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Introduction. Let Ω be a bounded domain in R2 with smooth boundary dΩ. In
Qτ: = Ωx(0, Γ), we consider the following magnetohydrodynamic equations for an
ideal incompressible fluid coupled with magnetic field:

=f in Qτ,

(u,V)B-(B,V)u = O in Qτ,

divw = 0, divJ3 = O in Qτ,

w v = 0, Bv = 0 τotB = 0 on dΩx(0, T),

Here u = u(x, t) = (u1(x, t), u\x9ί)), B = B(x9 t) = (B\x, t), B2(x9 ή) and π = π(x, t) denote
the unknown velocity field of the fluid, magnetic field and pressure of the fluid,
respectively;/=y(x, t) = (f1(x9 t)9f

2(x, ή) denotes the given external force, wo = wo(x) =
(wj(x), ul(x)) and Bo = B0(x)=(Bl(x), Bl(x)) denote the given initial data and v denotes
the unit outward normal on dΩ.

The first purpose of this paper is to show the existence and uniqueness of a global
weak solution of (*) without restriction on the data. In case B is identically equal to
zero, i.e., in the case of the Euler equations, such a problem for global weak and classical
solutions was solved by Bardos [1] and Kato [8], respectively. (Kikuchi [9] extended the
result of Kato [8] in an exterior domain.) Using the energy method developed by Bardos
[1], we can obtain a global weak solution in our case.

Our second purpose is to show the existence and uniqueness of a local classical
solution of (*). Although the method of characteristic curves for the vorticity equation
plays an important role in a global classical solution of the two-dimensional Euler
equations, such a method seems to give us only a local classical solution of (*) because
of the additional terms (B, W)B and (M, V)B—(B, V)U. Our result on classical solutions,
however, can be regarded as a generalization of that of Kato [8] in some sense.

We shall devoted Section 1 to preliminaries and definition of a weak solution of
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(*). Two main theorems will then be stated. Sections 2 and 3 will be devoted to the
proofs of the main theorems.
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1. Results.

1.1. Notation. Let us introduce some function spaces. C£σ(Ω) denotes the set of
all C°°-real vector-valued functions φ = (φ1, φ2) with compact support in Ω such that
div φ = 0. H is the completion of CQJSΪ) with respect to the ZΛnorm || || ( , ) denotes
the ZΛinner product. V denotes the set of all vector-valued functions u in HX(Ω) with
divu = 0 in Ω and w v = 0 on dΩ. Equipped with the norm | |:

| W | 2 = | | r o t W | | 2 + | | W | | 2 ,

V is a Hubert space. Here and hereafter, we shall use the notations rot u for a vector
function M = (U1,M2) and rot^ for a scalar function ψ representing rotw =
du2/dxι — du1/dx2 and ΐθtψ = (d\l//dx2, —dψ/dx^, respectively. By Duvaut-Lions [3,
Chapter 7, Theorem 6.1], we have

(1.1) \\u\\HHΩ)^C(Ω)\u\ for all ueV.

Hence the norm | | is equivalent to the one usually induced from HX(Ω) and V is
compactly imbedded into H.

If Xis a Hubert space, then Z/(0, T; X) (1 ̂ p< oo) denotes the set of all measurable
functions u(t) with values in X such that \l\\u(t)\\^dt< co (|| \\x is the norm in X).
L°°(0, T; X) denotes the set of all essentially bounded (with respect to the norm of X)
measurable functions of t with values in X. In the case of X=L2(Ω), we denote by
|| \\2tP and || ||2>00 the norms in Z/(0, T; L\Ω)) and L°°(0, Γ; L\Ω)\ respectively.

Let Cm([0, Γ]; X) denote the set of all A"-valued w-times continuously differentiable
functions of t (O^ί^ T). C£([0, T); X) is the set of all X-valued w-times continuously
differentiable functions on [0, T) with compact support in [0, T).

Ck+a(Ω) for an integer k^O and 0 ^ α < l denotes the usual Holder space of
continuous functions on Ω. \ \k+Λ denotes the norm in Ck+a(Ω). CkJ(Qτ) for integers
k,j^0 is the set of all functions φ for which all the dq

xd
r

tφ exist and are continuous
on Qτ for 0^\q\^k, O^r^y'. Ck+aJ+β(Qτ) for integers k,j^0 and 0^α,j3<l is
the subset of CkJ(Qτ) containing all functions φ for which all the dq

xd\φ9 0^\q\^k,
O^r^j, are Holder continuous with exponents α in x and β in t. If

K">β(φ) = sup {I φ(x,t) - φ(x\ ί)l /I x ~ * Γ (x, t\ (*', 0 e Qτ, \x - x'\ < 1}

+ sup{| </>(*, ή-φ(x, f ) l / | t - ί Ί ' ; (x, t),(x, f)eQT9\t-f\<l} ,
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we define the norm | \k+aJ+β in Ck+<xJ+β{Qτ) by

\φ\k+aJ+p= sup Σ\q\^\didr

tφ(xfί)\^Σ\q\=kKaΛdq

xdίφ).
(x,t)eQτ r^j

For the spaces of vector-valued functions, we shall use the bold-faced letters analogously.
Throughout this paper, C, Cί9 C2, * will denote positive constants which may

be different in each occurrence. In particular, we shall denote by C=C(*, •••,*) the
constant depending only on the quantities appearing in the parentheses.

