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In Part I of this series, quoted hereafter as [Sa2], we gave an algebraic formulation
of the Siegel domain realization of symmetric domains and applied it to the determination
of "rational points" of symmetric domains with β-structure. To be more precise, let g
be a (real) semisimple Lie algebra of hermitian type defined over Q, β-simple and of
(λrank r0. Let 3) be a symmetric domain associated with g, which (as a set)
may be identified with the set of Cartan involutions of g. A point of 3) is called rational
if the corresponding Cartan involution is defined over Q. We showed in [Sa2] (Th. 3)
that, if r0 > 0, then the determination of rational points is essentially reduced to that
for the "last" (i.e., the ro-th) rational boundary components, which are always of classical
type. By virtue of the isomorphisms between classical groups, it is known that
all classical domains with r0 = 0 are realized as a domain of type (I) (see § 1 of this
paper). The main purpose of this Part II is to give an actual determination of rational
points in the case of domains of type (I).

The semisimple Lie algebra g, or the associated symmetric domain 3, is called pure
if all /^-simple factors of g are /?-isomorphic to one another. It is called strictly pure if
all (J-simple factors in the reductive part of the β-parabolic subalgebras corresponding
to rational boundary components of 3f are pure. (Note that these two conditions are
actually equivalent except for the case where g is of type (D™).) The results in [Sa2] (Lem.
3, Th. 3) imply that, if 3 has rational points, then g is strictly pure. For the domains
of tube type the converse of this is also true except for the case of domains of type (I),
which is discussed in detail in this paper. A part of our results was obtained by K. Oiso
in his Master thesis. It is given here in a refined form with a different proof.

Sections 1 and 2 are mostly of preliminary nature. In § 1 we give a list of pure
β-simple classical Lie algebras of hermitian type and in §2 summarize some basic facts
on "unitary involutions" (i.e., involutions of the second kind) and hermitian forms.
Then in §3 we explain a method to determine rational points of a domain 3) of type
(lPfq)m and give a necessary condition for the existence of rational points (Th. 4). The
necessary and sufficient conditions for the existence of rational points (with a given
CM-field) are given in §4 (Th. 5, 6, 7). Using these results, we discuss in §5 the rational
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points of classical domains in general. We also give in the concluding Remark a similar

determination in the case of the exceptional domains.

Rational points of symmetric domains are a special case of the "isolated fixed

points" (or "special points", "CM-points") in the sense of Shimura [Sh2, 3] (or Deligne

[D]) which play an essential role in the theory of canonical models. Naturally our result

has some relevance with the canonical model. Let G be a ζλ-simple algebraic group of

adjoint type with LieG(/?) = g and let A be a Hodge structure of g defining

the given complex structure of <£). Then, by a criterion of Deligne [D], it is easy to see

that the field of definition E(G, £) of the model MC(G, £) (in the sense of [D]) reduces

to Q if and only if the domain Q) is of tube type and g is strictly pure. As mentioned

above, this is certainly the case for the symmetric domains of tube type with (^-rational

points.

NOTATION. We use the standard notation /?, C, Q, Z, etc. For a positive real

number a we put J α = α 1 / 2 > 0 and ^J — a = ̂ J —\ yj OL . For a field F, Fx denotes the

multiplicative group of non-zero elements of F; when F is a totally real number

field, Fl is the subgroup of F* consisting of totally positive elements. For a sub-

group H of F x , the multiplicative equivalence class of aeFx modulo// is denoted

as a (mod x //). The multiplicative equivalence relation in F x is often denoted as

- (see 2.1).

For a vector space V over F and a field extension F'/F, we write VF, for V®FF'

viewed as a vector space over F. When F'/F is finite, we set N(F'/F) = NFΊF(F'X). The

symbol RFΊF stands for the functor of restricting the ground field from F' to F.

