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In Part I of this series, quoted hereafter as [Sa2], we gave an algebraic formulation
of the Siegel domain realization of symmetric domains and applied it to the determination
of “rational points” of symmetric domains with Q-structure. To be more precise, let g
be a (real) semisimple Lie algebra of hermitian type defined over Q, Q-simple and of
Q-rank r,. Let 2 be a symmetric domain associated with g, which (as a set)
may be identified with the set of Cartan involutions of g. A point of 2 is called rational
if the corresponding Cartan involution is defined over Q. We showed in [Sa2] (Th. 3)
that, if r,>0, then the determination of rational points is essentially reduced to that
for the ““last” (i.e., the ry-th) rational boundary components, which are always of classical
type. By virtue of the isomorphisms between classical groups, it is known that
all classical domains with r,=0 are realized as a domain of type (I) (see §1 of this
paper). The main purpose of this Part II is to give an actual determination of rational
points in the case of domains of type (I).

The semisimple Lie algebra g, or the associated symmetric domain 9, is called pure
if all R-simple factors of g are R-isomorphic to one another. It is called strictly pure if
all @-simple factors in the reductive part of the Q-parabolic subalgebras corresponding
to rational boundary components of 2 are pure. (Note that these two conditions are
actually equivalent except for the case where g is of type (D}").) The results in [Sa2] (Lem.
3, Th. 3) imply that, if 2 has rational points, then g is strictly pure. For the domains
of tube type the converse of this is also true except for the case of domains of type (I),
which is discussed in detail in this paper. A part of our results was obtained by K. Oiso
in his Master thesis. It is given here in a refined form with a different proof.

Sections 1 and 2 are mostly of preliminary nature. In §1 we give a list of pure
Q-simple classical Lie algebras of hermitian type and in §2 summarize some basic facts
on ‘“‘unitary involutions” (i.e., involutions of the second kind) and hermitian forms.
Then in §3 we explain a method to determine rational points of a domain 2 of type
(I,,)™ and give a necessary condition for the existence of rational points (Th. 4). The
necessary and sufficient conditions for the existence of rational points (with a given
CM-field) are given in §4 (Th. 5, 6, 7). Using these results, we discuss in §5 the rational
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points of classical domains in general. We also give in the concluding Remark a similar
determination in the case of the exceptional domains.

Rational points of symmetric domains are a special case of the “isolated fixed
points” (or “‘special points”, “CM-points”) in the sense of Shimura [Sh2, 3] (or Deligne
[D]) which play an essential role in the theory of canonical models. Naturally our result
has some relevance with the canonical model. Let G be a Q-simple algebraic group of
adjoint type with Lie G(R)=g and let 4 be a Hodge structure of g defining
the given complex structure of £2. Then, by a criterion of Deligne [D], it is easy to see
that the field of definition E(G, %) of the model M (G, #) (in the sense of [D]) reduces
to @ if and only if the domain 2 is of tube type and g is strictly pure. As mentioned
above, this is certainly the case for the symmetric domains of tube type with Q-rational
points.

NoTATION. We use the standard notation R, C, Q, Z, etc. For a positive real
number « we put \/ & =a'2>0and \/—a=.,/—1,/«. For a field F, F* denotes the
multiplicative group of non-zero elements of F; when F is a totally real number
field, Fi is the subgroup of F* consisting of totally positive elements. For a sub-
group H of F*, the multiplicative equivalence class of ae F* modulo H is denoted
as a (mod™ H). The multiplicative equivalence relation in F* is often denoted as
~ (see 2.1).

For a vector space V over F and a field extension F'/F, we write V. for V& pF’
viewed as a vector space over F'. When F'/F is finite, we set N(F'/F)= N, (F'*). The
symbol Ry stands for the functor of restricting the ground field from F’ to F.

For an algebra D over F, trp and Np (or simply tr and N) denote always the
reduced trace and norm of D over F. The algebra of all v x v matrices with entries in
D is denoted by M (D). When D has an involution p of the second kind (or a ‘“‘unitary
involution” as we call it), the subspace of M (D) consisting of hermitian
matrices with respect to p is denoted by Her (D, p). The diagonal matrix with diagonal
entries a,, - - -, a, is denoted by diag(a,, ‘- -, @,); especially, 1,=diag(l, ---, 1) is the
identity matrix of degree v. For 4e M (D), 'A stands for the transposed of 4. For a
(right) D-module V, the D-submodule generated by v;e V' (1 <i<m) is denoted by
{vy, **, U} p- The identity transformation of V is denoted by 1, or simply 1 or id.

In §4, for o, f € F*, we denote by (a, f)r the quaternion algebra D over F defined by

D={1,u,v,uv}p,

ul=uo, v2=4, u=—ou.

We also set D_={xeD|x= —x}, x+>X=tr(x)—x denoting the canonical involution
of D. The similarity relation (Brauer equivalence relation) between central simple
algebras over F is written as ~. Especially, D~ 1 means that D splits over F.

For an algebraic number field F, we fix an imbedding ¢, : F—C and consider F to
be contained in C. The complex conjugation of C is denoted by p,. When F is totally
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real number field (imbedded in R) and g is a real Lie algebra defined over F, we denote
by g(F) the Lie algebra over F consisting of F-rational points in g; then g=g(F)g. By an
abuse of notation, for any imbedding ¢: F>R, we set g°=g(F’)g and call it a
“conjugate” of g.

1. Classical symmetric domains.

1.1. The notation will be basically the same as in Part I ([Sa2]). Let g be a real
semisimple Lie algebra of hermitian type defined over Q, which we assume to be
non-compact, @Q-simple and of @-rank r, (>0). We write g in the form

(1.1) 9=RF/Q(Q1)=_(_'B1 a7,

where F is a totally real number field of degree m, o, (=id), - - -, g,, are distinct

imbeddings of F into R, and g, is an (absolutely) simple real Lie algebra of hermitian

type defined over F. In view of [Sa2], Lemma 3, we assume further that g is “pure”,

i.e., the following condition is satisfied:

(R1) All conjugates gi* (1 <i<m) of g; are R-isomorphic to g;. (In particular, we

have R-rank g'=R-rank g, =r;>0.)

The Lie algebra g is called of “classical” type if g, is obtained from a (simple
associative) algebra with involution, or equivalently from an e-hermitian form. Under
the assumption (R1), we know that there are the following seven cases.

(II3) (v even, >2) g¢,(F)=sp(v, F)=sp(4,, F), where A4, is a non-degenerate
alternating bilinear form on F”. One has r, =r,=v/2.

(II12)  (v>1) g,(F)=su(v, h, D/F), where D is a totally indefinite (central) division
quaternion algebra over F and % is a non-degenerate D-hermitian form on
D”. One has r;=v and ry=[v/2].

IV (v=5) g(F)=so(v, S,, F), where S, is a non-degenerate symmetric bilinear
form on F' with sign(S7)=(v—2, 2) (1<i<m). One has r; =2 and ry=1 or
2 for v=5, 6 and ro=2 for v>7.

