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1. Introduction. Let R"*' be the (n + 1)-dimensional Euclidean space
(n = 1). Each point of R"*' is denoted by a column vector v = ¥(v,, v,, * -,
V,41), where t denotes the transpose. We put |v] = {324 (v,)*}* and
T (V) = v, Let B ={ve R"": |v| <1} and H"" = {ve R"*": 2,,,(v) > 0}
be the open unit ball and the upper half space in R""', respectively.
We denote by S(z) the n-sphere in R*** with center at a and radius 1.

A Mobius transformation of R"*'U{c} is, by definition, a composite
of a finite number of inversions in R""'U{c} with respect to n-spheres
or n-planes. Let Mob be the group of all the Mobius transformations of
R U{e}. We denote by |7'(z)| the (» + 1)-th root of the absolute value
of the determinant of the Jacobian matrix of ¥ € Mob at x € R**'\ {v™"(0)}.

An element v €Mob with a fixed point at « is of the form v(x) =
Mz + v for some x> 0, AeO(n + 1) and ve R*™, where O(n + 1) is the
group of orthogonal matrices of degree » + 1 (see [1, p. 20]). Next assume
that Y(oo) # o. Then, for the inversion ¢ with respect to S(v7(<0)), we
have Yog(c) = = so that voo(x) = NAx + v. Hence Y(x) = MAa(x) + v.
Therefore |Y'(x)| = \/|lx — Y7 *(o)* since |o'(x)| = 1/jx — Y™*(0)[>. Let the
center and the radius of the n-sphere {xe R"*':[Y'(x)| = 1} be a(Y) and
o(7), respectively. Then we have a(Y) = v*(~) and po(7)* = A so that

(1) 17'(@)| = e(7)/|x — (M) .

Further, let the interior and the exterior of the n-sphere be I(Y) and
E(7), respectively. Then, as in [1, p. 30],

(2) YE) = I1(r), YI(7)=E").

Let Mob(B**') be the subgroup of Mob whose elements map B**' onto
itself. A subgroup I" of Mob(B"**) is said to be discontinuous if the orbit
{Y(0)}yer of the origin o€ B™" under I" has no accumulation points in B**.
Hence, for a discontinuous subgroup I', the set A(I") of accumulation points
of {v(0)};er is contained in 0B"*'. We call A(I") the limit set of I'. Let 6(I")
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be the exponent of convergence of the Poincaré series X, (1 — |7(0)))*?,
that is,

B(F) = inf{s > 0: )%1(1 —_— lfy(o)l)am < oo} .

In this paper we prove the following:

THEOREM. Let I’ be a discontinuous subgroup of Mob(B"*') with
BA) > 2 and let &€ A") be the unique fixed point of some transfor-
mation in I'. If the group I') = (v € I': 7(&) = &} contains a free abelian
group of rank (=1), then 6(I") is greater than l. Moreover, the lower
bound 1 is the best possible.

In the case of n <2, that is, in the case of a Kleinian group I’
acting on H® with A(I") $ -, Beardon [2] showed this result for the ex-
ponent of convergence of the series >}, .\, 0(7)’. For the other properties
concerning the exponent of convergence of the Poincaré series, see also
Tukia [3, SE] and references quoted there.

In §2, we give some preliminary lemmas on a Mobius transformation
and in §3, we give some properties of a discontinuous group mentioned
in the above theorem. §4 is devoted to showing some inequalities which
are used in the proof in §5 of the first half of the theorem. In §6 we
give an example of discontinuous groups which shows, in §7, that the
lower bound [ is the best possible.

2. Preliminary lemmas. Let Mob(H"*') be the subgroup of Mob
whose elements map H*™ onto itself. As in the introduction, each v € Mob
is written as Y(x) = AAx + v or v(x) = No(x) + v for some A >0,
AcO(mn +1) and ve R""', where ¢ is the inversion with respect to
S(v(>)). In particular, if v eMob(H""), then the following known
lemma holds.

LemMA 1. If v € Mob(H™), then %,,,(v) = 0 and A = (64" (1)> for some
A, € 0(n).

Next we prove the following lemmas.

LEMMA 2. Let v, and 7, be elements of Mob satisfying 7V,(co) #
and Y,o7,(c0) % oo,  Then (7,07, = (V)| V(a(Y oY) and a(Y,07,) =
Yz a(y)-

ProorF. From (1) we have

[(7107) (@) = [Vi(V(@)] [7:(@)] = {0(7.)"/17:(®) = a(v)IP}7:(2)] .
On the other hand, [v,(®) — a()I = [v(@)] V(Y (@YD) & — 7 (@)
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(see [1, p. 19]). Therefore

[y 07:) (@) = (v {7 a(Y ) o — Y (@ (v )},
from which we have the required equalities. q.e.d.

