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Abstract. Necessary and sufficient conditions are obtained for all solutions of a
class of linear scalar neutral-integrodifferential equations to have at least one zero. An
application to an "equilibrium level-crossing" of a logistic integrodifferential equation
with infinite continuously distributed delay is briefly discussed.

Introduction. There has been increased activity recently in the investigation of

oscillatory nature of neutral delay differential equations. A prominent result obtained

in these investigations is that a necessary and sufficient condition for the oscillation of

all solutions of an autonomous neutral delay differential equation is that the associated

characteristic equation has no real roots; there is a growing literature on this aspect

(for example see [1], [5]-[9], [13]-[15]).

The purpose of this article is to derive a necessary and sufficient condition for all

solutions of neutral integrodifferential equations of the form

Jo

d
(1.1) — [x{t)-cx{t-τ)~]+a\ K(s)x(t-s)ds = O; ί>0

dt

to have at least one zero on (— oo, oo). Solutions of (1.1) which have at least one zero

on (— oo, oo) are said to have "zero crossings"; on the other hand if there is a solution

x of (1.1) such that either x(ή>0 on (— oo, oo) or x(ή<0 on (— oo, oo), then such a

solution is said to have no "zero crossings" (sometimes these solutions are said to stay

away from zero). For literature related to stability characteristics of neutral inte-

grodifferential equations we refer to Kolmanovskii and Nosov [12].

As an application of a special case of our result, we shall consider briefly

"equilibrium level-crossing" of the solutions of the logistic integrodifferential equation

(1.2) ^ = r A ^ i _ _ L j K(s)N(t

where

-s)ds]
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r,Ce(0, oo), K: [0, oo)h->[0;

Jo
K(s)ds=l .

The equation (1.2) will be supplemented with nonnegative initial values on (— oo,0]

such that N(0)>0. We will be particularly interested in the existence of points t* for

which N(t*) = C where C denotes the positive equilibrium of (1.2).

2. Zero crossings. We shall derive a necessary and sufficient condition for all

nontrivial solutions of (1.1) to have "zero crossings" (i.e. have at least one zero on

(—oo, oo)). Our condition is based on the nature of the roots of the characteristic

equation associated with (1.1) which is

(2.1)
Jo

K(s)e~λsds = 0.

The following result will be used in the proof of Theorem 2.2 below.

LEMMA 2.1. Suppose K: [0, oo)h-»[0, oo) and KφO on some subinterval of[0, oo);

let

ae(0, oo); ce[0, 1) τe[0, oo).

If (2.1) has no real roots, then there exists a positive number m such that

f* 00

(2.2) a\ K(s)eλsds>λ(\-ceλτ) + m; λeR.
Jo

PROOF. Define F as follows:

(2.3)

We note from (2.3),

= λ(l-ce-λτ) + a\ K(s)e~λsds.
J o

Λ 0

Jo

>infF(λ)>0.
λeR

= a\ K(s)ds>0
o

n „ F(λ) -> oo as λ -> oo

F(2) -> oo as Λ, -» — oo

,F(̂ ) =0 has no real roots

If infλeRF(λ) = 0, then there exists a sequence

AMe(— oo, oo), I λnI< oo such that F(λn) -• 0 as « -^ oo.

Since the sequence {Λ,n} is bounded, there exists a convergent subsequence, say {λnk},
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such that

(2.5) λnk -• λ* and F(λnk) -• 0 as nk -• oo .

Since F is continuous in A, it will follow that

(2.6) F(λJ^F(λ*) = 0 as Λjk -> oo

and hence λ* is a real root of F which is a contradiction. Thus there exists a positive
number m such that

(2.7) /;U) = λ(l-<*-*) + * I #(s)e~Λ s^>w, λeR•Γ
from which the result follows.

THEOREM 2.2. Le/ ae(0, oo); ce[0, 1); τe[0, oo) am/ /to/ ^ is eventually
nonincreasing. Suppose KψQ on some subinterval of [0, oo). Λ necessary and sufficient
condition for nontrίvial solutions of{\.\) to have zero crossings is that the characteristic
equation of (\A) has no real roots.

PROOF. The necessity of the condition is easily seen; for instance if F(λ) = 0 has
a real root say μe( — oo, oo), then (1.1) has a solution of the form

x(t) = Aeμt

9 Ae(-ao9 oo)

which has no zero crossings. Thus the necessity of the condition follows.
The sufficiency part of the condition is proved as follows: we shall assume that

(1.1) has a solution y which is strictly positive on (— oo, oo) and then show that this
will lead to a certain contradiction. The technique is similar to those used in the case
of neutral differential equations with finite delays.