For an algebra D over F, trD / F and ND/F (or simply tr and N) denote always the

reduced trace and norm of D over F. The algebra of all v x v matrices with entries in

D is denoted by MV(D). When D has an involution p of the second kind (or a "unitary

involution" as we call it), the subspace of MV(D) consisting of hermitian

matrices with respect to p is denoted by Herv(Z), p). The diagonal matrix with diagonal

entries au \ av is denoted by diag(α1? , av); especially, l v = diag(l, , 1) is the

identity matrix of degree v. For AeMv(D), XΛ stands for the transposed of A. For a

(right) D-module V9 the /)-submodule generated by v^eV (\<i<m) is denoted by

{ϋi» ' ' '> vm}D The identity transformation of F i s denoted by \v or simply 1 or id.

In §4, for α, β e Fx, we denote by (α, β)F the quaternion algebra D over F defined by

D = {\, u, v, uv}F ,

w2 = α, v2 = β, uv=—υu.

We also set Z)_ ={XGD\X= — x}, x\->x = tr(x) — x denoting the canonical involution

of D. The similarity relation (Brauer equivalence relation) between central simple

algebras over F is written as ~ . Especially, D ~ 1 means that D splits over F.

For an algebraic number field F, we fix an imbedding σ t : F->C and consider F to

be contained in C. The complex conjugation of C is denoted by p0. When F is totally
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real number field (imbedded in R) and g is a real Lie algebra defined over F, we denote

by g(F) the Lie algebra over F consisting of F-rational points in g; then g = g(F)R. By an

abuse of notation, for any imbedding σ: F-+R, we set Qσ = $(Fσ)R and call it a

"conjugate" of g.

1. Classical symmetric domains.

1.1. The notation will be basically the same as in Part I ([Sa2]). Let g be a real

semisimple Lie algebra of hermitian type defined over Q, which we assume to be

non-compact, (^-simple and of β-rank r0 (>0). We write g in the form

m

\ l Λ ) Q = KF/Q\QI)= \& Qi •>
i= 1

where F is a totally real number field of degree m, σ1 ( = id), , σm are distinct

imbeddings of F into R, and gx is an (absolutely) simple real Lie algebra of hermitian

type defined over F. In view of [Sa2], Lemma 3, we assume further that g is "pure",

i.e., the following condition is satisfied:

(Rl) All conjugates g^ (\<ί<m) of g1 are /?-isomorphic to g2. (In particular, we

have /?-rank Qσ

1

i = /?-rank qλ = rx >0.)

The Lie algebra g is called of "classical" type if gx is obtained from a (simple

associative) algebra with involution, or equivalently from an ε-hermitian form. Under

the assumption (Rl), we know that there are the following seven cases.

(III(

v/2) (v even, >2) gi(F) = sp(v, F) = sp(A1, F), where Λγ is a non-degenerate

alternating bilinear form on F v . One has r 1 = r 0 = v/2.

(ΠI(

V

2)) (v> 1) gx(F) = $u(v, A, D/F), where D is a totally indefinite (central) division

quaternion algebra over F and A is a non-degenerate Z>-hermitian form on

D\ One has rt=v and ro = [v/2],

(IV(

vy2) ( v > 5 ) g1(F) = so(v, Sl9 F), where Sx is a non-degenerate symmetric bilinear

form on F v with sign(S'ίί) = (v-2, 2) (\<i<m). One has r1 = 2 and r o = 1 or

2 for v = 5, 6 and ro = 2 for v>7.

(IV(

2

2

V

)_2) (v>3) 9i(iO = su"(v, A, D/F), where D is a totally indefinite division quater-

nion algebra over Fand A is a non-degenerate D-skewhermitian form on D v

such that gi i^5θ(2v —2, 2)(1 <i<m). One has rγ=2 and ro = 0 or 1 for v = 3

and r 0 = 1 for v > 4.

(II^2)) (v>3) g1(F) = su"(v, A, D/F), where D is a totally definite quaternion algebra

over F and A is a non-degenerate Z>-skewhermitian form on Dv. One has

rx = [v/2] and r 0 = [v/2] or [v/2] - 1.

(II4-IV(

6

2)) g1(F) = su~(v, A, D/F), where D is a quaternion algebra over F such that

(Dσί)R is division for 1 <ί<m1 and =M2(R) for rax + 1 <i<m with 1 < w t <

m and A is a non-degenerate Z)-skewhermitian form on D 4 such that

gi ι = so(6, 2) for rat + 1 <i<m. One has rx = 2 and ro= 1.