1.2. Definitions and results. Our definition of a weak solution of (*) is as
follows:

DEFINITION 1.1. Let u0 e H, Bo e H and / e L2(0, T; L2(Ω)). A pair of measurable
vector functions u and B on Qτ is called a weak solution of (*) if

(i) neL ίO, T; H)nL2(0, T; F), £eL°°(0, T; tf )nL2(0, T; V);

(ii) f Γ {-(«A*) + ((«, V)w-(5, V)5, Φ)}Λ = (tι0, Φ(0))+ I Ttf, Φ)dt,
Jo Jo

{-(B, dtΦ) + (rotB, rot Φ)+((M, V)B-(B, V)W, Φ)}dt = (B0, Φ(0))ί1
Jo

forallΦeCέ([0, T);V).

Concerning the uniqueness of weak solutions of (*), we have:

PROPOSITION 1.1. There exists at most one weak solution of(*). If {u, B} is a weak
solution of(*), after a suitable redefinition ofu(t) and B(t) on a set of measure zero of the
time interval [0, T], we have ueC([0, T\; H) and BeC([0, T\; H).

Since the proof of this proposition is parallel to that of Temam [16, Chapter 3,
Theorem 3.2], we omit it.

Our result on the existence of a weak solution now reads as follows:

THEOREM 1. Let uoeK BoeVand/eL2(0, T;L2(Ω)) with rot/eL2(0, T;L2(Ω)).
Then there exists a weak solution {«, B} of (*) such that WGL°°(0, T; F)nC([0, T];H)
and BeL2(0, T; H\Ω)) n C([0, T\\ V).

We next proceed to our result on classical solutions. To this end, we make the
following assumptions on the domain Ω and the given data w0, Bo and/.

ASSUMPTION 1. The boundary dΩ of Ω consists of m +1 sufficiently smooth, simple
closed curves So, Sl9 , Sm9 where Sj 0 = 1 , * , m) are inside So and outside one
another.

Gϋnter [7, 1., p. 122] refers to the above assumption as "Case /".
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ASSUMPTION 2. u0eC1+θ(Ω),B0sC2+θ(Ω) and feC1+θ>°(Qτ) hold for some

O < 0 < 1 . Moreover, w0 and Bo satisfy the conditions divwo = 0, divBo = 0 in Ω and

w0' v = 0, Bo - v = 0 on dΩ.

Our result on the existence and uniqueness of classical solutions reads as follows:

THEOREM 2. Under the assumptions 1 and 2, there is a positive number

C* = C*(9> τ> l"oli+β> l/li+β.o) 5 M c Λ ' Λ α ' */ l^oL+β^C** t n e r e e x i s t s a solution
{M, B, π} e C 1 ' 1 ^ ) x C2Λ(QT) x C 1 | 0 ( g r ) o/(*). SwcΛ a solution is unique up to addition
to π of an arbitrary function of t.

REMARK 1.1. (i) Taking B0 = Q in Ω, we have the result of Kato [8].

(ii) Our construction of the solution of Theorem 2 ensures us that ueC1 +θ Λ(QT) and

BeC2+θ'Λ2+θ>)/2{Qτ) for some 0'e(O, θ).

2. Existence of a global weak solution; Proof of Theorem 1.

2.1. The operator A. For the proof of Theorem 1, we shall use the Galerkin

method. In order to make use of a special basis, we introduce the operator A from

D(A) to H as

for ueD(A) = {ueH2(Ω); uv = 0, rotu = 0 on dΩ} nH. See Miyakawa [13, Lemma 3.3].

Then we have:

PROPOSITION 2.1. 1. A coincides with the positive self adjoint operator on H defined

by a positive quadratic form a{ , ) on V x V\

a(u, v) = (rot w, rot v) + (M, υ\ u,veV.

This implies

(2.1) V=D(A1/2), | |A 1 / 2 M|| 2 =| |rotM| | 2 +| |M| | 2 for ueD{A1/2).

2. Zero is not an eigenvalue of A.

3. There is a constant C= C(Ω) such that

(2.2) ll«ll^(ii)^C(||Διι|| + ||ιι||) for all ueD{A).

Indeed, 1 is easy. 2 is a consequence of (2.1). 3 follows from Georgescu [5,

Theorem 3.2.3]. See also Sermange-Temam [14, p. 642, (2.8)].