(IVR_,) (v=3) g,(F)=su~(v, h, D/F), where D is a totally indefinite division quater-
nion algebra over F and 4 is a non-degenerate D-skewhermitian form on D”
such that g{'=~so(2v—2,2) (1<i<m). One hasr;=2and ry=0o0r 1 forv=3
and ro=1 for v>4.

A1) (v=3) g,(F)=su"(v, h, D/F), where D is a totally definite quaternion algebra
over F and A is a non-degenerate D-skewhermitian form on D®. One has
ry=[v/2] and ro=[v/2] or [v/2]—1.

(I,-IV®)  g,(F)=su"(v, h, D/F), where D is a quaternion algebra over F such that
(D%)g is division for 1 <i<m, and = M,(R) form, +1<i<mwith 1 <m, <
m and h is a non-degenerate D-skewhermitian form on D* such that
g7 =s0(6,2) for m;y+1<i<m. One has r;=2 and ro=1.

Iy (p=q=1,p+q=06v=2) g,(F)=su(v, h, D'/|F'[F), where F'/F is a CM-field, D’
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is a (central) division algebra over F’ of degree ¢ with a “unitary involu-
tion” p (i.e., involution of the second kind) relative to F'/F and k4 is a non-
degenerate (D’, p)-hermitian form on D’¥ such that g =su(p, q) for 1 <i<
m. One has ry=gq and r,<q/d (<v/2).

REMARK. In general, one has ry<r,/6'<v/2 for a certain positive integer o'
(=1, 2, 6 according to the case). A lower bound for r, is obtained from Theorems 1
and 2 below.

.1.2.  The following theorem is classical.

THEOREM 1. Among the Q-simple classical Lie algebras g of hermitian type listed
above, the “anisotropic” case (i.e., the case with ro=0) occurs only in the following cases:

), avey, WmY), (17) (v<2orq<d).

This follows essentially from the Hasse principle or “local global principle” for
isotropy (see, e.g., [Sc], p. 346-7, Bl). For (III{}}) (v>2) and (IV{Y,) (v>5), it is well
known that one has always r,>0. For (III?) (v>1), one has r,=0 if and only if v=1
([Sc], p. 352, Ex. 1.8, (iii)). For (IV$¥)_,) and (II{?) with v>4, one has r,>0 by [Sc],
Lem. 10.3.5 and Th. 10.4.1, (i) (Kneser); and the same is also true for (II,-1V{). For
(1¥)) with v>3 and ¢>4, one has r,>0 by [Sc], Th. 10.6.2 and p. 374, Rem. 6.3 and
6.4. Note that, when a place v is “‘non-decomposed” in F'/F (which is the case for all
real places), the localization 4, is “isotropic’ (in the sense of [Sc], p. 373), if and only
if the corresponding F,-hermitian form of dv variables has Witt index > (Lemma 1
below).

It is well known that for the anisotropic cases in Theorem 1 one has the following
isomorphisms:

(1.2) IM@)=19,)  (5=1or2),
(1.3) VP)=(19,)  (6=2o0r4),
(1.3) IP)=(19,)  (=2or4).

Thus all the classical anisotropic cases can be reduced to the unitary case (I{)).

2. Unitary involutions and hermitian forms.

2.1 In order to fix the notation and terminology, we recall briefly some basic
facts on hermitian forms pertinent to our considerations.

Let F'/F be a quadratic extension (in characteristic 0) with Gal(F'/F)={1, p,}. Let
D’ be a central division algebra over F’ of degree 9, i.e., dimyD’'=42, with a “unitary
involution” p with respect to F'/F, (i.e., p is an F'-semilinear, involutive antiauto-
morphism of D’). Let V be a right D'-module of rank v and, for aeD’, let p,
denote the right multiplication v—va (ve V). By a “(D, p)-hermitian form™ A on V,
we mean an F-bilinear map h: V x V— D’ satisfying the conditions
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2.1 h(v, v'o)=h(v, v")at ,
(2.2) h(v, v")=h(v', v)°

for all v,v'eV and ae D’. It is easy to see that & can be identified with an F-linear
map Vi— V* denoted also by h, satisfying the conditions

.1 hopy="tgooh,

2.2) Chlv), ") = Ch(v'), v)°

for all v, v’e V and a € D’, the identification being made by the relation
(2.3) trpp(h(v, v')) = Ch(v), v

where trp, . is (as always) the reduced trace.
Let A=End(V/D’) be the algebra of all D'-linear endomorphisms of V. Then 4 is
a central simple algebra over F’ and the F-linear map

2.9 pn: x—h™'%h  (xeA)
is a unitary involution of 4 with respect to F'/F. Clearly one has
(2.5) h(xPH(v), v") = h(v, xv") (xed,v,v'el).

One fixes a D’-basis (e;, - - -, e,) of V, which gives an isomorphism M: 4 5 M (D’).
One denotes by Her(D’, p) the space of p-hermitian matrices in M (D’); in particular,
Her,(D’, p) is the space of p-invariant elements in D’. The hermitian form # is repre-
sented by a p-hermitian matrix (h(e,, €))); <x.1<,- In what follows, we write M (h)=
(h(ey, e))eHer (D', p) and set det(h)= N(M(h)) (mod ™ N(F'/F)), where (the first) N de-
notes the reduced norm of M(D’) over F' and N(F'/F) stands for Ng. (F'™).
We always assume that /4 is ‘““non-degenerate”, i.e., det(h) #0; then det(h) is an element
of F*/N(F'/F). The (multiplicative) equivalence relation in F* (mod™ N(F'/F)) will be
written as ~.

2.2. Now let E'/E be another quadratic extension and D" a central division algebra
over E’ with a unitary involution p’ with respect to E’/E. Suppose there is given an
imbedding F’' c E’ such that F'n E=F; then D% =D’ ®E' is a central simple algebra
over E’ and the involution p can naturally be extended to an involution of D%., which
is again denoted by p. Suppose that one has an E’-isomorphism Mg : D = My (D").
Then, as is well known, there exists an invertible element 4 € Her;(D", p’) determined
uniquely modulo E* such that

(2.6) Mp(x?)=A"""Mp(xf'A  (xeD}).

Clearly x is p-invariant if and only if AMg(x)eHer;(D", p’). More generally, for any
positive integer v one has an E’-isomorphism Mg ®id,, : M(Dg)—> M 5(D") and for
xe M (D') one has xe Her (D', p) if and only if
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Mg(x)=(A® 1,)(Mg ® idy )(x) € Her,5(D", p’) .

For a (D', p)-hermitian form 4, we call M(M(h)) the “matrix expression” of A in D"
(determined by M, M. and A) and write h~ Mg(M(h)). Clearly one has

det(h) ~ N(A) ™ N(M z.(M (h))) in E*/N(E'|E).

