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Introduction. Throughout the present article, we work on an algebraically closed
field k of characteristic zero. Whenever we consider problems of topological nature, we
assume k to be the complex field C.

DEerINITION 1. A logarithmic del Pezzo surface (henceforth called log del Pezzo
surface, for short) ¥ with contractible boundary is a projective normal algebraic surface
satisfying:

(i) V is singular but has at most quotient singularities.
(i) The anti-canonical divisor — Ky is ample.
V is said to have rank one if the Picard number p(7) of ¥ is equal to one.

Let g: V-V be a minimal resolution of singularities of ¥V, D:=g~!(Sing V) and
V°:=V—Sing(¥)=V—D. We often denote (¥, D) and V interchangeably (cf. [7]). A
general theory on the structure of such singular surfaces is developed in Zhang [11].
When ¥ with p(¥)=1 admits only rational double points, we studied topological
properties of ¥ —Sing(¥) in Miyanishi-Zhang [9]. In the present article, we consider a
special class of such surfaces admitting singularities of higher multiplicity. Namely, we
consider a class specified in the following:

DEFINITION 2. Let ¥ be a log del Pezzo surface of rank one with contractible
boundary. ¥ or (V, D) is called a dP3-surface if ¥ has no singular points other than
rational double points and a unique rational triple point.

In §2~8§5, we apply the results in [11] and classify all dP3-surfaces. In §6, we
compute H,(V°; Z) and n,(V°). Let U° be the universal covering of ¥°, which is an
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algebraic surface because it turns out that n,(¥°) is finite. We let U be the normalization
of ¥in k(U°) and call U the quasi-universal covering of . We give an explicit method to
construct U. Some examples show that 7,(¥°) is not necessarily abelian, contrary to
the case admitting only rational double points (cf. [9]). Our main result is the following:

MAIN THEOREM. Let V be a dP3-surface. In the previous notation, we have:

(I) There are altogether 97 singularity types of dP3-surfaces, each of which is
realizable and given in terms of the dual graph of D in a table (see Appendix). We call
this table just the Table, and a singularity type given with classifying number n in the
Table just “the singularity of No.n.”.

(A1) Suppose (V, D) is not isomorphic to (25, M3). Then we can find a (— 1)-curve
C and a P'-fibration ¥: V—-P" in such a way that 0< —(C, D*+K,)< —(E, D*+ K;)
for every irreducible curve E on V which is not a component of D, and that the configuration
of C+ D as well as all singular fibers of ¥ can be explicitly described. The configuration
is given in Appendix, as the configuration (n) if n#15, 18 and as the configuration (na)
or (nb) if n=15, 18.

(II) 7, (V°) is a finite group which is not necessarily abelian, and the quasi-universal
covering U of V is a rational log del Pezzo surface. The fundamental group n,(V°) and
the singularities of U are given in the Table together with other data.

(IV) Suppose n,(V°)=(0). Then V° contains C x C* as a Zariski open set, where
C*:=C—{0}.

(V) Suppose n,(V°)#(0). Then V is a quotient of P* by a finite subgroup H of
PGL(2, C) if and only if the Picard number p(U)= 1. If this is the case, then there exists
a cyclic normal subgroup H, of H such that H/H,~n,(V°) and P*/H,=U.

It remains to consider the following problem:

(*) For a given singularity type, say of No.n, how many isomorphism classes of
dP3-surfaces are there with the given singularity type?

A singularity type does not necessarily determine uniquely the isomorphism class
of a dP3-surface. Indeed, if we consider the singularity of No.n (n=15 or 18), there
are two dP3-surfaces V(rga) and V(nb) corresponding to the configurations (na) and (nb),
respectively, such that Sing ¥(na) and Sing ¥(nb) are given as thé same singularity type
of No.n, while ¥(na) is not isomorphic to V(nb). For the proof, see the argument in
Lemma 2.5. However, there is a result which suggests that a singularity type may
determine uniquely the isomorphism class of a dP3-surface in the cases considered in
§ 5. Namely, suppose that a dP3-surface (¥, D) has a (—1)-curve E which meets a
(—2)-curve D, and the unique (—3)-curve D, in D with (E, D)=(E, D, + D,)=2. Let
n: V— W be the blowing-down of E. Then n(D— D,) is contractible to rational double
singular points on a Gorenstein log del Pezzo surface W of rank one by Lemma 4.2.
In [9; Lemma 7], it is proved that unless Sing W consists of two singular points of
Dynkin type (D,), W is uniquely determined by Sing W up to isomorphisms. But we
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do not know yet whether or not such a (—1)-curve E as above is unique.

TERMINOLOGY. A (—n)-curve is a nonsingular rational curve with self-intersection
number —n. A (—2)-rod (resp. (—2)-fork) is a rod (resp. fork) whose irreducible
components are (—2)-curves. For the definitions of rods, twigs, forks, admissible rods,
rational forks, Bk(D), D*, we refer to Miyanishi-Tsunoda [7; pp. 203204, pp. 211-213].
A (—2)-rod (resp. (—2)-fork) corresponds to the exceptional locus of a minimal
resolution of a rational double point of Dynkin type A, (resp. D,, Es, E; or Eg). A
reduced effective divisor D is called an NC (resp. SNC) divisor if D has only normal
(resp. simple normal) crossings. An irreducible component of D is called a
(—n)-component if it is a (—n)-curve. A surface V° is said to be affine-uniruled (resp.
affine-ruled) if there exists a dominant morphism (resp. an open immersion)
@:A' x R->V°, where R is an affine curve. We often denote A! by C when the ground
field k= C. Given a P!-fibrataion ¥ : V- P!, an irreducible curve Bis called an n-section
of ¥ if n>2 and (B, L)=n for a general fiber L of V.

NOTATION.
#(D): the number of irreducible components in D
p(¥V): Picard number of V
K, : canonical divisor of V
q(V): irregularity of V
pA(A): arithmetic genus of an irreducible curve 4
h(D): dim H'(V, D)
D~D’: D and D’ are linearly equivalent divisors
D=D’': D and D’ are numerically equivalent divisors
(D, D'): the intersection number of two divisors D and D’
|D|: complete linear system defined by D
®,p: the rational map V- - - —P%™IPl defined by | D|
f*D: the total transform of a divisor D by a morphism f
f'D: the proper transform of a divisor D by a morphism f
(2, M,): Z2,is a Hirzebruch surface of degree n and M, is a minimal section
®, 0, *: stand for a (— 1)-curve, a (—2)-curve and a (— 3)-curve, respectively
(see Figures (10) ~(12) and the Table)
x—o"—=x: a rod (i.e., a linear chain) consisting of two (— 3)-curves (as tips)
and n (—2)-curve (see the Table)
(—n): a (—n)-curve in the dual graph of the exceptional divisor coming
from a resolution of Sing(U) (see the Table)
A,+ D, +(—n): disjoint union of Dynkin types 4, and D,, and a (—n)-curve (see
Lemma 5.1 and the Table).

This article is submitted to the Department of Mathematics, Osaka University as
the dissertation for Doctor of Science. The author would like to express his gratitude
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to his thesis advisor, Professor M. Miyanishi who gave the author valuable advice and
constant encouragement during the preparation of the present article. The author also
thank the referee for giving valuable comments which make the article more readable.

1. Preliminary results. We employ the notation in the Introduction. Let (V, D)
be a log del Pezzo surface with contractible boundary. There is a natural number N
such that for any Weil divisor F on ¥, NF is linearly equivalent to a Cartier divisor.
Thus, for Weil divisors F; and F, on ¥ one can define the intersection number by
(Fy, F,):=(1/N?*)(g*NF, , g*NF,). One can also define the direct image g, F of a divisor
Fon V as usual, and if F; ~F, on V then g, F, ~g,F,. For relevant results, we refer
to Artin [1; Cor. 2.6] and [7; Lemma 2.4).

Let (V, D) be a dP3-surface and let 4 be a connected component of D. Since any
singular point of ¥ is a quotient singularity, the dual graph of 4 is as described in
Brieskorn [3; Satz 2.10]. On the other hand, the dual graph of the exceptional divisor
of a minimal resolution of a rational double (or triple) singular point is given in Artin
[2; p. 135]. Combining these results, we know all possibilities of the dual graph of 4.
In particular, g(4) is a rational double point if and only if 4 is either a (—2)-rod or a
(—2)-fork, and g(4) is a rational triple point if and only if 4 consists of only one (— 3)-
curve and several (—2)-curves and the dual graph of 4 is either a rod or a fork.

LEMMA 1.1 Let (V, D) be a log del Pezzo surface with contractible boundary. Then
we have:

(1) ¢g*Kp=D*+K, and —(D*+ Ky, F)>0 for any curve F where the inequality
becomes an equality if and only if F is a component of D. Moreover, p(V) = #(D) + p(V).

(2) Any (—n)-curve withn>?2 is a component of D. Hence if (V, D) is a dP3-surface,
there are a unique (—3)-curve in D and no other (—n)-curves on V with n>3.

3) If p(V)=1 then Pic(V)=H*(V; Z)=Z and V is rational.

Proor. (1) For the first assertion, see [7; Lemma 2.5]. The second follows from
the first and the hypothesis that — Ky is ample. The last assertion is obvious.

(2) Suppose that a (—n)-curve E, with n>2, is not a component of D. Then
(E,Ky)<(E, D'+ K,)<0 by (1) and hence (E*)=-2—(E,Ky)>—1. This is a
contradiction.

(3) For the first assertion we refer to [9; Lemma 1]. Let P be a natural number
such that PD? is an integral divisor. By (1), we have 0=h°nP(D*+ Ky)) > h°(nPK,) for
any n>0. Hence x(V)= — oo and there is a P*-fibration ¢: V- B onto a nonsingular
curve B with genus g(V). If g(V)>0, then every component D; of D which is rational
is contained in a fiber of @. Let H be a section of @. Then H, a fiber f of @, and D,’s
are numerically independent. Hence p(¥)>#(D)+2. This is absurd by (1) and by the
hypothesis that p(¥)=1. Thus, k(¥)= — oo and ¢(¥)=0. Hence V is rational. q.e.d.

By Lemma 1.1, (1), if C is an irreducible curve not contained in D, —(C, D*+ K,)
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takes value in (1/P)N:={n/P|ne N}, where P is a natural number such that PD%is an
integral divisor. So, we can find an irreducible curve C such that —(C, D* + K;,) attains
the smallest positive value.

DerFmNiTION 1.2.  Let (V, D) be a log del Pezzo surface with contractible boundary.
(V, D) is said to be of the first kind if there exists an irreducible curve C such that
| C+ D+ Ky |# & and that —(C, D*+K,) attains the smallest positive value. (¥, D) is
said to be of the second kind if (V, D) is not of the first kind, i.e., if | C+ D+ K, |=
for each irreducible curve C for which —(C, D*+K,) attains the smallest positive
value.

LemMMma 1.3. Let V be a projective normal algebraic surface with only quotient
singularities. Let g: V—V be a minimal resolution of singularities of V and let
D=g~'(Sing V). Then we have:

(1) Assume that p(V)=1. Then for any (—1)-curve E on V and any bi-
rational morphism o: V- W with W nonsingular, not every connected component of
o,(E+ D) is an admissible rational rod or fork.

(2) Assume that V is rational and that any ( —n)-curve with n>2 is a component
of D. (These assumptions are satisfied by dP3-surfaces by Lemma 1.1). Let ®: V—P* be
a P'-fibration. Then p(V)—#(D)— 1 +#{irreducible components of D not contained in
any fiber of ®}=1+Y. P {#((—1)-curves in f)—1}, where f moves over all singular fibers
of @. If a singular fiber f contains only (— 1)-curves and (—2)-curves then the dual graph
of f is of type (1) or (II) in Figure (1).

1 1 1 1

(I) 8—o0— -+* —0—8
2 2 2 1
(II) @——0— - _E_o
1
FIGURE (1)

In Figure (1), ® (resp. o) stands for a (—1)-curve (resp. (—2)-curve) and each number
is the multiplicity of the corresponding curve in f.

(3) With the notation and assumptions in (2), assume further that V is a
dP3-surface. If there is a singular fiber f of type (II) whose (— 1)-curve E satisfies that
—(E, D*+Ky) attains the smallest positive value, then the unique (—3)-curve is not
contained in any fiber and every (—1)-curve E' contained in a singular fiber ' satisfies
—(E', D*+K,)= —(E, D' +K,).

Proor. (1) If ¢, (E+ D) consists of admissible rational.rods or forks, i.e., if
o(E+ D) is contractible to quotient singularities, then #(D)+ 1 =p(V)>#{irreducible
components of E+ D contracted by o} + p(W)=#{irreducible components of E+ D
contracted by ¢} +#(0(E+ D))+ 1=#(D)+2. This is absurd.

(2) By contracting components of singular fibers of ¥, we can blow down V to



404 D.-Q. ZHANG

a Hirzebruch surface Z,. Since p(Z,) =2, one verifies the first assertion. For the second
assertion, one just argues by induction on #(f).

(3) Suppose that the (—3)-curve of D is in a fiber of @, say f,. Then the sum of
coefficients of all (—1)-curves in f; is greater than 2 by [11; Lemma 1.6] and hence
—2(E, D*+K,))= —(f, D*+ Ky) = —(f, D*+ K;)> —3(E, D* + K;;) by the minimality of
—(E, D'+ Ky). This is absurd. Thus, the (—3)-curve is transversal to @ and every
singular fiber f/” has type (I) or (II). Hence, by —2(E, D*+K;)= —(f", D* + K,)) and by
the minimality of —(E, D*+ K,), one verifies the second assertion. q.e.d.

By the definition and the computation of D* given in [7; p. 213], one verifies
straightforwardly the following:

Lemma 1.4. Let (V, D) be a dP3-surface and let A be the connected component of
D containing the (— 3)-curve. Then according to the dual graph of A, one has the following
results.
_ s—i+1 o =i+ (s—i+1)i
(s+D)+is—i+1) +D)+is—i+1) ' (s+1)+i(s—i+1)
b iv1t -t l ; D,
S+1)+i(s—i+1) +D)+is—i+1)

(1) D*

if A has the dual graph as shown in Figure (2).

o 0— =0 *; 0— -0
Dy Dy Di-y Py DBy Dg
FiGUre (2)
1 i—1 i i
2 D'=——D+ " +—D;_+—Di+ - +—D,_
@) i+1 " i+1 i i+1 °7?
i i
+ . Ds—l+ . Ds ’
2(i+1) 2(i+1)
if A has the dual graph as shown in Figure (3).
( DS
0 0— -0 * 0— ._.([ o
Dy D i-1 Pi Diyy Doy Dy
FIGURE (3)
2 4 6 4 2 3
3 D*=—_D,+—D,+—D3;+—D,+—Ds+—Dg,
( ) 7 1 7 2 7 3 7 4 7 5 7 6

if A4 has the dual graph as shown in Figure (4).
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Il
O A4 e AL 0
D, D, Dg Dy Dg
FIGURE (4)

We also use the following result.

LEMMA 1.5. Let ®: V—P! be a P'-fibration on a nonsingular projective rational
surface V. Then we have:

(1) Suppose that there are two cross-sections H, and H, of ®, where H, is a
(—2)-curve. Let v: V-2, be a contraction of all (—1)-curves and consecutively
contractible curves in singular fibers so that (v, H,)*= —2. Then (v, H,)*=2+2(H,, H,).

(2) Let D be an SNC divisor on V. If the following three conditions are satisfied
then V— D is affine-ruled.

(i) Thereare two cross-sections H, and H, of ® containedin D suchthat D— H, — H,
is contained in fibers, and (H,, H,)=0 (resp. 1),

(i) For every fiber f, except at most two (resp. one), say f’s where k<2 (resp.
k<1), one of H, and H, meets a component of f not in D;

(iii) If f, and f, (resp. fy) as above exist, then one of f, and f, (resp. f,), say f1,
is a singular fiber, and H, and H, meet different connected components of the reduced
effective divisor formed by all common components in f, and D.

(3) Suppose that there is an irreducible rational curve H such that H is a 2-section
of ® and that p(H)< 1. Then there are at most two (resp. one) singular fibers of type (II)
in (2) of Lemma 1.3 of which H meets only in the (—1)-curves if H is nonsingular or
nodal (resp. cuspidal). Let v: V-2, be a contraction of all (— 1)-curves and consecutively
contractible curves in singular fibers. Then (v, H)*=4m for some m>1, and (v, H, v, F)=0
(mod 2) for any 2-section F of ®. Moreover, if n=2 and v, H does not meet the minimal
section of X,, then (v, H)*>=38.

Proor. (1) Since H, does not meet any curve contracted by v, one has
(v H,,v H))=(H,, H,) and v, H,~v, H, +(2+(H,, H,))L, where L is a general fiber
of @op~1: X,— P! Thence follows (1).

(2) The affine-ruledness of V'— D can be proved in the same way as in [11; Lemma
3.3] where the case (H,, H,)=0 is treated. Indeed, for the case (H,, H,)=1, we only
need to replace the claim there by the following:

CLaiM. Let 4, and 4, be two cross-sections of a P!-fibration n: X, — P! such
that (4,, 4,)=1. Then we have 4, + 4,+ L+ K; ~0 with a general fiber L of =.

Since this can be easily verified, we omit the proof.

(3) Note that if fis a fiber of type (II) and if H meets only the (— 1)-curve in the
fiber f'then f n H is a ramification point of @,y and that #{ramification points of @} =2
provided H is nonsingular. If H is singular, by extending ®,: H—P' to &: H-P!
where H is the normalization of H, one verifies the first assertion. The second assertion
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follows from the fact that v, H and v, F are 2-sections of ®ov~!: X,—»P!. The last
assertion is obvious. q.e.d.

