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Introduction. Let Q be a bounded domain in R? with smooth boundary 0. In
Qr:=Qx(0, T), we consider the following magnetohydrodynamic equations for an
ideal incompressible fluid coupled with magnetic field:

du+(u, Viu—(B, V)B+V(1/2)|B)+Va=f in O,

0,B—AB+(u, V)B—(B, V)u=0 in Qr,

(*) divu=0, divB=0 in Qr,
u-v=0, B-v=0 rot B=0 on 2x0,T),
u,_o=to, Bl,_o=B,.

Here u=u(x, t)=(u'(x, t), u*(x, t)), B=B(x, t)=(B'(x, t), B(x, t)) and n=n(x, t) denote
the unknown velocity field of the fluid, magnetic field and pressure of the fluid,
respectively; f=f(x, {)=(f(x, t), f%(x, t)) denotes the given external force, u,=uy(x)=
(ud(x), u3(x)) and B, = By(x)=(Bi(x), B3(x)) denote the given initial data and v denotes
the unit outward normal on 9Q.

The first purpose of this paper is to show the existence and uniqueness of a global
weak solution of () without restriction on the data. In case B is identically equal to
zero, i.e., in the case of the Euler equations, such a problem for global weak and classical
solutions was solved by Bardos [1] and Kato [8], respectively. (Kikuchi [9] extended the
result of Kato [8] in an exterior domain.) Using the energy method developed by Bardos
[1], we can obtain a global weak solution in our case.

Our second purpose is to show the existence and uniqueness of a local classical
solution of (). Although the method of characteristic curves for the vorticity equation
plays an important role in a global classical solution of the two-dimensional Euler
equations, such a method seems to give us only a local classical solution of (x) because
of the additional terms (B, V)B and (u, V)B— (B, V)u. Our result on classical solutions,
however, can be regarded as a generalization of that of Kato [8] in some sense.

We shall devoted Section 1 to preliminaries and definition of a weak solution of
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(*). Two main theorems will then be stated. Sections 2 and 3 will be devoted to the
proofs of the main theorems.
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Kikuchi for suggesting potential theoretical methods. Finally, he must express his
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1. Results.

1.1. Notation. Let us introduce some function spaces. Cg,(£2) denotes the set of
all C*-real vector-valued functions ¢ = (¢!, ¢2) with compact support in € such that
div$=0. H is the completion of Cg,(£2) with respect to the L>-norm | |; ( , ) denotes
the L2-inner product. ¥ denotes the set of all vector-valued functions » in H() with
divu=0in Q and u-v=0 on Q. Equipped with the norm | |:

lul? = rotul®+ | u|?,

V is a Hilbert space. Here and hereafter, we shall use the notations rotu for a vector
function u=(u',4*) and roty for a scalar function y representing rotu=

Ou*/0x,—0u'/dx, and roty =(0y/0x,, —dY/0x,), respectively. By Duvaut-Lions [3,
Chapter 7, Theorem 6.1], we have

(1.1 el g1y < C(Q2)]ul for all ueV.

Hence the norm | | is equivalent to the one usually induced from H'(Q) and V is
compactly imbedded into H.

If X is a Hilbert space, then L?(0, T; X) (1 £p< o0) denotes the set of all measurable
functions u(t) with values in X such that (7|lu(t)|§dt<oo (|| llx is the norm in X).
L>(0, T; X) denotes the set of all essentially bounded (with respect to the norm of X)
measurable functions of ¢ with values in X. In the case of X=L2(Q), we denote by
Il Il,,,and || |2, the norms in LP(0, T'; L*(Q)) and L=(0, T'; L*(Q)), respectively.

Let C™([0, T]; X') denote the set of all X-valued m-times continuously differentiable
functions of ¢t (0<t<T). C¥([0, T); X) is the set of all X-valued m-times continuously
differentiable functions on [0, T') with compact support in [0, T').

Ck*%(Q) for an integer k=0 and 0<a<1 denotes the usual Holder space of
continuous functions on Q.| |,,, denotes the norm in C***(Q). C*¥(Q) for integers
k, j=0 is the set of all functions ¢ for which all the 020]¢ exist and are continuous
on O for 0<|q|<k, 0Sr<j. CH**i*F(Q,) for integers k,j=0 and 0=<a, B<1 is
the subset of C*J(Q;) containing all functions ¢ for. which all the 829/, 0<|q| <k,
0<r<j, are Holder continuous with exponents « in x and f§ in z. If

Ka,ﬁ(d)): Sup {I ¢(x’t)_ d)(x's t)‘ /l x_x’ |a; (xs t)s (x,9 I)G QTa |x —X' | < 1}
+sup {| ¢(x, )—(x, )|/t =2 |5 (x, 8), (x, t') € Qr, [t —t|<1},
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we define the norm | [;4,+5 in C***/*4Q;) by
I¢|k+a,j+ﬁ=( S‘:lp Z|q|§k' | 0%0; (x, t)|+2|q|=kKa’ﬂ(a§a{¢) .
x,)edr" <

For the spaces of vector-valued functions, we shall use the bold-faced letters analogously.

Throughout this paper, C, C;, C,, - - - will denote positive constants which may
be different in each occurrence. In particular, we shall denote by C=C(x, - - -, *) the
constant depending only on the quantities appearing in the parentheses.