2.3. Now we assume that F is an algebraic number field of finite degree. For a
place v of F, let F, denote the completion of Fatv. Then F},=F, ® ¢ F" is either isomorphic
to F,@® F, or a quadratic extension of F,; accordingly one says that v is “decomposed”
or “non-decomposed” in F'/F. One sets D,=D'® F,, V,=V®¢F,, ---,etc. Then V,
is a vector space over F, with a structure of free D,-module of rank v. Any
. (D', p)-hermitian form s on V can naturally be extended to a (D), p)-hermitian form
h,: V,xV,—»D,, called the “localization” of & at v. The localization A, is called
“isotropic” if there exists a D -basis (e, - - -, e}) of V, such that A(e’, ¢,)=0 (see [Sc],
p. 373).

It is well known (after Jacobson, cf. [Sc], Th. 10.2.2, (ii)) that, when v is non-
decomposed, one has an isomorphism M,: D!, S M4(F,), which gives a matrix ex-
pression of h in F.: M, (M(h)=A,M (e}, e}) € Hers,(F./F,). The following lemma
is easily proved.

LEMMA 1. The localization h, is “‘isotropic” if and only if v is decomposed in F'|F
and v=2 or v is non-decomposed in F'|F and the matrix expression of h in F, has Witt
index >4.

2.4. Now assume further that F'/F is a CM-extension with a given CM-type in
the sense of [Sa2], 1.2, i.e., Fis a totally real number field of degree m, F'/F is a totally
imaginary quadratic extension, and for each 1 <i<m one fixes an extension of 5;: F5 R
to an imbedding F’ g C, denoted again by o,. (We always assume that o, is the inclusion
map.) Then, for each real place v=g; of F, extended to a complex place of F’, one can
identify F, with C and D, with (D")¢=D'®p. ,, C. One fixes an isomorphism

M;: (D) ——> MyC);
then there exists an invertible element A; e Hery(C) such that
2.7 M(x7C'P7)= A7V M(x) A,  (xeD'™).

The involution p is called “totally positive” if all A; (1<i<m) can be taken to be
positive definite. (This condition is equivalent to saying that Rpe(p) is a “‘positive
involution” of Rp.,o(D’) in the sense of [W].) It is well known ([A], Ch. X) that, for
a CM-field F'/F, a central division algebra D’ over F' has a unitary involution with
respect to F'/F if and only if D' can be expressed as a cyclic algebra (Z’, o, a), where
Z'=ZF' with a cyclic extension Z of F of degree J not containing in F’, ¢ is a generator
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of Gal(Z'/F")~Gal(Z/F), and « is an element of F’ such that a! *?°e N(Z/F), p, denot-
ing the complex conjugation. Under this condition, the algebra D’ has always a
totally positive unitary involution with respect to F'/F. In what follows, we always
assume that the above condition is satisfied, p is totally positive and the A; (1 <i<m) are
taken to be positive definite. A (D', p)-hermitian form h, or a hermitian matrix
M(h)eHer (D', p), is called positive (resp., totally positive) if M,(M(h)) is [resp., all
MM (h))=(A4; ® 1, )(M; ®id)(M(h)*?)) (1 <i<m) are] positive definite. In notation, we
write h>0 or M(h)>0 (resp., >0 or M(h)>0). More generally we define
sign(h®)=(p;, ¢;) to be the signature of M(M(h)*). (Note that these notions are
independent of the choices of M, M; and A4; under the above assumptions.) Then one
has:

THEOREM 2. Let h be a non-degenerate (D', p)-hermitian form on V (= D") over a
CM-field F'. Then h is isotropic if and only if the following two conditions are satisfied:

(i) Min(p;, )= for 1<i<m,

(i) v=>3 or v=2 and det(h)~(—1)° (mod * N(F'/F)).

ProoF. First suppose that 4 is isotropic. Then clearly v>2 and the condition
(i) is satisfied. When v=2, A is necessarily hyperbolic, i.e.,

( 1>
10
in D’. Hence det(h)~(—1)’.

Conversely, suppose that the conditions (i), (ii) are satisfied. When v=2, one has
by the assumption p;=¢;=4 and det(h)~(—1)°. Hence the hermitian form /4 and the
hyperbolic form of 2 variables have the same invariants (determinant and signatures),

so that one has
h (0 1)
10

([Sc], Cor. 10.6.6). Next suppose that v>3. By the assumption, one has Min(p;, g;) > o
for all 1 <i<m. For a finite place v=p, which is non-decomposed in F'/F, let r, denote
the Witt index of the matrix expression of 4 in F) (defined by the imbedding
F'|F s F,/F,). Then by the theory of hermitian forms in p-adic fields one has

%((5v-l) if ov isodd,

1
(2.8) rp= 56v if ov iseven and det(h,)~—1,

1
5 ov—1 otherwise .
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In all cases, since v>3, one has r,>6. Hence by Lemma 1 the localizations h, are
isotropic everywhere and so /4 is globally isotropic ([Sc], Th. 10.6.2). q.ed.

3. Domains of type (I;"j,) with rational points.

3.1. Let F'=F(\/—_ﬂ) be a CM-field (with the “‘standard” CM-type determined
by / —B7 =/ —1(B")"/%, see [Sa2], 1.3), D’ a central division algebra over F’ of degree
6 with a totally positive unitary involution p with respect to F’/F, and h a non-degenerate
(D', p)-hermitian form on V'~ D" with év>2. The Lie algebra g, =su(v, h, D'/F'|F)g is
by definition a real Lie algebra defined over F such that

3.1 g1(F)={xe A=End(V/D')|tr  px) =0, x**= —x} .

Then g= Rg/o(g;) is a real semisimple Lie algebra of hermitian type with a Q-simple
QO-structure. g satisfies (R1) if and only if one has (p;, ¢;)=(p, q) or (g, p) (p=¢q) for
all 1 <i<m, in which case g is of type (I\?)) in the notation of 1.1. Replacing 4 by a
suitable scalar multiple uh with pe F* if necessary, we will henceforce assume that
pi=p,q;=q for all 1 <i<m. We will also assume that g is non-compact, i.e., ¢>0,
unless otherwise expressed.

Let 2=2(V/D’, h) be the symmetric domain associated with g, which we regard
as the set of Cartan involutions of g. Let € 2 and 6=(0,) with Cartan involutions 0,
of g{. Then 6 is ‘“‘rational” if and only if 8, is F-rational and one has 6;,=60¢ for all
1<i<m. It is classical (cf., e.g., [W]) that all F-rational Cartan involutions 6, of g,
are obtained in the form 6, = — p’|g,(F) with positive unitary involutions p’ of 4 such
that [p,, p'1=0. Such an involution p’ can be written as p’'=p, with a positive
(D', p)-hermitian form A’ on V, and 6 is a Cartan involution of g for all i if
and only if A’ can be taken to be totally positive. The hermitian form 4’ is then
uniquely determined modulo the multiplicative group of all totally positive elements
in F*, which we denote by F. It is easy to see that one has [p,, p,,]=0 if and only
if

(3.2) (h*h)* =21 with AeF™ .

This condition implies A~ 'h'h~*=1h’~!, whence one has Ae F. Clearly 4 is uniquely
determined by p’ modulo (F7})?. We denote by 22(V/D’, p, h) the set of all totally posi-
tive (D', p)-hermitian forms A’ on V satisfying (3.2). Then the correspondence 0+ A’

(mod F7) gives a bijective correspondence between the set of rational points in 2
and 2(V/D’, p, h)|F%.

