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ORTHOGONAL STANCE OF A MINIMAL SURFACE
AGAINST ITS BOUNDING SURFACES
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0. Introduction. Suppose a minimal surface is spanning a certain nice surface
besides the usual boundary curves. Then there arises a question: Under some additional
condition, e.g., that the minimal surface considered is stable, does it touch the boundary
surfaces orthogonally along the intersecting traces? Many soap film experiments such
as those Gergonne observed, seem to have convinced us of the affirmative answer. On
the other hand, mathematical descriptions suggesting these circumstances can also be
found somewhere; indeed a mean orthogonal intersection in the weak sense is shown
in Courant [1], pp. 207-208.

The present study is concerned with one of the simplest cases in this circle of ideas,
namely, with an oriented minimal surface S of disk type, which spans partly a given
Jordan arc γ, and whose remaining boundary arc complementary to y lies on a sufficiently
smooth surface Tprescribed. Under these circumstances the minimal surface in question
turns out to meet the base surface T orthogonally at almost all points of the intersection
arc, which is our main assertion to be proved in the ultimate.

1. Preliminaries. 1.1. First of all we shall have to specify the base surface as
well as the handle attached to it. Let G denote a simply connected region comprising
the closed upper semi-disk B={(u, v)\u2 + v2<l, v>0} in the (M, t;)-plane. Consider a
surface T parametrized by the C1-mapping T— T(u, v) of the (M, t;)-plane into R3 with
full rank 2 everywhere on G. Extremities of the handle y to be settled on T are denoted
by P ± 1 , which may have the respective coordinates T(± 1, 0) without loss of generality.

In the following, the notation | Γ|, | y | shall mean the loci of the surface T and of
the arc y respectively, i.e., the bare point set free from any parametrizations as
submanifolds.

1.2. For the sake of technical convenience we will require further nice properties
on y: Jordan simplicity, rectifiability and disjointness with | T\ except at both terminal
points. Hence it admits representation as a continuous VB-function (Abbreviation for
function of bounded variation) y = y(θ) on the semi-circle β = {e^ ~lθ \θ <θ <π} in such a
way that the point y(θ) moves from P + 1 to P_ x as θ increases from 0 until π and that
Qγφβ2 implies y(θ1)Φy(θ2).



462 K. SHIBATA

PROPOSITION 1. There exists a simple rectifiable arc y' lying on\T\ which connects

the two points P _ x andP+1.

PROOF. One may choose as y', e.g., the image of the diameter / = [ — 1 , 1] of B

under the mapping T. In fact, yr = T(u, 0) parametrized on the w-interval [— 1, 1] is a

simple arc joining a pair of terminal points on account of the regularity of T and of

the requirement T(± 1, 0) = P ± 1 , which is of length

L[y'] = I dT/du \du < 2 max | dT/du \ < + oo .
J — 1 uei

q.e.d.

From now on every such y' as introduced above may always be supposed to have

its parameter interval / = [ — 1, 1] on the w-axis.

1.3. Let y be defined as the sum of these two paths y and y' in the following sense:

y = γ(w) shall be parametrized on dB, so that the point y(w) first proceeds from P + 1 to

P _ ! along Iy I, and then comes back from P _ ί to P + x along |y' | , making a round along

the rectifiable Jordan curve in R3 with locus | y | u | y ' | , when the complex parameter

w = u + \J — \v, starting at w= 1, goes round dB counter-clockwise.

DEFINITION 1. The family f consists of all such rectifiable Jordan curve y as

mentioned above, which is of course non-void owing to Proposition 1.

DEFINITION 2. Let Φ = {</>} denote the family of all continuous monotone

non-decreasing map φ of dB onto itself, which leaves ± 1 unaltered.

PROPOSITION 2. Every possible parametrization of a member of f on dB is a

continuous YB-function on dB into J?3, which can be obtained by the composition y ° φ(w)

of any fixed parametrization y(w) of it with some element φeΦ, and vice versa.

PROPOSITION 3. Let an arbitrary yoff be fixed. Then there exists some parameter

change φoeΦ such that its own parametrization y ° φo(w) is of class Lip 1 on dB.

PROOF. For any rectifiable curve the parametrization £(s) by arc-length s satisfies

the Holder condition with exponent 1 and with coefficient 1:

2. Existence of a minimal surface which spans the given eared surface. 2.1. In

this subsection we fix an element γ of f once and for all.

PROPOSITION 4. In order to have all harmonic surfaces spanning a given rectifiable

contour y = y(w)ef, it is necessary and sufficient to solve the Dirίchlet problem with

boundary value γ ° φ(w) (w e dB) for all admissible parameter change φeΦ.