We can now explain very roughly what we are going to do in the subsequent
sections. Given any dP3-surface (V, D), we shall find below a P!-fibration ¥: V—-P?,
which must satisfy the following conditions on singular fibers. First of all, by (2) of
Lemma 1.1, each singular fiber of ¥ consists of (— 1)-curves, (—2)-curves or the unique
(—3)-curve. Secondly, there are exactly five possible types of the singular fiber containing
the (—3)-curve which are described in [11; Lemma 1.6]. Thirdly, there are exactly two
possible types, type (I) and type (II) in (2) of Lemma 1.3, of singular fibers consisting
only of (— 1)-curves or (—2)-curves. The divisor D will consist of irreducible components
of singular fibers, cross-sections and 2-sections of the fiberation ¥. An explicit
configuration of D is given in Appendix, where the P!-fibration is given vertically. We
can compute 7,(¥°) or construct the quasi-universal covering U of ¥ only by making
use of the P!-fibration ¥.

Conversely, starting with a minimal ruled surface Z,, (m <3) and blowing up points
on fibers of the P!-fibration, we can produce a P!-fibration ¥ with singular fibers as
specified as above. In this way, we can produce a dP3-surface with any singularity
type.

The rest of the present section is a preparation for the study of dP3-surfaces of
the first kind. First of all, we need the following:

DEerFINITION 1.6 (cf. [10], [11]). A pair (V, D) of a nonsingular projective rational
surface V and a reduced effective divisor D on V is called a quasi-litaka surface if D
admits a decomposition into integral divisors D=4+ N, such that 4>0, N>0,
A+ Ky, ~0 and N consists of (—2)-rods or (—2)-forks. k

Furthermore, if 4 is an SNC divisor, we call the pair (V, D) an litaka surface.

Given a quasi-litaka surface (¥, D), we can consider smooth contractions of the
following two types:

(A) the contraction of an irreducible component of the part 4,

(B) the contraction of a rod E+ R, where E is a (—1)-curve, R (might be zero)
is a connected component of the part N, and E does not meet connected components
of N other than R.

It is easy to show that if u: - W is a birational morphism which is a composite
of smooth contractions of the above type (4) or (B), then (W, u, (D)) is again a
quasi-Titaka surface. We call a quasi-litaka surface (V, D) minimal if no further
contractions of type (4) or (B) are possible on (V, D).

LEmMA 1.7. Let (V, D) be a dP3-surface of the first kind with a curve C as in the
Definition 1.2. Then the following assertions hold true.

(1) There exists a unique decomposition of D into effective integral divisors
D=D'+ D" such that:
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(i) C+D"+K,~0;

(ii)) (C,D)=(D",D)=(Ky, D))=0 for any component D; of D'. Hence
(V,(C+D")+ D") is a quasi-Iitaka surface.

(2) C is a nonsingular rational curve and (C, D")=2. Moreover, either C+ D" is
an SNC rational loop or #(D")<2 and C+ D" has no intersection except at a single
point common to all components. D" is the connected component of D containing the
unique (— 3)-curve. Furthermore, Supp(D*)=Supp(D") and (C, D*)>0.

(3) We have (K?)>0 and #(D)=p(V)—1=9—(K%)<9.

Proor. (1) is proved in [11; Lemma 2.1].

(2) If D"=0 then D=D’, where D’ consists of (—2)-curves. This is not the case
since (V, D) is a dP3-surface. In view of (1), we can list up all possible configurations
of C+D”. (Use Miyanishi [6; Lemma 2.1.3]). In particular, D" is connected and
(C, D")=2.Hence D" is the connected component of D containing the unique ( — 3)-curve
because D’'n D" = by (1). By the definition of D*, the coefficient of a component D;
in D* is zero if and only if D; is contained in a connected component of D which is a
(—2)-rod or (—2)-fork (cf. [7; §1.5]). Hence Supp(D*)=Supp(D”). Thus (C, D¥)>0
because (C, D")=2.

(3) Leta be the coefficient of the (—3)-curve in D¥. Then 0 < a < 1 by the definition
of D*. Hence 0<(Kp?)=(D*+K,)*=(D*+Ky, D*)+(K2)+(D* Ky)=(K?)+a<
(K2)+1 and (K2)>0 (cf. (1) of Lemma 1.1). q.ed.

The following proposition is proved in [11; Th 3.1].

ProprosITION 1.8. Let (V, D) be a dP3-surface of the first kind. Then there exist
an irreducible curve C and a birational morphism u: V-V, such that |C+ D+ K, |#
and —(C, D*+K,)) attains the smallest positive value and that the following assertions
hold true:

(1) D is decomposed into D=D'+ D" such that (V, (C+ D")+ D') is a quasi-litaka
surface as in Lemma 1.7, and u is a composite of smooth contractions of type (A) or (B)
such that if A,:=u,(C+D") and N,:=u,(D’) then (V,, A, +N,) is a minimal
quasi-litaka surface.

(2) Each smooth contraction of type (B) constituting u has the exceptional divisor,
i.e., E+ R in the above notation, disjoint from (the image of) C.

(3) One of the following three cases takes place:

CASE (X). V,=P?or X, (m>0). A, is an NC divisor and N, =0.

CASE(Y). ThereisaP'-fibration ®: V,—P" such that A, consists of one 2-section
H and one nonsingular fiber | with Hnl=two points, and that the components of N, are
contained in fibers of ®.

CASE (Z). A, is a singular irreducible curve with p,(A4,)=1.

(4) Let t be the number of contractions of type (B) involved in u. Then
t=#A,)+#N)—p(V,). In CASE (Y) and CASE (Z) one has t=0.
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2. dP3-surfaces of the first kind. We shall classify dP3-surfaces of the first kind.
For this porpose, we divide them into three types by making use of Proposition 1.8.

DerFNITION 2.1. Let (V, D) be a dP3-surface of the first kind. (V, D) is said to be
of type (I¢) if there exist a curve C and a birational morphism u so that CASE (Z) in
Proposition 1.8 takes place. (¥, D) is said to be of type (Ib) if there exist a curve C and
a birational morphism u so that CASE (Y) in Proposition 1.8 takes place but (V, D) is
not of type (Ic). (V, D) is said to be of type (Ia) if there exist a curve C and a birational
morphism u so that CASE (X) in Proposition 1.8 takes place but (¥, D) is neither of
type (Ic) nor type (Ib).

The following is the main result of the present section.

THEOREM 2.2. Let (V, D) be a dP3-surface of the first kind, which is not isomorphic
to (X3, M3). Then the following assertions hold:

(1) Tke dual graph of D (i.e., the singularity type of V), is one of those given in
the cases No.n in the Table with 2<n<27.

(2) We can take a (—1)-curve as the curve C considered in Proposition 1.8, and
find a P'- fibration ¥ : V—P* such that the configuration of C+ D as well as all singular
fibers of ¥ is given in the configuration (n) if n#15, 18 and in the configuration (na) or
(nb) if n=15, 18 (see Appendix). In particular, all components of D with at most three
exceptions are contained in singular fibers of V.

(3) All the cases (2<n<2T7) are realizable.

@4 V°:=V—D is affine-ruled if n=2, 3, 4, 8,9, 12, 13, 15, 18.

The proof of Theorem 2.2 consists of the subsequent three lemmas. Throughout
this section, we assume that (¥, D) is not isomorphic to (X5, M3).

Lemma 2.3. If (V, D) is of type (1a) then all the assertions in Theorem 2.2 with
n=3,4 hold.

Proor. Suppose that (V, D) is of type (Ia). Then there exist a curve C and a
birational morphism u: V-V, so that CASE (X) in Proposition 1.8 takes place. We
use the notation D’, D", A, and N, there. Since N, =0, for any connected component
R of D’ there exists a (— 1)-curve E such that E+ R is contracted by u. In particular,
D' consists of (—2)-rods. In view of Lemma 1.7, C+ D" is an SNC rational loop be-
cause A,=u,(C+D") is an NC divisor. Hence D consists of rods. Note that
t=#A,)—p(V,)<#(A,)—1<3. For the configuration of the anti-canonical divisor 4,
of normal crossing type, see Zhang [10; Lemma 2.6]. If u=id then (V, D)=(2,, M,).
Hence we assume that u contracts a (—1)-curve F of V. Then 0< —(C, D*+K,)<
—(F,D*+Ky)=1—(F,D¥<1. Write the rtod D"=D,;+ -+ D;+ -+ D,, where
(D} = -3 and (C,D,)=(Dy, D;)="--=(D,, C)=1. By Lemma 1.4, one has 1>
—(C, D*+Ky)=2+(CH—(C, D=2+ (CH—(s—i+ )/(s+1+i(s—i+ 1) —i/(s + 1+
i(s—i+1))>(C?+1.Hence (C?)= —1 by (2) of Lemma 1.1. Namely, Cis a (— 1)-curve.
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Then, since each divisor E+ R of contraction type (B) does not meet C, we can find a
birational morphism w: V- W, such that w is a composite of smooth contractions of
type (4) or (B), that w contracts C and that (W,, w, (D)) is a minimal quasi-litaka
surface satisfying the assertion (3) of Proposition 1.8 (cf. [11; Lemma 3.5]). Then, by
replacing u by w, one may assume that u contracts C.

We proceed according to the value of s.

The case s=1, i.e., the (—3)-curve is isolated in D. Since (u,(C+D"))*=(Ky,)* (=8
or 9)>1, u contracts some E+ R (contraction of type (B)). Ler t: V-V, be the
contraction of C and let g: ¥V, — ¥, be the contraction of 1(D’). Note that C is disjoint
from E+ D’ by Lemma 1.7, (1) and Proposition 1.8, (2), and note that p(¥,)=1 because
s=1. Since 7(E) is a (— 1)-curve and 7(R) is a (—2)-rod, let g,: V;— W, be the contrac-
tion of 7(E+ R). Then (0,),((t(E)+t(D")) consists of admissible rational rods. This is a
contradiction by Lemma 1.3, (1).

The case s=2. Since (u,(C+D"))*>2, for t defined in Proposition 1.8, one has
t>1.0nealsohas t=#(4,)—p(V,)<2—p(V,)<1.Hence t=1, #A,)=2and p(V,)=1,
ie., V,~P? But then the direct image in V, of the component of D", which E+ R
(being the unique divisor of type (B) contracted by ) does not meet, has self-intersection
number < —1. This is absurd.

The case s=3. We may assume that (D?)= —2. Note that t=#(4,)—p(V,) <
3—p(V,)<2. If t=2, then #(4,)=3 and V,=P? However, the direct image in
V, of the component of D”, which the two divisors of type (B) contracted by u fail to
meet, has self-intersection number < —1, a contradiction. If t=0, then (4, (C+ D"))*=2
or 3 according as whether (D3)= —2 or not. This is absurd. Suppose that t=1. Let
E+ R be the unique divisor of type (B) contracted by u. If (D2)= —2 and E does not
meet D,, we reach a contradiction as in the case s=1, where we let T be the contraction
of all components of C+ D" except the component meeting E. If (D3)=—2 and E
meets D, then (u,D,)*=(u,D;)*=—2, again a contradiction. If (D%)=—3, we let
@: V—P*' be the P!-fibration defined by |S,|, where S;=2C+ D, +D;. By Lemma
1.3, (2), all singular fibers S, - - -, S, are of type (II). Since D=D"+ R, one has k=0
or 1, and if k=1 then #(S;)=#(R)+ 1=4. This is impossible in view of (3) of Lemma
1.5 with H=D,. '

Assume s>4. Consider first the case where (D2)= —3 for some 1<i<s. Let
@: V—P? be the P!-fibration defined by | S, |, where S, =2C+ D, + D,. By (3) and (2)
of Lemma 1.3, one may assume that i=2 and that there exists exactly one singular fiber
S, of type (I). If D, meets a (—1)-curve E, in S,, then —(E,, D*+K,)=1-2(s—1)/
Bs—1)<1—(s—1)/(3s—1)—2/(3s—1)= —(C, D* + K;)) because s>4 (cf. Lemma 1.4).
This is absurd. Therefore, s>5 and there are two (—1)-curves E, and E, with
(Ey, D3)=(E,, D;_,)=1 such that S;=FE, +D3+---+D,_,+E,. Then there are no
other singular fibers because the cross-section D, meets only D, and D, in
D—D,.Butthen —(E;, D*+K})=1-2(s—2)/(3s—1)<1—(s—1)/(3s—1)=2/3s—1)=
—(C, D*¥+K,;)) because s>35, a contradiction to the choice of C. Indeed, s=9 by
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Lemma 1.5, (1) where H,:=D,_, and H,:=D,.

Consider next the case where (D?)= —3 for i=1 or s. We may assume i=1. Let
Y. V-P! be the P!-fibration defined by |S,|, where S,=3C+2D,+D,_,+D;.
Suppose s=4. Then D, is a 2-section. By Lemma 1.3, (2) and Lemma 1.5, (3), each
singular fiber (#S,) is of type (II) and there are at most three singular fibers
Sos 815 * "+ Sk (k<2). Since D consists of rods, #(S;)=3 or 4 (j#0). With the notation
in (3) of Lemma 1.5 where H:=D,, one has Z’;=1 #S;—1)—1=(v,H)*=4m for some
m>1. Thus, m=1 and k=2, and we may assume that #(S;)=3, #(S,)=4. Hence there
are exactly three connected components R,’s in D’ (1 <r<3). Note that for each R,
there is a (— 1)-curve E, such that u contracts E,+ R,. Let w: V— W be the contraction
of C and (E,+ R,)’s. Then p(W)=p(V)—1— f=1 #E,+R)=#HD)+1)—1-8=1,1ie.,
W= P?, while w,D, does not meet w,D;. This is absurd.

Suppose s=>5. Then D, and D,_, are cross-sections of ¥. By (2) of Lemma 1.3,
if one let Sy, Sy, - - -, Sx (k>1) be all singular fibers, we may assume that S, is of type
(I) and S; (j=2) is of type (II). By (1) of Lemma 1.5 where H,:=D, and H,:=D,_,,
one sees that D, and D,_, do not meet the same (— 1)-curve in any singular fiber and
that {s, k; #So, " -, #S,} ={5, 1,4, 6}, {9, 1; 4, 6} or {8, 2; 4, 3,4}. The configuration of
C+ D and S;’s is given in the configuration (2), (3) or (4) in Appendix. By Lemma 1.5,
(2), where H,:=D, and H,:=D,_,, V° is affine-ruled. We shall see in Remark 2.7
below, that the dP3-surface corresponding to the configuration (2) is of type (Ic). For
the existence of the configurations (2), (3), and (4), we refer to the argument at the end
of §2. q.ed

LemMma 2.4. If (V, D) is of type (1b) then all the assertions in Theorem 2.2 with
n=>5,6,7 hold.

ProoF. Suppose (¥, D) is of type (Id). Then there exist a curve C and a birational
morphism u so that CASE (Y) in Proposition 1.8 takes place. We use the notation D",
& in Proposition 1.8. In view of Lemma 1.7, C+ D" is an SNC rational loop because
u,(C+D") is an NC divisor. By the same argument as that in Lemma 2.3, one can
prove that C is a (—1)-curve. The morphism u consists of contractions of type (4) by
Proposition 1.8, (4). The 2-section H of @ in A, is not a (— 1)-curve, for otherwise the
contraction of a (—1)-curve H is a contraction of type (4) and this contradicts the
minimality of the quasi-Iitaka surface (V, 4,+ N,). So, we can write D" =D, + D, + D,
with (C, D,)=(D,, D,)=(D,, D3)=(D3, C)=1 and with (D3)=—3. Let S,=2C+
D,+ Dy and let ¥: V—P* be the P!-fibration defined by | S,|. ¥ is nothing but ®ou.
By (2) of Lemma 1.3 -and (3) of Lemma 1.5 where &:=¥ and H:=D,, all singular
fibers Sy, Sy, - *, S; are of type (II) and k<2. With the notation in (3) of Lemma 1.5,
one has _2+Z;=1(#Sj— 1)=(v,H)*=4m. Note that v, (H+S,)e| —Kj,|, because
C+D"+Ky,~0. Hence (v H)*=4, and {k; #S,, -, #Si}={1;3,7}, {2;3,3,5} or
{2; 3, 4, 4}. The configuration of C+ D and S;’s is given in the configuration (5), (6),
or (7) in Appendix. For the existence of the configurations (5), (6) or (7), we refer to
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the argument at the end of §2. q.e.d.

Lemma 2.5. If (V, D) is of type (Ic) then all the assertions in Thoerem 2.2 with
n=2 and 8<n<27 hold.

ProoF. Assume that (V, D) is of type (Ic). Then there exist a curve C and a
birational morphism u: V-V so that CASE (Z) in Proposition 1.8 takes place. We
employ the notation D’, D", A, and N, there. Then D" #0, C is a (—1)-curve, u is
a composite of the contractions of type (4), 4, is a rational nodal curve or a rational
cuspidal curve, and C meets the (— 3)-curve in D. We may (and shall) take u to be the
composite of the contractions of all components of C+ D” except the (—3)-curve (cf.
Lemma 1.7, (2)). Then (K})=(u,(C+D"))*’=#D") and #D)=#N,)=p(V,)—
1=9—(K,2,‘)=9—#(D”)s8. Applying Lemmas 5.2 and 5.3 in [10] to the quasi-Iitaka
surface (V,, 4, + N,) we obtain:

LEMMA 2.6. Suppose that A, is a nodal curve. Then there exists a P*-fibration
®:V,—P" such that A, is a 2-section of @ and all components of N, with at most two
exceptions are contained in singular fibers of ®. If there is an irreducible component of
N, not contained in singular fibers of ®, it is a cross-section of ®. We denote all these
components by B; (1 <i<m; m<?2) (see Figures (5) and (6) when m=2). Moreover, one
of the following cases occurs.