LEMMA 2. Let h'eP(VID',p,h) and T=h"*h'. Then T is a D'-linear endo-
morphism of V having the following properties:

T?=J1 with AeFY and TP=T.

The last equation follows from the relation
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W(T?", v')=h(v, Tv')=h'(v, v')=h(To, v') .

Now let §=(67') be the Cartan involution corresponding to A'e Z(V/D’, p, h)
and f; the maximal compact subalgebra of g, corresponding to 6,. Then for xeg, one
has

(3.3) xeli ol x=xex"=—x<[T, x]=0.

[According to our convention, we denote the R-linear extension of p (resp. p, or p,)
to De=D'®y. C (resp. AC=A@, C) by the same letter.]
By Lemma 2, one has (\/ — B T)*"=—,/—BT. On the other hand, one has

trgaypa T =(p—q)A")?  (I1<i<m).

Hence, if p>g, one has \/ 2 € F* and / 1 %*=(A")"/?, which means \/ 1 € F}. In general,
one puts

(3.4) =7-""9/71,.
p+q

Then one has \/:73 T eg,(F), and from the above one seces that the centralizer of
(\/ —pBT') in g{ coincides with the maximal compact subalgebra £{". Hence, if one
puts

(35) HO=(H0,;')7 7((ﬁ} 1/2(\/7 T)aleqa'.

then H, is an *“H-element” of g and the matrix (M;® id,; )(H, ) is similar to

(4 p
d1ag<p+q\/ 11, p+q\/71 )
for all 1 <i<m. We will henceforth assume that the complex structure on 2 is compati-
ble with this H-element. Then the point 6 in & corresponding to H, is a rational
point with CM-field F”=F(\/TBI) endowed with the standard CM-type. The set of
all such rational points in & is denoted by @(F(\/?ﬂ—i)/F) (see [Sa], 1.3; 3.4).
Summing up, one has

THEOREM 3. Let 2=9(V|D’, h) be the symmetric domain associated with g. For

h’ eP(VID', p, h),let T=h"*h’ and T? = A1 with € F’; . Then, under the above assumption,

=(09), 0,= —py |q is a rational point in @ with CM-field F" = F(\/ BA) (endowed with

the standard CM-type) and, for a fixed AeF} + the map h'+—0 gives a bijective
correspondence between {h'e Z(V|D', p, h)|(h~*h")* =41} and D(F\| — BA)/F).

3.2. For AeF%, set E=F(\/ 1), E'=EF, and Dy =D’ ® E'. We distinguish
three cases:
1.  The case where 1e(F*)?, i.e., E=F.
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2. The case where A¢(F*)%. In this case, one has [E: F]=[E': F']=2.

2.1. The case where D} remains division.

2.2. The case where D% is not division.

A rational point 8 with CM-field F(\/T[M) will be called of the first, second, and
third type, according as A is in Case 1, 2.1, and 2.2.

REMARK. As mentioned in the Introduction, the notion of the rational points is
a special case of the ““isolated fixed points” in [Sh] and [M]. Actually, if one puts

Jo=((B") V(S —BTY) e M(Dy) ® o R= ® M,(DY);.
i=1

then j, satisfies the condition in [M], 1.4 and the symmetric domain 2 (with the
complex structure specified above) is identified with »#; in [M]. In the notation there,
C(jo) is the commutor of T in M (D’) and hence

m

Cjo)r=> @ (Mp(C) @ Mq(C)) .

Therefore P=C(j,) (the commutor of C(j,) in M (D")) coincides with the center of
C(jo) (which assures that j, is an “isolated fixed point”). One has

p {PI@PZ, P, ~P,~F in Casel,
P, =F(T)~FE' in Case?2.

In Case 2, E'/E is a CM-extension with Gal(E'/E)= {1, p,}. Let Gal(E'/F')={l, 1}.

We extend o;: F' s C to an imbedding E’ 5 C (denoted by the same letter) by setting

J 4 7=(2A")"? (o, being the inclusion map). Then {c;|E, to;|E (1 <i<m)} is the set of

distinct imbeddings of F into R and the standard CM-type of E'= E(\/—ﬁl) is given by

(3.6) =BT =/ = parei=/—1(BA)V? .

In Case 2.2, let Dy =~ M (D) with a central division algebra D' of degree 6, =6/d".
Then a simple right ideal of D% is of Dj-rank ¢’ and of D’-rank 2/6’. Since '’ > 1, one
has 6’=2 and 6, =9/2.

The following necessary condition for the existence of rational points was obtained
by K. Oiso by a different method (unpublished).

THEOREM 4. Suppose that the symmetric domain 2(V|D', h) has a rational point.
Then, in addition to (R1), the following condition (R2) is satisfied.
(R2) d|q or p=q.

PrROOF. By the assumption, 2(V/D’, p, h)# . Let h'e A(V/D’, p,h) and T=
h™'h’, T*=11 with Ae FX. Then by the observation in 3.1, one has p=g in Case 2.
Hence it is enough to show that in Case 1 one has d|q. In this case, one has \/ 4 € F*
(e F if p>¢q). Hence, for simplicity, replacing / by \/Th, we assume that A=1. Put
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Vi={veV|Tv=iv}.

Then V', are D’-submodules and one has a direct sum decomposition V=V, @ V_. It
is easy to see that the subspaces V', and V' _ are mutually orthogonal with respect to
h and h'. Let v, =rank, V, and let (e, - - -, e,) be an orthogonal D’-basis of V with
respect to A such that (e, - - -, e, ) is a D’-basis of V. Then one has a matrix expression
of hin D’ of the form

h~diag(a,, ---,a,,a, +1, ", a,)
and hence
h'~diag(a,, - -+, a,, —a,,+y, """, —a,).
Since A’ is totally positive, one should have a,»>0 (1<k<v,) and g, «0 (v; +1<k<v).
Thus one has
p=0vi,  q=0(v—v),
which proves our assertion. q.e.d.

COROLLARY. Suppose that 2 =(V|D', h) is not of tube type and has a last rational
boundary component of positive dimension (i.e., 2 is “of type (U2)”, see 5.1). Then 9
has no rational points.

PrROOF. Suppose that 2 has a rational point. Then by Theorem 4 and the
assumptions the last rational boundary component %, of 2 is of type (I{), ) with

Po>qo>0 and §|g,. It then follows that vo=(po+go)/d>3, which contradicts
Theorem 1. q.e.d.

3.3. Assuming the existence of rational points with CM-field F(,/— B4), we fur-
ther consider Case 2. In the above notation, let V=V ® E’ and, extending T to
an endomorphism of V. by linearity, put

Ve={veVy|To=%/iv}.
Then one has a direct sum decomposition
Ve=V,®V_, V_=V5,,

where the subspaces V', are Dg.-invariant and mutually orthogonal with respect to (the
natural extensions of) 4 and 4'.