Let y be a positive solution of (1.1) on (— oo, oo). Define a sequence {zn} as follows:

(2.8)

It can be verified that (2.8) and (1.1) imply

/• oo

z1(t)=-a\
Jo

K(s)zo(t-s)ds

and furthermore
/» oo

(2.9) z n { t ) = - a \ K ( s ) z n _ ι ( t - s ) d s , n = l , 2 , •••.

Since y is a positive solution of (1.1), we have from (1.1) that y(t) — cy(t — τ) is decreasing
at / increases. Thus if y{t) — cy(t — τ) becomes zero or negative for some t = t0, then for
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all / > t0 we will have y(t) — cy(t — τ) > 0; as a consequence there will exist a δ > 0 such that

y(t)-cy(t-τ)<-δ, for

and therefore for ce[Q, 1),

y{t)< -δ + cy(t-τ)< -

+ cny(t-nτ)
1-cJ

δ \ , . ft-l

,1-cJ \ τ

If / is large enough, then it will follow from ce [0, 1) and the above that

(2.10) y(t) < - ( ) for large enough t,

\\-cJ

which is impossible. Thus we conclude that

y(ή — cy(t-τ)>0 for ίe(— oo, oo)

and similarly all zn>0 for te(— oo, oo), « = 0, 1, 2, 3, . We note from
Λ OO

i π ( r ) = - α
Jo

(2.11) zn(t)=-a\ K(s)zn.1(t-s)ds

that

(2.12) i

We can choose positive numbers (since KψO on some interval of [0, oo)) α and β such

that

ί
β

K(s)ds>0.

We have from (2.12),

zn(t) + aί K(s)zn(t-s)ds<0.

Since zM is decreasing,

zn(t) + a\ K(s)zn(t-0L)ds<0;

and hence

zn(t) + a\
J a
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rβ
-α)<0, A = a\(2.13) in(ί) + v 4 z i l - α ) < 0 , A = a\ K(s)ds.

J«
Integrating both sides of the inequality in (2.13) on [/ — α/2, /],

zn(s-(x)ds<0
Λ'ί-α/2

leading to

which implies

(2.14) Ajzj

A similar integration of the inequality in (2.13) on [ί, ί + α/2] leads to

(2-15) Λ | ; ( «

From (2.14) and (2.15),

(2.16) zπ(ί-z n ( t * ) < z n ( t ) .

Consider now the set Λn of real numbers defined by

(2.17) Λn = {λ>Q\zn(t) + λzn(t)<0 eventually for />0} .

Clearly λ = 0eΛn and Λn is nonempty; also Λn is a subinterval of [0, oo). The strategy

of our proof is to show that the existence of a positive solution of (1.1) implies that

the set Λn has the following contradictory properties P1 and P2 (by now this strategy

seems to be a standard one);

x: the set Λn is bounded.

P2 : λ e Λn=>λ + meΛn where m is as in Lemma 2.1.

To establish Pl9 we have to show the existence of an upper bound of Λn. Integrating
both sides of

ijt) + a\ K(s)zn(t-s)ds = (

on [ί-α, t],

Jo
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zn(t)-zn(t-a) + a\ ( K(s)zn(u-s)ds )du = 0,(f
implying that

ifΓ Γf° f" Ί
a\ zn(s)K(u — s)ds+\ zn(s)K(u-s)ds \du<zn(t-<x).

Jί-αLJ-oo J 0 J
Therefore for all large enough />0,

Γ° r l 4
a zn(s)K(t — s)ds + zn(s)K(t — s)ds< — zn(t — α) < χ 2 zn(t),

J - QO J f) ^

which is the same as

f00 4
(2.18) a I zn(t — s)K(s)ds < zn(t) eventually .

Now we have from (2.11) and (2.18),

(2.19) 0 (ί) + a\
*" 0

which shows that 4/(^4α)2α does not belong to Λn. Thus the set Λn is bounded and hence

the property Px holds.

To derive P2, we define a sequence {0J as follows:

(2.20) φn(t) = eλ%(t), λeΛn.

