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General notation. If Y, Z, D, L, & are a complex manifold, a sub-
variety of Y, a divisor on Y, a holomorphic line bundle over Y and a
coherent analytic sheaf over Y, respectively, then we put

Oy the structure sheaf of Y,
2%: the sheaf of germs of holomorphic p-forms on Y,
T,: the sheaf of germs of holomorphic vector fields on Y,
K,: the canonical divisor of Y,
F(Z): the sheaf of ideal of Z in &,
Ty(—Z): the subsheaf of T}, consisting of those holomorphic vector fields
on Y which vanish on Z,
Ty(log Z): the subsheaf of T} consisting of the derivations of #7 which
send “(Z) into itself (we call this sheaf the logarithmic
tangent sheaf along Z),
[D]: the line bundle determined by the divisor D,
»(L): the sheaf of germs of local holomorphic cross-sections of L,
(L — Z): the subsheaf of 7,(L) consisting of germs of those local
holomorphic cross-sections of L which vanish on Z,
y(L —2Z). the subsheaf of #7,(L) consisting of germs of those local
holomorphic cross-sections of L whose fiber coordinates vanish
on Z together with their partial derivatives,

QYL) := 2% Qop, P¥(L) , XL — 2Z):= 2% R0y, Pv(L — Z) ,

OL) := (L) F(Z)¥(Ly),

Nzi=Ty|Ty(log Z) , hY(Y,¥):=dim; H(Y, ¥) .
Furthermore, if Z is non-singular, we put

Nyp: the normal bundle of Z in Y, or the sheaf of germs of normal
vectors on Z in Y.

If f:Y,—Y, is a holomorphic map between complex manifolds, we
put
Trv,- the cokernel of the natural sheaf homomorphism: Ty — f*Ty,.
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Throughout this paper we mean by a surface a compact irreducible
analytic variety of dimension two, where an analytic variety means a
reduced complex space. Diagrams in this paper are always commutative
and exact unless otherwise explicitly mentioned.

Introduction. A surface S embedded in a compact threefold W is
said to be with ordinary singularities if, for each singular point p of
S, there exists on W a local coordinate (z, y, ) with center p such that;
in a neighborhood of p, the surface is defined by one of the following
three equations:

(1) yz=0 (double point),

(2) wyz=0 (triple point),

(8) xy*— 2*=0 (cuspidal point).

If we are given a non-singular algebraic surface X embedded in a
complex projective space PY(C) (N = 4), projecting X into a three di-
mensional linear subspace P}(C)CP¥(C) by a generic linear projection,
we get a surface S with ordinary singularities in P}(C). We note that
in this situation X is the normalization of S. In view of this well-
known fact, Horikawa [3], Tsuboi [18] made attempts to compute the
number of moduli of deformations of the complex structures of some
algebraic surfaces X which are the normalizations of surfaces S with
ordinary singularities in P3C) by computing the number of effective
parameters of maximal families of displacements of S in P*C). The
problem we encounter in this attempt is whether the so-called conmnecting
homomorphism

0: H(S, @5) » HY(X, Tx)

is surjective, where @; denotes the sheaf of imfinitesimal displacements
of the surface S in an ambient space (for the precise definition see [13]
and [7]). In [18] we gave some sufficient conditions, expressed in terms
of some sheaf cohomology concerning S, X and the ambient space W of
S, for the connecting homomorphism § to be surjective. In this paper
we shall sharpen this result (Theorem 1.1). Making use of this result,
we shall compute the number of moduli of certain algebraic surfaces of
general type which are the normalizations of surfaces with ordinary
singularities in the projective 3-space, of type (n, 7, 75 1) (Theorem 2.1).

1. Proof of the main theorem. Let S be a surface with ordinary
singularities in a compact threefold W. We denote by X, 4 and Xt the
normalization of S, the double curve of S and the set of triple points of
S, respectively. We consider the following diagram:
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(1.1) /
N A
u u\ [

where u,:W* —>W is the blowing up along 3t; uy: W —W?* is the blowing
up along the proper inverse image of 4 by the map u,; u:W—W is the
composite of u, and u,; S is the proper inverse image of S by the map u;
é: S — W is the restriction of u to S; »: X— S is the normalization of S;
A: X —W is the composite of A and the natural inclusion map ¢ S<W.
The map p: S— X is as follows:

S is a desingularization of S, but not the normalization of S. There
appear the exceptional curves of the first kind on S, which correspond to
the set Xt of triple points of S. The map #: S— X is the blowing down
of these exceptional curves.

In this situation, the following are known to hold (cf. [13]):

PROPOSITION 1.1. There exists a commutative diagram of exact se-
quences of sheaves on W

0 0 0

| \,

0 —> Ti(=8) — w* Ty Q. p F(S) — T Qop F#(8) — 0

| |

1.2) 0— Tp(logS) —  w*T, — T —0
0— T — u*Tw®aﬁ,§s‘ i T sw —0
0 0 0

where the sheaf T4 is defined to be the cokermel of the camonical in-
jective sheaf homomorphism Tp(log S) — u*Ty.

ProPoOSITION 1.2.
HY W, 258 + Kyl — 4) = HY(W, w*Q @, 2o(S + Kp)
~ H(W, u*Ty ®.p, 7 (S)

for any integer p = 0.
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ProposITION 1.3.
H (W, T Qopy #(8) =0 for p#1.