By Proposition 2.1, we see that the operator A possesses a complete orthonormal

system {φ3)JL x of H of eigenfunctions:

φj e D(A), Aφj = λjφj, λj > 0 , λj-> + oo , j-*co;

(2.3) (rotφ j9 rot ύ) + (φj9 u) = λj(φp u) for all ueV.
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2.2. PROOF OF THEOREM 1. We shall use {φj}jLχ defined in (2.3) as a basis of
Galerkin approximation. For every integer m, we define {um, Bm} = {um(x, t), Bm(x, t)}
as

and we may choose {#/m}7= i and {hjm}J= x satisfying the following equations:

MM φj) + ((uM VKίt) ~ (BM V)BM φj) = (/(ί), Φj),

(2.4) (B'Jt\ φj) +(rot BM τot φj) + ((uM V)Bm(t)-(Bm(t)9 V)um(t), φj) = O,

(2.5) u m (0)=ΣJ = 1 (u o , φj)φj, 5m(0) = Σ ^ 1 ( β o , φj)φj.

As is well-known, there is Tm>0 such that (2.4) with (2.5) has a unique solution on
[0, Tm). Moreover, the following a priori estimate guarantees that Tm=T.

Energy estimates: After multiplying the first and the second equation of (2.4) by
gjm(t) and hjm(t), respectively, we add these equations. By integration over (0, /), we get

(2.6)

m(s)\\2ds+\ \\f(s)\\2ds.- f'||um(s)||2

ί/5+ ί'||
Jo Jo

Here we used the identities ((u, V)v, v) = 0 and ((M, V)U, W)= — ((M, V)W, V) for w, v9weV.
Hence by the same technique as that used in the proof of GronwalΓs inequality, we have

(2.7) ll"^,(ί)ll2H- 2 Γ
Jo

fora l l ίe[0, T].
Estimates of the derivatives of higher order: By (2.3), we see that the equalities

(u, λjφj) = (M, Aφj) = (rot M, rot φj) + (w, φj)

hold for all M 6 K Hence multiplying the first and the second equation of (2.4) by λj9 we
have

(rot u'm, rot φj) + ( C Φj) + ((um, V)um - (Bm, V)Bm9 Aφj) = (/, Aφj),

( r o t ^ , rotφj) + (B'm, φj) + (rot(rotBm\ Aφj) + ((um> V)Bm-(5w, V)κm, A ^ ) = 0

(7=1, •• ,m).

Proceeding as we did in deriving (2.6), we obtain

+ ((wm, V)wm - (βm, V)Bm, rot (rot um) + u J
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+ ((«,, V)Bm - (Bm, V)um, rot (rot BJ + Bm)=(f, rot (rot « J + w j .

Taking into account rotwm=0, rotSm = 0 on δΩ, after integration by parts we get

2 + 2 Γ(
Jo

(2.8) ||ωm(t)ll2 + ||«m(ί)l|2+ μm(ί)| |2 + ll*m(t)ll2 + 2 Γ(| |ΔBJ|3 + \\JJ2)ds
J

+4 ί'ddBl/dxJDUn+iduMδxJDBn, JJds
Jo

= ||ωm(0)||2 + ||um(0)||2+ | |JJ0)| | 2 + ||Bm(0)||2 + 2 Γ{(rot/ ωj + (f, uj}ds,
Jo

where ωm = rotMm, /m = rotβm, Dum = δu1Jdx2 + du2Jδxι and
Her.e we used the equalities ((«„, V)ωm,ωJ=((Mm, V)Jm,JJ = 0 and ((Bm, V)Jm, ω j =
-((Bm,V)ωm,JJ.

Now, let us investigate the sixth term on the left hand side of (2.8). By the Holder
inequality, the Gagliardo-Nirenberg inequality (Tanabe [15, Chapter 1, Lemma 1.2.1]),
(1.1) and (2.2), we have

I((δB2Jδx2)Dum, JJI^

ύC\\BJH,(Ω)\\BJHHΩ)\\DuJ

ί C(\\BJ + μjIXHΔBJI + ||

I {(δuUδXl)DBm, JJ I g Wδu'Jδx, || ||DBm | | t4(O) | |Jm | | t4(O)

ίC\\VuJ\\BJHHΩ)\\BJHHΩ)

+ μj|X||ΔBm | | + HBJIXIIuJI + \\ωj),

where C = C(Ω) is a constant independent of m. Hence by the Schwarz inequality and
(2.7), we get for any ε>0

I ((2.9) I (\(δB2Jδx2)Dum+(δullδxJDBn, JJds

2 {'\\JJ2ds
Jo
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where C1 = C1(Ω, T, \\uo\\, \\B0\\, | | / | | 2 > 2 ) is a constant independent of m. Substituting

(2.9) into (2.8) and then taking ε = l/2Cl9 we have

(2.10) ||c

+ C2 Γ(l +
Jo

where C2 = C2(Ω, Γ, ||wo||, ||2?oll> 11/112,2) is a constant independent of m. By application

of GronwalΓs technique as in the derivation of (2.7), we see that

(2.11) ||ωm(ί)ll2+ ||/m(ί)ll2+ ί'wABJsψds
Jo

^(IIrotι/0II2 + IIrot^oII2 + C 2 )expί C 2 (1 + | |J m (s) | | 2 + \\τotf(s)\\2

2t2)ds I
\ Jo /

^ C 3 = C 3 (β, T, \uol \B0\9 | | / | | 2 , 2 , | | r o t / | | 2 f 2 ) (by (2.7))

for all t e [0, T], where C 3 is a constant independent of m.

