and u be as in Lemma 10.5. Let bgeB be as in
Corollary 8.2. Then gMg-1 =:M' is normalized by gGE(A, B)g~1Z)GE(Ab2

gj

Bb2

g). Pick a V Φ Ψ in Bbg.
If a belongs to a subsystem Σ'aΣ of type A2, we find deΣ' such

that a + δ e 2". Since gMg"1 contains xa(b)xa(bu) for all b in B and is
normalized by xδ(Bb2

g) and x_δ(Bb2

g), we have Mf3y := [xδ(V)9 xa(b)x_a(bu)] =
xδ+a(±W) and M'3[x_δ{V), y] = xa(±bnb). So, ikΓ3α;α(&'2B). Since
[0, Xa(k)] = 1, it follows that Mz>xa(b'2B). Thus, we can take d:= 6'2.

If α does not belong to a subsystem of type A29 then it belongs to
a subsystem Σf of type J?2. We pick a short root /3 in 2" such that
α + β e Σ\ Then [xβ(Jή, X-a(k)] = 1.

Since M' is normalized by xβ(Bbg)f we have Jlf'a^Cy, ί) : = [Xβ(y)>
xa(b)x-a(bu)] = ^+α(±^ί)ίϋ2^+α(±/y26) for all v in J5δ| and b in J?, hence
M'9 ^(δ'8, 6)^(6', V'b)-1 = xa+2β(±b'Xb'2 - 1)6) for all δ in B. So, Λf'D

xa+2β(Bb'\bW - U).
Since ikί' is normalized by α ^δJjB), we have M'Bz2(v,t) — [x-β(v)f

X2β+a(t)] = xβ+a(±vt)xa(±vH) for all v in b\B and ί in δ'4(δ'2 - l)B, hence
VH)-1 = xa{±b'\b'2 - l)ί) for all t in 6'4(δ'2 - 1)5. Thus,

for da : = δ'8(δ'2 - I)2 =£ 0, hence Mz>xa(daB).

10.7. LEMMA. For αwj/ /δel's ί/^ere is a non-zero dβ in k such that
xβ(dβA).

PROOF. If β is long, we can use Corollary 10.6. Otherwise, β lies
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in a subsystem 2 ' c 2 of type B2 or G2. Pick b Φ ¥ in B.
If 2" is of type B2, we pick a short root 7 in 2" such that 7 + β e Σ\.

Since M is normalized by G*(A, B) and MzD#r+iS(cϊr+igJ5) (see, Corollary 10.6),
we have Msz(u,t):-[x_r(u), xr+β(t)] = xβ(±ut)xβ_r(±u2t) for all u in A
and t in dr+βB. Therefore, Λf 3 z(u, bsdΐ+β)z(ub, bdγ+β)'1 = xβ(±u(bs — b2)dr+β).
Thus, Mz>xβ(dβA) with d, : = 62(6 - l)dΐ+β Φ 0.

If 2" is of type G2f then we find a long α in 2" such that α + β e Σf

8.
Since MzDx_a(d_aB) and M is normalized by GS(A, B)zjχa+β(A), we have
Msztf, u) : = [«_β(ί), a;«+/ι(w)] = ^(±^)Xα+2i3(±to2)ίc2α+3^(±^3)α;α+3^(ίV) for
all ί in d_aB and te in A.

Therefore, Msz2(t, u):= zλ(t, ufyz&V, u)'1 = 5c^(±tte(6 — bs)xa+2β(±tu2 x

(62 - 63))a;α + 3^(±ίV(63 - 66)), hence, M a «8(ί, v

^ ( ± ί w ( δ - &3)(&3 ~ b2))xa+2β(±tu\b2 - VW - 64)), s

xβ(±tu(b - ¥)(¥ ~ b2W - 6)) for all ted_aB and ue A.
Thus, Mz)xβ(Adβ) with dβ : = d_α&

4(62 - 1)(6 - I)2 ^ 0.

PROOF OF THEOREM 10.1. Now we are ready to complete our Proof
of Theorem 10.1 (for infinite k).

By Theorem 1.1, Lemma 8.3, and Corollaries 10.6 and 10.7, Mz>GE(A', B')
with additive subgroups A' and Bf of k satisfying A'cd x A and B'cdJS,
where 0 Φ dly d2 6 k.

Since Bk2 = k, we have d2 = δxc
2 with 0 Φ^eB and 0 Φ c e k. Since

B is full, c = &2/&3 and dx = bjbδ with non-zero bt in B. Therefore, A!3
b4AzDblbJ)lA (since BAaB) and B'~Dd2B = bΣc

2B = bJblB/blZ)
(since BB2czB).

Thus, A'z)dA and B'zidB, where 0 =*= d : = 6&&Ϊ e £, hence I D

11. Type Ax and non-split groups. First we give counter examples
to Theorems 1-4 for G = SL2.

11.1. A COUNTER EXAMPLE TO THEOREM 1. See [7, the last section].

11.2. A COUNTER EXAMPLE TO THEOREMS 2 AND 9.3. Let k be a field
such that char(A ) = 2 and k Φ k2. Let T(k) be the subgroup of diagonal
matrices in SL2(k). Here is our choice of parametrizations of the root

subgroups: xa(t) — (Q ί J and xβ(t) = ί. -jj for all t in k.

Set H:= {hg:heT(k), geSL2(k2)}. Since Γ(fc) normalizes SL2(k2), H

is a subgroup of SL2(k). We claim that it is a full subgroup. Indeed,

given any g = rf Λ in SL2(k), we set u : = 1/(1 + αc) when αc ^ 1 and

u : = 1/(1 + z2) with any 2 =̂ 0, 1 when ac = 1. Then v : = %/(l + αuc) 6 &2,
hence
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/I u\ _χ /I + auc ana

\0 1/ \ cue 1 + cua)

__ (u/v 0 W 1 am

\ 0 v/u)\ucuc/v (u/v)2

Similarly, there is a non-zero w' in k such that HB gxβ(u')g~\ Thus, i ί
is full.

But Ra(H) — k2 is not full when k Φ k2. Therefore, H does not con-
tain E2(R) with a full subset R of &.

11.3. A COUNTER EXAMPLE TO THEOREM 3. Let k and H be as in

11.2. Take any w in k outside k2. Set g :— xa(w). Then H is full, but
HC\gHg~λΓ\Xβ(k) is trivial, so HΠgHg'1 is not full.

11.4. A COUNTER EXAMPLE TO THEOREM 4. Let k and H be as in

11.2. Then SL2(k2) is normalized by full H, but SL2(k2) is not full and
is not contained in the center of SL2(k).

Now we will discuss extensions of our results to non-split groups.
Let G be an almost simple algebraic group defined over a field k. Fixing
a maximal fc-split torus T and a matrix representation GaSLN, we have
"root" subgroups Uε. Given any subset R of ky we can define GE(R) to
be the subgroup of G(k) generated by all root elements with (non-diagonal)
entries in R. We can call a subgroup H of G(k) full, if for any g in
G(k) the intersection of gHg~Ί with each root subgroup is not trivial. I
believe that Theorems 1-5 hold (for this more general class of G's), if
the fc-rank of G is at least 2 and G is absolutely (almost) simple, and
have checked this for all classical G. For some groups it follows from
results of [7].

REMARK. It is easy to see that when k is a number field every
arithmetic (or, more generally, S-arithmetic) subgroup of G(k) is full. I
believe that, conversely, every full subgroup contains an arithmetic sub-
group, and have checked this for all classical G.

REMARK. Some of our groups GE(A, B) for Che valley groups G were
introduced by Abe [18] and studied by Abe-Suzuki [19].
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