PROPOSITION 1.4. There exists a commutative diagram of exact se-
quences of cohomology groups

HW, T¥w)
N
0— HO(ZE, Nsijx) — Ho(g, Tsmw) — HYX, %/W) —0
S
H\W, T ®op 7 S))

v

0
where Xt denotes the imnverse image of It by the map n: X — S.

In general, let Y be a compact complex manifold, Z a submanifold of
Y, f:Y—Y the blowing up of Y along the non-singular center Z, Z the
proper inverse image of Z by f, and g: 7 — 7 the restriction of the map
I Y —>Y to Z. Then there exist the following exact sequences of sheaves
onY:

(1.3) 0—Tp —> f*Ty—> Ty —0;

(1.4) 0—> N2p — ¢*"Nyy — Ty —0;

from which follows the long exact sequence of cohomology groups:

(1.5) — HX(Y, T3)— HXY, Ty) — H(Z, N;py) — H*(Y, Tp) —
(ef. [11], [18, Corollary (1.2)]). Furthermore, we have an isomorphism
(1.6) H*(Y, Ty(log Z)) = H*(Y, T3(log 2))

for any non-negative integer p (cf. [13, Proposition (1.3)]). These facts
will also be used in the following.

THEOREM 1.1. In the same situation as above, we have the following:

(@) If (W, Ty) = KW, 24(8S + K] — 4)) = 0, then the connecting
homomorphism o0: H(S, @5) — H'(X, Tx) is surjective;

(b) In addition to (a), suppose h'(X, Ty) = 0. Then we have

W (X, Tx)=h'(S, O5)—h (W, Ty)+h(W, Ty(log S))— kW, 2([S+ Ky]—4)) .
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PrOOF. (a) We consider the following diagram of exact sequences
of cohomology groups:

H(S, T)
H(X, Tx)

a.m H(3%, Nzt/x)

a0 ga
— EP(W, Tp(og §) % H'S, To) % HX(W, To(—8) % H(W, Ti(log §)—
o

HY (X, Ty)

g

]

v

0

Here we obtain the vertical exact sequence by setting Y= S, Y=2X,
Z = 3t in (1.5); the horizontal exact sequence is the one associated to
the vertical short exact sequence of sheaves on the left hand side in the
diagram (1.2); and g,, g, are defined by g¢,:= g,°9,, and ¢,:= ¢g,°g,, re-
spectively.

First, we prove the surjectivity of the map g, under the assumption
W, 2%(S + KW] — 4)) = 0, which is the essential part of the proof of
(a). Setting Y=§, Y= X and Z= 3% in (1.8) and (1.4), we obtain

(1.8) 0—— Ty —> pt*Ty —> Ty —> 0
(1.9) 0— N5/ — #*Nsjyz —> T 3x— 0,

A\ A
where 3t denotes the pull-back of X7 by the map x:S— X. Since
75 S — X is a blowing up, taking the direct images of (1.8) and (1.9) by
the map g, we obtain

(1.10) 0— p, Ts— Ty — 1, Tty —0;
(1.11) 0—_)NE€/X__);“*'7T§/X—_>O 5
(1.12) Ry, 7%y=0 for ¢=1.

Then we get the following commutative diagram:
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H'S, T2 25 H(S, Ts)

o o

(1.13) H(X, 1T x) > H(X, 1, T5)

a
/

2 Iga ,«’/gls

H°(3%, Nyijy)

Here g, is the isomorphism derived from (1.11); g, is that derived from
(1.12); g,, is the natural isomorphism resulting from the blowing up
#:§—X; g, is the homomorphism derived from (1.8); g,, is the one
derived from (1.10); and g, is so defined that the above diagram
commutes. The composite map g,°g,°9s in (1.13) is nothing but the
map g,: H'(ST, Nii/z) — HYS, Ty) in (1.7). Hence by the commutativity
of (1.13) we have

(1.14) 9, = 010°0ss -

By the definition of the sheaf .77%,, we have an exact sequence of
sheaves

(1.15) 0— Ts—¢*Ty —> Tyw—0.
Taking the direct image of this by the blowing up px: S — X, we have
(1.16) 0— p, Ts—>* Ty — 1. T by —0;
(1.17) Rp, 78w =0 for g=1.
Fitting (1.16), (1.10) and (1.11) together, we have a diagram
0

~

0— p, Ts — ¥* Ty — 1 T 3w — 0

(1.18) 0— Ty —g* Ty — Tapy —— 0

v

0 — Nyyyx =~ p,. T 3x—0

v

0

where the second horizontal exact sequence results from the definition
of the sheaf .7,,. Chasing this diagram in a usual manner, we obtain
the following exact sequence of sheaves:
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0

N. si/x
(1.19) l

0—)#*~7T§/X—_)#*‘7§/W—_’ xw—0

0
Then we get the commutative diagram

H'(SE, Nyix) -2 H'S, Tow) 25 HYS, T)

(1.20) 2198 2‘[ 2[910
HYX, 14T x) —5 HYX, T ow) —2 HY(X, 1, T) .