Taking into account (1.1) and (2.2), we can deduce from (2.7) and (2.11) that the

sequence {«„,}£= I remains in a bounded set o/L°°(0, T; V) and that the sequence {Bm}™=1

remains in a bounded set o/L°°(0, T; V) n L2(0, T; H2(Ω)). Hence there exist a subsequence

of {wm, Bm}, which we denote by the same letter, and functions weL°°(0, T; V) and

£eL°°(0, T; F)nL2(0, T; H2(Ω)) such that

wm->w weakly-star in L°°(0, Γ; F ) ,

(2.12) Bm-+B weakly-star in L°°(0, T F ) ,

weakly in L2(09T;H2(Ω)) ,

Moreover by (2.4) and (2.11), we see that for each fixedy, the families {{um(t\ φj)}m=i

and {(Bm(t\ φj)}m = i form uniformly bounded and equicontinuous families of continuous

functions on [0, T], respectively (see, e.g., Ladyzhenskaya [10, p. 175]). Hence by the

Ascoli-Arzera theorem and the usual diagonal argument, there exist subsequences {um.(ή}

and {Bm.(ή} of {um(t)} and {BJt)} which converge to some ΰ{t) and B(t), uniformly in

t G [0, Γ] in the weak topology of H, respectively. Clearly u = ΰ and B=B. For simplicity,

we shall assume that the original sequences um and Bm converge to u and B, respectively.

By means of the techniques of the Friedrichs inequality (Courant-Hilbert [2,

p. 519]) and (1.1), we have

(2.13) wm->" strongly in L2(QT)
2, Bm-+B strongly in L2(QT)

2 .
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Now by the routine passage to the limit (see, e.g., Temam [16]), we can deduce from
(2.12) and (2.13) that {u, B} is a weak solution of (*).

To complete the proof of Theorem 1, it remains to show that Be C([0, T\; V). Since
weL°°(0, T V), J3eL2(0, Γ; jy2(Ω))nL°°(0, T; V), we get by the Gagliardo-Nirenberg
inequality and the continuous imbedding H2(Ω)czLco(Ω)

-(B9 V)u\\ = ||(M,

This implies (u, W)B-(B9 V)u = rot(5 Λ U) e L2(0, T; H). Hence by the second identity of
Definition 1.1 (ii), we see that B! e L2(0, T; H). Therefore, it follows from Lions-Magenes
[12, p. 19, Theorem 3.1] that £eC([0, Γ]; V).

3. Existence of a local classical solution; Prood of Theorem 2. In this section,
we shall show the existence of a local classical solution by using the Schauder fixed
point theorem as in Kato [8] and Kikuchi [9].

3.1. Construction of the flow u.

LEMMA 3.1. Under the assumption 1, there exist u(k)eC1+μ(Ω) (fc=l, ,m) for
some μ>0 satisfying the following properties:

(i) div w(k) = 0 , rot u{k) = 0 in Ω, w(k) v = 0 on dΩ; {k = 1, , m)

(ii) I u(k) τdS = 0 if jΦk, I M(k) τ</S=l, 0 = 0, , m, k= 1, , m)
JSj JSk

where τ denotes the unit tangent vector on dΩ and dS denotes the line element of dΩ.

PROOF. It follows from Gunter [7, p. 206, p. 209 (58)] that there exist m linearly
independent functions \l/ik)eC1+μ(dΩ) (fc=l, ,m) satisfying the following properties
(1), (2), (3):

(1) ί'ψ<k>dS=0 if jΦk9 [ ψ(k)dS=\; 0 = 0, ,m, fc=l, , m)
JSj JSk

(2) ψ<k\x) = (l/π)[ ψikXξ)(d/dvx)log(l/\x-ξ\)dξS for xedΩ; ( f c = l , •• , w )
J δΩ

(3) For each k=l, ,m, the function $dΩψik)(ξ)log(\l\x-ξ\)dξS on R2 is constant
outside Ω.

Then the desired u(k) (k = 1, , m) are defined by

) f
JdΩ
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Since the proof that such u(k) (fc = 1, , m) have the properties (i) and (ii) is parallel to

that of Kikuchi [9, Lemma 1.5], we may omit details.

Now let us define a function space Sa(M, N) for M> 0, N> 0 and 0 < α < Min. {θ, μ]

by

Sα(M, N) = {φeCa>"(Qτ); \φ\o

For the notation, see Subsection 1.1. For φeSa(M,N), let us define a map Fγ: φ-*u by

where

(3.1) λk(t) = | u 0 τdS + I I f(ξ, σ) τ d ξ S d σ - \ r o t G 0 ( - , t ) τdS.
Jsk JoJSk Jsk

Here, {M(k)}J=1 are as in Lemma 3.1 and G denotes the Green operator of — Δ with

zero Dirichlet boundary condition on dΩ.

LEMMA 3.2. For φeSa{M,N), we have u = F^eC1+a'a~{QT)foranyO«x~<oi9

divw = 0 in Ω and uv = 0 on dΩ. Moreover, there is a positive constant

C4 = C4(Ω,T,\u0\0i\f\0f09M,N)such that\u\1+a,a-^C4.