In Case 2.1 where Dy, is division, let v, = Dg.-rank V', ; then one has v=2v,. Let
(e;, - -, e,,) be an orthogonal Di.-basis of V', with respect to /; then one has

(3.7) h|V, ~diag(a,, - -,a,), ae€Dg.
Clearly (ej, - - -, €},) is an orthogonal Dy.-basis of ¥_=V" and one has

hIV_ ~diag(ay, - - -, al).

Vi
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In the Dy-basis (e, -, e,,, e}, - - -, e},) of Vg one then has

V1o

h’:diag(ﬁal, ~~,\/7avl, —\/‘i‘a‘l, R —ﬁail).

Hence one has \/Tak »0 (1<k<v,) and p=¢g=94v,. It should be noted that one has
(3.8) det(h)~ 2> [] Ma)*'** in F*/N(F'/F).
i=1

In Case 2.2 where D} is not division, one has 2\6. The space V, viewed as a
(T, D')-module, can be endowed with a structure of (right) Dj.-module by setting
Tv-—-\/Tv for ve V. Since Dy -modules are completely reducible, the problem can be
reduced to the case where V is irreducible. Then, the space V, being isomorphic to a
simple right ideal of D, is of D’-rank one. Hence, let ¥'={e,}, and set Te, =e ¢, with
t,e D’. Then D}, contains matrix units e, (k, /=1, 2) such that

1 1
(3.9) 6’11=?(]+\/ A7), ‘322=7(1_\/ A7),

Let D', be the centralizer of {e,, (k, /=1, 2)} in D.. Then from the above D', is a central
division algebra of degree 6, =4/2 with unitary involution with respect to E’/E and one
has an E’-isomorphism Mg.: D = M,(D). Let p, be a totally positive involution of
D', with respect to E'/E. Then one has

(3.10) Mo(x?)= A" "'"Mp(x)"4  (xeD’)

with A4 € Her,(D}), which one assumes to be totally positive. Let (e, ¢;)=a,. Then
one has h'(e, e;)=h(ey, e;t;)=a,t, and so a,t, =(a,t,)’ =t4a,. It follows that

Mg{a)Mg(t))=Mp(t)Mg(a))= A~ "‘Mg(1,)" AM g(a,) .
Since
()

ME’(tl)_< 0 —\/7 s
setting Mp.(+)=AMpg(+), one has

_ A 0

[ME,(al), <\/— 4>] =0.
0 _\/,1

It follows that the expressions of 4 and A" in D’| are of the form

_ 10
(3.11) thEf(a1)=<“‘ )
0 aj

- Aa, 0
h':ME«alrl):(fO i /T )
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Hence one has \/}A,a,l >0 and ﬁa/{«O.

4. The necessary and sufficient conditions for the existence of rational points.
4.1.  We retain the notation and the assumptions in §3. First we consider Case 1.

THEOREM 5. The symmetric domain 9 =2(V|D', h) has a rational point of the first
type if and only if condition (R1) and the following condition (R2.1) are satisfied:
(R2.1) é|q.

Proor. The “only if” part was already shown in the proof of Theorem 4. By
virtue of the result in [Sa2], 3.4, for the proof of the “if” part one may assume that
ro=0, i.e., h is anisotropic. If 4 is definite (¢=0), then 2 reduces to a point, which
may be regarded as a rational point of the first type. (Note that in our case the
special CM-field mentioned in [Sa2], 3.4, 2° coincides with F(\/——B).) If 4 is aniso-
tropic but indefinite (¢>0), then by (R2.1) and Theorem 2 one has v=2, p=¢=4 and
det(h) £ (—1)°. Take any a, e Her,(D’, p) which is totally positive. By [Sc], Th. 10.6.9,
one can then find a, € Her,(D’, p) which is totally negative and satisfying the relation
N(ay)= N(a,)” 'det(h). Then h and the hermitian form represented by the matrix
diag(a,, a,) have the same invariants and hence are mutually equivalent ([Sc], Cor.
10.6.6). In other words, one has

. (al O)
0 a,

for some D’-basis of V. Then the hermitian form 4’ on V defined by

h/:<al 0 >
0 —a,
in the same basis belongs to 2(V/D’, p, h) and gives a rational point in & of the first

type. g.ed.
4.2. Next, suppose that 4 is in Case 2, i.e., A€ F, but ¢ (F*)>.

THEOREM 6. Assume that A is in Case 2.1. Then the symmetric domain 2=
DVID', h) has a rational point of the second type with CM-field F(\/—_ﬁ/l) if and only
if conditions (R1), (R2.1) and the following conditions (R2.2) and (R3) are satisfied:
(R2.2) p=q.

(R3)  (=1)*2det(h)e N(E/F)N(F'|F) .

REMARK. Note that under condition (R2.2) one has év/2=p and hence p=0 or
=0/2 (mod d). Note also that, if one sets

D(h)=(—B, (= 1)™*det(h))s ,
then condition (R3) is equivalent to saying that F" = F(,/ — BA) splits D(h) (see Example
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1 below).

ProOF. The “only if” part follows immediately from 3.3. To prove the “if” part,
we may (hence will) again assume that 4 is anisotropic (and v>0). Then, by the
assumptions, one has v=2, p=g=3§ and there exists ¢ € E* such that (— 1)’det(h) ~ &' **
in F*/N(F'[F). Here &'** is totally positive and ¢ may be replaced by &y with any
ne E* withn' **=1. Since the set {ne E|n' **=1} may be viewed as the set of F-rational
points on a quadratic curve C defined over F, C(F)=(Ry,oC)Q), which is dense in
(Rr/gC)(R), one can choose ¢ to be totally positive. (The author owes this argument
to Y. Morita.) By [Sc], Th. 10.6.9, one can then find «’ e Her (D%, p) which is to-
tally positive and satisfying N(a})~¢ in E*/N(E'/E). Take e} € V. with e #e’f. Then
(e', €7) is a Di.-basis of V.. Put a; =,/ A ~'a} and let 4, be a (D, p)-hermitian form
on V. with matrix expression

B~ <a1 0 >
0 aj

in the basis (e}, ey). Then one has A{ =h,, i.e., h; comes from a (D', p)-hermitian form
on V (which one denotes by the same letter 4,) by scalar extension. By the choice of
a,, one has

sign(h)=(9, o) =sign(h) (1<i<m)
and by (3.8)
det(h,)~AN(/ 2 ~tal) i~ (=18 ~ det(h)

in F*/N(F'[F). Hence, by [Sc], Cor. 10.6.6, h and h, are equivalent over D’. This im-
plies that there exists e} € V. such that e] #e* and

h:(al O>
0 aj

in the D%.-basis (e], e7%). Then the hermitian form 4’ on V defined by

h/2<a,1 O)
0 af

in the same basis belongs to 2(V, D', p, h) and gives a rational point in 2 of the sec-
ond type with CM-field F(,/ — BA).