Here g,, is the homomorphism of cohomology groups derived from (1.19);
9, and g, are the ones derived from (1.16) and (1.15), respectively; g,
g, are the same as those in (1.13), the isomorphism H°(X, ££,.7%w) "
H*S, 7% in the middle is the one whose existence follows from (1.17);
and g,, is so defined that the above diagram commutes. Then, taking
into account how we derive (1.19) from (1.18), we can derive the following
commutative diagram from (1.13) and (1.20):

H(ZF, Niijz) 2 HU(X, p, Ts)

(1.21) e 4 o
H(X, #*ﬁ/x)—;:* H X, 14T %) -

Using the assumption 1&1( W, 2%(S + Ky] — 4)) = 0, which is equivalent
to WA(W, u*Ty ®,,;V FZ(S)) = 0 (cf. Proposition 1.2), we get the following
commutative diagram by (1.2):
H'S, Tiw) = H(W, T Qo #(S))
(1.22) 1917 lgm
HYS, T - HY(W, To(—8))
0.
We note that the homomorphism H °(§, Tsmw) — H 1(§, T3) in this diagram
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is the same g,, in (1.20), because (1.15) is identical with the horizontal
short exact sequence at the bottom in (1.2). As a consequence we have

9s = g:.°0, (by definition)
= 9;°(010° 9s) ((1.14))
= 05°(910° (g15° 91 ° 95)) ((1.21))
= 9,°(91r°90) ((1.20))
= (g19° G18) © G1s ((1.22)) .

The compos1te map gi° gy is nothing but the isomorphism H°(X%, Ns;/x) —
H 1(W T w ®”A F (S)) in Proposition 1.4, and g,, is surjective. There-
fore we conclude that g, is surjective as desired.

The surjectivity of the map g, implies that of g, in (1.7). If
(W, Ty) = 0, the surjectivity of g, implies that of the connecting homo-
morphism §: H(S, &) > H'(X, Tyx). Indeed, as shown in [13], the con-
necting homomorphism 6 is identical with the composite of the homo-
morphisms

(1.23) H'(S, ¢;) — HY(W, TW(logS)) HI(W Ty (log S))

and ¢, in (1.7), where the first homomorphlsm in (1.23) is the one derived
from the exact sequence of sheaves
(1.24) 0—> Ty(logS) — Ty — @y —— 0

(ef. [18, (2.5)], [12, Proposition (1.2)]). If »W, T,,) = 0, the first homo-
morphism in (1.23) is surjective. Therefore the connecting homomorphism
0 is surjective. This completes the proof of (a).
(b) Besides the conditions

(W, Ty,) = B(W, 2%(S + Ky] — 4)) =0,
we assume hA(X, Ty) = 0. Then by the vertical exact sequence in (1.7),
we have
(1.25) WX, Ty) = BS, T5) — (ST, Nyisz)

= kS, Ty) — B(W, Tivw Qop S~ (S)) ,

where the second equality follows from Proposition 1.4. By the horizontal
exact sequence in (1.7), we have
(1.26) K8, Ts) = KW, Ta(—8)) + R(W, Ti(log 8)) — (W, T#(—S)) ,
where we use the fact that 9 in (1.7) is the zero map because of the

surJect1v1ty of g.. Slnce h°(W Tivw Qop & (S)) = 0 (cf. Proposition 1.3)
and hX(W, u*T, K. #(8)) = 0 under the assumption AW, Q%(S + K] —
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4)) = 0 (cf. Proposition 1.2), by the long exact sequence of cohomology
groups associated to the short exact sequence of sheaves at the top in
(1.2), we have
1.27)  W(W, T @y, #(S))

= hX(W, Ts(—8)) + B(W, w* Ty Q,; F(S)) — (W, Ti(—S8))

= (W, Ty (=S)) + B'(W, 2%([S + Ky] — 4)) — hX(W, Ty(-8)) ,
where the second equality follows from Proposition 1.2. Substituting
(1.26) and (1.27) into (1.25), we have
(1.28)  R(X, Ty) = KW, Ta(log8)) — KW, 24(S + Ky] — 4))

= W(W, Ty(log S)) — kW, 25(S + Ky] — 4)) ,

where the second equality follows from (1.6). By (1.24) we have
(1.29) (W, Ty(log S)) = h%(S, @s) — h'(W, Ty) + (W, Ty(log 8S)) ,

because ' (W, Ty) = 0 by hypothesis. Then, by (1.28) and (1.29), we
obtain the equality in (b). q.e.d.

For the terminology in the following corollary, we refer to [7] and
[6].
COROLLARY 1.1. Besides the conditions
(W, Ty) = B(W, 25([S + Ky] — 4)) = kX, Tx) =0,

suppose that S belongs to an analytic family & = U,y S, of surfaces
with ordinary singularities in W whose parameter space M is mon-
singular, and whose characteristic map

o: T(M)— H'(S, @)

at the point 0 € M with S, = S is surjective. Then the Kuranishi family
of deformations of the complex structure of X is mon-singular, and the
number m(X) of moduli of X is given by

m(X) = (X, Tx)
= RS, @s) — K'(W, Ty) + KW, Ty(log S)) — KW, 24([S + Ky ] — 4)) .
ProoF. The normalizations X, of S, for teM describe a family
& = Usen X; of deformations of the complex structure of X = X,. The

characteristic maps of the families & = U, S;and 27 = U, X, at 06 M
are related as
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HY(X, T)

where § is the so-called connecting homomorphism (cf. [3]). By Theorem
1.1 (a), ¢ is surjective, hence the characteristic map o is also surjective.
Then, from the family 27 = U,.x X;, we can derive a family 27’ = U,ex X,
of deformations of X = X,, 0e€ M’ such that M’ is non-singular and the
characteristic map o: T(M') —» H'(X, T) is bijective. From the condition
H'X, Tx) = 0 it follows that dim H'(X,, T%,) is independent on ¢, provided
that ¢ is sufficiently close to 0. Then the characteristic map p,: T(M') —
H'(X,, Ty, is bijective at any point ¢t € M’ sufficiently close to 0. There-
fore we conclude that 527’ = U, - X, is the Kuranishi family of deformations
of the complex structure of X. The formula for the number m(X) of
moduli follows from Theorem 1.1 (b). q.e.d.