PROOF. Set u = uί+u2, where uί= rot Gφ and u2 = Σ™=1λku
{k). By Assumption 2

and Lemma 3.1, it is easy to see that the assertion of this lemma holds for w2. Let us

prove the assertion for u1. By the Schauder estimate of — Δ (see, e.g., Gilbarg-Trudinger

[6, Chapter 4]), there is a constant C=C(Ω, α) such that

(3.2) sup \ux(x,t)\+ sup \Vux(x9t)\
(x,t)eQτ (x,t)eQτ

+ sup{| VWl(x, ή-VMx', ί )\/\x-*I" (x, 0,

ίe[0,Γ] ίe[0,Γ]

Similarly, for xeΩ,t, ί'e[0, T] with | ί-/; | < 1, the inequalities

Wl(x, ί)-VWl(x, 01

hold for any 0 < r < α . Using the argument of Kato [8, Lemma 1.2], we have

and hence

(3.3) sup{ K(*, t)-«i(*. 0I/I t - f Γ"; (x, 0, (x, OeSr , I t-f\< 1}

+ sup{| VMl(x, t ) - VMl(x, t') I/I t - ί T ; (x, 0, (x, t')e Qτ, \ t-1'\ < 1}
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holds with α~ : = α(l-r/α). It follows from (3.2) and (3.3) that ux has the desired prop-
erty.

3.2. Construction of the magnetic field B. In this subsection, we shall solve the
following equations for the magnetic field B:

0 in Qτ,

(M.E.) d i v * = ° i n β '
£ v = 0, rot5=0 on dΩx(0, Γ),

B\t=0 = B0 ,

where u is the flow constructed in the preceding subsection. To this end, we shall
transform (M.E.) to the equations for a scalar potential of B. Let us first consider the
following system of equations of parabolic type:

θtB- ΔB + (u, V)5-(5, V)w = 0 in β τ ,

(P.S.) 5 v = 0, rot 5 = 0 on δΩx(0, Γ),

We define a weak solution of (P.S.) as follows:

DEFINITION 3.1. Let B0eL2(Ω) and M, VweCαα/2(βΓ). Let H1

N(Ω) = {φeH\Ω);
φv = 0 on dΩ}. A measurable vector function B on Qτ is called a weak solution of
(P.S.) if

(i) Be L°°(0, T; L\Ω)) n L2(0, T; J5Γj(Q));

(ii) I { - (5, dtΦ) + (rot 5, rot Φ) + (div 5, div Φ) + ((u, V)5- (5, V)w, Φ)}Λ = (JJ0, Φ(0))
Jo

In the above definition, for a smooth solution B, we have by integration by parts

( - Δ5, Φ) = (rot(rot B) - V(div B\ Φ)

= rot B rot Φdx - (rot B)v A ΦdS -h div B div Φdx - (div B)Φ vdS
JΩ JdΩ JΩ JdΩ

= (rot 5, rot Φ) + (div 5, div Φ) ,

since rot5 = 0, Φ v = 0 on dΩ.
Since (P.S.) is a system of linear equations for B, it is not difficult to see the fol-

lowing:

PROPOSITION 3.1. Suppose that BoeL2(Ω) and w, Vwe Cα 'α / 2(β τ). 77H?H

α unique weak solution B o/(P.S.).
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In order to solve the equations for a scalar potential of B, we need the following:

LEMMA 3.3. Let Bo be as in the assumption 2. Then the boundary value problem

— Aφ0 = rotB0 in Ω, φo = 0 on dΩ

has a unique solution φ0 in C3*Θ(Ω). Moreover, there is a constant C5 = C5(Ω, θ) with

For the proof, see, for example, Gilbarg-Trudinger [6].

LEMMA 3.4. Let u and φ0 be as in the preceding subsection and Lemma 3.3,

respectively. Then there exists a unique scalar function φ in C2+a'i2+a)l2(Qτ) such that

= 0 in Qτ,

(P.E.) ψ = 0 on d β χ ( 0 , Γ),

Since ueC1+a'a/2(Qτ) by Lemma 3.2, the assertion of this lemma follows from a

general theory of parabolic equations. See, for example, Ladyzhenskaya-Solonnikov-

Ural'ceva [11, p. 320, Theorem 5.2].

We can now show the existence of a regular solution of (M.E.).

LEMMA 3.5. Let φ be as in Lemma 3.4. Then B = τotφ is in C 2 + α ' ( 2 + α ) / 2 ( β Γ ) and

satisfies the equations (M.E.). Moreover, there is a positive constant C6 = C6(Ω, T, oc, | u0|0,

\f\OfO,M,N)such that \B\2+aΛ2+a)/2^C6\B0\2+θ.