1.2. Definitions and results. Our definition of a weak solution of () is as
follows:

DEFINITION 1.1. Let uye H, Bye H and f € L*(0, T; L*(R2)). A pair of measurable
vector functions u and B on Qr is called a weak solution of (x) if

(i ueL®0,T;H)nL*0,T;V), BeL*(0, T; H)nL*0, T; V),
T T
(i) I {—(4,0,8) + ((u, VIu— (B, V)B, ®)}dt =(u,, 9(0))+ f (f, d)dt ,
0 W]
J T{ —(B, 0,9)+(rot B, rot ) +((u, V)B—(B, V)u, ®)}dt =(B,, ¥(0))
0

for all @e Cy([0, T); V).
Concerning the uniqueness of weak solutions of (), we have:

PROPOSITION 1.1.  There exists at most one weak solution of (x). If {u, B} is a weak
solution of (%), after a suitable redefinition of u(t) and B(t) on a set of measure zero of the
time interval [0, T'], we have ue C([0, T]; H) and Be C([0, T]; H).

Since the proof of this proposition is parallel to that of Temam [16, Chapter 3,
Theorem 3.2], we omit it.
Our result on the existence of a weak solution now reads as follows:

THEOREM 1. Let uyeV, Bye V and fe L*0, T; L*(Q)) with rotfe L*(0, T; L*(Q)).
Then there exists a weak solution {u, B} of () such that ue L*(0, T; V)nC([0, T]; H)
and Be L*(0, T; H*(Q))n C([0, TT; V).

We next proceed to our result on classical solutions. To this end, we make the
following assumptions on the domain @ and the given data u,, B, and f.

AssUMPTION 1. The boundary 022 of Q consists of m + 1 sufficiently smooth, simple
closed curves Sy, Sy, -, S, where S; (j=1, - - -, m) are inside S, and outside one
another.

Giinter [7, 1., p. 122] refers to the above assumption as “Case J”.
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ASSUMPTION 2. uoe C'*%Q), Bye C**%(Q) and feC'*®°(Q,) hold for some
0<6<1. Moreover, u, and B, satisfy the conditions divu,=0, divB,=0 in Q and
Uy v=0, By-v=0 on 0Q.

Our result on the existence and uniqueness of classical solutions reads as follows:

THEOREM 2. Under the assumptions 1 and 2, there is a positive number
C.=C, (T, Iug l1+0 [fl1 +_,.,_0) such t_l-zat if |Bola+o=C,, there exists a solution
{u, B, 1} e C*}(Q1) x C**(Q1) x C*°(Qy) of (¥). Such a solution is unique up to addition
to m of an arbitrary function of t.

ReMARK 1.1. (i) Taking B,=0 in Q, we have the result of Kato [8].
(i) Our construction of the solution of Theorem 2 ensures us that ue C**%"1(Q;) and
Be C?+9-2+92(G ) for some 0'e(0, 6).
2. Existence of a global weak solution; Proof of Theorem 1.

2.1. The operator 4. For the proof of Theorem 1, we shall use the Galerkin
method. In order to make use of a special basis, we introduce the operator 4 from
D(A) to H as

Au=(—A+u=rot(rotu)+u

for ue D(A)={ue H*(Q); u-v=0, rotu=0 on dQ} n H. See Miyakawa [13, Lemma 3.3].
Then we have:

PROPOSITION 2.1. 1. A coincides with the positive self-adjoint operator on H defined
by a positive quadratic form a(-, -) on Vx V;

a(u, v)=(rot u, rot v)+(u, v), u,vel.
This implies
2.1 V=D(A'?), | AY2u|2= |rotu|®+ ||ul|> for ueD(A'?).

2. Zero is not an eigenvalue of A.
3. There is a constant C= C(Q) such that

22 lullu2y = C(Aull +llul)  for all ueD(A).

Indeed, 1 is easy. 2 is a consequence of (2.1). 3 follows from Georgescu (5,
Theorem 3.2.3]. See also Sermange-Temam [14, p. 642, (2.8)].

By Proposition 2.1, we see that the operator 4 possesses a complete orthonormal
system {¢;};2, of H of eigenfunctions:

2.3) (rot ¢, rotu) + (¢, u)=A1¢;, u) forall ueV.
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2.2. PrOOF oF THEOREM 1. We shall use {¢;};2, defined in (2.3) as a basis of
Galerkin approximation. For every integer m, we define {u,,, B,,} = {un(x, 1), B,(x, 1)}
as ‘

um(x:v t) = ZT: 1gjm(t)¢j(x) ) Bm(xa t) = ZT: 1hjm(t)¢j(x)
and we may choose {g;,}7=; and {h;,}T-, satisfying the following equations:
(1n(®), @)+ (Un(t), VItin(t) = (Bu(t), V)B,(1), ) =(f (1), $)) »
(2.4 (Bu(t), ¢;)+ (10t B,(t), 10t ¢ ) + (Un(2), V)Bp(t) = (Bu(t), VItin(t), ¢)=0,
] - 1’ ,m,
(25) um(o) =Z;n= 1(“0’ ¢j)¢j s Bm(0)=z;n= 1(B09 d’j)d)j .