(TP,U (/?>^>l,/^ + ̂  = 5v>2) g t(F) = 6u(v, A, D'/F'/F), where F'/F is a CM-field, D'
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is a (central) division algebra over F of degree δ with a "unitary involu-

tion" p (i.e., involution of the second kind) relative to F'/F and h is a non-

degenerate (D\ p)-hermitian form on D'v such that g^^suί/?, q) for 1 </<

m. One has r ^ * / and ro<q/δ (<v/2).

REMARK. In general, one has ro<r1/δf<v/2 for a certain positive integer (5'

( = 1, 2, (5 according to the case). A lower bound for r 0 is obtained from Theorems 1

and 2 below.

1.2. The following theorem is classical.

THEOREM 1. Among the Q-simple classical Lie algebras Q of hermitian type listed

above, the "anisotropic" case (i.e., the case with ro = 0) occurs only in the following cases:

(IΠ<2)), ( i n 2 ) ) , (II<32)), (Ijft) (v<2orq<δ).

This follows essentially from the Hasse principle or "local global principle" for

isotropy (see, e.g., [Sc], p. 346-7, Bl). For (III(

V)^) (v>2) and (IV*,1^) (v>5), it is well

known that one has always r o > 0 . For (IΠ(

V

2)) (v> 1), one has ro = 0 if and only if v = 1

([Sc], p. 352, Ex. 1.8, (iii)). For (IV(

2

2)_2) and (II(

V

2)) with v>4, one has r o > 0 by [Sc],

Lem. 10.3.5 and Th. 10.4.1, (i) (Kneser); and the same is also true for (II4-IV(

6

2)). For

(1^) with v > 3 and q>δ, one has ro>0 by [Sc], Th. 10.6.2 and p. 374, Rem. 6.3 and

6.4. Note that, when a place v is "non-decomposed" in F'jF (which is the case for all

real places), the localization hυ is "isotropic" (in the sense of [Sc], p. 373), if and only

if the corresponding F^-hermitian form of δv variables has Witt index >δ (Lemma 1

below).

ϊt is well known that for the anisotropic cases in Theorem 1 one has the following

isomorphisms:

(1.2) (IΠ(i2)) = (T(iδ)i) ( δ = l o r 2 ) ,

(1.3) (IVi2 ))£(I (&) (5 = 2 or 4),

(1.3) ( Π ^ ^ α ^ i ) (<5 = 2 o r 4 ) .

Thus all the classical anisotropic cases can be reduced to the unitary case ( I ^ ) .

2. Unitary involutions and hermitian forms.

2.1 In order to fix the notation and terminology, we recall briefly some basic

facts on hermitian forms pertinent to our considerations.

Let F'\F be a quadratic extension (in characteristic 0) with Gal(F7F) = {1, p 0}. Let

D' be a central division algebra over F' of degree (5, i.e., d inv/) ' = <52, with a "unitary

involution" p with respect to F'jF, (i.e., p is an F'-semilinear, involutive antiauto-

morphism of D'). Let V be a right D'-module of rank v and, for α e D ' , let μα

denote the right multiplication V\-^VOL (ve V). By a "(D, p)-hermitian form" h on V,

we mean an F-bilinear map h: Vx V-+D' satisfying the conditions
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(2.1) h(υ,v'<x) = h(υ,υ')aL,

(2.2) h(v,v') = h(v',vY

for all v,v'GV and oceD'. It is easy to see that A can be identified with an F-linear

map Kh-> K* denoted also by A, satisfying the conditions

(2.Γ) hoμa = *μaPoh,

(2.20 <Kv),v'> = <K*)9vy

for all v, v'e V and oceD', the identification being made by the relation

(2.3) trDΊF.(h(v9v')) = <h(v),ϊ>9

where trD7F/ is (as always) the reduced trace.

Let A = End(V/D') be the algebra of all D'-linear endomorphisms of V. Then A is

a central simple algebra over F and the F-linear map

(2.4) ph:xv-+h-uxh (xeA)

is a unitary involution of A with respect to F'/F. Clearly one has

(2.5) KxPh(v), vf) = h(v, xvr) (xeA, v, υΈV).