(ia) We have m=1. All singular fibers f,, - - -, f, of ® are of type (I1) in Lemma
1.3. More precisely, {k; #fy, -+, #fit ={1; 4}, {1, 3}, {1; 5}, {2; 3,3}, {2;3,4}, {16},
{2;3,5}, {2, 4,4}, {1, 7}, {24, 5}, {2; 3, 6}, {1; 8}. Hence the dual graph of D is one of
No. 2 and No. 8~ No. 18 in the Table.

(iila) We have m=2. A+ N, has one of the configurations (19a) ~(27a) as shown
in Figures (5) and (6) where N, is written as N, =) D} and the fibers of @ is given
vertically. The dual graph of D is one of No. 19~ No. 27 in the Table.
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REMARK 2.7. (1) If the dual graph of D is given in No. 2 of the Table, we
consider the P!-fibration y: V- P! defined by |3C+2Ds+ D,+ D, | instead of ®Pou,
where D, is the (—3)-curve and D"=D;+---+Ds with (C, D,)=(D,, D;)="""=
(D4, Ds)=(Ds, C)=1. Then we see that (¥, D) is nothing but the one given in the proof
of Lemma 2.3 with the same singularity type, and the assertions (2) and (4) in Theorem
2.2 for this case are verified there.

(2) By the arguments used in §6 to prove the impossibility of the configuration
(20b), we can prove that in the configuration (20a), A, meets the fiber of @ passing
through the point D n D/, in two distinct points.

Now we continue our proof of Lemma 2.5 and consider the case where 4, is a
rational cuspidal curve. Then either D” is the (—3)-curve with CnD” one point and
with (C, D")=2, or D" consists of the (—3)-curve, say D,, and a (—2)-curve, say D,
with CnD;nD, one point and with (C, D, +D,)=2 (cf. Lemma 1.7, (2)). Hence
u: V-V, is the contraction, of C in the first case and of C and the (—2)-curve D, in
the second case. We can prove, by the same method as that in the proof of Lemmas
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5.2 and 5.3 in [10], that two similar cases (ib) and (iib) are possible whose statements
are obtained from the corresponding cases (ia) and (iia) in Lemma 2.6, respectively, by
replacing the nodal curve 4, by a cuspidal curve. The configuration (na)’ in Figure (5)
or (6) should be replaced by the same configuration (nb)' (19 <rn<27) but with a cuspidal
curve A4,.

Suppose that the case (ib) occurs. Applying (3) of Lemma 1.5 to V,, @ and the
2-section A,, one sees that there is exactly one singular fiber in @. Since
#HN)=p(V,)—1=9—(K ,2,‘)=9—#(D”)= 8 or 7, N, has the dual graph of Dynkin type
Eg or E,, respectively, and D has the dual graph No. 18 or No. 15 in the Table,
respectively.

We shall show that the case (iib) does not occur. Since the P!-fibration & has at
most one singular fiber of type (II) by Lemma 1.5, (3), where H:=A,, the cases with
the configurations (196)" and (22b) are impossible. In the case of the configuration
(26b) (resp. (27b)'), we take a P!-fibration @, : V- P! defined by | 2E, + D’ + Dy | (resp.
|2E,+ D+ D% |) and get a contradiction by the same reasoning. Next we show that the
configuration (23b)’ is impossible. This entails that the configurations (215)’, (24b)' and
(25b)" are impossible because they are obtained from the configuration (235)' by blowing
up some of the points E;nA4,, E,nA, and E;n A, and their infinitely near points. Let
v: V,—P? be the contraction of E,, D%, D, E;, Dy, Dy in the configuration (23b)'.
Then v, D’ and v, Dy are two inflectional tangents of a cuspidal cubic curve v, 4, on
P2, This is impossible (cf. Griffiths-Harris [5; p. 281]). The impossibility of the
configuration (20b)’ will be proved in §6.

Set ¥:=®cu: V— P! regardless of whether 4, is a nodal or cuspidal curve. Denote
by D, the unique (—3)-curve. Let S, be the singular fiber of ¥ such that u,S, is the
nonsingular fiber of @ passing through the double point of 4,. Note that in singular
fibers (#S,) of ¥, the 2-section D, of ¥ meets only (— 1)-curves. One can write
So=E+D,+ --+D,+C, where E is a (—1)curve, D"=D,+---+D, and
(E, D,)=(D,, D3)="-+=(Ds_,, Dy)=(D,, C)=1 (D,, - -+, D, might not exist). Let
f1, =, [, be all singular fibers of @ and let S;=u*f; (1 <i<k). Then u* modifies nothing
on f; and §; (0<j<k) are all singular fibers of ¥. D—D,—u'B; (resp.
D—D,—u'B,—u’B,) are contained in the singular fibers of ¥ if the case (ia) or (ib)
(resp. (iia)) occurs. Suppose that D has the dual graph No. n in the Table for some
8<n<27.If n=15, 18, the configuration of C+ D and S;’s is given in the configuration
(na) or (nb) in Appendix according as 4, is a nodal curve or a cuspidal curve, respectively.
If n#15, 18, then A4, is a nodal curve and the configuration of C+ D and S;’s is given
in the configuration (n) in Appendix.

Let ¥(a) (resp. V(b)) be a dP3-surface such that its minimal resolution of singularity
(M), D(a)) (resp. (V(b), D(b))) corresponds to the configuration (18a) (resp. (18b)). We
shall show that #(a) is not isomorphic to 7(b). Suppose the contrary, and let a: ¥(a)— V(b)
be an isomorphism. Then ¢ induces an isomorphism ¥{(a)— V(b), denoted also by o,
such that a(D(a)) = D(b). Note that ¢ maps the unique (— 3)-curve D(a), on V(a) to the
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unique (—3)-curve D(b); on V(b). We have (—1)-curves C(a) and C(b) such that
C(a)+ D(a); + Ky, ~0 and C(b)+ D(b), + Ky~0. Then o6C(a)~ C(b), whence aC(a)=
C(b). This is a contradiction because C(a)nD(a), =two points and C(b)nD(b), =one
point. Similarly, the surfaces belonging to the configurations (15a) and (15b) are not iso-
morphic to each other.

As for the affine-ruledness of V°, it remains to show it when n=38, 9, 12, 13, 15, 18.
Employ the notation, D; =the (—3)-curveand So=E+ D, + - - - + D+ Casin the above
arguments. Let S; (#.S,) be a singular fiber of ¥ such that #(S;) is maximal among
the singular fibers of ¥ other than S,. Write S, =2(E,+H,+ - - +H,_,)+H,_,+H,,
where E, is a (—1)-curve, H;’s are components of D and (E,, H,)=(H,, Hy))="""=
(H,_3,H,_,)=(H,_,, H,_,)=(H,_,, H)=1. Denote by H,,, the unique cross-section
of ¥in D (hence u(H, . ;)= B,, cf. Lemma 2.6). Then one may assume that (H,, H, . )= 1.

Consider the configuration (12) (resp. (15), or (18)) in Appendix. Then r=35 (resp.
6, or 7) and all components of D, except H; and D, (resp. H; and D,, or H;), are
contained in the singular fibers of the P!-fibration ¢: V- P! defined by
|3E,+2H,+H,+ D, |. Hence V° is affine-ruled by (2) of Lemma 1.5 where ®:=¢.
Consider the configuration (8) (resp. (13)) in Appendix. Hence s=6 and r=2 (resp.
s=2 and r=4). One can get the affine-ruledness of ¥° by applying (2) of Lemma 1.5
to the P!-fibration defined by |3C+2Dg+ Ds+ D, | (resp. |2E, + H,+D;+D,+E|)
and its cross-sections D, and D, (resp. H, and H,). Consider the configuration (9) in
Appendix. Then s=r=4. Let v: V-ZX, be a contraction of all (—1)-curves and
consecutively contractible curves in the singular fibers of ¥ so that (v, Hs)*= —2. Take
a nonsingular irreducible curve E, in |v,Hs+2v,S,| such that E, meets v,D; with
local intersection number i(E,, v,D; o(C))=4 at the node v(C). Then the proper
transform E,:=0v'E, is a (—1)-curve such that (E,, D,)=(E,, H,)=(E,, S;)=1. By
considering the P!-fibration which is defined by |2E,+ H,+D,+ -+ +D,+E,| and
which has cross-sections H, and H, and by (2) of Lemma 1.5, the affine-ruledness of
V° follows.

To complete the proof of Lemma 2.5, we must show the existence of the
configurations (n) in Appendix. By contracting irreducible components of singular fibers
of ¥, we obtain a birational morphism w: ¥V— X, onto a relatively minimal ruled surface
2 ..(m<3). Looking at the configuration (n) in Appendix, we can easily find which curves
should be contracted. Thus, we are reduced to proving the existence of the configuration
of w(C+D)on X, For 19<n<27, by the proof of Lemmas 3.5 and 4.2 in [10], we can
take w as a composite of u: V-V, (with the notation at the beginning of Lemma 2.5)
and a blowing-down w,: V,—ZX,, and the configuration of w(C+ D) is one of Fig. (1),
-- -, Fig. (5) and Fig. (9) displayed in [10; pp. 418—419]. The existence of those figures
was proved in [10; Lemma 5.3]. The other cases can be treated more easily.
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3. dP3-surfaces of the second kind and type (Ila). By [11; Lemma 2.2] and [6;
Lemma 2.1.3] we obtain the following:

LEMMA 3.1 Let (V, D) be a log del Pezzo surface of rank one with contractible
boundary. Suppose that (V, D) is of the second kind and is not isomorphic to (Z,,, M,,).
Then there exists a (—1)-curve C such that —(C, D* + Ky,) attains the smallest positive
value. Hence |C+ D+ Ky |= . Furthermore, we have:

(1) Each component of D is a nonsingular rational curve, C+ D is an SNC divisor
whose dual graph consists of trees, and (C, D)>1 by Lemma 1.3, (1).

(2) One of the following cases takes place:

CASE (). C meets at least two (—2)-components D, and D, of D.

CASE (ff). C meets only one component D, of D.

CASE (y). C meets only two components D, and D, of D, and D, is a (—2)-curve
and D, is the (—3)-curve.

Employing Lemma 3.1, we consider three types for. dP3-surfaces of the second
kind. Namely, we have the following:

DerINITION 3.2.  Let (V, D) be a dP3-surface of the second kind. (¥, D) is said to
be of type (Ila), if there exists a (— 1)-curve C so that CASE (a) in Lemma 3.1 occurs.
(V, D) is said to be of type (IIb) if there exists a (— 1)-curve C so that CASE (f) in
Lemma 3.1 occurs but (V, D) is not of type (Ila). (V, D) is said to be of type (Ilc) if
there exists a (— 1)-curve C so that CASE (y) in Lemma 3.1 occurs but (¥, D) is neither
of type (Ila) nor type (115).

In the present section, we consider dP3-surfaces of the second kind and type (II&).
We shall prove the following:

THEOREM 3.3. Let (V, D) be a dP3-surface of the second kind and type (1la) with
a (—1)-curve C as in Lemma 3.1. Then we have:

(1) The dual graph of D is one of those given in the cases No. n (28<n<35) in the
Table. .

(2) There exist a P'-fibration ¥ : V—P' and a component H of D such that H is
a cross-section of ¥ and the other components of D are contained in singular fibers of V.
Hence V° is affine-ruled.

(3) The configuration of C+ D and all singular fibers of 'V is given in the configuration
(n) for 28 <n<35 (see Appendix).

(4) All the cases are realizable.

PrROOF. Let D, and D, be (—2)-components of D which C meets. Let &: V- P!
be the P!-fibration defined by |2C+ D, + D, |.

First, we consider the case where C meets a component of D— D, —D,. By Lemma
1.3, (3), we have —(E, D* + K;)= —(C, D*+K,) for every (—1)-curve E in a fiber of
®. Hence | E4+ D+ Ky |= because (V, D) is of the second kind. Thus, by the proof
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of [11; Lemma 5.2] and by (2) of Lemma 1.3 there exists another P!-fibration ¥: V- P!
(Y=, in [11]) such that the configuration (28) or (29) in Appendix shows the
configuration of C+ D and all singular fibers of ¥, where the components of D are
written in solid lines. Hence ¥ is affine-ruled because every component of D, except
one which is a cross-section of ¥, is contained in a singular fiber of ¥.

Next, we consider the case where C meets only D, and D, in D. Let ¥:=¢@. By
(3) of Lemma 1.3 and by (1) of Lemma 3.1, the (— 3)-curve, say D, is a cross-section.
Let ¢; be the number of all components of D— D; meeting D, (i=1, 2). We may assume
&, >¢,. Asin the previous case, we have | E+ D + K, | = & for any (— 1)-curve E contained
in a singular fiber of ¥. Hence, by the arguments in the proof of [11; Lemma 5.3], we
have (g, ¢,)=(1,0), (2,0) or (1,1). Moreover, if (¢;,€&,)=(2,0) then the two
cross-sections D, and D, contained in D meet two distinct (— 1)-curves E, and E,,
respectively, in a singular fiber S, of type (I) and S, and S, exhaust all singular fibers.
However, —(E,, D*+K,)=1-3/7<1-2/7=—(C, D*+K;), which contradicts the
choice of C. So, (¢4, &;) #(2, 0).

CASE (g;,&,)=(1,0). Then V° is affine-ruled. By Lemma 1.3, (2), the
configuration of C+ D and all singular fibers of ¥ is given in one of the configurations
(n) B0<n<35) in Appendix.

CASE (¢4, €,)=(1,1). By the proof of Lemma 5.3 in [11], all singular fibers of ¥
are as shown in Figure (7). We have 1 <s<3,0<b<a (B,,,:=E,), and (D?)=—-3 or
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(D})=—3. Suppose that (D?)= —3. Then the coefficient of D; in D* is twice that of D,
by Lemma 1.4. This leads to —(E,, D*+ K,) < —(C, D*+ K,,), contradicting the choice
of C. If b=0, we have a contradiction in a similar fashion. Thus, one may assume that
(D})=-3 and b>1. By (1) of Lemma 1.5, where H,:=D; and H, =D, 2=
(v,D)*=—3+s+a—b+1, i.e.,, a—b=4—s. Since g(D) are quotient singularities on
V, {s,a,b}={1,4,1} or {2,3,1}. But then —(E,, D*+K,)=1-8/17<1-5/17=
—(C,D*+Ky)if s=1,and —(E,, D*+K,)=1-3/5<1-2/5=—(C, D*+K,) if s=2 by
Lemma 1.4. This is a contradiction to the choice of C.

For the existence of the configurations (n) (28 <n<35) in Appendix, we refer to
the argument at the end of §2. q.e.d.
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4. dP3-surfaces of the second kind and type (II#). The purpose of the present
section is to prove the following:

THEOREM 4.1. Let (V, D) be a dP3-surface of the second kind and type (11b). Then
we have the following assertions:

(1) The dual graph of D is one of those given in the cases No. n (36 <n < 62) in Table.

(2) There is a (—1)-curve C with which CASE () in Lemma 3.1 occurs and there
is a P-fibration ¥ : V—P*' such the configuration of C+ D and all singular fibers of ¥
is given in the configuration (n) for 36 <n<62 in Appendix. In particular, all components
of D, except one cross-section or two disjoint cross-sections, are contained in singular
fibers of V. ‘

(3) All figures are realizable.

4) V° is affine-ruled if n+#60, 62.

ProoF. Suppose that (V, D) is a dP3-surface of the second kind and type (I115)
with a (—1)-curve C which meets only D, in D as in Lemma 3.1. By Lemma 3.1, (1),
we have (C, D,)=1 and hence (D?)= —2 in view of (1) of Lemma 1.3.

(1) Consider first the case where the connected component R of D containing D,
is arod. By Lemma 1.3, (1), the intersection matrix of C+ D is not negative definite.
So, either D, meet two (—2)-curves, say D, and D;, or D, meets the (—3)-curve D,
and a (—2)-curve D, which meets D, with (D,, D,)=1 for some Dy;<D—D,—D,—D,.
In the first case we let So=2(C+D;)+D,+D; and in the second case we let
So=3(C+D,)+2D,+ D5+ D,. Denote by ¥: V- P! the P!-fibration defined by | S, |.
Any component of R not contained in S, and meeting S, is a cross-section of ¥ and
all other components of D are contained in the singular fibers of ¥.

The case where Sq=2(C+D;)+ D, + D;. Then the (—3)-curve, which we denote
by D,, is a cross-section of ¥ by Lemma 1.3, (3) and Lemma 3.1, (1). Suppose that
there is a singular fiber S; (#S,) with only one (—1)-curve E and with #(S;)=3. By
Lemma 1.3, (3), we have —(E, D* + K})= —(C, D*+ K,)). Then, with the curve E, (V, D)
is either a dP3-surface of the first kind or a dP3-surface of the second kind and type
(Ila) according as | E+ D+ K |# & or | E+ D+ K, |= . This is a contradiction.