PROOF. TO begin with, suppose that B=rotψ is a weak solution of (P.S.) with

the initial data Bo. Since B0eC2+θ(Ω) by Assumption 2 and since w, VweCα 'α / 2(βΓ)

with | « | 1 + α α - ^ C 4 by Lemma 3.2, we can deduce from Ladyzhenskaya-Solonnikov-

UraΓceva [11, p. 616, Theorem 10.1] by taking 6 = 1, r = 2, sx =s2 = 0, tx = t2 = 2, σ1 = -2,

σ 2 = — 1 , P i = P 2 = ~ 2 and / = α that there exists a unique solution B of (P.S.) in

£»2+α,(2+α)/2^ρ^ ^ ^ ^ inj tjai ^ata BQ replaced by Bo. Moreover, we see such B is

subject to the inequality

\l+θ

Since such B is clearly a weak solution of (P.S.) with the initial data Bo, Proposition

3.1 enables us to assert B=B. Taking into account the fact that div(rot) is identically

equal to zero, we have the desired result.

Now it suffices to prove that B = rot φ is a weak solution of (P.S.) with the initial

data Bo. Since φ\eΩχ(o,τ) = ®> w e have Bv = τotφv = dφ/dτ = 0 (d/dτ; tangential

derivation) on dΩ x (0, T) and clearly BeL°°(0, T; L2(Ω)) n L2(0, T; Hι

N{Ω)).

Concerning that initial condition, we have rot φ(ϋ) = rot φo = Bo. Indeed, the vector

function V: = rotφ0 — B0 is in C2+Θ(Ω) and satisfies d i v K = 0 in Ω and Vv =
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dφo/dτ — i?0 v = 0 on dΩ. Hence by the well-known decomposition theorem of solenoidal
vector fields on Ω (see Kato [8, p. 193,(1.13)]), Fcan be written as F=rotG(rot V) + Vp
for some/7e C°°(Ω). Moreover, since rot V= — Δφ0 — rot Bo = 0 in Ω by Lemma 3.3, such
p must satisfy Δ/? = 0 in Ω and dp/dv = 0 on dΩ. Therefore p = const, and F=0, as we
wished to show.

Finally, we may show the identity (ii) in Definition 3.1 for B with Bo replaced by
Bo. It follows from (P.E.) that

(3.4) (dtφ + τotB+(u9V)φ9rotΦ)dt = 0
Jo

for all Φe Cj([O, T); Hlf(Ω)). By integration by parts we get

(3.5) I (dtφ, rot Φ)Λ = - I (φ, rotdtΦ)dt-(φ(0), rotΦ(O))
Jo Jo

= - (rot φ, dtΦ)dt - φ(dtΦ A v)dSdt - (rot φθ9 Φ(0))
Jo J0 JdΩ

- f <Ao(Φ(0) Λ v)dS= - Γ(B, d,Φ)dt-(Bo, Φ(0)) ,
JdΩ JO

((u, V)ιA, rot Φ)dί = (rot((u, V)φ), Φ)dt + (M, V)φ(Φ
Jo Jo JO J dΩ

Since ^ = 0 on δΩ, Vty is perpendicular to dΩ and hence (M, V)ι̂  = 0 on dΩ. Thus the
second integrand above is equal to zero. Moreover since divw = 0, we have
rot((w, V)φ) = (w, V)rot φ - (rot φ, V)M. Therefore

(3.6) f T((u, V)φ, rot Φ)dt = Γ((«, V)B-(B, V)M, Φ)dί.
Jo Jo

Since divi?=0, it follows from (3.4), (3.5) and (3.6) that B=rotφ satisfies the equation
which we wished to prove. This completes the proof.

Lemma 3.5 enables us to define a map

F2: C1+a>a/2(Qτ)-+C2+aΛ2+a)l2(Qτ)

by B = F2u.

3.3. Vorticity equation. Applying rot to both sides of the first equation of (*),

we get

tf in Qτ,
ω(0) = ω o ,

where ω = rotw, J=votB and ω 0 = rotw0. We shall consider (V.E.) as the initial value
problem for ω.
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Let u and B be as in the preceding subsections. For a weak solution ω of (V.E.)
we give the following definition:

Γ(fl, V)J(UJx)9 s)ds + Γ
Jo Jo

(3.7) ω(x, t) = ωo(UOtt(x)) + Γ(fl, V)J(UJx)9 s)ds + Γ rot f(UJx), s)ds ,
Jo Jo

where Ust(x) is the solution of the initial value problem of the ordinary differential
equation

As is well known, if ω0, (B, V)J and rot/are in C1, then ω defined by (3.7) is a classical
solution of (V.E.).

REMARK 3.1. (i) Since u(k)eC1+μ(Ω) (k=l,' ',m) and since
T, \u\09 \f\o,o, M) for all te[0, T\ {k= 1, , m) (see Kato [8, Lemma 1.4]), it follows
from Kato [8, Lemma 2.6] that there are positive constants C8 = C8(Ω, M) and
δ = δ(Ω, T, M) independent of N such that

for |JC—J

(ii) There is a positive constant C9 = C9(Ω, T, | u010, | / 1 0 > 0 , M, N) such that

for I x — x' I ^ 1, I s—s' \ ^ 1, 11 — t' \ ^ 1. In comparison with the inequality in (i), we can
choose δ=l, but the constant C9 may depend on N.