ExampLE 1: (I)). Let §, Ae F; and F'=F(/—p), E=F(\/ 1) be as above and
take aeF}, ¢ N(F'/F). Let D'=F" and h=diag(l, —a)eHer,(F'/F). Then (p;, q;)=
(1, 1) (1<i<m), h is anisotropic (Th. 2), and D(h)=(a, — p)g. Clearly, D(h) is division
and totally indefinite. It is easy to see that one has an F-isomorphism

4.1) g,(F)=su(2, h, F'|F)~sl(1, D(h)),
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where sl(1, D(h))=D(h)_ ={ue D(h) | trpy,{u)=0}. ((4.1) gives the isomorphism (1.2)
with 6 =1.) Conditions (R1), (R2.1), (R2.2) are clearly satisfied, and we are in Case 2.1.
Condition (R3) is equivalent to saying that one has

(4.2) A=E*—ani+pn3)  with & ny,n,€eF,

or equivalently, — A e D(h)2 . Thus we see that the gg)gsponding domain 2 has rational
points of the second type with CM-field F" = F(,/ — B4) if and only if F" splits D(h).

4.3. 1In order to treat the third case, we need more preparation. Suppose there is
given a central division algebra D' of degree 5, =05/2 over E'=F'(,/ 1) such that one
has an E’-isomorphism D’z ~ M,(D"). Then, since D| ~ D'}, one has an E’-isomorphism
¢@: Dy 5 DY. For x; € D}, set x{7=¢~'x7. Then one has

4.3) W= o7 (x)= /1%, fy

for some f, € D", where one may (hence will) assume that f{¥= f,.
We fix an E’-isomorphism My.: Dy = M,(D'). Then one has

(4.4) M )= 'My()=C'M(-)C
with Ce GL,(D}). It is easy to see that
(4.4a) cc ___y(f 1 0 >

0 /i

with ye F'*. We also fix a totally positive involution p, of D' with respect to E'/E and
a totally positive element 4 in Her,(D’, p,) satisfying (3.10). Put p'?=[7]"'p,[];
then one has

(4.5) X8 =b 7 xb,
with b, in Her (D}, p,). It follows from (4.3) and (4.5) that
(4.5a) b= 51y
with f, e F'™.
LEMMA 3. One has
(4.6) ‘C”‘ACA‘“]=.5<b1 0)
0 b,

with ee E™.
ProOOF. For xe D%, one has x**=x". Hence, computing M%(x*")= M(x) in
two different ways by (3.10), (4.4) and (4.5), one has

Mg,](xpf):A—[f](bl O>_ltcmlME,(xr)th—ﬁ(bl 0>A[r] ,
0 b, 0 b,
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and
MBP(x*)=C 14" "M (x)* AC .
Hence one has
AC=s‘C“"'<b1 0)A[‘]
0 b,
with e¢e E'*, which proves (4.6). This relation implies that ¢?°=g¢, i.e., ee E*. q.e.d.

From (4.6), using (4.5a), one obtains B, =¢~ ' %! *?°, Taking the norm of both
sides of (4.4a), (4.5a) and (4.6), one has

(4.4b) N(C)'  =9°N,(f1)?,
(4.5b) (86/2N1(b1))1+r=(?é/2N1(f1))l+P° s
(4.6b) N(A)' T*N(C)! +Po=¢’Ny(b,)?,

where (and in what follows) N and N, denote the reduced norm of M,(D}) and D1,
respectively. By (4.4b) one has (N,(yf;)”'N(C))!**=1. Hence there exists neE'",
determined modulo F'*, such that
Ni(pf1)"'N(C)=n"'"".
Then by (4.5b) and (4.6b) one sees that
4.7 w=N(A)N,(eb,)) " nt*reeF* .
The proof of the following lemma is straightforward.

LEMMA 4. The class of w modulo N(E/F)- N(F'/F) is independent of the choices of
D%, ¢, f1, P1, Mg, A, by and C, and is uniquely determined only by D', p and E'.

We call w a correcting factor for (p, E'/F"). (In Case 2.1, one may consider that
w=1.)

4.4. For an actual computation, it will be convenient to take D, and M. in the
following manner. Let W={e,}, be an irreducible D -module. Then for é€ E’ one
has &e, =e,i(&) with an (F'-linear) imbedding i: E’ g D". One can then construct matrix
units e, (k, /=1, 2) in D} satisfying (3.9) with ¢, =i(\/7). Setting D} =e,;Dy.e,,, One
has an E’-isomorphism My : Dy = M,(D)) defined as follows: for xe D% one has
Mg(x)=(x;;) with x;;€ D if and only if

X=Xy +X12€12F€3;X51F€31X32€5 .

Since e%,=e,,, one has Df=e,,Dpe,,, and the map ¢: x,+e,;x,€,, gives an
E’-isomorphism D 5 Df. One has

[z] _ -1t __ T '
X1 =@ X1=€13,X1€63, (x,€DY).
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Also from e}, =e,, one obtains
ey =c.e t,= !
21=€1€12, €12=6€31C,

with ¢, € D, c'=c,. Hence one has (4.4) with

(4.4c) c=<0 cl>=Cm,
10

Then by (4.4a) one has ¢, =7/, and hence N(C)=(=1)2N,(yf,). It follows that one
can choose 1 to be =(,/ 4)%* and hence

(4.7a) w=N(A)N,(eb,)" 1472 .

LEMMA 5. Suppose D, Mg and w are chosen as above. Let xeHer,(D’, p) and

suppose that
- 10
ME:(X)=<X1 ”>
0 xi

with x|, x{eHer,(D", p,). Then one has x| =¢eb,x'[! and
(4.8) N(x)=w 292N, (x)'*".
ProOOF. By (4.4) and (4.6) one has

/[1] 0 N -
<x : >= M () =(A¥C~ A~ YN . (x)C

0 x7H
=s_1<b1 0>“lcm(x’1 0>C=<£_lbf1x’{ 0 )
0 b, 0 xj 0 e by ixhe,)’
1

whence one has x| =¢b,x . It follows from (4.7a) that
N(x)=N(A)"'Ny(eb )N (x)' T T=0 127N (x))' 77,
which proves (4.8). q.ed.

ExaMpPLE 2. The notation being as above, suppose further that the condition
19 =t, is satisfied. Then one obtains

efi=e; (i=1,2),
P P — -1
e5,=de,,, ef,=ey,d;

with d, € D'y, d§ =d,. Tt follows that D’f = D', so that one can set p, =p|D’. Then one

<1 >‘
0 dl



418 1. SATAKE

By (4.6) one obtains

dy=cfle;d ¥ =eb,
and hence N(4)= N,(d,)= N,(eb,). Therefore by (4.7a) one has
(4.7b) 0= ~(—1)"? (mod ™ N(E/F)) .

For instance, suppose that D’ is given in the form of a cyclic algebra D'=
(Z'|F',0,y"), Z'=ZF' with a totally real Z. Then there exists an injection i1: Z'— D’
and ue D’ such that

6-1

(4.9) D'=Y (Z)W, u 'Ou=1E), u=y.

i=0
One can define a (totaly positive) unitary involution p with respect to F'/F by
setting

(4.10) EP=1uéP°) and uw’=1o)u ',

where « is a (totally positive) element of Z satisfying the condition N p(e) = Ng (y’)
(see the assumptions in 2.4). Since §=24,, there is a unique totally real quadratic
subextension E/F of Z/F. If E=F(,/ A) and p are given in this manner, then ¢, =1(,/ 1)
satisfies the condition ¢4 =t¢,.