LEMMA 3. Let v, and 7, be elements of Mob satisfying 7v,(c0) # oo,
Yy (00) # o0, V07, (c0) # o and Y,oV,07 (o) # co. Then P(7, 07,0V =
ela(vie 7,0 7") — a(vi)l/lalr) — alr)l.

PrROOF. Lemma 2 and the identity |vi(x) = |(v:Y)'(7.(x))|™* show
(Y 07, 077Y) = PYI(Voo vt (@(Y, 0V, 0 7)™
R LCARACICARM NCADIC AR ALY I
= P(T)IY (@Y (T (v, o Vo YT V2

Now, by (1) and po(7) = p(v™), the last expression is equal to the one
desired. g.e.d.

LEMMA 4. Suppose v € Mob satisfies Y(co) # co and cl(I(7)) Nel(I(v™)) =
@ where cl(I(v*Y)) is the closure of I(v*). Then {I(v™)}m-, and {I(v~™)}5-,
are decreasing sequences of sets with lim,_ ., o(7*™) = 0.

PrOOF. Take a point x e I(v). Then by (2), v(x)eecl(I(v?)) so that
v(x) € (el(I(7)))* by our assumption. Hence |(v¥)'(x)| = [Y'(v(x))| |7 (x)| < 1,
that is, ze€(cld(7%))). Thus I(7)Del(I(v®))>I(Y*). In the same manner,
we have I(v")DI(v?. Next assume that I(V)DI(v®»>--->I(v") and
Iy ") I(v*)>D---DI(v™). Then for an element x € I("™)°, we see 7"(x) €
cl((v~™) cel(I(v) (el(1(7)))° so that |[(v*™)' (@) = [v'(v™(@)] [(v™)(w)| < 1,
that is, ze<(cl(I(v™*)))’. Therefore I(v™*)DI(v™*). Similarly we have
I(v™) D I(v™™").

Since cl(I(v?))C I(7), there exists a constant ¢, > 1 such that |v'(x)| = ¢,
for all x € I(7v*). Since a(v™) € I(v™)C I(7*) for m = 2, we have |V (a(™™))| = ¢,
so that by Lemma 2, o("™) = o(¥ )Y (a(¥))|™* < o(v™ ) (e,)™ 2. Thus
limy-. 0(7™) < lim,,_... (¢,)" ™ 20(7) = 0. Since p(v™) = p(v"™), we are
done. q.e.d.

3. Properties of discontinuous subgroups. Let I be a discontinuous
subgroup of Mob(B"**) which satisfies the conditions stated in the Theorem
in the introduction. Let = be a Mobius transformation with «(B"*') = H"*,
(&) = oo, () = —e,,, and (o) = e,,,, where ¢,., =%0, ---,0,1)e H*™,
We denote by {P, ---, P;} a system of free generators of the free abelian
group of rank [ contained in zol'; o', Weset G = ol oz7*CMob(H"")
and G, = rol; or™". Note that G is a discontinuous subgroup of Mob(H"*"),
that is, {g(e,i1)},ec never accumulate in H™".
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LEMMA 5. There exists an element g € G\ G, with cl(I(g)) Necl(I(g7™)) =
D.

Proor. If a Mobius transformation zt— \Bx + w has a unique fixed
point at o, then A\ =1, for otherwise it has exactly two fixed points
(B — E,,,)(—w) and o, where E,,, is the unit matrix of degree n + 1.
Choose g € G, which has a unique fixed point at « and set g(x) = Bz + w.
Let h(x) = MAz + v be another such element in G... Since A, BeO(n + 1),
we have [g¥(x)| < [2] + |wl, |A™(®)] = Al + 2E Aol and  [RTM(x)| =
V™Mol + SpinE | for m=1,2,8, ---. Now if A # 1 (here we may
assume that )\ < 1), we have

lgoh™o g o h™™(e,y)l < 1 4 2wl + 2(1 — A) o]

for all m =1,2,8, ---. On the other hand, «,,,(goh™ogch™™(e,,)) =1
by Lemma 1. Furthermore {goh™og 'oh ™},_, are mutually distinct, for
if goh™og'oh™ = id for some m, then goh™ = h™og and g also fixes
the finite fixed point (WA — E,,,)"(—v) of h. Therefore the orbit
{goh™og o h™™(€,:)}m=, has an accumulation point in H"*. This contra-
dicts the discontinuity of G. Hence A = 1 and we have

(3) gix) = Az +v (9eG.).