As is well-known, there is T,,>0 such that (2.4) with (2.5) has a unique solution on
[0, T,,). Moreover, the following a priori estimate guarantees that T,,=T.

Energy estimates: After multiplying the first and the second equation of (2.4) by
9;m(t) and h,(t), respectively, we add these equations. By integration over (0, ), we get

(2.6) lum®)1? + | B} + 2f lIrot B,(s)/|%ds

< luoll* + 1BolI* + f IIum(S)Ilzds+j 1£(s)l1ds .

Here we used the identities ((#, V)v, v)=0 and ((u, V)v, w)= —((u, V)w, v) for u, v, we V.
Hence by the same technique as that used in the proof of Gronwall’s inequality, we have

@7 lum(@®)1> + | Bu(®)11* +2 J lIrot B,(s)I*ds < e”(lluoll* + 1Boll> + 1 £13.2) ,
0

for all te[0, T].
Estimates of the derivatives of higher order. By (2.3), we see that the equalities
(u, lj(bj) =(u, Apj)=(rotu, rot (b,) +(u, ¢,)

hold for all ue V. Hence multiplying the first and the second equation of (2.4) by 4;, we
have

(rot up, rot ;) + (U, ¢;)+ (U, VIt —(Bp, V)B,,, Ap))=(f, Ad)),
(rot B, rot ¢;) +(B,, ¢;) + (rot (rot B,), A¢;)+ (U, V)B,,— (B, VIt4y,, Ad;)=0
(]=1, .. .’m).
Proceeding as we did in deriving (2.6), we obtain
(1/2)(d/dt)(||r0t tp || + || > + [IrOt B,y[|% + | B,,[|*) + | AB,,|I> + [Irot B,,[|?
+ ((#,,, V4,— (B, V)B,,, rot (rotu,)+u,,)



476 H. KOZONO

+ (4, V)B,,— (B, V)u,,, rot (rot B,)+ B,,)=(f, rot (rotu,,) +u,,) .

Taking into account rotu, =0, rotB, =0 on 09, after integration by parts we get

(2.8) (oI + [un®? + 1T &)1 + | B> + ZJ (1AB|1* + |l *)ds
0
+ 4ft((6Bﬁ/6x2)Dum +(0ul/0x,)DB,, J,)ds
(4]

= | 0pO)I* + un(O)1* + | Jm(O)I* + | B,0)]|* +2 J {(rot £, w,) +(f; uy)}ds ,
0

where w,, =rot u,,, J,,=rot B,,, Du,,=0dul/0x,+ 0u’/dx, and DB, =0BL./0x,+ dB2%/0x,.
Here we used the equalities (4, V)0,s@p) = (Upy VI s J o) =0 and ((B,,, VI o ©,) =
—((Bps V) s I)-

Now, let us investigate the sixth term on the left hand side of (2.8). By the Holder
inequality, the Gagliardo-Nirenberg inequality (Tanabe [15, Chapter 1, Lemma 1.2.1]),
(1.1) and (2.2), we have

| (0B3/0x)Dthy, J,) | < HaBﬁ./a)Czllu(mllDumll I omll Loy
S CIVBAI 2| Bull iy | S mll VT mll 12| Dty
< C|Bnll HY(D) | B |[112(9) | Du,,||
S C(IBull + 1T mIXIABp | + | Byl Xl th | + l|comll) 5

| (Ott/0%1)D B,y J ) | < ||Ott/0x || | DByl Loy | T oml Lace
S C|Vill VB2 Bl oy | Tl 2 I VT ]l 72
=S C|Vu,l “Bm“m(m"Bm”m(m
SC(IBull + 1T mlIXIAB [ + | Bl Xl ttmll + lomll) ,

where C=C(Q) is a constant independent of m. Hence by the Schwarz inequality and
(2.7), we get for any >0

(2.9)

j t((aB,z,,/axz)Dum +(0ul/0x,)DB,,, J,)ds

= CEJ‘ IAB,||I?ds+ C(e™ ! + D){(1 + | Byl 2,00) (1 + lthmll 2,0)* T
+(1+[1Bpll2,)*(1 + |Iumllz,m)2f 1l >ds
0

t t
+(1+ ||Bm|lz,w)2f IIwmllzds+f 1 mll*lleom | *ds}
0 0



MAGNETOHYDRODYNAMIC EQUATIONS 4717

t t
<Cye f |AB,,|1%ds+Cy(e™* +1) f U+ Dol ?ds +Cye™ 1 +1),
o o

where C; =C (2, T, llugll, I Boll, [ fll2,2) is a constant independent of m. Substituting
(2.9) into (2.8) and then taking e=1/2C,, we have

t
(2.10) lom@®?+ 1T} > + f IAB,(s)%ds < [rot uo||* + [Irot By |I> + C;
0

+ sz A+ 17w + Irot £(5)1*) llom(s) 1 %ds ,
0

where C,=C,(Q, T, |luoll, | Boll, Il f1l2,2) is a constant independent of m. By application
of Gronwall’s technique as in the derivation of (2.7), we see that

2.11) leom(®II? + /@)1 + f IAB,(s)||*ds
0

<(llrotug||? + [|rot Bo||* + C,) eXp<sz A+ 1) + Ilrotf(S)Il’z’,z)dS>
0

SC3=C3(, T, luol, IBol, 1 f 12,25 Irot fll5,2)  (by (2.7))

for all te[0, T], where C; is a constant independent of m.