4.5. We retain the assumptions and the notation in 4.3. We obtain the follow-
ing
THEOREM 7. Assume that A is in Case 2.2. Then the symmetric domain 9 =2(V|D’, h)

has a rational point of the third type with CM-field F(\/ — BA) if and only if conditions
(R1), (R2.2) and the following condition (R3') are satisfied .

(R3) (—1)>"2w* det(h)e N(E/F): N(F'|F),
where w is the correcting factor for (p, E'|F").

REMARK. Note that the class of w” det(#) is determined only by the involution p,
and E'. Note also that, as in the case of Theorem 6, condition (R3’) is equivalent to
saying that F” = F(,/— BA) splits the quaternion algebra similar to D(h) @ (—f, @)}

ProOOF. The “‘only if” part follows from 3.3, Case 2.2 and Lemma 5. To prove
the “if”’ part, suppose that conditions (R1), (R2.2) and (R3’) are satisfied. Without any
loss of generality, we may further assume that 4 is anisotropic; then by Theorem 2 we
have v=1 or 2. We give a proof only in the first case, since the proof in the second
case is similar.

We choose D', Mg, and w as explained in 4.4. In the case v=1, one has p=¢g=46/2
by (R2.2). By (R3') there exists £ e E™ such that

(— 1Y’ Pwdet(h)~ &' T (mod*N(F'|F)).
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Then one has £¢2E'**>0. As in the proof of Theorem 6 one may assume that &% >0

for all 1<i<m. Then by [Sc], Th. 10.6.9, one can find a’eHer,(D, p,) such that
Ny(@)=(/A)"**¢and a"**>0, ¢"a™" <0 for | <i<m.Puta”=eb,a" and find xe D
such that Mp(x)=diag(a’,a"”). Then it is easy to check that x*=x°=x, ie.,
xeHer,(D’, p). Moreover, one has sign(x°)=(J/2, 6/2) and by Lemma 5

Nx) = 122N, (@) i =(—1)Pp " 1E1 e,

Let V={e,}p and let 4, be a (D', p)-hermitian form on ¥ with A,(e,, e;)=x. Then by
[Sc], Cor. 10.6.6, h and h, are equivalent over D’. This means that there exists e, € V
such that A(e’, e})=x. Then the (D’, p)-hermitian form 4’ defined by h'(e, e)=xt,
with 1, =i(\/7) belongs to Z(V, D', p, h) and gives a rational point in 2 of the third
type with CM-field F(,/— BA). q.e.d.

4.6. We consider here a special case where 6, is odd. In this case, one has
4.11) D'=Dy®p DY, Dy ~D , te~1,

where Dy, and D', are central division algebras over F’ of degree J, and 2, respectively.
We follow the notation of 4.4 and, in doing so, choose ¢;; in D .. Then one has ¢, e F',
i.e., one may set ¢, =y, f; =e;,. This implies that [t]*=1, i.e., {1, ¢} is a 1-cocycle,
which defines an F'-form of D. (It is easy to see that, conversely, if f; can be taken
to bé =1, then o, is odd.) One denotes by  the E’-isomorphism D', S D defined
by Y(x,)=Xxo<>x; =Xxo® e,1(x,€ D'}, xo€ Dyg). Then one has

(4.12) Y(x)=x;+o(x,), l//(x[f])=l!f(x1)‘ (x,€DY).

The F’-form of D'| mentioned above is given by Dy ®ey,.

By [A], Ch. X, the algebras D; (i=0, 2) have a totally positive unitary involution p;
(i=0,2) with respect to F'/F. One defines the involution p, of D’ by setting
X8 =y " (W(x,)?) for x,eD’,. Then by (4.12) one has p!?=p,. Hence one may set
b,=e,.

On the other hand, let x,+— X, denote the canonical involution of the quaternion
algebra D’. Then the map xzr—>i’2’3, being a semilinear involutive automorphism of D’,
defines an F-form D,(p%) of D’:

(4.13) Dy(py)={x,eD}| %5 =x,} .
From D,(p%)g=D%g ~ 1, one can conclude that
D,(p3)~D, ®F D5,

where D, and D are central quaternion algebras over F such that Dz~ 1 and D5z ~ 1.
Then one has D% =D,(p%)r =~ D,p, which means that D, is also an F-form of D’,. We
regard D, as contained in D’ and denote by p, the (not totally positive) unitary
involution of D', such that D, = D,(p,). Since D, ~ 1, one may choose ¢;; in D,;. Then
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one has ye F and
Dy=(4,9)r -
For x=x,® x, (xg€ Dy, x,€ D)%) let
X =a"1(x8Q x5%a
with ae D’, a® = —a. Then by the definitions one has
My(xg ®x5) =y~ (xof'-J " Mg xs°)

with

Hence one has
Mg(x?)=A"""Mg(x)y' 4

with A =JMg(a)e Her,(D1, p,). Since p is totally positive, one can choose a so that 4
is totally positive. From a*=a one has A'=JC~ ! AC. Hence it follows from Lemma
3 and (4.4c) that e= —y (and b, =e,,). Therefore by (4.7a) one obtains

4.7¢) w=N(a)N,(eb,) " 'A2%* ~yN(a) (mod* N(E/F)).

In Example 3 below, we need the following lemma, which we state in a little more
general situation.

LEMMA 6. Let p, and p’, be unitary involutions of D', with respect to F'|F and let

xP2=a;'x"%a,  for xeD)
with a,e D, a%*= —a,. Then one has
(4.14) Dy(p%)~Dy(p2) ®p(— B, — Ny(ar))r

N, denoting the reduced norm of D).

COROLLARY. A unitary involution p’, is totally positive if and only if D,(p*) is totally
definite.

This follows from Lemma 6 by taking p, as specified above.

PROOF OF LEMMA 6. One writes a, and x€ D’ in the form
a, =oc2\/—_B+u' with o,eF, u' € D,(p,)_,
x=x’+\/——ﬂ—x” with x', x"eD,(p,).

Then an easy computation shows that one has
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[, x']=2a,Bx"

1N "1

XP2=x<wxa,=a,x<=
u'x"+x"u'=0.

When u’ =0, the assertion of the lemma is trivial. Hence, assuming ' #0, one sets

1"

Dz(P2)={1, u',u”, u'u }F=(7/’ ?")r

with u’2=y’, u"?>=v" and u'u”= —u"u’. Then one has
Dy(p%)={1, u', 0, u" +/ —Bu'n”, oy pu'u" +y'\/ —Bu"}p =", (@3B +7")BY")r -
Since — N,(a,)f=(a2B+7y)B is in N(F(\/ —By’)), one has

Do)~ Y )k ®p(—B, —Naa))r »

which proves our assertion. g.e.d.