Since 4 = 4, 0 and «,,,(v) =0 by Lemma 1, we see x,,,(9(¢,,,)) = 1 for
01

all geG.. Therefore the accumulation points of the orbit {g(e,..)},eq.
consists of only one point {«}. Thus we have G 2 G.. by the condition
$4(G) > 2.

Now we choose an element ge G\ G.. Since G is a discontinuous
subgroup of Mob(H"*') we have lim,_. |P™x)| = o for x € H**'. Further,
for xcoH""', we see PM™z) + e,,, = PM"x + e,,,) by Lemma 1 so that
lim,, .., |P™(x)] = o also for x € oH"™. Therefore

lim a(PfogoPi™og™) = lim go P o g7} (0) = a(g™)
(4) e T
lim|a(go Prog™o Pi™)| = }HIEIPi”ogoPr’”oy“(oo)l = oo,

m—roo

Since P!"eG., we have |(Pr'og)'(x)| = |g'(w)| by (3) so that o(PTog) = o(g).
Therefore, by Lemma 2, (1) and p(g) = p(g7"), we get
P(PProgoPrmog™) = p(Prrog)|(Pr™o g™ ") (a(PftogoPr™og™))| ™
= (g™ (a(PToge Pr™og™))| ™
= |la(PTogoPi™og™) — a(g™) .
Thus lim,..E(geoPlreg™ o P{™) = lim, .. 0(PFogePi™og™) =0 by (4).
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Hence, again by (4), we have cl(I(P"ogo Pi™og ™ ))Nel(l(go Ptog o Pi™)) =
@ for all large m. q.e.d.

We set Z'={v=(m, N, -, m):n,€2Z} and (Z)* = Z'\(0, -+, 0)
where Z is the set of all integers. For v = (n, 1, -+, n) € Z', we
set P, = PMoPMo...oP%, Since G is a discontinuous subgroup of
Mob(H"*') and since P(e,.,) = P(o) + e,., by Lemma 1, lim,_.|P,(0)] =
lim,,_o{|P,(€4+,)| — 1} = oo, where [v| = max{n,: 1 =i <1} forv =(n, .-,
n,) € Z', so that there exists a large number m, satisfying |P, (o) > 1
for all » = (n,, -+, n) €(Z"* where m,y = (mmn,, *-+, mm,).

Let g€ G\G., be as in Lemma 5. Then by Lemma 4 we can choose
a large number m, such that o(gm) < 1.

Now we set Q = P,, and g, = g™. Since Q,(z) = Az + Q,(0) for
some A,eO(n +1) we may assume, by choosing m, sufficiently large,
that |Q,(0)] > 1 and

(5) Q.(w) € E(g,) N E(g5")
for all x € I(g,) U I(g;") and ve(ZYH)*.
LEMMA 6. Let g, and Q, be as above and let

v

G =kL=J1{yo°Q,1°go°---oyoon,,ogo: vy, e, v, €(ZY)).

Then each element g of G is mutually distinct and satisfies a(g) € I(g,)
and g(co) # .
PROOF. Suppose that the equality
90°Q, 0000+ 09°Q,, 090 = 9,0 Q0900+ g0 Qp 09,

holds for some v,, -+, v, and g, ---, ¢ and assume that v, = g, -+, v, , =
Uy and v, # g, for some k = 1. Then Q_, ogito - 0Q_,, o0 °Q_,, ., °
90°Q,,°  +°9°@Q,, is the identity mapping and fixes the point oo,
whereas no element of this form fixes « by (2) and (5). This contra-

diction gives the first part of our assertion. Also by (2) and (5), we have
the other assertions. q.e.d.

4, Inequalities. As is already seen in (8), P, (1 <+ <) is of the
form Ugx + a,. Hence, for an integer m, we have PMx) = UPx + b,(m)

where b,(m) = S.r+U%, for m = 0 and b,(m) = Sr2U**(—a,) for m < 0.
Since @, (x) = PM™o ... o0 PM™(x) we see

l—1
(6) Q.(0) = b(m.n,) + E;U T e Upi(h,, (mym,y,)

for v = (ny, « -+, my) €(ZH*.
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For vy, ---, v, €(Z"* we denote by Q(v, ---, v,) the transformation
90°@Q,, 00,0+ °9,°Q,, 29, of G in Lemma 6.