Taking into account (1.1) and (2.2), we can deduce from (2.7) and (2.11) that the
sequence {u,,}%_ | remains in a bounded set of L(0, T; V) and that the sequence {B,}=
remains in a bounded set of L*(0, T; V)n L*(0, T; H%(R2)). Hence there exist a subsequence
of {u,, B,}, which we denote by the same letter, and functions ue L*(0, T; V) and
Be L*(0, T; V)n L*0, T; H*(R2)) such that

u,—u  weakly-star in L*0, T;V),
(2.12) B,,—»B weakly-star in L*(0,T;V),
weakly in L*0, T; H*(Q)) .

Moreover by (2.4) and (2.11), we see that for each fixed j, the families {(#,(t), $;)} -1
and {(B,(t), ¢;)} - form uniformly bounded and equicontinuous families of continuous
functions on [0, T'], respectively (see, e.g., Ladyzhenskaya [10, p. 175]). Hence by the
Ascoli-Arzera theorem and the usual diagonal argument, there exist subsequences {un (1)}
and {B,,(t)} of {u,(?)} and {B,(t)} which converge to some #(t) and B(t), uniformly in
te [0, T]in the weak topology of H, respectively. Clearly u=4 and B= B. For simplicity,
we shall assume that the original sequences u,, and B,, converge to # and B, respectively.

By means of the techniques of the Friedrichs inequality (Courant-Hilbert [2,
p- 519]) and (1.1), we have

(2.13) u,—u strongly in L*(Qp)?, B,—B stronglyin L*Qr)>.
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Now by the routine passage to the limit (see, e.g., Temam [16]), we can deduce from
(2.12) and (2.13) that {u, B} is a weak solution of (*).

To complete the proof of Theorem 1, it remains to show that Be C([0, T7]; V). Since
ueL®(0, T; V), Be L*0, T; H*(2))n L®(0, T; V), we get by the Gagliardo-Nirenberg
inequality and the continuous imbedding H?(2)c L*(R2)

ll(u, V)B—(B, V)ull < li(u, V)BI| + [|(B, V)ull < l|ull L+l VBI| Ly + | Bll Loy Vsl
< Cllull**|[Vu| 2| VBII*?|| Bl g%a+ ClI Bl g2yl Vil
< C"u"L°°(0,T;V)"B"I{Q(O,T;V)"B”llllzz(ﬂ) + C”“"Lm(o,T;V)"B"m(n) .

This implies (4, V)B—(B, V)u=rot(B Au)e L*0, T; H). Hence by the second identity of
Definition 1.1 (ii), we see that B'€ L*(0, T; H). Therefore, it follows from Lions-Magenes
[12, p. 19, Theorem 3.1] that Be C([0, T]; V).

3. Existence of a local classical solution; Prood of Theorem 2. In this section,
we shall show the existence of a local classical solution by using the Schauder fixed
point theorem as in Kato [8] and Kikuchi [9].

3.1. Construction of the flow u.

LeMMA 3.1. Under the assumption 1, there exist uPeC!**(Q) (k=1, - - -, m) for
some u>0 satisfying the following properties:

(@) divu®=0, rotu®=0 in Q, uP-y=0 on 0Q; (k=1, -, m)
(i) ~l‘u""-tdS=O if j#k, ju"‘)-tdS=l, (=0, -, mk=1,---,m)
S, sk

where T denotes the unit tangent vector on 02 and dS denotes the line element of 012.

Proor. It follows from Giinter [7, p. 206, p. 209 (58)] that there exist m linearly
independent functions y®eC! *#(0Q) (k=1, - - -, m) satisfying the following properties
1, 2, A3):

) I./N"ds:o if jk, f.//""dS=l; (=0, -, mk=1,---,m)
S; Sk

@ l//""(x)=(1/7t)J YN0/ log(l/| x—E)deS  for xed; (k=1,---,m)
o

(3) For each k=1, - -+, m, the function [, ®(E)log(1/|x—&[)dS on R? is constant
outside Q.

Then the desired «® (k=1, - - -, m) are defined by

u®(x)= rotx{(1/27t)-[ YO)log(1/| x— & )deS}.
o
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Since the proof that such u® (k=1, - - -, m) have the properties (i) and (ii) is parallel to
that of Kikuchi [9, Lemma 1.5], we may omit details.
Now let us define a function space S,(M, N) for M>0, N>0 and 0 <o <Min. {0, u}

by
SAM,N)={¢eC**Qr); | $loo=M,K*(p)<N} .
For the notation, see Subsection 1.1. For ¢€S,(M, N), let us define a map F, : ¢ —u by
u(t)=rot Go(-, t)+ Y o  A(tu® ,
where
3.1 l,‘(t)=f uo'rdS+ft [, a)-rd;Sda—f rotGo(-, t)-1dS .
Sk 0J 5k Sk

Here, {u®}r_, are as in Lemma 3.1 and G denotes the Green operator of —A with
zero Dirichlet boundary condition on 09.

LeMMA 3.2. For ¢eS,(M,N), we have u=F,¢peC'***(Qy) for any 0<a <a,
divu=0 in Q and u-v=0 on 0Q. Moreover, there is a positive constant
Ca=Cal®, T, 1t los flo,0n M, N) such that |l ype- <Ci.