Suppose that every component of D— D, is contained in a singular fiber. Then V°
is affine-ruled, and all singular fibers Sg, Sy, - -, S; of ¥ are of type (II) by Lemma
1.3, (2). Since R is a rod, we have {k;#S,, - -, #S,} ={0; 4} or {1;4,4}, and the
configuration of C+D and §;’s is respectively given in the configuration (36) or (37)
in Appendix.

Suppose next that there are two cross-sections D, and D5 in D—D, with
(D4, Dy)=(Ds, D3)=1. If D, or D5 meets a component of D—D,—D;—D,— D5 in
some singular fiber, say S, there is then a (— 1)-curve E; in S, such that R+ E, contains
a loop and hence | E; + D+ K, | # &. But then (¥, D) is a dP3-surface of the first kind
with the curve E, because —(E,, D*+ K,)= —(C, D* + K,,) by Lemma 1.3, (3). So, D,
and D; are tips of the rod R. Meanwhile, by Lemma 1.3, (2), there is a singular fiber
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S, of type (I). Let E, be a (—1)-curve in S, meeting D,. Then, —(E,, D+ K;)=1—
5/11<1-3/11= —(C, D*+ K;)), which is a contradiction.

The case where Sq=3(C+D,)+2D,+ D5+ D,. Suppose that there is only one
cross-section, say Ds, in D. Then V' is affine-ruled. All singular fibers S;, - - -, S, (#S,)
are of type (II) by Lemma 1.3, (2). Since R is a rod, {k; #S,, - - -, #S:} ={0; 5}, {1; 5, 3}
or {1; 5, 4}. The configuration of C+D and S;’s is given in the configuration (n) for
38 <n<43 in Appendix. Suppose next that there are two cross-sections D5 and D¢ in
D—D,— D, with (D5, D3)=(Dg, D,)=1. By Lemma 1.3 (2), there exists exactly one
singular fiber S; of type (I) and all others S,, - - -, S; (£S,, S;) are of type (II). By
Lemma 1.5, (1), where H,:=Ds and H,:=Dg, we have {#R;k;#So, -, #S}=
{6;1;5,4}, {9;155,5}, {8;2;5, 3, 3}. The second case has two subcases according as
whether Dy is a tip of R or not. The configuration of C+ D and §;’s is given in the
configuration (n) for 44<n<47 in Appendix. V'° is affine-ruled by Lemma 1.5, (2)
where H,:=Ds and H,:= Dy,

We shall consider the case where the connected component of D containing D, is
a fork F with a central component F, and three maximal twigs T, T, and Tj, i.e.,
F=Fy+ T +T,+Ts;. _

(2) The case where D < T, and C+ T, is not negative definite. As in the previous
case (1) where C meets a rod R, one can find a P!-fibration ¥Y:=d,: V>P' and
has two subcases. Using the notation there, we have:

The case where Sq=2(C+ D)+ D,+ D;. Since (V, D) is neither a dP3-surface of
the first kind nor a dP3-surface of the second kind and type (Ila), as in the case (1),
there are no singular fibers S, of type (II) with #(S,;)=3. Note that if there are two
cross-sections in D then one of them meets a component of D in a singular fiber of ¥,
for F is a fork. As in the case (1), this leads to a contradiction because (V, D) is not
of the first kind. By (3) and (2) of Lemma 1.3, D—D,, with the (—3)-curve D,, is
contained in the singular fibers, whence V' is affine-ruled and there is a unique singular
fiber S, (#S,) in view of the hypothesis that F is a fork. S, is of type (II) and
{#So, #S:}=1{4, 5}. The configuration of C+ D and S;’s is given in the configuration
(48) in Appendix.

The case where Sg=3(C+ D,)+2D,+ D3+ D,. Suppose that there are two cross-
sections Ds and Dy in D and that Sy, - - -, S, exhaust all singular fibers of ¥, where
S, is of type (I) and S,, - - -, S, are of type (II) (cf. Lemma 1.3, (2)). Since F is
a fork (of Dynkin type D,), we have {k; #So, " -, #S:}={1; 5, 5} or {2; 5, 3, 3}, and
either one of D5 and D¢ meets the central component F, or is F, itself. This is a
contradiction by Lemma 1.5, (1). Suppose next there is exactly one cross-section D in
D. Then V° is affine-ruled. All singular fibers S;, - - -, S, (#S,) are of type (II). Since
Fis a fork, {k; #So, - - -, #Si} ={1; 5,5} or {2; 5, 3, 3}. Then either D has the dual graph
No. n (49 <n<51) in the Table and the configuration of C+ D and S;’s is given in the
configuration (n) in Appendix, or the dual graph of D is given in Figure (8).
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o 0 AT 000 with F,=Ds.
FIGURE (8)

Consider the case with Figure (8). Let v: V-2, be a contraction of all (— 1)-curves
and consecutively contractible curves in S,, S; and S, so that (v,Ds)*= —2. Take a
nonsingular irreducible curve £ in |v,Ds+2v,S,| such that E passes through three
points v(D,), v(Dg) and v(Dy). Then the proper transform E:=v'E is a (—1)-
curve satisfying (E, D,)=(E, Dg)=(E, Dg)=(E, So)=1 and —(E, D*+K,)=1—1/2=
—(C, D*+ K,) by Lemma 1.4. Hence, with the curve E, (V, D) is either a dP3-surface
of the first kind or a dP3-surface of the second kind and type (Ila) according as
|E4+D+Ky|# or | E+ D+ K, |=¢. This is a contradiction.

(3) The case where D, <T, and C+ T, is negative definite. By applying (1) of
Lemma 1.3 to the (—1)-curve C and by noting that g(F) is a quotient singularity on
V, C+F has one of those dual graphs shown in Figure (9).

1 S
I— -0
(30) e 0— -0 0— 0 —k— -0
C D1 Dp FO Rl Rt
C T
(3b) 0 0 I I 2 0 o % 0 0 ( >2)
G oo — - — e — e — p>
b, D, D F,
IC ITZ
(36) 0= *+ ¢+t —fm————k———()— -+ —q (pzz)
Dp D1 FO Rl Rt
TC 1T2
(3d) PRSPPI S L s=1,2)
Dp D1 FO R1 RS
?C TT.,
(3e) o= *** =0 * 0 0 (¢} 0
Dy by D3 Dy Dy Fy Ty
(3f) TC TTZ
0—1( * 0= =+ = O——0—0
D, Dy D3 Dy p Fo T3
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If the case (3f) occurs, then D is contained in singular fibers of the P!-fibration
defined by |4(C+D)+2(D,+ D3+ - - +D,+ Fo)+ T, + T, |. This is impossible by (2)
of Lemma 1.3. Before investigating the remaining cases we prove the following results
(due to M. Miyanishi):

LEMMA 4.2. Let V be alog del Pezzo surface of rank one with contractible boundary.

Suppose that there is a (— 1)-curve C such that one of the following conditions is satisfied.
(1) C meets exactly one component D, of D.

(ii) Cmeetsexactly two components D, and D, of D with(C, D,)=1and(D32)< —3.
Then the following assertions hold true.

(1) Let 6: V=W be the contraction of C, let C=a(D,) and let B=o,(D—-D,).
Then B is contractible to quotient singularities on a projective normal surface W. So, there
exists a contraction h: W—W such that h: W— B~ W —Sing(W). Moreover, W is a log
del Pezzo surface of rank one with contractible boundary.

(2) Suppose that the condition (i) above is satisfied and suppose furthermore that
—(C, D* +Ky) attains the smallest positive value. Then 0< —(C, B*+ Ky) < — (G, B* +
Ky) for every curve G on W which is not a component of B. Moreover, if E is an irreducible
curve on V such that EnC= and —(E, D*+ Ky)= —(C, D*+K}), then —(o(E), B*+
Kw)= —(C, B*+Ky).

(3) If|C+D+Ky|= then |C+B+Ky|=.

Proor. The assertion (1) is proved in [11; Lemma 4.3].

(2) Let G be an irreducible curve not in C+D. Since p(¥)=1, G=aC+
BD,+T where o, e Q and I' is a Q-divisor supported by Supp(D—D,). Since
—(G, D*+K;,) =2—(C,D*+K,), we have a>1. Since (G, C)=>0, we have f>a>1.
On the other hand, since o(G)=pC+0,(I") with Supp ¢, (I)=SuppB, one has
—(0(G), B*+ Ky)= — B(C, B*+ Ky)> —(C, B*+ Ky,). Now we shall show the second
assertion. Write E=aC+bD,+ A where a,be Q and Supp 4 =Supp(D—D,). Hence
o(E)=bC+ 0,(4) with Suppo,(4)<= SuppB. Since —(E, D*+K,)=—(C,D*+K,),
a=1. Moreover, EnC=( implies that 0=(E,C)=—a+b, ie., b=a=1. Hence
—(o(E), B*+ Ky)= —(C, B*+ Ky).

(3) Note that 6*(C+B+Ky)=D+K, or C+D+K, under the condition (i) or
(ii), respectively. From this follows (3).

We shall return to the case (3).

CASE(3a). Leto: V— W bethecontractionof C, Dy, - -+, D,_,,let C=0(D,) and
let B=o(D—D,). By applying Lemma 4.2 successively, we know that (W, B) is a
dP3-surface such that | €+ B+ Ky | = & and — (C, B* + K},) is the smallest positive value.
Then the argument in the case (1) works for (W, B) and C. So, if (R?)= —3, then B
has the dual graph No. m (38 <m <47) in the Table. Since F is a fork, D has the dual
graph No. n (54<n<56) in the Table and the configuration of C+ D and all singular
fibers of the P'-fibration ¥: V- P! which is defined by |3(C+D,+ - +D,+ F,)+
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2H,+ H,+ R, | is respectively given in the configuration (n) in Appendix. In particular,
all components of D, except for one cross-section, is contained in singular fibers of
¥. Hence, V° is affine-ruled. Suppose (R?)= —2. Consider the P!-fibration ¥: V- P!
defined by |S,|, where S,=2(C+D;+ - +D,+F,)+H,+R,. By Lemma 1.3, (3),
(R2)= —3. If there are two cross-sections H, and R, in D, then p=1, s=t=2 for F is
a fork. This contradicts the minimality of — (C, B*+ Ky,) by the argument in the previous
case (1). So, s=1and D— R, is contained in the singular fibers, hence V° is affine-ruled.
By Lemma 1.3, (2), all singular fibers S, - - -, S; (#S,) are of type (II). Since (V, D)
is neither a dP3-surface of the first kind nor a dP3-surface of the second kind and type
(ITa), we have {k; #S,, - - -, #5;} ={0; 5}, {0; 6} or {1; 5, 4} by the same argument as in
the previous case (1). The configuration of C+ D and S;’s is given in the configuration
(52), (53) or (48) in Appendix where the notation C and E should be interchanged.
Note that —(E, D*+ K,)= —(C, D*+ K;;) by Lemma 1.3, (3).

CASE (3b). Let a: V—»W be the contraction of C, let C=0(D,) and let
B=0(D—D,). By Lemma 4.2, we may pass to the pair (W, B) which is a dP3-surface
of the second kind and type (I1a) with the (— 1)-curve C. Let @ : ¥'— P! be the P*-fibration
defind by |2(C+D,)+ D, + F,|. For each (—1)-curve E in a singular fiber of &, we
have —(E, D*+K,)=—(C,D*+K,) by Lemma 1.3, (3). Hence, |E+D+Ky,|=
because (¥, D) is not a dP3-surface of the first kind. This, together with the minimality
of —(C, B+ Ky), will lead to a contradiction by the argument in the proof of Theorem
3.3.

CASE (3c). Let a: V- W be the contraction of C and D, and let B=a(D—D,).
By Lemma 4.2, (W, B) is a log del Pezzo surface of rank one with contractible boundary,
on which there are no (—n)-curves with n> 3. Hence — Ky, = —(B*+ Ky) is numerically
effective and 1 <(K%)=10—p(W)=9—#B)<7. So, P? is a relatively minimal model
of W. There is a nonsingular elliptic curve A4 in | — K, | such that (W, 4 + B) is an litaka
surface with p(W)=#(Bk(4+ B))+ 1 (cf. Demazure [4; III, Theorem 1, p. 39]). Note
that B contains connected components of Dynkin type 4,_, and 4,,,.

Suppose p>4. If p=4 then ¢t=1, 2 (hence B contains connected components of
Dynkin type 4A,+ A5 or A,+ A,) and if p>5 then t=1 (hence B contains connected
components of Dynkin type 4; + 4,,_,), since g(F) is a quotient singularity of V. By [10;
Lemmas 3.5, 4.2 and 4.3], B is of type A, +2A4; or 24, +2A, (cf. Lemma 5.1 below).
Hence p=5 and t=1. Note that if ¥: V-P! is the P!-fibration defined by
|4C+D,)+2(D,+ Fy)+T,+ R, | then D— D, is contained in the singular fibers. Then
the singular fiber of ¥ containing D, + D5 must be of type (I) in Lemma 1.3, (2). This
is impossible by the equality in Lemma 1.3, (2).

Suppose that p=2. Let S, and ¥ be the same as in the case p=5. Then D—R, is
contained in the singular fibers and R, is a cross-section. Hence V'° is affine-ruled. By
Lemma 1.3, (2), all singular fibers S, - - -, S, (#S,) are of type (II). Since g(F) is a
quotient singularity of V, {k; #S,, * - -, #Si} ={0; 6} or {1; 6, 3} and the configuration
of C+D and S;’s is given in the configuration (57) or (58) in Appendix.
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Suppose that p=3. Let S,=3(C+D,)+2D,+D;+F, and let ¥: V—>P! be the
P!-fibration defined by | S,|. Then D— T, — R, is contained in the singular fibers. By
Lemma 1.3, (2) and Lemma 1.5, (1) where H, :=T, and H,:=R,, and by noting that
Fis a fork, we know that there is exactly one singular fiber S, (#S,) which is of type
(I) and which has #(S;)=5, and that T, and R, meet two different (— 1)-curves in S,.
The configuration of C+ D and S;’s is given in the configuration (59) in Appendix. In
particular, ¥ is affine-ruled by Lemma 1.5, (2).

CASE (3d). Leto: V— W be the contraction of C and all successively contractible
curves in T, let F,:=o(F,), F:=o(F), T,:=o(T) and let B=q(D). Then
p(W)=#Bk(B))+1 and k(W —B)= — oo for p(V)=#D)+1 and ©(V°) = — 0. Indeed,
(W, B) is a log del Pezzo surface of rank one with non-contractible boundary; for the
proof, see [11; Lemma 6.4]. By Lemma 2.6 and Theorems 4 and 6 in Miyanishi-Tsunoda
[8], B consists of F and an admissible rational fork Q, and there is a P!-fibration
@: W— P! with exactly three singular fibers such that the support of each singular fiber
f: is a rod consisting of a (—1)-curve, a twig T; and a twig Q, of Q, and that F, and
the central component Q, of Q are cross-sections of @. Since Bk(B) consists of (—2)-rods
in the present case, f; is of type (II) and #(f;)=3. Hence s=1, (D2)=—3 and Q has
Dynkin type D,. By Lemma 1.5, (1) where H,:=Q, and H,:=F,, one sees that
(FH)=—1and p=2. Let ¥ =dogq, S;=0*(f)). Then {#S,, #S,, #S;} ={5, 3, 3} and the
configuration of C+ D and all singular fibers of ¥ is given in the configuration (60)
in Appendix. :

CASE (3e). By considering the P!-fibration @: V—P! defined by |2(C+ D, +
D,+Fy)+T,+T,|, we can prove that p=3, as in Lemma 5.3, (2) below. Let
So=3(C+D,)+2D,+Fy+D; and let ¥: V- P! be the P!-fibration defined by | S, |.
By Lemma 1.3, (2) and Lemma 1.5, (1) with H,:=T, and H,:=Tj, the fibration ¥
has exactly one singular fiber S; (#S,) with #(S;)=35, and T, and T, meet two different
(—1)-curves in S;. Then V° is affine-ruled by Lemma 1.5, (2). The configuration of
C+D and §;’s is given in the configuration (61) in Appendix.

To finish the proof of Theorem 4.1 we shall consider the last case:

(4) The case where D, is the central component F, of F. Let a: V- W be the
contraction of C and let B=¢(D). Then (W, B) is a log del Pezzo surface of rank one
with non-contractible boundary (cf. [11; Lemma 6.4]). By the same reasoning as in
the case (3d), we can prove that D has the dual graph No. 62 in the Table. More pre-
cisely, there is a P!-fibration ¥: V- P!, each of whose singular fibers, except S,
which consists of C and another (— 1)-curve E, consists of a (—1)-curve, a twig of F
and a twig of another fork Q ( :=D—F), and the two central components F, and Q,
of F and Q, respectively, are cross-sections of ¥. The configuration of C+ D and all
singular fibers of ¥ is given in the configuration (62) in Appendix.

For the existence of the configurations (n) (36 <n<62) in Appendix, we refer to
the argument at the end of §2.
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5. dP3-surfaces of the second kind and type (Ilc). Let (V, D) be a dP3-surface
of the second kind and type (IIc) with a (—1)-curve C meeting a (—2)-curve D, and
the (—3)-curve D, as in Lemma 3.1. Let ¢: ¥'— W be the contraction of C, let C=0a(D,)
and let B=¢,(D— D,). Then B consists of (—2)-rods and (—2)-forks and hence B*=0.
By Lemma 4.2, (1), 1<(B*+Ky)?>=(K%)=9—#B)<8 and #D)<9. There exist a
(=1)-curve C and a (—2)-curve a(D,) on W with (C, o(D,))=1. This is absurd if
(K%)=38. So, (K%)<7 and #(B)>2. As in the proof of Theorem 4.1 for the case (3c),
there exists a nonsingular elliptic curve 4 in | — Ky | such that (W, A+ B) is an litaka
surface with p(W)=#(Bk(4 + B)) + 1. B is contractible to rational double singular points
on a Gorenstein log del Pezzo surface W of rank one. The dual graph of B is described
(as B=N) in the following lemma which is proved in [10; Lemmas 3.5, 4.2 and 4.3].