The following theorem will be used in §2 to compute the number of
moduli of certain algebraic surfaces.

THEOREM 1.2. Let W, S and X be the same as in the foregoing. If
S is regular, i.e., h(S, @;) = 0 by definition, and if
(W, Ty) = (W, 25([S + Ky] — 4) = (X, Ty) = 0,
then we obtain h*(X, Ty) = 0; hence the Kuranishi family of deformations
of the complex structure of X is mon-singular. Furthermore, the number
m(X) of moduli is given by
m(X) = B(X, Tx) = 10(p, + 1) — ¢f ,

where p,, ¢, denote the arithmetic genus and the first Chern class of X,
respectively.

PROOF. Since W(W, Tiw ®oy F(S)) = (W, Tipmw oy F(S)) = 0
(cf. Proposition 1.3), by the horizontal short exact sequence at the top
in (1.2) we have

h(W, Ti(—8)) = KW, u*Ty @,y #(S)) ;
and we have
W(W, w* Ty Qo #(8)) = W(W, D4([S + Ky] — 4))

(cf. Proposition 1.2). But AW, 2%([S + K] — 4)) = 0 by hypothesis,
hence
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(1.30) (W, Ta(—8) = 0.
Since R'(S, &5) = h¥(W, Tyw) = 0 by hypothesis, we have

(W, Ty(log S)) = 0
by (1.24). Hence

(1.81) (W, Typ(log S)) = 0

by (1.6). Applying (1.830) and (1.31) to the long exact sequence of coho-
mology groups associated to the vertical short exact sequence of sheaves
on the left hand side in (1.2), we have kXS, T:) = 0. Therefore we have
(X, Ty) = 0. Thus X satisfies (X, Ty) = h*(X, Tyx) = 0. As a con-
sequence we conclude that the number m(X) of moduli of X is defined,
and m(X) = h(X, Ty) holds. The equality ArY(X, Ty) = 10(p, + 1) — 2¢?
follows from the Riemann-Roch formula. q.e.d.

2. An example —surfaces of type (n, 7, 75, 75> —. Throughout this
section we denote the complex projective 3-space by P, and a point of
P by & = (&, &, &, &) in a fixed homogeneous coordinate system. We fix
positive integers r, 7, 7, with », = r, = r,. Let S, S,, S; be non-singular
surfaces of respective orders 7, 7, r, in P, such that they intersect
pairwise transversely, and are in general position at every point of

S.NS,NS,. We set
4,:=8,-S,, 4,:=8,-S,, 4,:=8,;-S, and
d:= 4, + 4, + 45 .

Let f; (1t =1, 2, 3) be the homogeneous polynomial of degree r; which
defines the surface S, We choose and fix a positive integer n =27, + 27,.
For any homogeneous polynomials A, B, C, and D of respective degrees
N — 1, — Ty — Ty N — 20, — 21y, m — 27, — 275, m — 27, — 27, We consider a
surface S defined by the equation

2.1) fi=AfLS + B + CAS) + D(LA)Y =0.

S is said to be gemeric if the following conditions are satisfied:
(1) S has only ordinary singularities and is non-singular outside
of 4;

(2) the normalization X of S is a minimal algebraic surface of
general type.
We note that S satisfies the condition (1) if A4, B,C and D are chosen
sufficiently general. Indeed, by Bertini’s theorem S is non-singular outside
of 4 for generic 4, B, C and D. The fact that the singularities of S
along 4 are ordinary for generic A, B, C and D is proved as follows:
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(i) Let ped be a point satisfying f,(p) = fi(p) = fi(p) = 0. We may
assume that A(p)B(p)C(p)D(p) # 0. We make the transformations of local
coordinates

A X
('ﬂ’fz'fa)H(Vﬁl—i—X2+Yz+Z2+XYZ’
A Y é__ 7 )
VBC 1+ X*+Y*+2*+XYZ  VCD 1+ X*+Y*+ 2"+ XYZ

and
X+YZ,Y+ZX, Z+ XY)—(X",Y', Z")

successively in a neighborhood of ». Then the equation F = 0 is trans-
formed to A'X'Y’'Z’ =0, where A’ is a non-vanishing factor. Namely,
the point p is a triple point.

(ii) Let pe€ 4 be a point at which all of f;, ¢ = 1, 2, 3, do not vanish.
We may assume that fi(p) = fi(p) = 0 and fi(p) # 0. We write F as

F = (Bf: + Dffi + (Af)fife + (CFOSE .

Since A, B, C and D are generic, we may assume that both (Bf: + Df?)
and (Cf%) do not vanish at p. Suppose (Bf: + Df3)(p)+# 0. Then F is
written as

_ (Bf: + D, 1. ALL2 + VAT — (BFL T DRYCE)
F = (Bf; + DfY(f + o 1)

AfJ2 — v TATEY — (B T D7
(it Bf: + D %)

in a neighborhood of p.
(ii)a If (A*4 — DCf¥)(p) # 0, then the transformation

AfJ2 + vV AFRY = (BR ¥ DFOCF)
it Bf: + Df: firm X

Af/2 — VTATRY — BFi + DRCH)
Fit Bf: + Df; ¥

can be regarded as that of local coordinates. By this transformation the
equation F' = 0 is transformed to (Bf: + Df})XY = 0. Hence p is a double
point.