PROOF. Set u=u, +u,, where u; =rot G¢ and u, =), 4,u®. By Assumption 2
and Lemma 3.1, it is easy to see that the assertion of this lemma holds for u,. Let us
prove the assertion for u,. By the Schauder estimate of — A (see, e.g., Gilbarg-Trudinger
[6, Chapter 4]), there is a constant C= C(£, a) such that

(32 sup |u;(x, )|+ sup |Vuy(x, )]

(x,00edT (x,)eQt
+sup{| Vu,(x, 1) —Vuy (X', ) |/| x = X' I% (x, £), (x', )€ O, | x —x'| <1}
é sup |u1(.a t)‘1+a§C Sup |¢(’ t) |a§C| ¢|u,a .

te[0,T] te[0,T]
Similarly, for xe @, t, t'e[0, T] with | t—¢ | <1, the inequalities
luy(x, ) —uy(x, ) |+] Vuy (x, 1) — Vu,(x, 1) |
Sluy(5 )—uy () [ 2 CLP(-, )= (-, 1),
hold for any 0 <r<a. Using the argument of Kato [8, Lemma 1.2], we have
[o(, )= (-, ), 2| P ool t— 2/ 17710
and hence
3.3) sup{ uy(x, )—u,(x, )|/t =t |*"; (x, t), (x, t')eQp, | t—1'| <1}
+sup{| Vuy (x, ) = Vu, (x, ) || t =1 |*75 (x,2), (x, )€ O, [t —1' | <1}
SC P o
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holds with o™ :=a(1 —r/«). It follows from (3.2) and (3.3) that u, has the desired prop-
erty.

3.2. Construction of the magnetic field B. In this subsection, we shall solve the
following equations for the magnetic field B:

6,B—AB+(u,V)B—(B,Vu=0 in Oy,

(M.E.) divB=0 in QOr,
B-v=0, rotB=0 on 0Qx(0,7T),
B|t=0=BO ’

where u is the flow constructed in the preceding subsection. To this end, we shall
transform (M.E.) to the equations for a scalar potential of B. Let us first consider the
following system of equations of parabolic type:

0,B—AB+(u,V)B—(B,VJu=0 in Qr,
(P.S) B-v=0, rotB=0 on 0Qx(0,T),
Bl,_o=B,.
We define a weak solution of (P.S.) as follows:

DEerFINITION 3.1. Let Bye L*(2) and u, Vue C***(Qy). Let Hy(Q)={¢p e H'(Q);
¢-v=0 on 0Q}. A measurable vector function B on Q is called a weak solution of
(P.S.) if

() BeL®(©, T: LXQ)n LX0, T; HX(Q));
(i) f T{ — (B, 8,8)+ (rot B, rot &)+ (div B, div ) + ((u, V)B— (B, V)u, ®)}dt=(B,, #(0))
0

for all e C}([0, T); HY(RQ)).
In the above definition, for a smooth solution B, we have by integration by parts

(—AB, ®) = (rot(rot B)— V(div B), ®)
= f rot Brot ®dx —f (rot B)v A ®dS +J div Bdiv ®dx —j (div B)®-vdS
2 an 2 o

=(rot B, rot &)+ (div B, div ®)

since rot B=0, ¢-v=0 on 0Q.
Since (P.S.) is a system of linear equations for B, it is not difficult to see the fol-
lowing:

PROPOSITION 3.1.  Suppose that ByeL*(Q) and u, Vue C***(Qy). Then there exists
a unique weak solution B of (P.S.).
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In order to solve the equations for a scalar potential of B, we need the following:
LEMMA 3.3. Let B, be as in the assumption 2. Then the boundary value problem
—Ayo=rotB, in Q, Vo=0 on 0Q

has a unique solution Yo in C**%Q). Moreover, there is a constant Cs=Cs(R, 0) with
I l//() l3+9§ CS' BO |2 +6-

For the proof, see, for example, Gilbarg-Trudinger [6].

LEMMA 3.4. Let u and Y, be as in the preceding subsection and Lemma 3.3,
respectively. Then there exists a unique scalar function § in C***2*92(Q ) such that

oY —AY+w, V=0 in Qr,
(P.E) ¥=0 on Qx(0,T),

le=o=¢o-

Since ue C***¥%(Q,) by Lemma 3.2, the assertion of this lemma follows from a
general theory of parabolic equations. See, for example, Ladyzhenskaya-Solonnikov-
Ural’ceva [11, p. 320, Theorem 5.2].

We can now show the existence of a regular solution of (M.E.).