LemmA 5.1. Let (V, A+ N) be an litaka surface where A is a nonsingular elliptic
curve. Suppose that p(V)=#(N)+ 1. Then the dual graph of N is one of the following
Dynkin graphs:

Ay, A+ A, Ay 24, + Ay, D, A, + As, 34,, Eg, 34, + D,, A5, A, + D¢, E,
A, +2A4,, Ay + A, Dg, 24, + D¢, Eg, Ay + E7, A, + A7, 24,, Ag, A{+ A, + As,
A, +Eg, Ay+Ds, 445,24, +24,,2D, .

Our purpose is to prove the following:

THEOREM 5.2. Let (V, D) be a dP3-surface of the second kind and type (1Ic). Then
the dual graph of D is one of those given in the cases No. n (63<n<97) in the Table.
Furthermore, there is a (—1)-curve C with which CASE (y) in Lemma 3.1 occurs and
there is a P-fibration ¥ : V— P such that the following assertions hold:

(1) The configuration of C + D and all singular fibers of 'V is given in the configuration
(n) for 63<n<97 in Appendix.

(2) All components of D, except at most two cross-sections, say H,, H, (k<2),
are contained in singular fibers of ¥, and H, and H, are disjoint providedk =2 andn # 83.-

All the cases (63<n<97) are realizable. Finally, V° is affine-ruled if n+93.

Let C, D, and D, be as in the beginning of § 5. Let 4, be the connected component
of D containing D; for i=1, 2, respectively. Since |[C+ D+ K, |=, 4, #4,. We first
prove:

LEMMA 5.3. Assume that either A, is a rod and D, meets two (—2)-curves D5 and
D, in D—Dy, or A, is a fork with a central component G and three maximal twigs T;’s
(hence A, =G+ T;). Then we have the following assertions:

(1) If A, is a fork then D, is one of the three tips of A,.

(2) If4,isarodthen A,=D,.

(3) Suppose that A, is a fork. If D, =G then A, is of Dynkin type D,. If D, is a
component of T; then either D, is the tip of T; or D, meets the tip of T;.
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Proor. We shall define a P!-fibration &: V—-P! If A, is a rod, let &
be a P!-fibration defined by a linear pencil |2(C+D,)+D;+D,|. Suppose 4,
is a fork. Write Ti=z;f(=i)1 Ty(j) such that T,(j)'s are irreducible components of 7; and
(T()), TG+ 1)=(T1), G)=1. If D, =G, we label three twigs so that n(1) >n(2) >n(3)
and let @ be a P!-fibration defined by |2(C+D,)+ T,(1)+ T5(1)|. If D,=Ty))
for some i, j, we label twigs so that D, is a component of the twig T, and let @ be a
P-fibration defined by |2(C+ T (1)+ - - - + T;(j)+ G) + T,(1) + T5(1) |. Note that D, is
a 2-section of @ in each case.

Suppose the assertion (1) is false. Then 4,— D, is not connected and we let f; be
a singular fiber of @ which contains a connected component of 4, — D, and which does
not contain the central component of 4,. Since D, is a 2-section of &, there is a
(—1)-curve E in f; such that E+ D contains a loop and hence | E+ D+ K, |# . But
then (¥, D) is of the first kind with the curve E because —(E, D*+ K;)= —(C, D* + K,)
by Lemma 1.3, (3). This is a contradiction. The assertions (2) and (3) can be proved in
a similar way. Indeed, if the assertion (2) is false we let f; be a singular fiber of @
containing a connected component of 4,— D, and if the assertion (3) is false we let f;
be a singular fiber of @ containing T, (n,). q.ed.

By Lemma 5.3 and by noting that g(D) are quotient singularities on 7, the dual
graph of C+ 4, + 4, is one of those cases as shown in Figures (10)~(12). 4, and 4,
are rods in the cases (1)~ (3); 4, is a rod and 4, is a fork in the cases (4)~(7); 4, is
afork and 4, isarod in the cases (8) ~(10); 4, and 4, are forks in the cases (11) ~ (13).
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Case (1). By Lemma 1.3, (1), C+ 4, + 4, is not negative definite, hence s >2. Let
Y. V—-P! be the P! fibration defined by |S,|, where S,=3C+2D,+H,+D,.
D—Hy—D,, where we set Hy=0 if s=2 and set D=0 if p=2, is contained in the
singular fibers. By Lemma 1.3, (2) and Lemma 1.5, (1), the configuration of C+ D and
all singular fibers of ¥ is given in the configuration (n) for 63 <n<72 in Appendix. By
Lemma 1.5, (2), V° is affine-ruled.

Case (2). Assume s<2. Let ¥:V-—P! be the P!-fibration defined by
|4C+2(D;+D,)+ D3+ R, | if s=1 (resp. by |3C+2D,+H,+D,| if s=2). Then
D—D,—R, (resp. D—D;—R,) is contained in the singular fibers. For the same reason
as in the case (1), the configuration of C+ D and all singular fibers of ¥ is given in the
configuration (n) for 73 <n<81 in Appendix, and V° is affine-ruled.

Let (W, B) be the pair given before Lemma 5.1. Then B contains connected
components of Dynkin types 4,_, and 4,,,_;.

Assume s=3. By Lemma 5.1, B is of type A,+ A5 or type 4, + A,+ A5. Hence
p+t=6and D— A4, —4,= or a (—2)-curve, respectively. We may assume that 1>2.
Let @: V— P be the P*-fibration defined by | f; |, where fo=4C+2(D, + D,)+ D3+ R,.
Then H, is a 2-section, and R, and D, (if it exists) are cross-sections. Let f; be the
fiber containing H,, which is of type (I), and let E; be the (— 1)-curve in the fiber f;
with (H,, E,)=(H;, E;)=1. We can show that C and E, + H, + H; + K, are numerically
(hence linearly) equivalent. So, R, and D, (if it exists) meet another (—1)-curve E, in
fisince(C, D,)=(C, R;)=0. By Lemma 1.5, (3) where (v, R,)*>= —2, we have (v, H,)* =8.
This, together with (2) of Lemma 1.3 and (1) of Lemma 1.5, implies that p=¢=3, that
B is of type A, + A, + As (whence D has the dual graph No. 82 in the Table), and that
R, together with one (— 1)-curve and the curve G:=D— 4, —4,, forms a singular fiber
(#fo,f1). Consider a P!-fibration ¥: V—P! defined by |S,|, where Sq=C+D; +
H,+H3+E,. Then V° is affine-ruled by Lemma 1.5, (2). Indeed, there exist two
(—1)-curves F, and F, such that S, S; :=2F, + R, + G and S, :=2F, + D5+ R; exhaust
singular fibers of ¥. The configuration of C+ D and S;’s is given in the configuration
(82) in Appendix.

Assume s=4. By Lemma 5.1, B is of type A, +2A4; or 24, +2A,. Hence p=3
and t=1. Let f, and @ be as in the case s=3. By Lemma 1.3, (2), the singular fiber of
& containing H;+ H, is of type (II). This is impossible.

Assume s>5. Then B is of type 24, by Lemma 5.1. Hence s=5 and one may
assume p=3 and r=2. Then D has the dual graph No. 83 in the Table. Let f, and &
be as in the case s=3. Let f; (s#f,) be the singular fiber containing H;+ H,+ H,. Let
v: V—>ZX, be a contraction of curves in fibers as in (3) of Lemma 1.5 with (v, R,)*= —2.
Then (v, H,)*=8 since H, is a 2-section with (R,, H,)=0. Hence, there are two
(—1)-curves E; and E, in f; such that (E,, H;)=(E,, R,)=(E,, H;)=(E,, H,)=1. Let
E be a nonsingular irreducible curve in |v,R,+2v,f,| such that E meets v, H, with
local intersection number i(v, H,, E; W(E,))=4 at the node w(E,). Then the proper
transform E:=v'E is a (—1)-curve with (E, R,)=(E, Hy)=(E,fy)=1. Let S;=C+
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D,+H,+H;+H,+Hs+E and let ¥: V- P! be the P!-fibration defined by | S,|. By
Lemma 1.3, (2), there is a (—1)-curve E; such that S;=2F;+ D;+ R, is the unique
singular fiber of ¥ other than S,. The configuration of C+ D and S;’s is given in the
configuration (83) in Appendix. V° is affine-ruled by Lemma 1.5, (2).

Case (3). Let (W, B) be the pair obtained from (V, D) as before Lemma 5.1. Then
B contains the graphs of types 4,, A,_, and 4,. By Lemma 5.1, B is of type 24, + 4,
(p=s5s=3), A +24;5 (p=5,5=3), A, +A,+As (p=4,5=5), 34;+ D, (p=3,s=1) or
24,+2A4; (p=3,5s=3). Let f,=3C+2D,+D3+D, and let ®&: V>P' be the
Pl-fibration defined by | f; |. Then H, is a 2-section and D, (if it exists) is a cross-section.
By Lemma 1.3, (2) and Lemma 1.5, (3) where if D, exists we consider a contraction
v: V>Z, such that (v,D,)* = —2 and (v, H,)*=8, we know that B is of type 34, + D,
A+ A;+As or 24, +2A4;5 (p=5,s=3) and that all singular fibers f,, f, - - -, f; are
described as follows: '

(i) Bis of type 34, + D,. Hence D has the dual graph No. 84 in the Table, k=1,
and fi=2(E+D,+ Ds)+ D¢+ D, where E is a (—1)-curve and D,+Ds+Dg+D,=
D—A,—4, is a fork of Dynkin type (D,) with D5 as the central component. Let
So=2E+D,+H, and let ¥: V- P! be the P!-fibration defined by |S,|. Then there
are (—1)-curves E; and E, such that S,, S,:=2F,+D;+Dg and S,:=2E,+D,+
D, + C are all singular fibers of ¥ by Lemma 1.3, (2). The configuration of C+ D and
S;’s is given in the configuration (84) in Appendix. V° is affine-ruled by Lemma 1.5
).

(ii) Bis of type A, + A, + A5. Then k=1 and there are two (—1)-curves E; and
E, such that (E,, H,)=(E,,D,)=(E,,Hs)=(E;,H,)=1 and f,=E, +H,+H;+
H,+H;+E, As in the case (2) above, there exists a (—1)-curve E such that
(E,D,)=(E, Hy)=(E,fy)=1. Let So=C+D,+H,+H,+ H;+E and let ¥: V—P! be
the P!-fibration defined by | S,|. By Lemma 1.3, (2) and Lemma 1.5, (3) where we let
v: ¥>Z, be a contraction of curves in fibers such that (v, D;)*= —2 and (v, D,)*=38,
there are two (— 1)-curves F, and F, such that F, + F, is a singular fiber of ¥ and such
that (F,, D,)=2. But then —(F,,D*+K;,)=1-2/3<1—-1/3=—(C,D*+K,), con-
tradicting the minimality of —(C, D¥+K,).

(iii) Bisoftype2A4,+2A45(p=>5, s=3). Then k=2 and there are three (— 1)-curves
E,, E, and E; such that (E,, H,)=(E,, D,)=(E5, H3)=(E;, H)=1,f,=2E,+ D5+ Dg
(D¢:=D—A4,—4,)and f,=FE,+ H,+ Hy;+ E;. We can find a (—1)-curve E, as in the
case (2) above, such that (E, D,)=(E, Dg)=(E, H,)=(E,f,)=1. By considering the
P-fibration defined by |2E+ D¢+ H, |, we reach a contradiction to the choice of C as
in the case (ii) above.

Case (4). Assume s=1. Let S,=4C+2(D;+Dy+ - +D,)+D,.;+R; and
¥: V-P! the P'-fibration defined by | S,|. Then 1>2 by Lemma 1.3, (2) and D—R,
is contained in the singular fibers. Hence V' is affine-ruled. By Lemma 1.3, (2), all
singular fibers S;, - - -, Sy (#S,) are of type (II). Since g(D) are quotient singularities
on V, {k; #So, - -, #S:} ={0; 6}, {0; 7} or {1; 6, 3}. The configuration of C+ D and S;’s
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is given in the configuration (85), (86) or (87), respectively, in Appendix.

Assume s>2. Let S,=3C+2D,+H,+D, and ¥: V—-P! the P!'-fibration
defined by | S,|. Then D, and H, (if it exists) are cross-sections.

Assume further t=1. By Lemma 5.1, B is of Dynkin type 34, + D, (s=2, p=3),
A+ Dg(s=2,p=5),24,+ D¢ (s=2, p=5) or A3+ D5 (s=p=4). In the first (resp. third
or remaining) case (s), D—4, — 4, consists of two (resp. one or none) isolated (—2)-
curve (s). Suppose s=2. Then D — D, is contained in the singular fibers of ¥. Hence V° is
affine-ruled. By Lemma 1.3, (2), the third case is impossible and there are two (— 1)-curves
E, and E, in the first case (resp. one (— 1)-curve E in the second case) such that S,
Sy:=2E,+D,+Ds and S,:=2E,+ R+ D¢ (resp. S, and S;:=2(E+R;+Ds)+
D, + Dg) are all singular fibers of ¥, where Ds+Dg:=D—A4,—A4, is a union of two
isolated (—2)-curves in D. The configuration of C+D and S;’s is given in the
configuration (88) or (89) in Appendix. Suppose (s, p)=(4, 4). Then H, and R, + D, + D,
are in two distinct singular fibers of type (I). This contradicts Lemma 1.3, (2).

Next assume 1>2. Hence (p, t)=(3, 2), (4, 2), (3, 3) or (3, 4) for g(D) are quotient
singularities on V. Thus, B contains a subgraph of type 4,_, and a subgraph of Dynkin
type D5, Eg, Dg or D, respectively. By Lemma 5.1, Bis of type A, + D¢ (s=2, p=t=3),
24, +Dg (s=2,p=t=3), A,+E¢ (s=3,p=4,t1=2) or A3+ D5 (s=4,p=3,1=2).
D— A4, — 4, consists of a (—2)-curve in the second case and none otherwise. Consider
the case where (s, p, 1)=(3, 4, 2) or (4, 3,2). By Lemma 1.3, (2) and Lemma 1.5, (1),
there are (—1)-curves E; and E, (resp. E,, E, and E;) such that (E,, R))=
(E\, Hy)=(E,, D5s)=1 (resp. (E,, H3)=(Ey, R,)=(E,, R;)=1) and that S, and
Si:=E,+R,+R{+D,+Ds+E, (resp. So, S;:=E;+R,+R,+E, and S,:=2FE;+
H,+ D,) are all singular fibers of ¥. The configuration of C+ D and S;’s is given in
the configuration (90) or (91) in Appendix. By Lemma 1.5, (2), V° is affine-ruled. Con-
sider the case where (s, p, t)=(2; 3, 3). Then D— D, is contained in the singular fibers
of ¥ and V° is affine-ruled. By Lemma 1.3, (2), D—A4, — A4, consists of a (—2)-curve
D, i.e., B is of type 24, + Dy, and there are two (—1)-curves E;, and E, such that
S0, S1:=2E,+D,+Ds and S,:=2(E,+ R,)+ R, + R, are all singular fibers of ¥. The
configuration of C+ D and S;’s is given in the configuration (92) in Appendix.

Case (5). Assume s=1. Let f(;=4C+ 2(D;+D,)+D3+T,; and &: V—P! the
P'-fibration defined by | f,|. R, is a 2-section and T, (if it exists) is a cross-section.
Suppose /=1. By Lemma 1.3, (2), Lemma 1.5, (3) and the fact #(D)<9, we know that
t=1, that there is a (—1)-curve E with (E,R,)=1 and that f,, f;:=2(E+D,+
Ds)+ Dg+ D, are all singular fibers of @, where D, + D5+ D+ D;:=D—A4,—A4,. Then
D has the dual graph No. 93 in the Table. Let S;=2E+R;+ D, and ¥: V—»Ifl the
P-fibration defined by | S, |. By Lemma 1.3, (2), there are (— 1)-curves E,, E, and E,
such that Sy, S;:=C+D,+E,, S,:=2E,+ D3+ D¢ and S;:=2E;+T,+ D, are all
singular fibers of ¥. The configuration of C+ D and S;’s is given in the configuration
(93) in Appendix. Suppose /=2. By Lemma 1.3, (2) and by noting that the cross-section
T, meets only T, in D—T,, there are two (—1)-curves E, and E, such that S, and
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S,:=E;+R,+ -+ R+E, are all singular fibers of ¥. By Lemma 1.5, (3) where
(v,T,)*=—2, we must have (v,R;)*>=8. This is however impossible because #D)<9
implies 1<4.

Assume s>2. Then Bisof type 34, + D, (s=2,I=t=1), A;+Dg(s=2,I=1,1=3),
24,+D¢ (s=2,1=1,t=3), A+E, (s=l=2,t=3), A,+E; (s=3,I=t=2) or
A3+ Ds (s=4,l/=1,t=2). Hence D—A4,—A4, has two (resp. one, none) isolated
(—2)-curves in the first (resp. third, remaining) case (s).