(ii). If (A*4 — DCfi)(p) = 0, we make the transformation of local
coordinates
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(Afy/2) — (Bfi + DFY(CSD) |, x
(Bf: + Df3)* ’

Sz —Y,
Afyf
h*gey ot =Z

in a neighborhood of p. Then the equation F = 0 is transformed to
(Bft + DfYZ +V'XY)Z —V'XY) = (Bf: + Df)(Z>* — XY?) =0.

Hence p is a cuspidal point.
Consequently, for generic A, B, C and D the surface S defined by
F =0 is a surface with ordinary singularities whose double curve is 4.
Furthermore, we can prove that the condition (2) is satisfied if n =
7, + 7, + 4 and B, C, D are chosen sufficiently general.

DEFINITION 2.1. We call the generic surface S in the complex pro-
jective 3-space P which is defined by an equation of the form (2.1) a
surface of type (n, r,, r, ;) with ordinary singularities. The non-singular
normalization X of the surface S is called a non-singular surface of type
(n, 14, 14 7).

Concerning a surface S of type (n, 7, 7, ;) With ordinary singularities,
we freely use the notation S, S, S, fi, /o /; and 4 = 4, + 4, + 4, below.
For brevity we use the notation &7:(k), Zx(k — 4) and Z7x(k — 24) instead
of Z:(kE)), &x(|kE] — 4) and Z([kE] — 24), respectively, where E is
a hyperplane in P and k is an integer. Furthermore, we use the following
notation:

L,: the vector space of homogeneous polynomials of degree m in

507 517 EZ) 53;
L,(—4): the linear subspace of L, consisting of those homogeneous

polynomials of L, which vanish on 4;
C(m) := dim¢ L,, = h'(P, &»(m)) = (m + 1)(m + 2)(m + 3)/6 .

PROPOSITION 2.1. For any integer k there exists an exact sequence
of sheaves

0 d ﬁp(k'—/rf_"rz_’rs)ez
& ol — 1) B ol —1,— 1) D Polle—1,—1) > Polk—2) = 0 .
PrROOF. The maps are defined as follows:
a: (951, bs ¢3) = fuf: o0 + fzf;¢2 + fsf1¢s
for (¢, ¢ ¢s) € Ppll — 1, — 1) D Tplk — 1. — 1) D To(k — 15 — 11);
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18: ("Al"u "/"z) — (f;x"/’n .fl"l’Z) '—f;("ll‘l + "P‘z))

for (v, ¥,) € Pk — 7, — 7, — 7,)®, where we regard each f; (1 =1, 2, 3)
as a global cross-section of the sheaf #7,(r;). The proof of exactness is
a simple calculation. q.e.d.

PROPOSITION 2.2. For any integer k there exist exact sequences of
sheaves

@) 0= Pol—ri—1—13) B> 2k —24)

2 O (k—2r,—21r) @ Os(k—2r,—21) @ s (k—2r,—2r) 0 ;

7 R’l
(0) 0 Polk—2r,—2r —1,) " Oplle—2r,—21r) =5 Ty, (k—2r,—2r,) — 0

Jor any permutation (1, 1, ;) of (1, 2, 3).

PROOF. (a) We set g (k — 24):= Oplk — 24)|0x(k — 24 — S,) for
1=1,2,8, where &k — 24 — S,) denotes the subsheaf of ~Z(k — 24)
consisting of germs of those local cross-sections of 7»(k — 24) which

vanish on S;. Since 4-S, = 4, + 4, and 4,, 4, are defined on S, as the
zero loci of homogeneous polynomials of respective degrees 7, 7, we have

Os(k — 24) = O (k — 2r, — 2rs) .
Similarly, we have
Ok — 24) = O (k — 2ry — 2r)) and Ok — 24) = Ok — 2r, — 2r,) .
Taking these isomorphisms into account, we define a in the sequence
(a) by
$ > (Bisy Bisy Pisy) € Os(k — 24) ] ﬁsz(k —24)D ﬂs3(k — 24)
= O (k — 2r, — 2r) D T, (k — 21, — 2r,) D Ts(k — 2r, — 2ry)

for ¢ € 2x(k — 24), where g5, (i =1, 2, 3) denotes the restriction to S,.
We define the map g by

V= (ffofor for Yedul — 1, — 1, — 15 .
Then the exactness follows from simple calculation.

(b) We define the map R,, (i, =1, 2, 3) in the sequence (b) by re-
striction to S,, and the map 7, by

Vv fiy for yeZpk —2r,—2r, —1r,).
Then, obviously the sequence (b) is exact. q.e.d.

For the double curve 4 of a surface of type (un, v, 7, 7,) in P with
ordinary singularities, we consider the sheaf 33, N, (direct sum) where
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N;, (1 =1,2,3) denotes the sheaf of normal vectors of 4, in P. The
difference between .#7;:= Tp/Tp(log ) and 3}, N,, is given by the
following:

PROPOSITION 2.3. There exists a natural exact sequence of sheaves
3
0— 3= 3 Ny 2 75, —0,
i=1

where 7z, is the sheaf with support Xt, the set of triple points of S
(=4,N4,N4;), and whose stalk at each point of 3t is isomorphic to C°.