One fixes a D'-basis (eί9 , ev) of K, which gives an isomorphism M: A ^ MV(D').

One denotes by Herv(Z>', p) the space of p-hermitian matrices in MV(D'); in particular,

Her!(£>', p) is the space of p-invariant elements in D'. The hermitian form h is repre-

sented by a p-hermitian matrix (h(ek, eι))ί^kl^v. In what follows, we write M(h) =

(A(efc, ^))eHer v(D', p) and set det(A) = N(M(h)) (mod x N(F'/F)), where (the first) TV de-

notes the reduced norm of Mv{Df) over Ff and N(F/F) stands for Nr/P(F'X).

We always assume that A is "non-degenerate", i.e., det(A)^0; then det(A) is an element

of F*/N(F'/F). The (multiplicative) equivalence relation in Fx (mod x N(F/F)) will be

written as ~ .

2.2. Now let E'/E be another quadratic extension and D" a central division algebra

over E' with a unitary involution p ' with respect to E'/E. Suppose there is given an

imbedding F c; E such that FnE=F; then D'E. = D'®F.E' is a central simple algebra

over £" and the involution p can naturally be extended to an involution of D'E., which

is again denoted by p. Suppose that one has an ^"-isomorphism ME.\ Df

E^Mδ(D").

Then, as is well known, there exists an invertible element AeWtτδ{D'\ p') determined

uniquely modulo Ex such that

(2.6) MEW) = A-uME.(xY'A (xsD'E).

Clearly x is p-invariant if and only if AME{x)eWcrδ{D'\ p'). More generally, for any

positive integer v one has an ^"-isomorphism ME,(χ)idMv: MV(D'E)^Mγδ,(D") and for

xeMv(Dr) one has xeHer v(/)', p) if and only if
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ME{x) = {A ® \v) (ME,®idMJ(x)eHervδ,(D'\ p').

For a (D\ p)-hermitian form h, we call ME{M(h)) the "matrix expression" of h in D
(determined by M, ME. and A) and write h ~ ME{M(h)). Clearly one has

det(Λ)~N(A)~vN{ME{M{h))) in Ex/N(E'/E).

2.3. Now we assume that F is an algebraic number field of finite degree. For a
place v of F, let Fv denote the completion of Fat v. Then F'v = Fv ® F F' is either isomorphic
to FV@FV or a quadratic extension of Fυ; accordingly one says that v is "decomposed"
or "non-decomposed" in F/F. One sets D'V = D'®FFV, Vv= V®FFV, , etc. Then Vv

is a vector space over Fυ with a structure of free D^-module of rank v. Any
(Z)', p)-hermitian form h on V can naturally be extended to a (/)'„, p)-hermitian form
hv: Vvx Vv-+D'v, called the "localization" of h at f. The localization hv is called
"isotropic" if there exists a D^-basis (e'l9 , β'J of Kυ such that A^Ί, ̂ Ί) = 0 (see [Sc],
p. 373).

It is well known (after Jacobson, cf. [Sc], Th. 10.2.2, (ii)) that, when v is non-
decomposed, one has an isomorphism Mv\ D^^ Mδ(F'v), which gives a matrix ex-
pression of h in F'v: Mv(M(h)) = AvMv(hv(e'k, e'^eHerδv(F'JFv). The following lemma
is easily proved.

LEMMA 1. The localization hv is "isotropic" if and only if υ is decomposed in F'jF
and v > 2 or v is non-decomposed in F'jF and the matrix expression of h in F'v has Witt
index >δ.

2.4. Now assume further that F'/F is a CM-extension with a given CM-type in
the sense of [Sa2], 1.2, i.e., Fis a totally real number field of degree m, F/F is a totally
imaginary quadratic extension, and for each 1 < i<m one fixes an extension of σf: F ς R
to an imbedding F' ^ C, denoted again by at. (We always assume that σx is the inclusion
map.) Then, for each real place v = σi of F, extended to a complex place of F\ one can
identify F'v with Cand D'v with (D'σ% = Df ®Γ σ. C. One fixes an isomorphism

M - φ ' Ό c — M , ( C ) ;

then there exists an invertible element ^eHer^C) such that

(2.7) Mi(xσi pσί) = ArliMi(x)Ai (xeDtσi).