LEMMA 3.5. Let Y be as in Lemma 3.4. Then B=roty is in C***2*9%Q.) and
satisfies the equations (M.E.). Moreover, there is a positive constant Co=Cg(R2, T, &, | g |0,
[flo,0» M, N') such that | Bl 143 +ay2 = Cs| Bolz +6-

Proor. To begin with, suppose that B=roty is a weak solution of (P.S.) with
the initial data B,. Since B,e C**°(Q) by Assumption 2 and since u, Vue C***(Qr)
with ||y 44.- =C4 by Lemma 3.2, we can deduce from Ladyzhenskaya-Solonnikov-
Ural’ceva[ll, p. 616, Theorem 10.1] by takingb=1,r=2,5,=5,=0,t,=1,=2,0,=—2,
6,=—1, p,=p,=—2 and /=0 that there exists a unique solution B of (P.S.) in
C2+%2*+a2((.) with the initial data B, replaced by B,. Moreover, we see such B is
subject to the inequality

| Ell +a,(2+a)/2 é C6|BO ‘2 +6 -

Since such B is clearly a weak solution of (P.S.) with the initial data B,, Proposition
3.1 enables us to assert B= B. Taking into account the fact that div(rot) is identically
equal to zero, we have the desired result.

Now it suffices to prove that B=roty is a weak solution of (P.S.) with the initial
data B,. Since V¥ |aoxo,n=0, we have B-v=roty -v=0y/0t=0 (9/0r; tangential
derivation) on Q2 x (0, T) and clearly Be L*(0, T; L*(2))n L*(0, T; H()).

Concerning that initial condition, we have rot §/(0) =rot y, = B,. Indeed, the vector
function V:=roty,—B, is in C**%Q) and satisfies divV=0 in Q and V-v=
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0y /0t — By -v=0 on 02Q2. Hence by the well-known decomposition theorem of solenoidal
vector fields on Q (see Kato [8, p. 193, (1.13)]), ¥ can be written as V'=rot G(rot ')+ Vp
for some pe C*(). Moreover, since rot V= — Ay, —rot B,=0in Q by Lemma 3.3, such
p must satisfy Ap=0 in Q and dp/dv=0 on 0Q. Therefore p=const. and V'=0, as we
wished to show.

Finally, we may show the identity (ii) in Definition 3.1 for B with B, replaced by
B,. It follows from (P.E.) that

(3.4 J (0 + rot B+ (u, V)Y, rot ®)dt =
for all @ CL([0, T); Hx(R2)). By integration by parts we get

(3.5) f 0, rot d)dt = — f (Y, rot 0,@)dt — (¥(0), rot $(0))
0 V]
=— JT(rot Y, 0,P)dt — f Tf V(0,9 A v)dSdt —(rot iy, (0))
] 0 Jo
—j Yo(P(0) A v)dS=— jT(B, 0,®)dt —(B,, 9(0)) ,
o2 0

JT((u, V)Y, rot @)dt = fT(rot((u, V), ®)dt + j TJ (u, V(@ Av)dSdt .
0 0 o Jon

Since ¥ =0 on dQ, Vi is perpendicular to dQ and hence (u, V){ =0 on 0Q. Thus the
second integrand above is equal to zero. Moreover since divu=0, we have

rot((u, V¥)=(u, V)roty — (roty, V)u. Therefore
(3.6) JT((u, V), rot @)dt = J" ((v, V)B—(B, V)u, ®)dt .
(4] (1]

Since div B=0, it follows from (3.4), (3.5) and (3.6) that B=roty satisfies the equation
which we wished to prove. This completes the proof.

Lemma 3.5 enables us to define a map
FZ . Cl +a,a/2(Q'T)_}C2 +a,(2 +a)/2(Q—T)
by B=F,u.
3.3. Vorticity equation. Applying rot to both sides of the first equation of (),
we get
(VE) 0,w+u, Vio=(B,V)J+rotf in Qr,
w(0)=w, ,

where w=rotu, J=rot B and w,=rotu,. We shall consider (V.E.) as the initial value
problem for w.
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Let u and B be as in the preceding subsections. For a weak solution w of (V.E.)
we give the following definition:

3.7 a(x, )= wo(Uo (X)) + ft(B, V(U (), s)ds + j‘ rot f(U,(x), $)ds ,
0

0

where U, (x) is the solution of the initial value problem of the ordinary differential
equation

du; (x)/ds=u(U, (x), 5) ,
U (x)=x€eQ.

As is well known, if w,, (B, V)J and rot fare in C!, then w defined by (3.7) is a classical
‘solution of (V.E.).

REMARK 3.1. (i) Since u®eC'*#(Q) (k=1,---,m) and since |A4(t)|=CH(L,
T, |ulo, | flo,0, M) for all te[0, T] (k=1, - - -, m) (see Kato [8, Lemma 1.4]), it follows
from Kato [8, Lemma 2.6] that there are positive constants Cg=Cg(2, M) and
6=06(Q, T, M) independent of N such that

| U %)= Uy o(X) | S Co(| x =X+ | s=5" P+ t=1'|)

for | x—x'|£1, |s—s'|Z1, |t—t' |1
(ii) There is a positive constant Co=Co(R, T, |t o, | f 10,0, M, N) such that

| U %) = Uy (XN = Co| x— x| +|5—5" |+ 1=1"])

for |[x—x"|£1, |s—s'|=Z1, |t—¢t'|£1. In comparison with the inequality in (i), we can
choose 6 =1, but the constant Cy may depend on N.