Consider the case /=1. Hence s=2,4. Let f, and @ be the same as in the case
s=1. Suppose t=1. Then Bis of type 34, + D, and there are exactly two more singular
fibers f; and f, (#f,) such that f; is of type (II) with #(f;)=3 and f, consists of two
(—1)-curves E, and E, by Lemma 1.3, (2). Since (R, E; + E;)=2 we may assume
(Ry, E;)<1. By (3) of Lemma 1.5 where we consider a contraction v: ¥—Z2, which
contracts E;, we must have (v, R,)* >4, which is impossible. Suppose 7>2. Let f; be
the singular fiber of type (I) containing R,+ ‘- -+ R,. By Lemma 1.3, (2), all other
singular fibers (#£f,, f1) are of type (II). Hence s=2 and D=4, + 4,, i.e., B is of type
A,;+ Dg. By Lemma 1.5, (3) where v is a contraction which does not contract the
(—1)-curve of f; meeting R,, we must have (v, R,)?>>4. This is impossible.

Consider the case />2. Then B is of type A, +E, (s=[=2, t=3) or A,+E,
(s=3,/=t=2). Let S§o=3C+2D,+H,+D, and ®: V—P* the P'-fibration defined by
| Sy |- D3, Ty, R, and H; (if it exists) are cross-sections. Let S; and S, be singular fibers
such that S; > T, and S, > R,. Then S; # S, and they are of type (I), for the cross-section
D5 meets only D, in D—Dj;. If Bis of type 4, + E, then S, S; and S, are all singular
fibers by Lemma 1.3, (2). We then let v: ¥—ZX, be the same as in Lemma 1.5, (1) where
H,:=D; and H,:=T; or R,. Then (v,T,)*=(v,R,)*=(v,T,,v,R;)=2, which is
impossible by the construction of v. If B is of type 4, + E, then there is a singular fiber
S; consisting of two (—1)-curves E; and E, by Lemma 1.3, (2). Hence
(D3+T,+R,, E)>2 for i=1 or 2, say for i=1. But then —(E,, D*+K;,)<1-3/7—
4/7=0 (cf. Lemma 1.4). This is not the case.

Case(6). Notethatift=2then/=1,p=3, forg(4,)isaquotient singularity of V.

Assume s=1 and /=1. Let Sq=4C+2(D;+D,)+T;+D; and ¥: V—>P! the
P'-fibration defined by |S,|. By Lemma 1.3, (2) and Lemma 1.5, (1) and by noting
that g(4,) is a quotient singularity on 7, we know that if Sy, S;, - - -, S are all singular
fibers, then {k; #So, - - *, #Sk} ={1; 5, 5} (where p=6), {2; 5,3, 3} or {1;5,5} (where
p=3). The configuration of C+ D and S;’s is respectively given in the configuration
(94), (95) or (96) in Appendix. V' is affine-ruled by Lemma 1.5, (2).

Assume s=1and />2. Thent=1. Let S§(=4C+2(D,+D,+ - +D,)+ D, + R,
and @: V—P! the P!-fibration defined by |S,|. Then the singular fiber containing
T,+ - - -+ T, must be of type (I), which contradicts Lemma 1.3, (2).

Assume s>2. By Lemma 5.1, Bisof type 4, + D¢ ((s, I, p, t)=(2, 1, 4, 1), (2, 2, 3, 1)),
type 24, + Dg((s, I, p, )=(2, 1, 4,1),(2, 2, 3, 1)), type A5+ D5 ((s, |, p, t)=(4, 1, 3, 1)) or type
A, +Eg((s,1,p,)=(3,1,3,2)). Let &: V> P! be the P!-fibration defined by | S, |, where
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So=3C+2D,+H,+D,. T, D; and H, (if it exists) are cross-sections.

Consider the case s=2. By Lemma 1.3, (2), B is of type 4, + D¢, and we may
assume that R, is in a singular fiber of type (I), and that if /=2 then T, and D, are
in the same singular fiber of type (II). This leads to a contradiction by Lemma 1.5, (1)
where H,:=T; and H,:=D;.

Consider the case s>3. If (5, ], p, )=(4, 1, 3, 1) (resp. (3, 1, 3, 2)), then H,, D, and
R, (resp. D, and R, +R,) are in distinct singular fibers of type (I) because the
cross-section T'; meets only D, in D— T,. This contradicts Lemma 1.3, (2) (resp. Lemma
1.5, (1) where H,:=D, and H,:=T),).

Case (7). Let S=2(C+D,)+T,+H, and ¢: V- P! the P'-fibration defined by
| So|. Then D, is a 2-section. Let S, be the singular fiber containing 4, — D,. As in
Lemma 5.3, one can prove that S, is a fiber of type (II). Hence 1=1 and there exists
a (—1)-curve E meeting D, such that S; =2(E+ D3+ +D,)+ D, + R,. By Lemma
1.3, (3), we have — (E, D* + K,)= —(C, D* + K;)). Then (V, D), with the curve E, is either
a dP3-surface of the first kind or a dP3-surface of the second kind and type (IIb)
according as | E+ D+ Ky |#J or | E4+ D+ K, |=. This is a contradiction.

Case (8). Let So=3C+2D,+D;+D, and ¥: V> P! the P!-fibration defined
by | So|. Let Sy, Sy, -+ -, Si be all singular fibers of V.

Assume s=1 (hence /=1). Let f,=2(C+D,+D3+---+D,)+T,+H, and
@: V- P! the P!-fibration defined by | fy|. By Lemma 1.3, (2), all singular fibers f,,
fis ***, f, of @ are of type (II). By Lemma 1.5, (3), <1 and 4m=(v,D,)*=—3+p+
1 +Zi.’=1 #f;—1)<5 (for #D)<9). Hence m=1 and 6=p+2?=1 #f;i—1). If b=1, then
#(f1\)=4 or 3. For the (—1)-curve E in f; we have —(E, D*+K,)= —(C, D*+ K;) by
Lemma 1.3, (3). Hence, if #(f;) =4, we are reduced to the previous case (3) by replacing
C by E. If #(f1)=3, (V, D), with the curve E, is either a dP3-surface of the first kind
or a dP3-surface of the second kind and type (Ila) according as |[E+ D+ K, |#  or
| E+ D+ K, |=(. This is a contradiction. Thus we may assume b=0 and p=6, and D
has the dual graph No. 97 in the Table. Since all components of D, except the cross-section
D,, are contained in the singular fibers of ¥, V° is affine-ruled. By Lemma 1.3, (2),
k=1and thereis a (—1)-curve E such that (E, T,)=1and S, =2E+ T, + D¢)+ H, + Ds.
The configuration of C+ D and S;’s is given in the configuration (97) in Appendix.

Assume s>2. By Lemma 1.3, (2), Lemma 1.5, (1) and by noting that g(D) are
quotient singularities on ¥, we have one of the following cases:

(i) (p,ls,k)=(3,1,51). Then there are (—1)-curves E, and E, such that
(Ey, Hy)=(E,;, T})=(E,, Hs)=1and that S =F, + H,+ Hy+ H,+ Hs+E,. Lett: Y
W be the blowing-up of the point 4na(E,), where 6, W, B and A are as given before
Lemma 5.1. Let A=T+D3+H,+ --+Hs+E,. Then —Kyp~A~oc(4) and
—Ky~1'(A)~1'0(4). Hence ¢ :=®,,(4,: Y>P! is a minimal elliptic fibration. Hence
there is a (— 1)-curve E on V such that (E, D,)=2, (t'0(E))*=—2 and t'd(E+D,) is a
singular fiber of ¢. But then —(E,D*+Ky)=1-2/3<1-1/3=—(C, D*+Ky), a
contradiction.
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@) (p, 1L s, k)=(3,2,2,2). Then there are (—1)-curves E;, E, and E; such that
(E,, T,)=(E,, H))=1 and that S;,=E,+D,+Ds+E, and S,=2E,+T,+ H,, where
D,+Ds:=D—A,—4, is a (—2)-rod with two components. Let A=T,+T,+ D5+
H, + H, + E;. By the same argument as in the above case (i), we reach a contradiction
to the minimality of —(C, D* +K).

@iii)) (p,l,s,k)=(4,1,3,2). Then there are (—1)-curves E; and E, such that
S,=2E,+T,+Ds and S,=2(E,+H,)+H;+H,, where Dg:=D—A4,—4, is an
isolated (—2)-curve in D. As in the case (2), one can find a (—1)-curve E such that
(E,D,)=(E,Ds)=(E, H;)=(E, Sy)=1. Note that —(E, D*+K,)=—(C,D*+K,)=
1—1/3. Then, with the curve E, (V, D) is either a dP3-surface of the first kind or a
dP3-surface of the second kind and type (Ila) according as |E+D+K,|# or
|E+ D+ Ky, |=. This is absurd.

@iv) (p, 1, s, k)=(6,1,2,1). Then there is a (—1)-curve E; such that (E,, H,)=1
and S, =2(E,+ H,+ H;+ Dg)+ T, + Ds. Consider the P!-fibration ¢ : V- P! defined
by |2C+D,+D3+ - -+Dg)+T,+H,|. Let E be the (— 1)-curve such that E+ E| is
a singular fiber of . Then (D,, E)=(D,, E+ E;)=2 and —(E, D*+K;)=1-2/3<1—
1/3= —(C, D*+ K,), contradiction.

Case (9). Then B is of type 44,. This is impossible by Lemma 5.1.

Case (10). Consider the P!-fibration y: =@, |, where f,=3C+2D,+D3+D,,
of which H, is a 2-section. By Lemma 1.3, (2), the singular fibers of ¥ (#f,) are of
type (II). Hence /=1. Let So=2(C+D,+H,+ - +H)+H,,,+ T, and &: V- P* the
P!-fibration defined by | S, |. D, and D, are 2-sections of . By Lemma 1.3, (2), there
is a singular fiber S, of type (I) with two (—1)-curves E, and E,. If (D,, E;)=2 for
some (i,j) with i=2,3 and j=1,2, then E;+D contains a loop and hence
|Ej+ D+ Ky |#J for j=1 or 2. Then (V, D) is a dP3-surface of the first kind with the
curve E; because —(E;, D*+Ky)=—(C, D*+Ky) by Lemma 1.3, (3). This is absurd.
Thus, (D,, E;)=(D3, Ej)=1 (j=1 and 2). If #(S;) >3, (V, D), with the curve E|, is either
a dP3-surface of the first kind or a dP3-surface of the second kind and type (Ila)
according as |E,+D+Ky|# or |E;+D+K,|=. This is a contradiction. If
#(S,)=2, we are reduced to the previous case (8) by replacing C by E,.

Case (11). Then B contains either two forks (if g>3) or a fork and a rod of type
Ajyseq (f g=2). By Lemma 5.1, B is of type A3+ D5 (I=s=1,9=2;(p,t)=(3,2) or
4,1) or 2D, (I=s=t=1,q=p=3). In particular, /=s=1. Let S;=2(C+D,+
Ly+---+L)+T,+H, and ®: V—P" the P'-fibration defined by | S,|. Then D, is a
2-section. Let S; be the singular fiber of @ containing 4, —D,. By Lemma 1.3, (2), S,
is of type (II), hence t=1 and there is a (—1)-curve E with (E, D;)=1 such that
S;=2E+D3+---+D,)+D,,;+R,. Then (V,D), with the curve E, is either a
dP3-surface of the first kind or a dP3-surface of the second kind and type (I15) according
as |E+D+K,|#J or |[E+D+Ky,|= because —(E, D*+K,)=—(C, D*+K,) by
Lemma 1.3, (3). This is a contradiction.

Case (12). Then B contains three isolated (—2)-curves and a fork. By Lemma
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5.1, Bis of type 34, + D,. Hence g=t=1. Let S,=2(C+D,)+D;+D, and ¢: V>P!
the P!-fibration defined by | Sy|. As in Lemma 5.3, one can prove that the singular
fiber S, containing 4,— D, is of type (II). Then there is a (—1)-curve E such that
(E,Ly)=1 and S;=2(E+L,)+L,+R,. Note that (E, D;)=1. Then (V, D), with the
curve E, is either a dP3-surface of the first kind or a dP3-surface of the second kind
and type (Ila) according as | E+ D+ Ky, |# & or | E4+ D+ K, |= & because —(E, D* +
K,)=—(C, D*+K;) by Lemma 1.3, (3). This is a contradiction.

Case (13). Since #(D)<9, I=s=q=t=1 and D=4,+4,. Hence B is of type
A+ A3+ D,. This is impossible by Lemma 5.1.

To complete the proof of Theorem 5.2, we refer to the argument at the end of §2
for the existence of the configurations (n) (63 <n<97) given in Appengdix.

6. Quasi-universal coverings. Let (V, D) be a dP3-surface and let V°=V—
Supp(D). In this section, we shall look into the fundamental group =n,(¥°) and the
quasi-universal covering U of ¥ (cf. the notation in the Introduction). First of all, we
prove:

PROPOSITION 6.1. Let n: X—Y be a finite morphism between normal algebraic
surfaces. Suppose that Y has only quotient singularities and that n°:=m yo: X°>Y° is
étale where Y° : =Y —Sing(Y) and X°:=n"(Y°). Then X has only quotient singularities.
In particular, if Y is a log del Pezzo surface with contractible boundary, so is X.

PROOF. Assume that the first assertion is proved. Note that — Kyo=n""(— Kyo)
since n° is étale. Hence — Ky=n*(—Ky) and — Ky is ample because = is finite. Thus,
the second assertion is proved.

To show the first assertion, we may assume that ¥=Spec .S and X =Spec R, where
S is the local ring of a singular point of Y. Then R is a semi-local ring with maximal
ideals M,, - - -, M,. Let M be the maximal ideal of S, let J=Rad(R) (=M, - - -M,), let
S be the M-completion of S, let R be the J completion of R and let R; be the M;-comple-
tion of R. Then R=proj limy(R/JNR)=proj limy(R/M"R)=proj limy(R ® ¢ S/M") =
R @y S since R is a finite S-module. By the Chinese remainder theorem,
R/J¥Rx [](Rpn,/MY Rep,). Thus, R ® S~ R=[], R. Since = is finite and n° is étale,
the induced map #; : Spec R;,—Spec S is a finite morphism and is étale outside the closed
point of S. Note that X=Spec R has only quotient singularities if and only if
Spec R= U, Spec R, has only quotient singularities. Instead of R and S we consider R;
and S. Rewrite R:=R, S:=S, X:=SpecR, Y:=SpecS and =n:=#; by abuse of
notation.

Since the singularity of Y is a quotient singularity, there exists a finite group
G<=GL(2; k) such that the G-invariant ring (k{[X,, X,]])¢=S, where X, and X, are
indeterminates. Let Z:=Speck[[X,, X,]] and ¢q: Z— Y the quotient morphism. Note
that Zx,X is finite over Z and étale outside the closed point of Z. Let
T=k[[X;, X,]] ® R be the coordinate ring of Z x yX. Then T is a reduced ring with
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minimal prime ideals p,, - - -, p,. Let K;=Q(T/p,) and T, the integral closure of T/p; in
K;. Then T:=T], T, is the integral closure of T in the total quotient ring Q(T) (= [1.5)
of T. Note that k[[X,, X,]]  T/p; and hence k[[X,, X,]] o T; are integral extensions.
Note also that Spec T/p;—Z and hence Spec T;—Z are étale outside the closed point
of Z. By the purity of branch locus, Spec T;— Z is étale everywhere. Hence Spec T, Z.
Let p be the composite of morphisms: Z=Spec T; G Spec T-Z x yX—X. Then p is a
finite morphism and if we set H=Gal(k(Z)/k(X)), then R=(k[[X, X,])¥. So, X has
only quotient singularities. q.ed.

The following corollary is useful in finding the quasi-universal covering U of V.

COROLLARY 6.2. Let V be a log del Pezzo surface with contractible boundary. We
employ the notation g: V—V, D and V° in Definition 1 of the Introduction. Suppose that
there exist an effective divisor A> 0 supported by D, an integer | > 2 and an integral divisor
F such that A~IF and that | is prime to the greatest common divisor of the coefficients
of A. Let t,: X,—V be a Z|IZ-covering defined by the relation O(F)®'=0(4) and a
nonzero global section of O(4). Let t, :X— X, be the normalization andlet t:=1,°1,. Then
- Y(D) is contractible to points on a projective normal algebraic surface X and t induces
a finite morphism ©: X—V such that 1=t on X° (:=1"Y(V°)). Hence X is a log del
Pezzo surface with contractible boundary.

ProoF. Let 6: T— ¥ be the normalization of ¥ in the function field k(X ). Then
6=t on V°. Hence thereis a rational map §: X- - - - T such that g yo is an isomorphism.
Let Z be the normalization of the graph of § contained in X x T and let «: Z—X be
the canonical projection. Then o,-1xo) is the identity morphism and f:=g-a is a
morphism. Note that getea=¢° f. So, every exceptional curve of « is contractible to
a point under B. Thus § is a morphism which contracts t~!(D) to points on T. Set
X:=T and 7:=6. Now Corollary 6.2 follows from Proposition 6.1. q.ed.

In [9; Lemma 2] we proved the injectivity of the following composite
homomorphism:

Poincaré duality res

H,(D; Z)—-H,(V; Z) H*V;Z)— H*D; 2),

and the assertion (1) of the following lemma.

LeMMA 6.3. Let V be a dP3-surface. We employ the notation g: V-V, D and V°
in Definition 1 of the Introduction. Then the following assertions hold true.

(1) We have H,(V°; Z)=(H*(D; Z)/H(D; 2))/(CI(V)/Pic(V)).