Proor. It suffices to prove the exactness at a triple point pe 3t.
Let (x, y, 2) be a system of local coordinates in a sufficiently small poly-
cylindrical neighborhood of p in P such that

(1) S is defined by ayz = 0,

(2) 4, 4, 4, are defined by y=2=0, 2=2=0, x=y=0, respectively.
Then we define a: 45— >3-, Ny, at » by

0 0 0 0 0 0
0=t + o), (cm+og), (5 +b5),)
for 6 = a(d/ox) + b(6/oy) + ¢(0/0z) € Tx(log 4),, where [#] denotes the local
holomorphic cross-section of the sheaf _#; represented by 6, and |4,
(1 =1, 2, 8) denotes the restriction to 4,. It is easy to see that this def-
inition does not depend on the choice of a representative . We define
the sheaf homomorphism 3: >33, N;, —C® at p by

¢ (62(0) — ¥4(0) ,  ¥(0) — 7:(0) ,  7,(0) — ¢,(0))

for
- 9 9 90 0
6= (g + 6D5 PO+ W5
0 0 2
1L+ L) e(5N),
The exactness follows from simple calculation. q.e.d.

COROLLARY 2.1.
dim H°(4, 43) = C(r) + C(r,) + Clry) — Clry — 1, — 75) — 3.

PrOOF. By the exact sequence of sheaves in Proposition 2.3, we get
the long exact sequence of cohomology groups

@2)  0— H(, 4D~ 3 Hd, Ny) == Cli— -

Note that we can identify 3.i-, H°(4,, N,,) with the vector space
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3 (L L (= 4D D (L L (4D}

where we set r, = r,., We denote this vector space by V. For ¢cL,
(r =1, r, r;) we denote by g5, (¢ =1, 2, 3) the corresponding element of
L,/L.(—4,). Then the above map

A 3
s izz‘; H(4,, NAi) — C},
is given by

(B114, D B214,) B (V112, D Va1,) DB V11, B Mara,)
'—’pét(ﬁsz(p) - "p‘l(p); "l"z(p) - 7]1(1’)’ 7]2(1’) - ¢1(p)) ep%tcps ’

where ¢, 9, € L,,, ¢, ¥, €L,,, ¥, P, €L,. Therefore by the exactness of
(2.2) we can identify H%4, _#;) with the vector subspace V, of V con-
sisting of the elements

(B112, D B214,) D (Y114, D V214,) D D112, D Va1a;)
of V which satisfy

(2.3) D) — V(D) = YD) — Nu(D) = N(P) — ¢(p) = 0 for any peIt.

We note that 3t coincides with the common zero locus of the homogeneous
polynomials f,, f;, f;, and any point p € 3t has multiplicity one. Then, in
view of (2.3) we can apply generalized Max Noether’'s theorem in [4] to
the polynomials ¢, — ¥, ¥, — 91, 7, — ¢,. As a result we infer that ¢, —,,
¥y, — Ny, N, — ¢, are of the form
Py — Yy = @Sy + Qofy + asfs,
"l’z—771:bl.f1+bzfz+b3fsr
772_¢1:c1f1+02f2+63fs’

where a,, - -+, ¢; are homogeneous polynomials of appropriate degrees. We
set

D:=¢g, —a,fi =9, + a.fs + asfs,
Ui=a, —b,f =2 + bf, + b fs s
H:=9—cfy=¢ +cfi+of.
We define
2.4) %L, ®L, DL, —V

by (g, ¥, 7) = (P14, D V12,) D V14, D N14,) D 014, D 914,), for (g, ¥, D) €L, D
L, ®L,. Then we have
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YH, 0, ¥) = (3114, D b214,) D V114, D Va12,) D W14, D 714, -

This shows image¥ =V,. Therefore we have
dim H(4, .#7;) = dimV, = dim image ¥
= dim(L, @ L,, D L,,) — dim ker ¥ = C(r,) + C(r,) + C(r;) — dim ker ¥ .

Since

ker ¥ = {(\f, + Afefs tfu of)IN, t,ceC Ael, ,, .},
we have dimker5 = C(r, — v, — 135) + 8. q.e.d.

PROPOSITION 2.4. Let S be a surface of type (n, r, 7., 75) with ordi-
nary singularities. Then S belongs to a maximal analytic family
& = U,ex S, of surfaces in P with ordinary singularities such that

(a) the parameter space M is non-singular and

(b) the characteristic map

o T(M)— H*(S,, ?s,)
18 surjective at any point t € M.
Proor. We define m,(4) to be the smallest integer m, such that
HYP, &p(k — 24)) =0 for k=m,.

By Theorem 8 in [9] it suffices to show that

(i) m = my4) and

(ii) 4 belongs to an analytic family f = U;ex, 4¢ of locally trivial
displacements of 4 in P such that

(a') the parameter space M, is non-singular,

(b") the characteristic map o: T(M,) — H*(4, _+7) at the point 0 € M,
with 4, = 4 is surjective.

Strictly speaking, Theorem 8 in [9] treats only the case where a
double curve 4 is non-singular, hence we can not apply that theorem
directly to our case. But, as shown in [14], a characteristic map
o': T(M)— H°4, +;) can also be defined, even if 4 is singular. By
direct calculation we can easily prove that for an analytic family
& = U,en S; of surfaces with ordinary singularities in P such that S = S,
for 0 e M, the following diagram is commutative:

H'(S, @)
7
T(M )\f l#
™N

H4, 4% ,
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where o' is the characteristic map at the point 0e M of the family
f=U;en 4, of the double curve 4, of each S,, t€M, and # is the map
induced by the fundamental exact sequence

(2.5) 0— Z«([S] — 24) —> &g ——> 47— 0

(cf. [9, Theorem 4] and [12, Proposition (1.1)]). Therefore, by the same
arguments as in the proof of Theorem 8 in [9], we can generalize that
theorem to the case where a double curve 4 may be singular.