Let us show, for example, | U, (x)— U, (x')|S Co| x—x'| for x, x'€Q and 0<¢<s.
Taking x(s)= U (x) and x'(s)= U, (x"), we have | d(x(s)—x'(s))/ds |=| u(x(s), s) — u(x'(s),
)IS|ulyolx(s)—x'(s)|. Hence |x(s)—x'(s)|<|x—~x"|+|ulyof;|x(r)—x'(z)|dz. By the
Gronwall inequality and Lemma 3.2, we get | x(s)— x'(s) | <e!*!oT | x —x' | S Co| x — x|,
which implies the desired result when t=¢" and s=s’. Since the proof in another case
is parallel to that of Kato [8, Lemma 2.6, (ii), (iii)], we may omit it.

(i) For any ®e C'(Q), w satisfies the identity

d/dt(w(t), D)= (w(2), (u(t), V)P)+((B(t), V)J(t)+rot f(¢), D) .

LEMMA 3.6. There are positive constants o*=0*(Q, T, 0, M), C,o=C,o(2, T,
0, M) independent of N and C,;;=C,((Q,T,0,|uglo,|f oo M, N) such that we
C*(Qr) and

(3.8) loloo=ltoli+T| fl1,04Ci1l Bol3 40
3.9 Ka*’a‘(w)é Ciollugli+ot+1f1a +6,001+C11] Bg |§+9 .
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PrOOF. Since U;,(*) is a one-to-one measure preserving map of Q onto itself (see
Kato [8, Lemma 2.3]), (3.8) is an immediate consequence of Lemma 3.5. Let w,, w,
and w; be

wl(x, t) = wO(UO,t(x)) ’ c02(-"& t) = Jw I'Otf( Us,r(x), s)ds
1]
and
w5(x, t)= f t (B, V)J(Us,(x), s)ds .
0

By Remark 3.1 (i), we get
l@(x, ) —@y(x', ') | = | @o(Up X)) = @o(U,dx)) |+ 0o(Ug,{x")) — @o(Uo +(x"))|

Sluoly+oll Uod¥)—Uo ) I’ +1 Uo dx") = Up o(x) °)
S2Cqluoly+oll x—x" P+ 1—1'|%).

Taking a*=06 (a*=a*(Q, T, 6, M)), we obtain

(3.10) K (1)< Cyol o1 +6 -

Similarly it follows that

(3.11) K*¥(@03)<Ciol fl1+60 -

By Lemma 3.5 with a replaced by a* and Remark 3.1 (ii), we have for 1>t

’

| @3(x, ) —w3(x’, t') | = I‘ |(B, V)J(Us,(x), 5)— (B, VMJ(U; (x'), s) | ds
+ Jl [(B, V)J(U; (x"), 5)— (B, VIJ(U, Ax"), 5) | ds
0
+ ' f ’(B, V)J(U, (x'), s)ds

t
éCS*f |(B, V) |gn,o| X —x" |+t —t'|")ds +| (B, V)| o 0 It —1'
0

SCYCUTH )| Bo 3 4o(l x—x" [T+ t—t' | +[t—1t']).
Hence we get
(3.12) K" (03) S Cril Bol3+6 -
Then (3.9) follows from (3.10), (3.11) and (3.12). This completes the proof.

Lemma 3.6 enables us to define a map



MAGNETOHYDRODYNAMIC EQUATIONS 485

F3 : Cl +a‘,u‘/2(Q_T) % C2 +a*, (2 +a‘)/2(Q_T)_’Cw,a‘(QT)
by w=F;(u, B), where w is as in (3.7).

3.4. Application of the fixed point theorem. We take two positive numbers M
and N and exponent o* as follows:

M>|ugli+T|fli0, N>Co(Q,T, 0, M)(ugly+o+| fl1+6,0) >
a*=a*(Q, T,0, M),

where C,, and o* are as in Lemma 3.6. For such M, N and a*, we define a subset
Sp(M, N) of continuous functions on Q as in Subsection 3.1. Clearly S,{(M, N) is a
compact convex subset in the Banach space C(Q;). Moreover, we define a map F on
S»(M, N) by

Fo=Fy(F¢, Fy(Fi¢))  for ¢eS.M,N)

with o replaced by a* in the context of the preceding subsections. Then it follows from
Lemmas 3.2, 3.5 and 3.6 that F maps S,.(M, N) into C***(Q). More precisely, by (3.8)
and (3.9) we have the following:

LEMMA 3.7. There are two numbers M=MQ, T, |uyl,, |fl,0) and N=
N, T, |uoly+6 | fl1+0,0), positive exponent a*=a*(Q2, T, |uoly, | fl1,0) and constant
Co=Cu(Q, T, ugly+0, | [ l1+6,0) such that if | By |, 4= C,, then F maps S»(M, N) into
itself.

In order to apply the Schauder fixed point theorem, we need:

LEmMMA 3.8. Under the condition of Lemma 3.7, F is continuous on S,{(M, N) with
respect to the topology of C(Qr).

PrOOF. Let ¢,, ¢S, (M, N),n=1,2,--- and |p,— ¢ |0 c—0 as n—c0. Let u,=
Fi¢,, u=F,¢, B,=F,u,, B=F,u, w,=F,u,, B,), =F;(u, B) and let U} (x) and U, (x)
be the solutions of dUj§(x)/ds=u,(U}(x),s), Ul(x)=x and dU, (x)/ds=u(U,(x), s),
U, (x)=x, respectively. Since u,—u=rot G(¢,—¢)—) ;_, (|5 rot G(¢,—¢) 7 dS)u®
(foru®, k=1, - - -, m, see Lemma 3.1), we see by Kato [8, Lemma 1.4] that | u,—u |, o —0.
Then it follows from a general theory for ordinary differential equations that
U (x)- U, (x) uniformly in xeQ, s, t€[0, T]. Hence by (3.7), it suffices to prove that

(3.13) |01B,—01Bloo—0  for |y|<2.