It is immediate that

(2.21) φn(t) = eλtlzn(t) + λzn(t)li<0

showing that φn is nonincreasing. We have from (2.11), (2.20), (2.21) and Lemma 2.1

that

(2.22) zH ,+ iW=-«J
^ 0

= -fll K(s)e-λit-s)φn(t-s)ds + {λ + m)e-λtφ(t)-c(λ + m)e-λit-τ)φn(t-τ)
Jo

<e-λ'\ -a\ K{s)eλsφπ{t)ds + (λ + m)φn(ή-

<e~λtφn(t)\ -a\ K(s)eλsds + λ( 1 -ce λ τ) + m-mceλτ <0

L Jo J
and therefore λ + meΛn which establishes P2. Since Pγ and P2 together cannot hold
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for Λn, we have a contradiction. Thus (1.1) cannot have a positive solution on (— oo, oo);

since (1.1) is linear, in a similar way it cannot have a negative solution on ( — oo, oo).

This completes the proof.

COROLLARY 2.3. Assume that a, c, K, τ are as in Theorem 2.2. If

(2.23) a\ K(s)sds>-^- or (a + c)\ K(s)ds>—,
Jo e Jo e

then all nontrivial solutions 0/(1.1) have zero crossings.

PROOF. Suppose that (1.1) has a solution without zero-crossing on (— oo, oo); by

Theorem 2.2, the characteristic equation of (1.1) has a real root; that is

Λoo

= λ(\-ce-λτ) + a\ K(s)e-
λsds =

Jo
(2.24)

has a real root; since

(2.25) F(0)=a\ K(s)ds>0, F(λ)>0 for Λ>0

J 0

the real root has to be negative. Let λ= — μ, μ > 0 be such a root; then μ satisfies

(2.26) μ(l-ceμτ) = a\ K(s)eμsds,
Jo

which implies that

Λoo

, = «

Jo

leading to

f °° eμs

-ceμτ = a\ sK(s) — ds
Jo Vs

Γ
— c>ae\

Jo

(2.27) \-c>ae\ sK{s)ds;
Jo

but this contradicts the first of (2.23).

We also have from (2.26) that

K(s)eμsds > cμ + a \ K(s)eμsds
o

μ = μceμτ + a K(s)eμsds > cμ + a\
Jo Jc

I* oo Λ oo (* c

i K(s)eμsds + a K(s)eμsds = α(l + c)
Jo Jo Jo

> ca I K(s)eμsds + a | K(s)eμsds = α(l + c) \ K(s)eμsds

leading to
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f00

 eμs

)\ K(s)s —
Jo Vs

(2.28) 1 > a{\ + c)\ K(s)s — ds>a(l+c)e\ K(s)sds

and this contradicts the second of (2.23). Thus the conclusion of the corollary follows.

COROLLARY 2.4. Let a, c, K be as in Theorem 2.2; let H: [0, OO)M>[0, OO) be such

that

/• 00

c\ H(s)ds<\.

Then a necessary and sufficient condition for all solutions of

(2.29) — x(t)-c H{s)x(t-s)ds \ + a\ K(s)x(t-s)ds = 0

to have zero crossings is that the characteristic equation

(2.30) A Π - c ί H(s)e-λsds\ + a\ K(s)e-λsds =

has no real roots.

λsds\ + a\

PROOF. Details are exactly similar to those of Theorem 2.2 and hence are omitted.

COROLLARY 2.5. Assume that a, c, τ, X, H are as in Corollary 2.4. If

Γ00 l / Γ00 \
(2.31) a\ K(s)sds> — ί 1-c H(s)ds\,

then all nontrivial solutions of (2.29) have zero crossings.

PROOF. Details are similar to those of Corollary 2.3 and hence are omitted.

3. An application to level crossing. We shall now consider briefly the nonlinear

logistic integrodifferential equation

(3.1) ^ = rN(t)ll-^Γ K(s)N(t-s)ds^

where r, Ce(0, oo) and

) = φ(s)>0, S G ( - O ) , 0 ] ; φ(0)>0;
ΛOO

: [0, oo)h^[0, oo); K(s)ds=l

Λoo

) , o o ) ;
Jo

and derive sufficient conditions for all positive solutions of (3.1) to cross the positive

equilibrium level in the sense that there exists a t*e(— oo, oo) for which
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(3.3) N(t*)-C = 0;

solutions satisfying (3.3) can be called equilibrium crossing or "level-crossing" for short.