By Proposition 2.2 and Bott’s theorem concerning the cohomology
groups H?(P", 2%:(k)) in [1], we obtain

HYP, ©#(k — 24)) = 0 for any integer k.

Hence it follows that m,(4) = —, and so (i) holds. (ii) is proved as
follows:

Let 4,, 4,, 4,, f,, f», f» be the same as before. In the following we
regard a homogeneous polynomial of degree k in variables &, &, &, & as
a point of C°® by assigning its coefficients. For ¢ =1, 2,3 we denote
by fi(& t,) the homogeneous polynomials of degree r, in the variables
&, &, &, & which corresponds to a point ¢, € C°"?. We set

Fle t)i=fle t) + £ (=1,273);

N:= C(r) + C(ry) + C(ry) ;

M, :={t=(t,t, t)cC"||t] < ¢} (e: a positive number) ;

fr={(& ) e PXM,| Fi(&, 1) t) = Fue, tDFile, t) = Fil&, tFu(e, ) = 0} .

We denote by w:f— M, the restriction of the canonical projection
Pry: PxM,— M, to f. Then, in our terminology w:f{— M, is an analytic
family of locally trivial displacements of the double curve 4 of S in P
(cf. [14, Definition 8.1]) provided that the positive number ¢ is sufficiently
small. We claim that the characteristic map o': T(M,) — H*(4, +3) at
the origin 0 € M, of the family w:f{— M, is surjective. In order to prove
this we consider the same vector space V as in the proof of Corollary
2.1. Then, as shown there, we can identify H°(4, .#3) with a vector
subspace V, of V. Under this identification we wish to clarify how the
characteristic map ¢': T,(M,) —V, is described explicitly. We take an open
covering {Usbysess Of P, where U, := {¢ = (&, &, &n &) € P&, # 0}, We set

Xi(t) = futlent) for 1<i<3, 0<a=3.

Then (X(t), X&(t), X&(t), t) may be regarded as a system of local coordi-
nates on Ux M,. For any (3/ot) € T,(M,) we set
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> 90X 0<a<3).
Z{ (0 ) (0) 0=ax<3d
Then by definition
3\ _ .
(2.6) (L) = (Quuzazs € HY, D),

where @, denotes the map I'(U, Tp)— I'(U,N4, +3) induced by the
natural projection of sheaves T, —.#3. By the definition of a: 47—
li-1 Ny, in Proposition 2.3, the element of V,CV which corresponds to
the one in 2.6 by the identifications >}, H(4,, N,,) =V and H4, 47) =
V., is

@D (Y 00, @2 0u) O (2 0,0 L0,
ot ot ot
ofs of,
& (L 0, ® 2, 00)

since X7(t) = fi(&/ent) for 1<i<3, 0 < a <3. This element is nothing
but ¢'(0/ot) if we consider the characteristic map ¢' to be one from T,(M)
to V,. Suppose an element ve V, is given. Then, as shown in the proof
of Corollary 2.1 there exists an element (H, ®, ¥)e L, @ L,,&® L,, such
that 7((H, 9, ¥)) = v, where ¥: L, @ L,, L,,—V is the same map as in
(2.4). We can choose tangent vectors (9/ot,) € T,(C°"?), (9/dt,) € T,(C°"?),
(0/ot,) € T,(C°"?) so that

2,0 = me), afz Lo =00, Loeo=7@.

We set
0

ot
Then, by (2.7) we have

3 . 9
=9 + 0 + 9 cmM) =13 T(COw
3, at+at3€ o(M,) 2 o ).

a’(%) = A((H, 0, T) = v .

Consequently, we conclude that the characteristic map o': (M) —
H'(4, _13) is surjective. This completes the proof of Proposition 2.4.

As in [9], a surface S with ordinary singularities in a compact
threefold W is said to be regular if HXS, ®s) = 0. Concerning the re-
gularity of a surface of type (n, r, r, ;) in P with ordinary singularities,
we obtain the following:
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PrOPOSITION 2.5. Let S be a surface of tyve (m, 1, 7y 75) with ordi-
nary singularities. We assume that n = 2r, + 2r, + v, — 3. Then S is
regular if and only if both of the following two conditions are satisfied:

(@) rn=3;

(o) C(r) + C(ry) + C(ry) + C(r,—1ry—15) — Clr,—1;) — Cry—135) — Clry,— 1)
—'371,1'2 - 672,1'3 - 313,11 — 3 = 3rry.

PrROOF. By Proposition 2.2, Bott’s theorem and the exact sequence of
sheaves

(2.8) 0— &2,— Z([S] — 24) —> T5([S] — 24)—> 0

with Z([S]—-24) : = Zx([S]-24)/|7x[S]—-S), we have k(S, Zs([S]—-24))=0
for vy =1, 2. Then HYS, &) =~ H*(4, .+;) by (2.5). Hence S is regular if
and only if H(4, #7) = 0. On the other hand, by Proposition 2.3 there
exists an exact sequence of cohomogy groups

29)  0— H'(4, 4D~ 3 B, A5)— Ch
=1
— H(4, A#3)— 3, H'd, Nj)— 0.