Let us show, for example, | Ust(x)— Ust(x')\^C9\x — x'\ for x,xΈΩ and 0^ t^s .
Taking x(s) = UStt(x) and x'(s)=Us[t(x% we have \d(x(s)-x'(s))/ds\ = \u(x(s)9s)-u(x'(s\
s)\^\u\uo\x(s)-x'(s)\. Hence \x(s)-x'(s)\^\x-x'\ + \u\uoγt\x{τ)-x\τ)\dτ. By the
Gronwall inequality and Lemma 3.2, we get \x(s)-xf(s)\^uU'oT\x-xf \^C9\x-x'l
which implies the desired result when t = tf and s = s'. Since the proof in another case
is parallel to that of Kato [8, Lemma 2.6, (ii), (iii)], we may omit it.

(iii) For any ΦeC1(Ω), ω satisfies the identity

d/dt{ω{t\ Φ) = (ω(t), (u(t\ V)Φ) + ((B(t), V)J(ί) + rot/(ί), Φ) .

LEMMA 3.6. There are positive constants α* = α*(Ω, Γ, 0, M), C10 = Cί0(Ω, T,
Θ,M) independent of N and C 1 1 = C 1 1 ( Ω , Γ, 0, | M O | O , | / | 0 > 0 , M, iV) such that ωe

C"*a*(Qτ) and

(3.8)

(3.9) ^
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PROOF. Since Ust( ) is a one-to-one measure preserving map of Ω onto itself (see
Kato [8, Lemma 2.3]), (3.8) is an immediate consequence of Lemma 3.5. Let ωί9 ω2

and ω 3 be

ωx(x, t) = ωo(UOit{x)), ω2(x, t) = rot/(£/s>ί(x), s)ds
Jo

and

ω3(x,t)=\t(B9V)J(USft(x),s)ds.
Jo

By Remark 3.1 (i), we get

\ t')\^\ωo(UOtt(x))-ωo(UOtt(x'))\ +1ωo(Uo,t(x'))-ωo(Uoχ(x'))I

ύ\uo\ί+θ(\ Uo,t(x)-UOtt(x')\θ + \ Uo,t(x')-Uoχ(x')\θ)

Taking (x* = θδ (α* = α*(Ω, Γ, θ, M)), we obtain

(3.10) * « * >

Similarly it follows that

(3.H) ^

By Lemma 3.5 with α replaced by α* and Remark 3.1 (ii), we have for t>t'

ω3(x, t)-ω3(x', t')\S\ I(B, V)J(i/s,r(x), s)-(B, V)J(l/ffl(x'), 5)|ds
0

Jo
+ f I (B, V)J(l/s,f(x'), s)-(B, V)J(L/s,,(x0, 5) I ds

J

ίCt Γ|(5,
Jo

Hence we get

(3.12) K"*

Then (3.9) follows from (3.10), (3.11) and (3.12). This completes the proof.

Lemma 3.6 enables us to define a map
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F3: C 1 w / 2 ( β r ) x

by ω = F3(u9 B)9 where ω is as in (3.7).

3.4. Application of the fixed point theorem. We take two positive numbers M
and N and exponent α* as follows:

oc* = α*(Ω, T,Θ,M),

where C 1 0 and α* are as in Lemma 3.6. For such M, N and α*, we define a subset
Sa*(M, N) of continuous functions on Qτ as in Subsection 3.1. Clearly Sα*(M, N) is a
compact convex subset in the Banach space C(QT). Moreover, we define a map F on
SAM9N) by

Fφ = F3(F1φ9F2(Fίφ)) for φeSAM,N)

with α replaced by α* in the context of the preceding subsections. Then it follows from
Lemmas 3.2, 3.5 and 3.6 that Fmaps Sa*(M, N) into Ca*'a*(Qτ). More precisely, by (3.8)
and (3.9) we have the following:

LEMMA 3.7. There are two numbers M=M(Ω9 Γ, | w o | l 5 | / l i > 0 ) and N=

N(Ω, T, \uo\1+θ9 | / l i + 0 , o ) , positive exponent α* = α*(Ω, T, \uo\l9 | / | l f 0 ) and constant
Cm = CJΩ, T, | « o l i + β , 1/li+β.o) such that if\B0\2+e^C^ then Fmaps Sa.{M,N) into
itself.

In order to apply the Schauder fixed point theorem, we need:

LEMMA 3.8. Under the condition of Lemma 3.7, F is continuous on Sa*(M, JV) with
respect to the topology of C(QT).