The integrodiίferential equation (3.1) represents a generalisation of the familiar delay

logistic equation

dt

with a finite discrete delay τ. The following result shows that if the linear variational

system corresponding to the positive equilibrium of (3.1) has zero crossings, then the

nonlinear system (3.1) has level crossings.

THEOREM 3.1. Let r,Cε (0, oo); suppose K is not identically zero on some subinterval

of [0, oo) and that K is eventually nonincreasing. If

ΛoO

(3.4) r K(s)eλsds >λ for λe (0, oo),
ΛoO

• K(s)eλsά

Jo

then all positive solutions of (3 A) have level crossings.

PROOF. First we note that every solution of (3.1)—(3.2) satisfies

(3.5) ΛΓ(ί)>0 for / > 0 .

We let

(3.6) ΛΓ(ί) = C[l+M(ί)]

in (3.1) and derive that u is governed by

(3.7) — + r[ l + u(ί)] I K(s)u(t- s)ds = 0 .
dt J o

It is easily seen from (3.5) and (3.6) that the problem of level crossing of TV about C is

equivalent to that of zero crossing of u where u satisfies (3.7).

As in Section 2, one can show the existence of a positive number m such that

(3.8) r\ K(s)eλsds>λ + m for λeR.rϊ K(s)eλsds>,
Jo

Now suppose that (3.7) has a solution without zero crossing; for instance let u(t)>0

for te(— oo, oo). It follows from (3.7) that u is decreasing on R and therefore

u(t)-+ L>0 as t-+ oo .

One can show that L = 0, since otherwise u can become negative eventually for large t,

contradicting the positivity of u on R.
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Similarly one can show that if (3.7) has a solution u such that u(t)<0 on

(—00, oo), then u will be nondecreasing (since 1 + w(ί)>0) on ( - oo, oo), implying that

and one can show that 1=0.

We now rewrite (3.7) in the form

(3.9)

as t-+oo

/• oo

I K(s)u(t-s)ds = (
Jodt

where

p(t) = r [ l + u ( ί ) ] > 0 on (—00,00)

and note

(3.10) p(ί) = r[ l+w(ί)]->r as t -• 00

whenever w denotes a solution of (3.9) without zero crossing.

Suppose (3.7) has a solution u satisfying w(ί)>0 on (—00, 00). Define a set Λu as

follows:

(3.11) Λu = {λ > 01 ύ(t) + Au(ί) < 0 eventually for all large ή .

It is easily seen that λ = 0eΛu and that Λu is a subinterval of [0, 00). The rest of the

proof is accomplished by showing that the set Λu has the contradictory properties Px

and P2 (as in the proof of Theorem 2.2):

Px\ Λu is bounded

P2: λeΛu^>λ + meΛu where m is as in (3.8).

The derivation of the properties Px and P2 are similar to that in the proof of

Theorem 2.2 and we shall be brief. In fact we omit the derivation of Px and proceed

with the derivation of P2. Define a φ as follows:

(3.12) φ(t) = eλtu(t)9 λeΛu.

We note from (3.12) and (3.11) that

(3.13) φ(t) = eλt[u{t) + λu(t)-] < 0 eventually

and so φ is nonincreasing eventually and φ is positive. We have from (3.9)

= -p(t)[

r
= -p(0

J 0

f
(3.14) w(ί) + μ + m)M(ί)= -p(t)\ K(s)u(t-

K(s)e ~ λ(t -s >φ(t - s)ds + {λ + m) e ~ λtφ{t)



INTEGRODIFFERENTIAL EQUATIONS 159

K(s)eλsφ(t-s)ds

<e~λtφ(ή -p(t) K(s)eλsds + (λ + m)\

< e ~ λtφ(t) - (lim inf p(ή K(s)eλsds + (λ + m)
L V '-«> / J o

| -λ(3.15) <^-Aί0(ί)| -λ K(s)e

showing that λ + meΛu and hence the validity of P2 follows. If (3.6) has a solution

u(t)<0 on (—oo, oo), then one can consider — u(t) and repeat the proof, since in this

case also p(t) = r[ l — u(t)~] -+r increasing monotonically as /-• oo. This completes the proof.

We remark that the condition (3.4) means that the characteristic equation

Λ QO

(3.16) z + H K(s)e-zsds = O

Jo
associated with the linear autonomous integrodifferential equation

(3.17) ^ + r | K(s)x(t-s)ds = O
dt J o

has no real roots; in other words we have shown that if all the solutions of (3.17) have

zero crossings, then all the positive solutions of (3.1) have level crossings.
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