ExampLe 3: (I¥)). The notation being as above, consider the case J,=1, i.e.,
D’'=D’, and v=1. Let h~(a,) with a8 =a,, (p;, g)=(1, 1) (1 <i<m). Then one has

g,(F)=su(l, h, D'|F |[F)={xeD'|x""=%= —x},
where x**=a; 'x?a, =(aa,)” 'x"2aa,. Thus one has

(4.15) 8:1(F)=D(p,) - =sl(1, D(py)) ,
(which gives the isomorphism (1.2) with 6=2). By Lemma 6 one has

D(py)~ D(p;) ®(— B, — Nl(aa,))r ,

which (or (4.15)) shows that D(p,) is totally indefinite. Since D(p,)=(4, ), it follows
from (4.7¢) that

D(pp)p~(— B, @) ® p Db}y .

Thus, in this case, condition (R3’) is equivalent to saying that F” splits D(p,).

5. Classification.

5.1. In general, let £ be a Q-irreducible symmetric domain of Q-rank r, satisfying
the condition (R1). Such a domain 2 is classified into the following four types ([Sa2],
3.4):

(T1) The case where 2 is of tube type and the “last” (i.e., the r,-th) rational

boundary components reduce to a point.

(T2) The case where 2 is of tube type and the last rational boundary components

are of positive dimension.

(Ul) The case where 2 is not of tube type and the last rational boundary

components reduce to a point.

(U2) The case where 2 is not of tube type and the last rational boundary
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components are of positive dimension.
For the domains of classical type listed in 1.1 we obtain the following classification:
(T1):  (AI14)), (1) (v even, =2, ro=v/2), (IV{),) (v=5, ro=1, 2),
(IT?) (v even, >4, ro=v/2), (1Y) (ro=p/6=v/2>1).
(T2): (IIP) (vodd, =1, ro=(v—1)/2), AVZ_,) (v=3, r,=0, 1),
(I1?) (v even, >4, ro=v/2—1), (1,-IV®) (r,=1),
APy (plé=v/2, ro=[(v—1)/2]20).
(U1): (II?) (v odd, =3, ro=(v—1)/2), (IY) (p>g=1, ro=4/56<v/2).
(U2): (AI?) (v odd, >3, ro=(v—3)/2), (I“”) (p>q=1, ro<q/o<v/2).

5.2. Let %, be a last rational boundary component of & and let ) = Ryo(a%), ;)
(with g} | defined over F) be the semisimple hermitian part of the reductive quotient
~ of the parabolic subalgebra corresponding to %,. (In the notation of [Sa2], g% is
Q-isomorphic to g{'" for ke #;,.) g4 is the Lie algebra of the semisimple Q-group
acting on %,. For the domam of type (T1), g¥ reduces to {1}. For the domain of
type (U1), g% is of type (I ;) with v, > 1. As was shown in [Sa2], the domain D of type
(T1) has rational points with any CM-field and CM-type and the one of type (Ul) has
rational points with a particular CM-field and CM-type. The domain of type (U2) has no
rational points (by 1.2 and Cor. to Th. 4).

As for the domain of type (T2) we have the following three cases.

(a) (II?) (v odd, > 1), AVY_,) (v>3, ro=1).

(b) (I1?) (v even, >4, ro=v/2—1), (1,-IV®) (ro=1).

L@ (V) (ro=0) (=(15%) (6=2, 4)), 1Y) (p=0V/2, ro=[(v—1)/2]).

In the case (a), #, is of type (III{?), and one has

(5.1 85(Q)=g%), (F)=sl(1, D)={xeD|trpx=0}

with “the” given totally indefinite division quaternion algebra D over F. Hence the
domain 9 has rational points with any CM-field which splits D.

In the case (b), #, is again of type (III,), but the Lie algebra g has compact
factors. In fact, g3 has 2m or 3m simple factors (over R), but has only m non-compact
simple factors. To be more precise, let h=diag(a,, " -,a,), a?=o;eF, and
A=(—1)"det(h)=]];_, . Then the action of the Galois group Gal(Q/F) on the root
diagram of g% ; is non-trivial (i.e., the arrow prevails in Figure 1) if and only if one
has 441 (mod*(F*)?).

When 4~ 1, g$) has two Q-simple factors corresponding to the “last™ two vertices
of the root diagram of ¢! ;; they are given (in Q-rational points) by sl(1, D;) (i=1, 2),

(over F)

FIGURE 1
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o—o<; or 0—O<.© (1<i<my)
o] —
(m+1<i<m)

(over F°) (over R)

FIGURE 2

where D;’s are (central division) quaternion algebras over F such that D, ® D, ~ D.
(The numeration of the vertices of the root diagram is as shown in Figure 1.) When
A4+41, g§) has instead a Q-simple factor given by R, 2,811, DY), where D' is a
(central division) quaternion algebra over F(\/—A—). This Q-simple factor is not pure,
having m compact and m non-compact simple factors (over R). For (II¥) and (I11,-1V )
(ro=1), one has one more Q-simple factor corresponding to the ““first” vertex of the
root diagram of g ,, which is given by sl(1, D). For (II{) this Q-simple factor is
compact. But for (II,-IV ) it is not pure, having m, compact and m —m, non-compact
simple factors (over R). [The relation of the root diagrams for (II,-IV{?) over F
(1 <i<m) and over R is shown in Figure 2.] Thus one sees that, except for the special
case (I1'?) (ro=v/2—1) with A~1 for which one of the D;’s, say D,, is totally definite
(hence the other, D,, is totally indefinite), (all) the non-compact Q-simple factor(s) of
g4} is (are) not pure, and hence the domain @ has no rational points. In that special
case, where D, is totally indefinite, g) has, along with one or two compact Q-simple
factor(s), a pure non-compact Q-simple factor, which is of type (III{¥); hence 2 has
rational points with CM-fields which split D,. In particular, the case (II?) with D,
totally definite reduces to the case (a), (IV{).

In the case (c), according as p=0 or 6/2 (mod d), F, is of type (I¥}) (v=2) or
(I$% 52) (v=1). In the first case, the domain 9 has rational points of the first and second
type (Th. 5 and 6). In particular, the case (I{!)) reduces to the case (a), (II1{*) (Example
1). In the second case, the domain 9 has no rational points of the first and second type,
but has rational points of the third type with CM-field F(/—BA) for which condition
(R3) is satisfied (Th. 7). In particular, the case (I{*}) reduces to the case (a), (III{)
(Example 3).

ReMARK. For the domains of exceptional type, satisfying (R1), we have the
following possibilities for g;. We use the notation in the list of Tits [T].

(T1) (E3%) (ro=3).

(T2) (D3, (°D3.y) (ro=1), (E3}) (ro=2).

(UD) (Esy) (ro=2).

(U2) CEGY) (ro=D).
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The fact that these are the only possibilities in the list of Tits follows from a kind
of Hasse principle given by Harder ([H], Satz 4.3.3). Among the domains of type (T2),
the domain 2 corresponding to (E3%,) has the last rational boundary component %
of type (II1{?) (as in the above case (a)). Hence 2 has rational points. For the one
corresponding to (*D} ;) or (°Dj ;) the Lie algebra g} is Q-simple but not pure, having
2m compact and m non-compact factors (similarly to the case (b) above). Hence & has
no rational points.
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