PROOF. Let φn, φeSAM9N), /i=l, 2, and \φn — Φlo.o^O as n-^oo. Let MΠ =

FxφΛ9 u = Ftφ9 Bn = F2un, B=F2u, ωn = F3(un, Bn), ω = F3(u, B) and let UnJx) and USJ(x)

be the solutions of dUlt(x)/ds = un(Ult(x%s% Un

ut{x) = x and dUs>t(x)/ds = u(UStt(x),s),

Uttt(x) = x, respectively. Since ww-M = rot G(φn-φ)-ΣΓ-i(fsk

rot G(φn-φ)-τdS)uik)

(for uik\ k— 1, , m, see Lemma 3.1), we see by Kato [8, Lemma 1.4] that | un — u lo.o^O.
Then it follows from a general theory for ordinary differential equations that
U"t(x)-+Ust(x) uniformly in xeΩ, s, ίe[0, T\. Hence by (3.7), it suffices to prove that

(3.13) \dlBn-dlB\OtO-+0 for

We shall first prove that Bn-+B uniformly in Qτ. Let ψn and φ be the scalar
potentials of Bn and B defined as in Lemmas 3.4 and 3.5, respectively. Then we have

dtΨn-AΨn + (un,V)Ψn + ((un-u)9V)ψ = 0 in Qτ,

Ψn = 0 on 5Ωx(0, Γ),
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where Ψn=φn — ψ. Hence Ψn can be written as

Ψn(x, t)= - [dσ [ E(x, y, t-σ){(un, V)Ψn(y, σ) + ((«,-«), V)ψ(y, σ)}dy ,
Jo JΩ

where E(x, y, t) is the fundamental solution of dt—Δ with zero Dirichlet condition on
dΩ. Hence it follows from a well-known property of the fundamental solution (see, e.g.,
Friedman [4]) that

\VxE(x,y,t-σ)\{\un(y,σ)\\VyΨn(y,σ)\

+1 un(y, σ) - u(y, σ) \ \ Vyφ(y, σ) \}dy

o

Using GronwalΓs technique, we get

^ C{T) exp(2Γ1/2C(Γ)| un |0,0) | Wφ |o,ol " n-«| o,o

for all ίe[0, Γ] and hence

(3.14) I V y J c o ^ C e x p ί q ^ l o ^ l V ^ l c o K - w k o ,

where C is a positive constant independent of n. Since MΠ->M uniformly in Qτ, we obtain
from (3.14) that \Bn — B\oo^>0. Moreover by the a priori estimate in Lemma 3.5, the
sequence {i?π}*=i is precompact in C2Λ(QT). Hence every sequence in turn has a
convergent subsequence with the limit B. Therefore the sequence {Bn}™=1 itself
converges to B in C2fί(Qτ) and (3.13) follows. This completes the proof.

It follows from Lemmas 3.7, 3.8 and the Schauder fixed point theorem that under
the condition of Lemma 3.7, there exists ωeS^(M, N) such that Fω = ω.

3.5. PROOF OF THEOREM 2. Let ω be the fixed point of the map F constructed
in the preceding subsection. Here we shall show that the pair w = iΓ

1ω, B = F2(F1ω)
and some scalar function π is the classical solution of (*) stated in Theorem 2.

Concerning the regularity of w, we see by Kato [8, Lemmas 3.1 and 3.2] and Remark
3.1 (iii) that u, dxu and dtu are in C{QT). To show the existence of pressure π, we
need:

LEMMA 3.9. Let v be a vector-valued function of class Ck'q(Qτ) (k^.0, q^O)
satisfying
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υ'τdS=0(j=h'-9m)9 \ v
JSj JΩ

rotφdx = 0 for any φeC%(Ω).

Then there exists a scalar function πeCk+1'q(Qτ) such that v— — Vπ.

This may be regarded as a generalization of the Poincare lemma. For the proof,
see Kikuchi [9, Lemma 2.13].

LEMMA 3.10 (PROOF OF THEOREM 2). Under the condition of Lemma 3.7, there
exists a scalar function πeCίt0(Qτ) such that the triple {u, B, π} is the unique solution
of(*) stated in Theorem 2.

PROOF. Let v = dtu + (u, V)u-(B, V)£+V((l/2)|£|2)-/ Since

ί (w,V)wτdS= ί V((l/2)M2) τ</S=0
JSj JSj

for all weC1(Ω) with divw = 0 and w τ = 0 on dΩ, we have by Lemma 3.1 and (3.1)
that

i? τέ/5= (dtu-f)τdS=0
JSj JSj

Moreover since rotw=— AGω = ω by Lemma 3.1 (i) and since (rot w, (ι/, V)</>) =
-((w, V)u, rot φ) for all φeC$(Ω\ we obtain from Remark 3.1 (iii)

Iv rotφdx = 0 for any

Hence by Lemma 3.9, there exists a scalar function πeClt0(QT) such that v= — Vπ.

To prove that {«, B, π} is the desired solution, it remains to show that u\ t=0 = u0.

Set w = u\t=0-u0. Then it follows from (3.1) and (3.7) that

rot w = rot u\t=0 — rot wo = ω( ,0) — ω o = 0,

0 = 1 , - ,m).wτdS=\ rotGw(-90)τdS+λj(0)-\ uo τdS=0
JSj JSj JSj

Therefore by Lemma 3.9, we have w = Vη for some ηeC2(Ω). Since divw = 0 in Ω and
w v = 0 on dΩ, such η must satisfy Aη = 0 in Ω and dη/dv = 0 on dΩ. Hence η = const,
and w = 0. This completes the proof.
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