The boundary value y ° φ(w) (w e dB) may be identified with the unique harmonic
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extension into Int B induced from it, which will cause no confusion in expressing the

latter one by one and the same notation γ° φ(w) (weInt B).

PROPOSITION 5. There exists at least one elment φ0 of Φ, such that the Dirichlet

energy integral D[γ°φ0] for the harmonic vector y°φo(w) (weInt B) satisfies the in-

equality

D[yoφ0(w)]<cL\y]

with an absolute constant c depending only on γ.

PROOF. Let φ0 e Φ be such that y ° φo(w) is of class Lip 1 on dB (Proposition 3).

Then it suffices to show that the real-valued function

f(β) A j ( f l n cos nθ + bn sin nθ)

2 n=l

with period 2π satisfying | f(θ1)—f(θ2) \<\ θί — θ21 gives the coefficient estimates

(1) n\an\<W, n\bn\<W ( n = l , 2 , •••)

and

(2) Σ( l*J+IM)< + <»>

where WΊs the total variation of/(0) over 0 < θ < 2 π .

Once (1) and (2) will have been proved, then computation of the Dirichlet

integral for the harmonic function in the unit disk with boundary value f(β) will

produce the inequality

π Σ n(\aB\2 + \bn\
2)ZπW Σ (\<*n\ + \bn\)

n=l n=l

as desired. But (2) is a particular case of Bernstein's theorem, while (1) is an elementary

property on the VB-functions (see Zygmund [4], pp. 240-241 and p. 48). q.e.d.

DEFINITION 3 (The three-points-condition). Taking a point Pf on | y | distinct from

both end-points P ± 1 , we assume from now on that the condition γ ° φ(\l — l) = Pf is

always fulfilled for all φeΦ and yet without particular mention.

PROPOSITION 6. Let yet be fixed at will. Then the family {y° φ(w) \ φeΦ) of

harmonic vectors is normal on B.

We owe this fruitful lemma to Courant ([1], pp. 103-104), to which the readers

are referred.

PROPOSITION 7. The infimum of D[y°φ(w)] over all φeΦ is attained by some

harmonic vector y ° φo(w) on Int B, which is a minimal surface M[y] spanning y and it is
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noteworthy that D[M[y]]<cL[γ].

The first part of this proposition is the well known existence theorem of a minimal
surface, while the second an immediate consequence from the Dirichlet Principle and
Proposition 5.

PROPOSITION 8. The correspondence dB\-*d\M[γ\\ is topological.

These classical but significant results as well as the proofs are attributed to
Douglas-Courant, which are included also in Courant's monograph above cited, or in
Nitsche [2].

2.2. Now Proposition 7 allows us to confine ourselves to the subfamily Γo of
contours, for which L[y] is bounded above by some finite constant Lo, so far as we aim
at the infimum of D[y ° φ(w)] over all y e f together with all φ e Φ, and have only to deal
with the minimal surfaces {M[y]} under the restriction yefQ.

PROPOSITION 9. The family {M[y]} with all yef0 is normal on B.

PROOF. The assertion follows from Propositions 5 and 6.

An arbitrary minimizing sequence {M[yJ}n=i,2,- f°Γ the functional Z>[Mff]] o n

{M[y]\yef0} contains a subsequence {Sn(w)}n=lf2,... converging uniformly on B to a
continuous mapping S*(w) of B into R3

9 which is harmonic on IntB.
It is clear that the harmonic map S*(w) of Int B into R3 spans partly the given arc

|y|, since it is continuous up to B and |y| is the topological image of β under the
mapping S*.

PROPOSITION 10. The restriction of the mapping S*(w) to I parametrizes a recti-
fiable arc y* connecting the points P ± 1 on \ T\, which satisfies L[y*]<L0.

PROOF. The restricted mappings M[yn](w) (n= 1, 2, •) to / can be regarded as
parametrizations of rectifiable Jordan arcs, which are of uniformly bounded variations
on /. So the uniform limit S*(w), again restricted to /, is a VB-function too by Helly's
theorem, i.e., S*(I) is a rectifiable arc, lying on | T\ and connecting the points P ± 1 .
Since the sequence {M[yn](I)}n=ί2,... of arcs converges to the arc S*(I) in Frechet's
sense, we have the lower semi-continuity

q.e.d.

PROPOSITION 11. γ* is a Jordan arc.