We shall first prove that B,— B uniformly in Q. Let ¥, and ¢ be the scalar
potentials of B, and B defined as in Lemmas 3.4 and 3.5, respectively. Then we have

atqln_A![’n-i_(un’ V)Wn+((un_u)’ V)l/l=0 in QT ’
y,=0 on dQx(0,T),
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q/nlt=0=0 ’

where ¥,=y,—y. Hence ¥, can be written as

Tn(x’ t) = _j daf E(xa Vs t-O’){(lI”, V)!Pn(y’ 0’)+ ((un_u)a V)'l’(y, O’)}dy s
0 Q

where E(x, y, t) is the fundamental solution of d,— A with zero Dirichlet condition on
0. Hence it follows from a well-known property of the fundamental solution (see, €.g.,
Friedman [4]) that

|V¥,(x, t)léJ~ dGJ | VLE(x, y, t—0) l{| u(y, 0) ||V, ¥(y, 0) |
V] Q2
+ I un(y’ a)—u(y, O') l I Vy'l/(y’ O') |}dy

= C(T){I U, Io,o-[ (t—0) 12 IV¥,(, 0) o da+| V¥ o0 Iun_u|0.0} .

0
Using Gronwall’s technique, we get

t

[VZ,(+, Do SC(D)I VY o0l ty—ulo,o exp(C(T)|u,, lo,0 J

0

(t—0)~ ”zda>

<C(T) exp(2T”2C(T)| Uy lo,0) | Vi lo,0l tn—tlo,0
for all te[0, T] and hence
(3.14) [V¥,l0,0=C exp(Cluylo,0) V¥ o,0ltta—ulo,0

where C is a positive constant independent of n. Since u,—u uniformly in O, we obtain
from (3.14) that | B,— B|, c—0. Moreover by the a priori estimate in Lemma 3.5, the
sequence {B,} 2, is precompact in C*'(Q;). Hence every sequence in turn has a
convergent subsequence with the limit B. Therefore the sequence {B,}s-, itself
converges to B in C*!(Q;) and (3.13) follows. This completes the proof.

It follows from Lemmas 3.7, 3.8 and the Schauder fixed point theorem that under
the condition of Lemma 3.7, there exists w e S,«{(M, N) such that Fo=w.

3.5. ProOF OF THEOREM 2. Let w be the fixed point of the map F constructed
in the preceding subsection. Here we shall show that the pair u=F,w, B=F,(F,w)
and some scalar function = is the classical solution of (*) stated in Theorem 2.

Concerning the regularity of u, we see by Kato [8, Lemmas 3.1 and 3.2] and Remark
3.1 (iii) that u, d,u and d,u are in C(Qy). To show the existence of pressure n, we
need:

LemMMa 3.9. Let v be a vector-valued function of class C*%Q;) (k=0, ¢=0)
satisfying
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Jv-tdS=0 g=1---,m, J‘v-rot¢dx=0 forany ¢eCg(Q).
S; Q2

Then there exists a scalar function ne C**%Q;) such that v=—Vm.

This may be regarded as a generalization of the Poincaré lemma. For the proof,
see Kikuchi [9, Lemma 2.13].

LeEMMA 3.10 (PROOF OF THEOREM 2). Under the condition of Lemma 3.7, there
exists a scalar function ne C*°(Qy) such that the triple {u, B, n} is the unique solution
of (%) stated in Theorem 2.

PrOOF. Let v=0u+ (u, V)u—(B, V)B+V((1/2)| B|*)— f. Since

J(w,V)ww:dS=J V(1)) w]?)-1dS=0 (=1, ---,m)
S; S

J J
for all we C*(Q) with divw=0 and w-t=0 on 02, we have by Lemma 3.1 and (3.1)
that

‘[ v-rdS=f @u—f) 1dS=0 =1 -, m).
S;j S;

Moreover since rotu=—AGw=w by Lemma 3.1 (i) and since (rotu, (4, V)¢)=
—((u, V)u, rot @) for all ¢ € CF(RQ), we obtain from Remark 3.1 (iii)

jv-rotd)dx:o for any ¢eCQ(Q).
(23

Hence by Lemma 3.9, there exists a scalar function ne C*-°(Qy) such that v=—Vnx.
To prove that {u, B, n} is the desired solution, it remains to show that u | t=0=1Up-

Set w=u/,_o—uo. Then it follows from (3.1) and (3.7) that
rot w=rot u|,_o—rot up=w(*,0)—wo=0,
J\ w'tdS=I rot Gw(-, 0)-tdS+/1j(0)—I Uy tdS=0 g=1,-:--,m).
S;j S; Sj
Therefore by Lemma 3.9, we have w=Vp for some ne C*(Q). Since divw=0 in Q and
w-v=0 on 09, such n must satisfy An=0 in Q and dn/dv=0 on 0RQ2. Hence n=const.
and w=0. This completes the proof.
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