From this it follows that H'(4, _#3;) = 0 if and only if both of the follow-
ing two conditions are satisfied:

@) H'(d4y, Ny) =0 for i=1,2,3;

(") dimimage 8 = 3r,ryy; (=dim C,).
By simple calculation we can see that the condition (a’) is equivalent to
(a). By (2.9) and Corollary 2.1,

dim image § = 3} dim H(, N,,) — dim H'(4, #7)
=1

= C(r,) + C(ry) + C(ry) + Clry — 1y, — 19) — Clry — 1)
- C('rl - ”'3) - C(Tz - 7‘3) - 371,12 - 31’2,1’3 - 61'3,71 —3.

Hence the condition (b’) is identical with (b). q.e.d.

THEOREM 2.1. Let X be a non-sigular surface of type (m, 1., 7, 73),
and let S be the surface with oridinary singularities in P corresponding
to X. Then:

(a) E=xcept for those of types (6,1,1,1), (7,2,1,1), (8,2,2,1), (8,2,2,2),
we obtain

(P, (S + Kp] — 4)) = 0.

Hence the connecting homomorphism 6: HY(S, @5) — H (X, Tx) is surjective,
and the Kuranishi family of deformations of the complex structure of X
18 non-singular. The number m(X) of moduli is given by
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m(X) = hY(P, Tp(n — 24)) — 1 + b4, 47) — h(P, Tp)
= C(n—r,—r,— 1) +C(n—2r,—2r,)—C(n—2r,—2r;—7,)
+ C(n—2r;—2r,)—C(n—2r,—2r,—r,)+ C(n —2r,—2r,)
— C(n—2r,—2r,— 1)+ C(r)+C(ry) +Clry) —Clr,—r,— 1) —19 .
(b) As to those of types (6,1,1,1) and (7, 2,1, 1) we obtain
WX, Ty) =h(X, Ty) =0.
Hence its Kuranishi family of deformations is also mon-singular. The
number m(X) of moduli is given by
34 6,1,1,1)
42 (7,2,1,1).
ProoF. (a) Applying ®£2, to the exact sequence of sheaves in

Proposition 2.1 and setting k¥ =n — 4, we obtain the following exact
sequence of sheaves:

m(X) =

0— Qb(n — 4 —7r, — 1, — 1)®
2.10) —2sn —4—7r, —r) P 2N —4—1r,—r) PN —4—1r;—1)
— Q((n — 4) — 4)—>0.

Note that
(n7292;2)’ n_2_9
7292’1’ 29
n—4—’rg—'rs¢0=>(n )y m
n,2,1,1), n=8
n—4—r,—r,#+0
n,1,1,1), n=7.

Therefore, taking the long exact sequence of cohomology groups associated
to (2.10) we have

R(P, 2:([S + Kp] — 4)) = B'(P, 2x(n — 4) — 4)) = 0

except for the surfaces S of types (6,1,1,1), (7,21, 1), 82, 2, 1),
8,2, 2, 2). Hence by Theorem 1.1 (a) the connecting homomorphism
o: H'(S, @;) —» H(X, Ty) is surjective for the surfaces in case (a) of the
theorem. By Proposition 2.4 S belongs to a maximal analytic family
& = Uiex S, of surfaces in P with ordinary singularities which satisfies
the conditions in Corollary 1.1. Therefore by Corollary 1.1 we conclude
that the Kuranishi family of deformations of X is non-singular for the
surfaces X in case (a) of the theorem, and the number m(X) of moduli
is given by

m(X) = h(S, @5) — B'(P, Tp) + h(P, Tp(log S)) — WP, 2¥([S + Kp] — 4)) .

n—4—r, —r,#0
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We have R(P, T») = 15. By classifying the structure of the non-singular
normalizations of the surfaces with ordinary singularities defined by the
equation (2.1), the following turns out: if X is of general type, then the
order of S in P is not less than five. Then the logarithmic Kodaira
dimension £(P — S) is equal to three. Therefore by Theorem 6 and the
corollary to Proposition 4 in [5], we have h'(P, Tx(log S)) = 0. By (2.10)
and Bott’s theorem

PP, 25(S + Kp] — 4)) = (P, 2o((n — 4) — 4)) = 0.

By Proposition 2.2, Bott’s theorem and (2.8), we have h'(S, Z7s([S]—24)) = 0.
Then by (2.5) we have

RS, @) = BXS, F(S] — 24)) + (4, A7)
= kP, Zx([S] — 24)) — 1 + 14, A7D) .

Therefore the number (S, @) is calculated by Proposition 2.2, Bott’s
theorem and Corollary 2.1. Consequently, we obtain the formula for
m(X) for the surfaces in case (a) of the theorem.

(b) As to the surfaces X of types (6,1, 1, 1)and (7, 2, 1, 1), by (2.10)
and Bott’s theorem we derive

R(P, Q6([S + Kp] — 4)) = R'(P, 23(n — 4) — 4)) = 0.

By Proposition 2.5 they are regular in P. Therefore by Theorem 1.2 we
have h((X, Tx) = 0; hence their Kuranishi families of deformations of the
complex analytic structures are non-singular, and the number m(X) of
moduli is given by

m(X) = 10(p, + 1) — ¢} .

By the classical formula (cf. [10]) for p, and ¢! of the non-singular
normalizations of the surfaces with ordinary singularities in P we can
caleulate the number m(X) of moduli of the surfaces of types (6,1, 1, 1)
and (7, 2, 1, 1). q.e.d.
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