(2) LetI'=Y7_, D; be a connected component of D and let G=H*(I'; Z)|H,(T'; Z).
Then we have:

(i) G=Z/(n+1)Z, (Z]22)%%, Z|AZ, Z|3Z, Z|2Z or (0), according as whether
the dual graph of T is of Dynkin type A, (n>1), D, (n=ever, n>4), D, (n=o0dd, n>5),
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Eq, E, or Eg, respectively.
(i) G=Z/(n+1+in+1—i)Z if the dual graph of T is given in Figure (13).

0— -0 *: 0o— - -0
D i-1 i D Dy
FiGURE (13)
i) G ZRZ® Z)2(i+1)Z if bothnandiare even
iii =
Z/A(i+ 1) Z otherwise
if the dual graph of T is given in Figure (14) and n>4.
. D
IR Le SO ) I
FIGURE (14)

(v) G=Z|/(n+4)Z if the dual graph of T is given in Figure (15) and n>5.

) D IDn—l
om +e...0720 Dy

FIGURE (15)

) G=Z/1Z if the dual graph of T is given in Figure (16).

D
D, D, DST 4 Dg Dy

%

FIGURE (16)
(vi) G=Z/13Z if the dual graph of T is given in Figure (17).

D
1 2 031 4 DS D6

FiGure (17)

(vil) G=Z/(5n—9)Z if the dual graph of T is given in Figure (18) and n>S5.

D
D1 Dn—4 Dn—ST n-2 Dn—l Dn
0— -+ =0 * o 0
FiGure (18)

(3) Assume that (V, D)#(Z5, M) and that there exist a P*-fibration ®: V—P*!
and a (—2)-component H of D which is a cross-section of ®. Then CI(V) is generated by
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the direct images on V of all (—1)-curves E;’s (i=1, - - -, k) in the singular fibers of ®.

Moreover, if ZLla,-Ei is linearly equivalent to zero with a;e Z and E;=g_E;, then
f= L a,~E,-+Z;."= 1biDj~0 on V with some b;e Z and some components D;’s of D.

(4) Let P be a divisor on V such that (P, D;)=0 for any component D; of D. Suppose

that (P,F,) and (P,F,) are coprime for some divisors F, and F, on V. Then

g, P generates Pic(V) (cf. Lemma 1.1, (3)).

ProoF. (2) Note that G=(Z&, +---+Z¢)/{Y_, (D, DYE=0; j=1, - -, n},
where &’s form a Z-basis of H*(I'; Z). Then (2) follows from straightforward
computation.

(3) Letv: V-2, beacontraction of all (— 1)-curves and consecutively contractible
curves in the singular fibers of & such that (v,H)?*=—2. Note that CI(Z,)=
Zv H]® Z[v,S], where S is a singular fiber of ®@. Therefore, CI(V) is generated by
H, S and all exceptional curves of v. Note that g, : CI(V)—CI(V) is surjective. By (2)
of Lemma 1.1, the first assertion is verified. The second one is obvious.

(4) By the condition that (P, D;)=0 for any component D; of D, P is linearly
equivalent to a divisor disjoint from D (cf. [1; Cor. 2.6]). Hence g, P is a Cartier divisor
such that P—g*g,P is linearly equivalent to zero. Write g, P~al where ae Z and ¢ is
a generator of Pic(¥). Since (P, F,)=a(g*¢, F,) and (P, F,)=a(g*¢, F,) are coprime we
have a= +1. ’ q.e.d.

We shall treat only a dP3-surface ¥ or (¥, D) corresponding to the configuration
(20) in Appendix and explain our method of computing n,(¥°) and constructing the
quasi-universal covering. Let v: > 2, be the contraction of C, E,, Dy, Dg, D, Dy,
E,, D5 which are displayed in the configuration (20). Let ¥: V- P! be the vertical
P!'-fibration defined by | S| where S:=C+ E. Then one has:

v¥(v,D3+3v,S)~v*v, Dy=D4+Dg+2D;+3Dg+4Dg+5E, + D5+ E;
v*2v,D3+4v,S)~v*v D, =D, +2C+Dg+2D,+3Dg+4Dg+5E,+ D5+ 2E;,
S=E+C~E1 +D6+ e +D9+E2~2E3+D2+D5 .

Hence 5(D;+S)=4D3+ (D5 +3S)+2S~4D5;+D,+ Dg+2D,+3Dg+4Dy+ SE, +
Ds+E;+4E;+2D,+2Ds and if one lets 4=2D,+4D3;+D,+3Ds+Dg+2D,+
3Dg+4Dy and F=S+D;—E,—E, then A~S5SF. Let P=—3C—2D,. Then (P, D;)=0
for any component D; of D, (P, E)=—3 and (P, E;)=—2. By Lemma 6.3, (4), g, P
generates Pic(7). Put E=g_E, E, =g, E, and so on. Then g, S=E+C~E,+E,~2E,,
S5E,+E;=g,0*v,Dy~9g,(D3+3S)~6E;, 2C+5SE,+2E;=g,v*v, D, ~g,(2D;+4S)~
8E, and they are all relations among C, E, E;’s which generate CI(¥) by Lemma 6.3.
Hence CI(V)/Pic(V)=(Z[C)l+ Z[E1+ Z|E,]+ Z|E,]+ Z[E,])/ ~(where “~>={[E]+
[6] = [EI] + [Ezl = 2[E3], 5[Ez] + [Ea] = 6[E3]: 2[6] + S[Ez] + Z[Ea] = 8[E3], 3[61 =0}) =
Z/15Z. By Lemma 6.3, (1) and (2), H,(V°; 2)=((Z/52)®* ® Z/32)/(Z/15Z)= Z|5Z.
Let 6,: U,—V be the composite of the following morphisms in the given order:
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the blowing-up 7 of the point P:=D;n D,, the Z/5Z-covering defined by the relation
O(t*F—1~}(P))®3~0(x'4) and a nonzero global section of O(z’4), the normalization
of the covering surface and the minimal desingularization of the isolated singularities
on the normalized surface. Then ¢ (D) (written in solid lines) is given in Figure (19).
¥ induces a P'-fibration @, : U;—»P* of which all singular fibers are those four given
in Figure (19). In particular, U, is rational and (K% )= —18. Let ¢,: U;—»U be the
contraction of o[ '(D,+--+Dy). Write ;7 (C)=C,+ - -+Cs and o['(D,)=
ﬁ_} oo +1'25 “Lhere (~C~1, ﬁ1)=(~c~1, {74)=(62, H)=(C,, I-?~5)=(C~3, ﬁ3)=(C~2, Hy)=
(Cas Hy)=(Cy, Hy)=(Cs, H)=(Cs, H3)=1. Let H;=0,(H) and C;=0,(C). Let
B=0,,067'(D) (=H,;+ "+ H,) and let g,: U—U be the contraction of B. Then o,
induces a finite morphism &, : U— V which is étale outside Sing(?), and U (or (U, B))
is a log del Pezzo surface with contractible boundary by Corollary 6.2. Note that
p(U)=10—(K2)=10 and p(U)=p(U)—#B)=5. Consider the P'-fibration @,: U— P!
defined by | T, | where To=3C,+3C,+2H,+ H,+ H,. By Lemma 1.1, (2), there are
(—1)-curves F,; and F, such that (Fy, H3)=(F,, Hs)=1 and that T, : =2C;+ F; + F, +
H;+ H is a singular fiber of @,. Let u: U—Z, be the contraction of C;, F,, Hs, H5, C,,
C,, H,, H,. Then u(B) is a union of a single point and a fiber of the P!-fibration
@,0ou"': X, P So, Z,—u(B) and U— B contain C2. Hence U— B is simply connected.
Therefore, U is the quasi-universal covering of ¥ and n,(V°)x~Z/5Z.

FIGURE (19)
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We now prove the impossibility of the configuration (206)" which has the same
configuration as the configuration (20a)’ in Lemma 2.6 but with the nodal curve 4,
replaced by a cuspidal curve 4,. By blowing up the cusp of 4,, we can make a
configuration (205) from the configuration (20b)" where the configuration (20b) has the
same configuration as the configuration (20) (see Appendix) but with the exceptional
curve C meeting the (—3)-curve D; with order of contact 2. In the case of the
configuration (205b), using the same arguments and notation as those for the case of
the configuration (20), we also have a Z/5Z-covering o,: U,—»V, a P!-fibration
@, : U, — P! and Figure (19b) which has the same figure as Figure (19) but with every
component H; of ¢ [ }(D,) meeting exactly one component of ¢ }(C)=Y C; in a single
point with order of contact 2. Let v, : U, — 2, be the contraction of curves in the singular
fibers of @, such that (v,6,D;)?= —1. Then (v,H,, v,6,D;)=0 and (v,H)*=6 by the
definition of v,. This is absurd.

Similarly, one can compute H,(V° Z) for all cases. We also can get the
quasi-universal covering U for each case with H,(V°; Z)#(0) and prove that, in this
case, U is a rational log del Pezzo surface with contractible boundary, by taking
successively morphisms like o, : U, -V in the case of the configuration (20), which are
étale outside D. For the cases with H,(V° Z)=(0), we can check that V°2Cx C*
where C*:=C—{0}, in the same fashion as the one given in the next paragraph for
the case of the configuration (3). Hence =,(V°) is a quotient group of n,;(Cx C*)=Z.
So, m,(¥°) is an abelian group and =,(V°)= H,(V°; Z)=(0). Since we know H,(V°; Z)
and |n,(V%|, we can obtain =n,(¥°) for all dP3-surfaces except for those with the
configurations (6), (7), (27), (93) and (95) in Appendix. For the cases with the
configurations (7), (93) and (95), we do not know which of D, and Q; the fundamental
group n,(V°) takes. For the cases with the configurations (6) and (27), we do not know
what 7,(V°) is.

By treating the dP3-surface (V, D) corresponding to the configuration (3), we explain
our method of investigating the affine-ruledness of ¥°=V—D. We employ the same
notation D=Y; D, ¥:V-P, S, and S; as in Lemma 2.3. Then S,=3C+
2Dg+Dg+ D, and S;=E,+ D3+ --+Dg+FE, where E; and E, are (—1)-curves
with (E,, D;)=(E,, Dg)=1. Let g, : V;—V be the blowing-up of the point P:=D,nDs
and let F\ =0 '(P). Let 6,: V,—>V, be the blowing-up of the point Q :={¢'(Ds)n F;}
and let 6:=0, °g,. Denote by F, :=a%(F}), F,:=0;Q), E,:=0¢'(E;)) and D,:=0'(D)).
Set fo:=5(E,+D3)+3D,+2D,+F,+ D, and f, :=4E, + Dg)+3D,+2Dg+ Dy+ D;.
Then| f, | defines a P'-fibration ¢: V,—» P! and f, is the unique singular fiber of ¢
other than f,. All components of ¢~ (D), except F,, are contained in the singular fibers
of ¢. Note that F, and ¢'(C) are cross-sections of ¢. Let 7: V,— X, be the contraction
of curves in f, and f, except F; and D,. Then, (¢~ 'D) is the union of 7(f;), (f,) and
1(F,). We have, V°—E, —E,=X,—1(c " 'D)=Cx C*.

To complete the proof of the Main Theorem, we have only to verify the assertion
(V). Suppose that m,(¥°)#(0) and the Picard number of the quasi-universal covering
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U is equal to one. Then ¥ is a surface corresponding to the configuration (n) for n=23,
28, 31, 34 or 88. For the case n=23, we see that P?/n,(V°) = U/n,(V°) =V (cf. the
Table). In the remaining cases, we see that U~ Z,, (m>2) which is the surface obtained
by contracting the minimal section on the Hirzebruch surface X,, of degree m (cf. the
Table). Since £, is the quotient of P2 by a cyclic subgroup of PGL(2, C) of order m,
there are a finite subgroup H of PGL(2, C) and a cyclic normal subgroup H, of H of
order m such tht H/H, ~#,(V°), P/H,~%,~U and P?/H=V.

The “only if”” part of the assertion (V) of the Main Theorem is a consequence of
the following:

PROPOSITION 6.4. Let V be a dP3-surface. Suppose that there is a finite morphism
h: P2 V. Then p(U)=1.

PrOOF. Letn: U— 7V be the canonical finite morphism. Denote U°=n"1(¥°) and
P°=h~1(V°). Then U° and P° are simply connected. Consider Z:= P° x ,,c U°. Since
U° is finite and étale over V°, so is Z over P°. Since P° is simply connected, Z is a
disjoint union of deg = copies of P°. Let k°: P°—U®° be the restriction of the projection
Z—-U° to a copy of P° in Z. Then k° is a finite morphism such that mok®=hjpo.
Clearly, k° extends to a finite morphism k: P2— U so that no k=h. Therefore, p(U)=1
because p(P?)=1. q.ed.

Appendix. Table and list of configurations. In the Table, we employ the following
notation and convention:
Letf: U— U be a minimal resolution of singularities on the quasi-universal covering
U of a dP3-surface V. The singularities of ¥ (resp. U) are described in terms of the
dual graph of D:=g !(Sing V)< V (resp. B:= f }(Sing U) = U).
V° U°: stand for ¥—D and U— B, respectively; hence U°2n~ (V)
C*,C**, C?>—P: stand for C—{0}, C—{two distinct points}, and C*—{one
point P}, respectively
2, (n>2): the surface obtained by contracting the minimal section on
the Hirzebruch surface Z, of degree n.
We employ the following notation for finite groups.
D,: the binary dihedral group of order 8
Q;: the quaternion group of order 8
S53: the symmetric group of degree 3 and of order 6
1, (VO =(x,y,z|x*=y3=2z%=1, xy=yx, yz=zy, xz=2x?) in No. 22
n, (V%) =<(a,b|a®*=b*=1,ab=ba®) in No. 26.
In No. 7, No. 93 and No. 95, we do not know yet which of D, and Q; the
fundamental group =n,(V°) takes.
The No. na (resp. No. nb) row for n=15, 18 is the information concerning a
dP3-surface corresponding to the configuration (na) (resp. (nb)).
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No. Sing. type of V H,(V° 2) (V%)  p(0) Sing. type of U OR; 1;‘3“33

1 . ©) ©) 1 U=7==, Yoo C?

2 Aq+(+—0%) ) ) 1 o=v Voo Cx C*

3 »—o08 © ) 1 U=V Voo Cx C*

4 A, +(x—07) () ©) 1 o=v VoS Cx C*

5 D+ (0—+—0) Zpz zpz 2 Ay +(—4) U°=¢?

6 24,+D,+(0—+—0) (Z22)°* |m|=16 2 U=3, U=z,

7 245+ (0—*—0) (Z)22)®* D,orQ, 4 24, U=C?

8 A +A,+(+—0%) ©) ) 1 o=v Voo Cx C*

9 Dy+(+—0) ©) ©) 1 o=v Voo Cx C*
10 24,+Ay+(x—03) zpz S, 3 34,42+ U°>C*—P
11 Ay +A,+(3—0?) zpz zpz 2 Ay +2(x—0—0) U°=C?
12 Eq+(+—0?) ©) ) 1 o=v VoS Cx C*
13 Ay + D¢+ (+—0) zpz zpz 2 Dy +2(+—0) Vo2 Cx C*
14 Ay +(+—o0) zpz zpz 3 A3 +2(+—o0) U°=C?
15a E,+(+—0) ©) ) 1 o=v Voo Cx C*
15b E,+(»—0) ©) ©) 1 0=p Voo Cx C*
16 Dg+* zZ)Z zpz 3 Dy+2+ U>C?*—P
17 A +E,+ Z2Z S; 4 A U=c?
18a Eg+ * ) ©) 1 U=v V°oCx C*
186 Eg+ * ©) © 1 U=v V°aCxC*
19 A +Ar+* (Z22)°*  (Z)22)®* 5 A, +4x U°>C?*—P
20 24,+%* Z/5Z Z|5Z 5 5% U°=cC?
21 Ag+ + Z)32 ZB3Z 5 Ay+3+ U°=>C?
22 A+ A, +As+ * Z/6Z |n, =18 4 smooth del Pezzo Uu°=U0

surface of deg 6
23 34,+(x—0?) zj3z Iml=21 1 U=P? U°=p?
24 Ay + Ay +(+—0) zZ)3Z Z3Z 3 A, +3(+—o0) U°=c?
25 Ay +Eg+* Z/3Z Z/3Z 3 D4+ 3% U’=C?
26 A3+Ds+ * Z|AZ |my|=12 6 smooth del Pezzo U°=0
surface of deg 4

2T A +245+(+—0) |H,|=4  |my|=20 2 ==, v°=5,
28 24, +Ds+ * Z]2Z S, 1 U=z, Vo2Cx C**
29 24,+(x—o 3—E—o) zpz S, 5 —o—x Voo Cx C**
30 A, +(+—0) 0) ) 1 o=v Voo C?
31 24, +(0—*—0) zZ)2Z zpz 1 0=%, VoS Cx C*
32 A4, +(0—+—o0—0—0) zpz zpz 2 (—4)—o Voo Cx C*
33 4, +(o—*—o—i—0) Z)2Z Z2Z 2 (—4)—3—0 Vea2CxC*
34 34,+ (o—T—o) (Z22)®* (Z22)®* 1 U=5, VoS Cx C**
35 24,+ (o—o—o—f—o) (ZR2)®> (ZR22)®* 3 o—(—6)—o Voo Cx C**
36 *—0—0—0 ©) ©) 1 U=V Vo (C?
37 0—0—0—%—0—0—0 z)pz zZ)»Z 3 o—(—4)—o Vo> Cx C*
38 +—0—0—0—0 ) ) 1 o=v yosC?
39 0—*—0—0—0 0) ) 1 U=V V°=C?
40 A, +(+—0%) ©) ©) 1 o=v Voo Cx C*
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. o. o . Ruledness
No. Sing. type of ¥ H,(V° 2) (V%  p(0) Sing. type of U of V0. U°
41 A +(0—0—»—0%) ©) ©) 1 0=V V°2Cx C*
42 *—0" ©) 0) 1 =7 VoS Cx C*
43 0—0—0—*—0* ) 0) 1 U=v Ve=2Cx C*
44 Ay +(0—*—0%) ©) © 1 o=v V°2Cx C*
45 o—#—07 ) ©) 1 o=v VooCx C*
46 0—0—0—0—*%—0*% ) ) 1 U=vV V°=>Cx C*
47 A4,+(0—0—+—0%) © ©) 1 o=v VeaCxcH
48 o—o—o—*—o—g——o ZnZ VAr¥ A 3 o—(— 4)——3—0 Ve=2Cx C*
49 o—o—o—-—o—o—g—o ) ) 1 U=v V°>Cx C*
50 *—o—o—o—o—o—g—o ) ) 1 =7 V°2CxC*
51 24,+ (o—g-—*—o3) zZpz S, 5 a—(—8)— Voo Cx C**
52 —o b o ) © 1 o="v Voo C?
53 —ot 0o 0 ) 1 o=v Voo C?
54 — 000 ) ©) 1 o=v Voo C?
55 o—*—g—o—o 0) ) 1 U=v V°=C?
56 A+ (-—i——o‘) ) © 1 o=v Voo Cx C*
57 o-—o—?r——o—o ) ©) 1 U=V Ve=C?
?