LEMMA 7. There exists a positive constant ¢, such that

0@, <+, ) Z et IT (S 1al)
where v; = (ny, -+, ;) A =7=k).
ProOF. Lemma 2 gives
PRy, « -+, v)) = P(QWy, « -+, Yi(Q 0 90) @@y, - -+, ¥)NIT
for 1 < j < k, where we assume that o(Q(v,)) = 0(g,). Since [(Q,;°9,)'(®)| =
lga(@)] = 0(90)'|x — a(90)|™*, we have
(1) @Ry --+,v)) = p(QW, - -+, vi )N la(@, -+, v)) — algo)l/0(g0)} -

Also from Lemma 2, a(Q(v, ---,v;) = gi'°Q_,(a(Q(,, -+, v;_))). Let

9:(x) = NAo(x) + v, where ¢ is the inversion with respect to S(g,(c0)).

Then, for ¢ = Q_,,(a(Q(,, -+, v;_1)), we have

(@, « -+, v;) — algo)l = 1957(&) — g5 (e0)| = Ao (&) — a(e0)]
= 0(95")|a (&) — a(e=)| .

Since (&) = go(0) + (& — go(=0))|& — go(2)[* = a(c0) + (£ — a(95™))|& — a(ga [,

we see

(8) la(Q,, -+, v;) — alg)| = p(g:7)1¢ — alga)™ .

On the other hand, since ¢ is rewritten as A_, (a(Q(v, -+ -, ¥;_))) + Q_,;(0)

for A_,;€0(n + 1) and since a(Q(v, -+, v;_,)) € I(g,) by Lemma 6, it holds

that

It — algo)l = [A_ (a(Q,, « -+, vii)))| + |Q_;(0)] + |a(gs™)
= {lalgo)| + 0(90)} + 1Q_.;(0)] + |a(ga] -

Since |Q,(0)] > 1, the last expression above is bounded by ¢,|Q_,,(0)| for

some constant ¢, > 0. Hence, by (6), |& — a(g:)] < ¢, Sii-, [b.(—mm,;)| <

com, 3o, [nyl la; so that, together with (7), (8) and p(g,) = p(g;"), we have

the desired inequality for the constant &, = 0(g,)/c;m,(max{la,: 1 < 7 < 1}).
q.e.d.

Let >, be the summation over v e (Z")* and let {(s) = >, k~°.

LEMMA 8. For any positive number s, it holds that

SIS e S (0@ o, )] Z 0@ 5 (67U — L+ DY
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Proor. From Lemma 7 we have

SIS e 1o - ) 2 oty 5 S - S (11 (2 ) )}

i

= o e T (S (Z1nd) )} = ooy z{ (2: () )

where v = (n, +++, n) € (Z)*. By considering X(k) ={v» = (n, -+, n)€
(ZH*: |n,)] <k for 1 <4 <1 and |n,] = k for at least one ¢} for a natural
number k, we obtain

S(ad) =5 5 ()
EXOE™ 2 17 3 (k™ = 1 — L+ 1).

1

®
[

Ms

=10

>
||

1

Thus we have our lemma. q.e.d.

5. Proof of the first half of the Theorem. Let I':=7"'cGoz and
let 8(") be the exponent of convergence of 3 (1 — |7(0))*2, where the
summation is taken over YeI. Then 6(I") = B(f) so that, to prove our
theorem, it suffices to show that 8(°) > I.

LEMMA 9. There exists a constant ¢, > 0 such that (1 — [¥(0)|)"* =
g0(teYor™) for all vel'.

PrROOF. Let vel and let v=1c"tegor for g = g,0Q, ogyo-+-og,o
kaogoeG As in [1, p. 29, (43)], we have 1 — |7(0)]* = [(""*)'(0)| so that
1 = )P = p(r™/la(¥™)| by (1). Since —e,,, € E(g,) we see g(—e,,) €
I(g;") and we have |a(v ") = [Y(0)| = |t7(g(—e,41))| = ¢; for some constant
¢; > 0. Hence, using 1 + [7(0)] < 2, we have (1 — [Y(0))"2 = p(*™ )V 2¢,.