PROOF. Suppose, contrary to the assertion, that /contains a pair of points u<u'
satisfying S*{u) = S*(u'). Then for a given ε>0 there is an N=N(έ)eZ+, such that
n>Nimplies |Sn(u) — Sn(u')|<ε, where Sn is an abbreviation for M[yn]. The interior of
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the quadrilateral with the three rectilinear sides —l,u,u,u',u',l and a circular side

ίΓ"-ϊ is mapped by Sn conformally onto the quadrilateral with vertices P _ l 5 Sn(u), S(u')

and P + ! lying on | Sn |. But ε > 0 can be chosed as small as one pleases, hence the moduli

of these two quadrilaterals can never be equal; in fact the one remains constant and

the other becomes unbounded as ε->0, contrary to the conformal invariance of the

modulus, which is absurd.

Thus we have proved (cf. Courant [1], pp. 105-107).

THEOREM 1. There exists a minimal surface S* of least area among all minimal

surfaces bounded by both \ y \ and by any one of rectifiable Jordan arcs joining the points

P ± 1 0 Λ | Γ | .

3. Orthogonal intersection with the basis. 3.1. Now that we have at least one

surface of least area as a solution to the variational problem, we may assume in advance

that the upper bound L o of lengths in admissible rectifiable arcs is not smaller than

2L[y*]. So we are prepared to construct many admissible contours {y}af0 satisfying

L[y] <LQ with such Lo in the neighbourhood of | y * | as well as the admissible harmonic

surfaces bounded by them.

3.2. Let g(u) = g(u;m) denote the straight line V=m(U — u) in the (U9 F)-plane

passing through the point (u,0) on / with slope m. Keeping me/?u{ + αo} fixed and

letting u vary on the interval /, we have a 1-parameter family {T[g(ύ)] \ uεl} of curves

on I T\. On the other hand let λ(u) denote an arbitrary C1-mapping of / = [ — 1, 1] into

R, such that λ{- 1) = Λ(1) = Q. Now we mark the point P(u) on the curve T\g(μ)]9 so that

the vector η = η(u, ε) = y*(u), P(M) with a real parameter ε may satisfy the following

conditions:

1 ° the absolute value of η(u, ε) is equal to | ελ(u) |;

2 ° the orientation of η(u9 ε) changes at the point u e /, where λ(u) changes its sign.

The locus of these extremities P(M) for all u ranging over the interval [—1, 1] shall
be denoted by CEλ(u).

PROPOSITION 12. The point set Cελ(u) is parametrizable on I as a rectifiable Jordan

arc, which connects P _ ! with P + 1 .

PROOF. Since Cελ(u) is a single-valued continuous mapping of the interval / into

I Γ| satisfying Cελ(± l) = P±i, and further u1φu2 implies C ε λ(w1)#C ε λ(w2) by definition,

it is a Jordan arc connecting P _ x with P + 1 on \T\.

Next we show the rectifiability of the arc Cελ(u): indeed its length is seen to have

a rough estimate from above

L[Cελ]<L[γ*] + \
dλ{u)

du

in the following way. Take a finite set of points

du
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— 1 <U0<Uί< ' <WV_ 1<WV< < M i V _ 1 < M J V = l

on /. Let the curve T[g(uv)] intersect the arc Cελ(u) at the points Pv = P(wv)
(v = 0, 1, 2, , N), which form the vertex of the inscribed polygon 77: P 0 P r ' P^-iP^.

Consider the parallel displacement of the vector η(uv-x) by the vector
y *(wv_1), y*(wv), whose terminal point shall be denoted by Qv. If the division of / is
sufficiently fine for a given ε e R, we have

Hence

N

Σ
v = l

N

1
v = l

Σ IPv-!,Pvl= Σ ly*(«v-i),y*(κv)l+ Σ
N

Σ
v = l

dηiu)

<L[y*]+
v = l

dη(u)

du

du

•I

the right-hand side of which tends to

L[γ*] +

as Max|wv — M V _ ! |-»0. So we finally have

L[Ceλ]<L[y*] + \

It follows immediately that

dη(u)

du
du + \ε\

dλ(u)

du
du.

q.e.d.

PROPOSITION 13. The sum of paths γ 4- Cελ parametrized on dB belongs to Γ, if and

only if\ε\ is sufficiently small.

3.3. Consider the unique harmonic vector in Inti? with boundary value

(η(u,ε)9 (uel),

ίθ, («

which may be denoted again by η = η(w, ε) without any confusion. The harmonic surface
S*(w) + η(w, ε) then not only spans a contour of Γo but also has a finite Dirichlet integal
on Inti? for sufficiently small εeR (Proposition 5, 13), which is accordingly admitted
to concurrence for our variational problem of partially variable boundary. Hence the
minimality of D[S*(w)] yields that
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f
dv
fi(τ) }

j ε = o dv dv\dεjε=o)
3.4. Let Int B be mapped conformally onto the interior of the unit disk B in the

complex rev~10-ρlane (r, θeR), so that the peripheral points β v " l k π / 2 (fc = 0, 1, 2) may

be kept invariant. On setting §(r, θ) = S*(w), ή(r, θ) = η(w), we readily have the

admissibility of S+ή as well as the minimality of D[S] in reference to the parameter

domain B on account of the conformal invariance of Dirichlet integrals.