58 A, +(o—0—j:—o3) Z2Z Z2Z 2 o0—o0——4)—o0—0 VeoCxC*
59  A;+(0—0—0—*—0) Z2Z Z2Z 2  A,+(0—0—0—+—0% V°2CxC*
60 D+ (*ﬂ—i—o) zpz zpz 2 Ay +(+—0%—%) U°=C?
61 A3+(t~o—o—i—o) Z)2Z Z)2Z 2 A, +(x—05—%) Ve2CxC*
62 D+ (‘—3—0) zZpz S, 6 A +(—4) U°=C?
63 Ay +(+—0) 10) ©) 1 o=v y°=C?
64 A+ A,+(»—0—0) ) ) 1 U="v Ve2CxC*
65 A,+(*—0—0—0—0) 0) ) 1 U=v V°2Cx C*
66 Ay++ ©) ©) 1 0=v Vo= C?
67 A+ Ag+* 0) ©) 1 o=v Voo Cx C*
68 Ag+* ) (V) 1 U=v VeaCx C*
69 A+ Ay +(»—0—0) ©) ©) 1 U=v V°2Cx C*
70 Ay + Ay +(3—0) ©) ©) 1 o=v Voo Cx C*
71 Ag+(»—o0) ©) () 1 U=v Ve=aCxC*
72 Ay+(+—0—0—0—0) ©) ) 1 0=v Voo Cx C*
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No Sing. type of ¥V H,(V% Z) (V%)  p(D) Sing. type of U l:fu 1;‘3”:;3
73 A, +(0—*+—0—0) (O] ©) 1 U=v 14X o
74 24,+(0—+—0—0—0)  Z]2Z zpz 2 24,+(—4)—0)  VO2CxC*
75 A+ (0—*—0%) Z2Z VAr¥ 4 3 24,+(—4)—0—0) V°2CxC*
76 Ay+A4,+(0*——0?) Zp3z zZ3z 3 34,+(=5) Voo Cx C*
77 A, +(0—o0—s—0%) zZ3z zZ3z s 34, +((—5)—o) V°oCx C*
78 24, +(0*—+—0%) ZR2)**  (ZRZ)®* 5 44, +(—6) Voo Cx C*
79 Ay+As+(0—+—o0) Zpz Zpz 2 A +24,+(—4) VOoCx C*
80 Ay +(0—*—0%) zpz ZRPZ 3 24,+((—4—o0—0) V°2CxC*
81 24,+(0—0—%—0—0) Z/)3Z Z3Z 3 34,+(-5) V°>Cx C*
82 A, +A;+(0—+—0% zZpz zpz 2 24,5+ (0—(—4)) V°oCx C*
83 As+(0—*—0—0) ©0) © 1 o=v V°oCx C*
84 Ay + Dyt » zZpz zZpz 2 A+ Ay +24 Voo Cx C*
85 A+ (*——g—o——o) ©) ) 1 U=v Vo=C?
86 A+ (*—o—i——o—o) ©) ) 1 U=V Voo ?
87 24, + (*-——i—o—o—o) zpz ZRpzZ 2 24,+((- 3)—3—( —3)) ¥°2CxC*
88 24, +4,+ (*—i——o) zpz S, 1 U=5, Voo Cx C**
89 A+ (*——o—o——i—o) ©) 0) 1 U=v V95 Cx C*
90 A3+ (*—o—i—o—O) (U] © 1 o=v V°=2Cx C*
91 A+ (*—i—o—o) ) () 1 U=V VeaCx C*
9 .
92 A, +A,+ (.—3—03) zpz S, 4 o—(—4)—o VoS Cx C**
93 4, +D4+(o—i>—o) (Z22)°* D,orQ;, 4 . UosC?
94 A+ (o—t——o3—g—o) Z2Z Z)2Z 3 24,+(( —4)—0—3—0) VeaCx C*
95 34,+ (o—*—o—i—o) (Z)22®* D,orQ, 3 o—(—4)—o Voo Cx C**
96 A, +As+ (o—m—i—o) Z/az ZAZ 4 44, +((—D—(—8) V°2CxC*
97 D+ + ) 0) 1 U=Vv VeaCx C*

In the following list of configurations, the numbers in brackets coincide with the
classifying numbers in the Table; a solid line stands for a component of D; the
self-intersection number —2 of a (—2)-component of D is omitted; a line with (x) on
it is not contained in any fiber of the vertical P!-fibration ¥: V- P!,



© 1 ©
o -ilnmilil) ¥ a —— a *
i A in ' Poan
1 ~ ~ 1 1 ~ |
—————- )=} a | —_— m H
0 [ 1% — 1 o~ N el H
a m ‘ _ = = -
© — ) 10
[ (=} 1 !
<t m =) |_T|D
[=] A Q) l
™~ ™ — 2 ! — ——
(=) m ! [ o~
T - o« - } P " a
Tt m a ' | R ! —
© RB__ a “ ﬂ I
] - vt
— a 1 - m < 0 < e o N
m 1 ~ a N ~ a a o~ Q] m ~
N m A © =]
— o1 - ~ - -
[ a - ™
1 a 1 w| ©
——— alAa,
* ™ o~ — H
a a _ I a — 1
— — 110 (]
(=] [ a ] — [S]N]
@) - — nW [ —_— a 1
(=] 1™ 1 1 o
N _ ' — ™ i
< 0 1 ¥ )
jes] (= 1 * © ———’ N
N — (=} (8] a *
o T-5 o1
T o o
() Nt—n
3]
N — - — o~
0o < nim 1 a
P a 1 0
1 1 —_
1 '
[T 1
(= ™|
| a ! ©
el [=] [ 1 — —— )
1% ~ -~ m ~
— ' o ! ™ o~
~ [} ~ — - ~
t a
O =)
|||||| - —n
(=} — o
| 1 a /=)
1%
© 1™
a [ | 1
o 1 ——— JE -
a | ™ 1 ™
- a —il a —
* I~ rt Ho o
[« —— o~ 1 !
& a * B E—— —_————
N - 1 - 1
a a

442

(10)

9)



443

(18b)

LOGARITHMIC DEL PEZZO SURFACES

(18a)

~ © N
o - m ax =
*
- ol ._1 o0 — 0
‘_1 Hl . 1 a . D8 =) 3] €IS
= -1 A n
~ 1 —
x
| - a ~ ~
o} — O —t— -
T ! Lo =
0 - <t 2]
= [S3I (= - a e
™
—_—— ~ <]
= a 0 S — ° @ - NS ©0
pm———] b [ — mla — 1 [} a ¥ o~ L ——t
~N [ ~ ~ 1% ~ —— -
a [ “ (=] ~ H5 -
H (8] 4] H -
™ - — — —_ *
a | [N o~ ' G o [=]
a 1 a ~— a [l
— [$) m|ia
a — m 1%
™ a myl lllll ~ [T / ¥ [S I
1 5] — I % - ——t e e —te -
1 ] .ﬂ. _r I .ﬂ _, ]
— m m
©
—o Ax
a — 0
o ~ m I %
a a
Ll
1 —
- o]
1 -+ o~
(=] =
«~ -—
m 1 ™
1 w0
[ = ~ -~ —~ -t T
- —— ™ «© ~ jaod
1 1 — — © ©
"""""" J ~ N~ ~— N -
— © z —_t— - ©
3] - - <3 T —
1
[ iy tud v~ zd 2]
~N 1 m &) | a =} ~
a 1 ==
— * —
' (&) ] o~ — - D4 n“u [}
™ — o~ - 1
a [} a 1 A [el[=]
— m 1%
— (&) — m
a s e [ O 1 [ O
e % ™ ~ i -
™ ) 0 ' % —~ 11 — 1
! ] T % e r- [ .
m m




D.-Q. ZHANG

444

(19)

(20)

(21)

1im

(22)

(23)



LOGARITHMIC DEL PEZZO SURFACES

. D* po -
E l-1 5 b -1
1 D 3 E|"!
6 b, -1 E, IEC
D I S . D i
7 Dg Ty, 2
D; Dlt-S
(24)
D*
él-(——i- D 7 b2 g -1E - -
1 Dy 3 -uif ]
D S - ¢
D I 8 D E
4 2 3 b l-a
1
(25)
-1 %
E )
Ly Dy |p 78 D -1'E Ty
7 2 -1'E i
| Dy O TN
Dy I D, -1{E ¢
D
Dg -3l
* 1
(26)
bt . o
Dy Dy 4 D - E e
7 -1!E .
up __t___ - Dg 2 4
E| Dy -1}{E, b, |
Dg -3sD1

(27)

445



(32)

D.-Q. ZHANG

(31)

(30)

446

(43)

(42)

o —t—
1
- N 0
[]<a] a %
] o«
——— (=] m
©o ! N
a LJl=} Q ~1 I
w 1% _ a T a ._1
(=] - —— —
= 0 3 N
! ~ | et
- _ a — ~ iy © D7
11 1 — 1A
| Al o —t———
—_— 1 1
1 U4 nﬂ p .
m o~ ~ a a ~N ~ D3
o« © =) -
1% ™ — ™ i <t
~ [=) — ~ ~ _
— ! Q w0 o
' a e e g ax = | |
—t—— (S w ~
! a % | — —
—_ a ™ 1 Dl
LI !
| —0
P [N <t|m <t
[ 1 a |t a
[=] I e ~
™ [~ @
3] ™
J Een \ | -
— N
' a
o~
a D8 ~ o
- -
(=] (=) bl
—_—r—— !
© 1
a —
11 ~
| — 1 a
1 —_—
w e 1 © i
(=] m ~ (=]
—— a
| —_—
~ —t - ~ 10 ~
™ 11m n © a % =]
(2] 1 2] a n <
™~ —_— - a -
[d[=] [ -
1% a i <t — 0O
™ 1 a L N
— mla < o~ H— 1 [=
1A 1% - B f= ~ (=) [
—_— ] 1% ™ ' a
1 — ————te ~ | ]
—0 ra 8} N N !
X —t a a &N
1 1 /
——— —
[\ 110 — (]
(=) 1 a (=)
—_—
[ —
a ™
[=]




447

LOGARITHMIC DEL PEZZO SURFACES

(45)

(44)

(47)

(46)

(=
A
————
[} 5
! a
[N}
™~
a
@0
™ a
a
N
a
_ )
— a %
a
[S]
— [3g}
1 I
<t
=]
L
[~}
—_—
] ~
] (=]
i ——
it
©0
(=] w
a
N
(=]
—
a
—m
— a
I
. “tlem
(8] a ¥

(49)

(48)

-1

(51)

(50)

(54)

(53)

(52)



448 D.-Q. ZHANG
-1 D __.i_
D.|”"C ! i -1--7¢
1 F -3 cl-1 c
0 1 F by
] H 1 |F, N 0 |
1 -3fp E =3 D,
H 1 H D -
2 R Hy| ™1 Hy 172 R, IT,
2 H R
* Ha Ry
fd I b
(55) (56) (57)
— D,_| T2 -1{E,
D F
Fo g ! _t__:l_ - °o1? Dy P2 Dg P4
-3 D ! D
+—2 | s
R, 'T, Dy Ry cl-1 . e,
2 "
% T x*
(58) (59)
: ] " ]
= 5 T
------ - 0 1.1 T -1lE
N | N T T 1 Fol  ,T¢ Dy !
2 1 1 1
-3 Q, T Q. R D D %s
-1{E, 2 3 Ry 2 | D3
_ Q -3 6 . IE
= (O B ol
(60) (61)
" ! 1 1
D, 1
]
‘| Jtal.
{ 1] _1
_+_-¢
by 9 T3
B}
: B
] T*
(63)
-1}E
D !
D Dy IDg
e

(65)



LOGARITHMIC DEL PEZZO SURFACES 449
D, D, D, g
— - - -1
-3 =3 S . .
cl-1 cl-1 | -1 |_ ci”t ) _5H_
E 1
D D D
H 1 H 1 H, 'D3 1o Hy H
2 H 2 H 4 H
*3 *3 f —.-3
(66) (67) (68)

D [ S—
b Lo-1le
2 |
-3
R D
1 3
)
(73)
e
D R '
2 | 4 | i
= j
R D R, IR
1 3 3 IRy
)
(75)

D —f—
ci-1
Dy _ _:l_t_
=3 E
R Rs D
1 3 g
R,
- |
(74)
D*
4 -1
Dy| D,
ci-1
Dy
R| 3
Ry

(76)



450 D.-Q. ZHANG
< 5* |
)
4 -1!E 4 B
D, D, i byl 4 b, -1lE, D
b ci-1 ry Fs b ci-1 , b, .
2 2 4-z1-1-
R, | 73 Ry | E R, | 3 E -1 R, 3
1 R o 1 2 3 R
L2 22
¥ , *
(17 (78)
DX DX
3 -11E 3 -1!E
I 0 N P4 ! I =0 Y O R !
c c
Dy Dgi p D, R, g ..zl
D 6 D 3 E,
2|-3 TH, e 2|-3 TH, n
R, 2 R 2
£ 3 *l
(79) (80)
] ;3 '
Dy D,  -1lc |p
I el O F 3
¢ E 1 i) -1
By ot S IR St
1 1 * 2 Hy F,
D R, G
2|-3 R 1 R
2 R, -1[E, 3
I - 1
(82)
! ! 1 1 "
_; D3 Py Dy Dg P7) g &
1 |H, E ) E, | By
Y R JUy J I U S R S 1 -
| H3 by -1 E -1 D
5 -3|Dy
R, Hy L] o p— -
S D, &
% T x* T T H
(83) (84)
¢ D
D, 1 Dy
=3
D
3 D
"D, 5
R Ll
R, 1

(85)

(86)




LOGARITHMIC DEL PEZZO SURFACES

(80)

451

(92)

(94)

(89)
Hr:-‘
3 H, 1E,
D, R,
-1lc E,
D.)-3 ---2--
D, 2 1
(91)
[}
D
D, 1E,
J1__E_|
o1 ; D,
b 1 cl-1
Dy
33 T
(93)
D, - D¢
-1lc
T
1 E
-3 I
T D o1
2
Ds Dy
1
(95)

(96)



452 D.-Q. ZHANG

— - I |
D E
C T
-1 1
De |
D, |
Py %5 1M
o
97)
REFERENCES

[1] M. ARTIN, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math.
84 (1962), 485-496.

[2] M. ARTIN, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.

[3] E. BRIESKORN, Rationale Singularititen komplexer Flichen, Inventiones Math. 4 (1968), 336-358.

[4] M. DEMAZURE, Surfaces de del Pezzo, Lecture Notes in Mathematics 777, Berlin-Heidelberg-New York,
Springer, 1980.

[5] P. GriIFFITHS AND J. HARRIS, Principles of algebraic geometry, John Wiley & Sons, New
York-Chichester-Brisbane-Toronto, 1978.

[6] M. MivanisHI, Non-complete algebraic surfaces, Lecture Notes in Mathematics 857, Berlin-Heidelberg-
New York, Springer, 1981.

[7] M. MivaNisHI AND S. TsuNoDA, Non-complete algebraic surfaces with logarithmic Kodaira dimension
— oo and with non-connected boundaries at infinity, Japan. J. Math. 10 (1984), 195-242.

[8] M. MivanisHi AND S. TsuNoDA, Logarithmic del Pezzo surfaces of rank one with non-contractible
boundaries, Japan. J. Math. 10 (1984), 271-319.

[9] M. MivyanisHI AND D.-Q. ZHANG, Gorenstein log del Pezzo surfaces of rank one, J. Algebra. 118 (1988),
63-84. '

[10] D.-Q. ZHANG, On litaka surfaces, Osaka. J. Math. 24 (1987), 417-460.

[11] D.-Q. ZHANG, Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka. J.
Math. 25 (1988), 461-497.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE

OsAKA UNIVERSITY
TOYONAKA, OsAKA 560

JAPAN