Also since —e,,, € E(g;") we see g7 (—e,,,) € I(g,) and we have v (c0) =
g7 (—e,,,)) # . Moreover, g(«) # o by Lemma 6. Thus, applying
Lemma 8, we have p(v™) = p(g7")|Y(c0) — &/|€ns1 + g7 (ce)|. Since g~*(e0) €
I(g,), we get |[g7%(c0)| < |@(g0)| + 0(95). On the other hand, the facts & =
77 (e0) and V(o) = T7Hg(—e,41)) € T7H(I(g:)) imply [Y(e0) — &| = ¢, for some
constant ¢, > 0. Hence p(v™) = c,0(g7)/{|lalg)) + 0(g,) + 1}. Thus, by
p(g9) = p(g™"), we have our inequality for e, = ¢,/V 2 es{la(gy)| + 0(go) + 1}.

q.e.d.

Now Lemmas 6, 8 and 9 show

A — )" = & 3 (oo

rer geG

Z eip(g) 35 (11Cs — L+ P .
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Hence, if s> 6("), then 3, {etl*¢(s — I + 1)}* < 0. Consequently we
have

(9) s —1+1) < (e

for all s > (). On the other hand, if s tends to I then ((s — [ + 1)

tends to . Hence there exists a ¢, (>l)A such that (¢t —1+ 1) = (I/e)
for all ¢, | <t < t,. Therefore by (9), 6(I") =¢t, > I.

6. A discontinuous group. We give an example which shows that
the lower bound [ in our theorem is the best possible. The construction
of the following is similar to that in [2].

Let {¢]):}! be the standard basis of R*** and let 4 be a positive number
with § = 3. We define Mobius transformations P, ---, P, (1 £ 1 < n) and
g by Px)=a+0e, 1 =i=1) and g,(a) = (—ax, +++, =&, @,p)/|xl* for
= (%, ***, Tny,). Let G(6) be the group generated by {P, :--, P, g,}.
Then, by the same argument as in [2], G(#) is a discontinuous subgroup
of Mob(H"**).

For v =(n, -+, ;) € Z* we denote the element Pro...oP% by P,
Let

é(ﬁ) = kgl{go°Pv1°go° te °go°Pyk°go: vy, 0, v €(Z2Y) .

Since I(g,) = I(g;*) and since P,(I(g,))C EXg,) for ve(Z"*, we see, by the
same argument as in the proof of Lemma 6, that each element geé(ﬁ)
is mutually distinet and satisfies a(g) € I(g,) and g(oo) # oo.

Since ¢ = id, we have

G(0) ={P, ;o9 P, 000+ o P,

vk_.logOonk: k g 2’ 1)17 ¢ .’ ”kezl} ’

so that G(&) U{g,, id} is a complete system of representatiives of the double
coset space G'\G(6)/G’, where G’ = {P:veZ'}. If geG(A)U{g,}, then no
element of the double coset G'gG’ fixes . Hence G..(6) := {g € G(0): g(eo) =
oo} is the same as G'.

Let P(y,, -+, v) = go°Pu1°go°”'°go°Pui°goeé’(0)- Then

|a(P(D1r ) pi))l = Igoo-P—yi(a(P(vu ) ”t—l)))l
= IP—vi(a(P(”v ) Vi——l)))l_l

5
= a(P(”v Tty 1)1:—1)) —0 Z..lnﬁei

for v, = (ny -+, ny) €(ZH*. Since a(P(y, -+, v;,_,) € I(g9,), we have
la(P(vy, -+, v;_))l < 1. Therefore |a(P(y, .-, v)l = {0]3)=: nie;l/2} by
0=3 and [>)., mje;]>1. Now, by Lemma 2, p(P(y, -+, v)) =
O(PWyy «++, vi_))|a(Pyy, - -+, v,))| so that, for the summation over g ¢ G,
we have

-1
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S = ZIS -+ S0P, -, v
=52 S a@e, o0l ]
<32 (e 1

where >}, is the summation defined in §4. Let X(k) be the set in the
proof of Lemma 8. Then {3, ne: (n, ---, m,) € X(k)} consists of lattice
points in the I-dimensional Euclidean space R’ satisfying [n,] <k (1 =<1 Z10)
and |n; = k for at least one i€{l, -+, 1}. Therefore |3\, ne;,| = k for
all (n, ---, n,) e X(k). Hence

so that we have, for the summation 3, over geG(a),
(10) S (ot} < 3, (2 — L+ DY

Let s, be an arbitrary number with s, > [ and let 6, (=8) be such a number
that g3 > 1207%~¢(s, — I + 1). Then the right hand side of (10) converges
for s = s,.