An arbitrary component X of the vector S is a real-valued function continuous on

Cloi?, harmonic on Int B, and absolutely continuous on dB. The partial derivative

d Y(r, θ)/dθ of its harmonic conjugate Y(r, θ) has a non-tangential limit on dB for every

θ belonging to a measurable subset E of [0, 2π] with mesis = 2π (cf. Zygmund [4],

p. 253, Theorem 1.6). We summarize the result in
PROPOSITION 14. The radial limit

r-i dr

exists almost everywehre on dB.

3.5. Fix an arbitrary θ0 of E. Then for any r on the interval (0, 1) there is a

pe(r, 1) satisfying

§(1,ΘO)-S(r9θo)_d5(r9θo)

\-r dr Γ = p

by the Mean Value Theorem. When r increases to 1, the right-hand side of (4) has a

finite limit in view of Proposition 14, since then p grows to 1. Hence

PROPOSITION 15. The inward-pointing normal d§(\, θ)/dn on dB exists and is equal

to l im^i dS(r, θ)/drfor almost every θ of[09 2π\.

3.6. Here we will prove the following modification of Green's theorem.

PROPOSITION 16. Let R = {(x,y)\a<x<b,oc<y<β} be a closed rectangle in the

(x, yYplane and let P(x, y\ Q(x, y) real-valued C2-functions defined in the interior of R

satisfying the three requirements:

1 ° for a.e. value y0 on the y-interval [α, β], limx^b_0P(x, y0) exists finitely, while

2° for a.e. value x0 on the x-interval [α, b],limy^^_0Q(x0, y) exists finitely, while

)dx A dy < 4- oo .
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Under these assumptions it holds that

Jen jRj\dx dy

PROOF. Owing to the assumption 3° the j-interval [α, β] contains some measur-

able subset Eί9 such that mes Eί=β — α and that for every value yίeEί the single

integral

eQ(χ,y) Uχ

is well defined. On the other hand for any subinterval [a\ b'] of (a, b) we have

Cb> dP(x, yt)

) a , dx

Since it loses no generality to suppose here the assumption 1° is fulfilled on

y=yl9 it follows that

ί
J a

dx

Hence Fubini's theorem yields

J" β(x, « - Q(x, 0L)]dx

= f % , y)dy + [Q(X, β)dx = f
Ja Ja JddR

q.e.d.

Now let the open disk Inti? in the r^~ l θ-plane be put into correspondence in the

one-to-one conformal manner with the interior of the rectangle R in the (x, y)-plane,

so that the peripheral points e2*^'1, eπy/~1/2 and e ^ " 1 located on dB may go to the

corners (a, /?), (a, α) and (b, α) on dR. Regarding the y-th components of the real vectors

both [dή/dε]ε = 0 and S as functions in the variables x, y, we denote them, for brevity,

by X(x, y) and F(x, y) respectively 0 = 1 , 2 , 3). Then P = X(dY/dx\ Q = X(dY/dy) fulfill

the requirements in Proposition 15 (see 3.5, 3.6), which guarantees that

(5) \(~—— + ——--)dxΛdy=\ X-—ds.
JRJ\dx dx dy dy J JdR dn



MINIMAL SURFACE 469

Substitution of (3) into (5) implies

(6)
C ίdη\ dS* J Λ

3.7. Let uel be fixed. If we denote by t(u,m) the tangent vector to the curve

m)] at the point (w, 0), then (6) is equivalent to

Γ λ(u)t(u;m)dS* ' Λ

J — l dn

Therefore, in view of the arbitrariness of the real-valued C 1 -function λ(u) there

exists a measurable subset E of I with mes E=2, such that

(7)
dv

for every ueE.

Since the relation (7) ought to remain valid for every direction me/?u{±oo}, we

see finally that dS*(u, v)/dv\v=0 is a normal vector to the surface | 7\u, v)\ at the point

γ*(u), so far as u belongs to E. But the linear measure of the image S*(I\E) is zero,

since S* is a minimal surface (Tsuji [3]; see Nitsche [2], pp. 288-289, too). We conclude

THEOREM 2. The minimal surface S* of least area spanning the given surface T

with handle y touches T orthogonally at almost all points of some rectifiable simple arc,

which connects both terminal points ofy on T.
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