Let hy(x) = g,(x + e,). Applying Lemma 38 to g € G(6,)\ G(,) and h,,
we have o(hyogohi®) = p(9){|g(0) + |97 (—e,) + ell}‘i. Hence for an ele-
ment P.ogoP, of the double coset G..(0,)9G-.(6,) (g€ G(6,)U{g.}),

O(hoo PuogoP,ohi') = p(g){|g(=) + Pule) 197 o P_(—e) + P_ ()]},
where we used o(P.ogoP,) = p(g). Since ge@(ﬁo)u{go}, we see g(co)€
I(g;") = I(g,) and g~'oP_,(—e,) € I(g,). Furthermore, since 4, = 3, we have
|P,(e;)] = 2 for all y€ (Z")*. Hence |Pule,) + g(o2)[|P_(e) + g7 o P_(—e)| =
{|Pu(e)l/2H{|P_,(e)]/2} so that o(k,oPuogoP,ohs') = 40(g){|Pu(e)l1P_.(e)]}
for all g, v e (Z%)*. Because of s, > 1 we see X, |P,(e,)|™ < co. Therefore
we have the following for some constant c;:

A1) B3 Sl Puogo Pohi )} + 35 {0olhao Puogoo Po b))
= o3 {o(@)} + {0(g0)}™) »

where >, means the summation over ge@(ﬁo). On the other hand, by
Lemma 2 and (1), p(hyo P, o hy*) = |(h") (a(hyo P, o hy"))|™* = |a(hyo P, o hg*) —
ahyh)| = |P_J(0)|™* so that



422 M. NAKADA
12 S {olhae Po i) = SIP0)| ™ < o= .

Since @(00)u{g0, id} is a complete system of representatives for the double
coset space G..(6,)\G(6,)/G-(6,) and since G..(6,) = {P,: v € Z'}, the summation
Si{o(hyogohih)}° over ge G(6,)\{id} is equal to the sum on the left hand
sides of (11) and (12). Hence it converges by the inequality (10).

7. Proof of the second half of the Theorem. We set G, = hyo
G(6,) o hy'CcMob(H"*'). Let 7z be a Mobius transformation with z(B™™) =
H* and 7(«) = —e,,,, and let I'y=17t"'oGyor. Then I, is a discon-
tinuous subgroup of Mob(B"*') which satisfies the hypothesis in our Theo-
rem for & = 7 'ohc). Now, as in the proof of Lemma 9, (1 — |v(0)|)"* =
o(y /la(¥y™)| = p(v) for ve ')\ {id}.

Let geG(6,). Then g is written as g = P,og,o P, for some g, veZ'
and gle@(ao)u{go, id} so that each element of G(4,)\\{id} does not fix —e,
and —e, + €,

Since —e, and —e, — e¢,,, are not fixed by g € G(4,)\ {id}, each element,
different from the identity, of G, and I', does not fix «. Hence Lemma
8 gives o(7) = p(9)la(Y) — a(@)|/la(z™) — alg™)| for vel,\{id} and g =
tovor e G,\{id}. Since a(g™!) = g(co) € dH"™ and since a(t™) = (o) =
—e,,, we have |a(z™) — a(g7?)| = 1. Therefore p(7) < p(g){la(¥)| + 1}.

By the discontinuity of G(4,) and the fact g(—e, + €,..) * —e, + €,
for g€ G(6,) \{id}, there exists a constant ¢, > 0 such that |g(—e, + €,4,) —
(—e, + €,,)| = ¢; for all g e G(4,)\{id}. Therefore |g(—e, — €,.,) — (—e, —
e.+1)| = ¢, since the left hand side is the same as [g(—e, + €,,) — (—e, +e,4,)]
by Lemma 1. Furthermore, z7'oh(—e, — €,4;) = 77'(—€,4;) = o so that
we have |t ohy(9(—e, — €,,,))| < ¢, for some constant ¢,, Hence |a(7)| =
[T o ho(g(—e, — €, )| < ¢, for ¥ =t 7t ohyog o hyto € ')\ {id}.

Thus (1 — [7(0))"* = p(7) = e(@{la(7)] + 1} = p(9)(¢; + 1) so that

S~ 1) S U + e S ol

where v and g run over I',\({id} and G,\({id}, respectively. As proved
in § 6, the sum > {0(g)}*® over g€ G,\{id} converges so that the left hand
side of the above inequality is finite for s = s,. This implies o(I",) =< s,
and we have the second half of our Theorem.
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