The involution p is called "totally positive" if all Ai (\<i<m) can be taken to be
positive definite. (This condition is equivalent to saying that RF/Q(p) is a "positive
involution" of RFΊQ(D') in the sense of [W].) It is well known ([A], Ch. X) that, for
a CM-field F'/F, a central division algebra D' over F' has a unitary involution with
respect to F'/F if and only if D' can be expressed as a cyclic algebra (Z', σ, α), where
Z' = ZF' with a cyclic extension Z of F of degree δ not containing in F, σ is a generator
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of Gal(Z'/F)^Gal(Z/F), and α is an element of F such that <x1+PoeN(Z/Fl p 0 denot-

ing the complex conjugation. Under this condition, the algebra D' has always a

totally positive unitary involution with respect to F/F. In what follows, we always

assume that the above condition is satisfied, p is totally positive and the At (1 <i<m) are

taken to be positive definite. A (Df, p)-hermitian form /*, or a hermitian matrix

M(Λ)eHerv(Z>', p), is called positive (resp., totally positive) if M^Mih)) is [resp., all

M£M(h)σi) = (Ai®lv)((Mi®id)(M(hyi)) (1 <i<m) are] positive definite. In notation, we

write h>0 or M(h)>0 (resp., h»0 or M(h)»0). More generally we define

sign(hσi) = (ph qi) to be the signature of Mi(M(h)σi). (Note that these notions are

independent of the choices of M, M t and At under the above assumptions.) Then one

has:

THEOREM 2. Let h be a non-degenerate (/)', p)-hermitian form on V ( = D'V) over a

CM-fie Id F'. Then h is isotropic if and only if the following two conditions are satisfied:

(i) Min(/?f, <7t ) > δ for \<i<m,

(ii) v>3orv = 2and d e t ( A ) - ( - 1 )δ (mod xN(F/F)).

PROOF. First suppose that h is isotropic. Then clearly v>2 and the condition

(i) is satisfied. When v = 2, h is necessarily hyperbolic, i.e.,

inZ>\ Hence det(λ)~(-l)*.

Conversely, suppose that the conditions (i), (ii) are satisfied. When v = 2, one has

by the assumption Pi = qi = δ and det(/*)~( — I)*5. Hence the hermitian form h and the

hyperbolic form of 2 variables have the same invariants (determinant and signatures),

so that one has

o.
([Sc], Cor. 10.6.6). Next suppose that v>3. By the assumption, one has Min(/?i5

for all \<i<m. For a finite place y = p, which is non-decomposed in F'/F, let rp denote

the Witt index of the matrix expression of h in F'p (defined by the imbedding

F'/Fq; F'p/Fp). Then by the theory of hermitian forms in p-adic fields one has

— (<5v— 1) if <Sv is odd ,

(2.8) — (5v if (5v is even a n d det(hv) 1 ,

— δv—\ otherwise .
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In all cases, since v>3, one has rv>δ. Hence by Lemma 1 the localizations hp are

isotropic everywhere and so h is globally isotropic ([Sc], Th. 10.6.2). q.e.d.

3. Domains of type (T^) with rational points.

3.1. Let F = F(yJ~^β) be a CM-fleld (with the "standard" CM-type determined

by ΛJ-βσi = jZΓί(βσi)1/2, see [Sa2], 1.3), D' a central division algebra over F' of degree

δ with a totally positive unitary involution p with respect to F'/F, and h a non-degenerate

(Z)', p)-hermitian form on V^D'V with <5v>2. The Lie algebra gx = su(v, h, D'/F'/F)R is

by definition a real Lie algebra defined over F such that

(3.1) Q1(F) = {xeA = End(V/D')\tτΛIF.(x) = 09x>*=-x} .

Then Q = RR/Q(QI) is a real semisimple Lie algebra of hermitian type with a Q-simple

Q-structure. g satisfies (Rl) if and only if one has (/?ί? #i) = (/?, q) or (q, p) (p>q) for

all 1 <i<m, in which case g is of type (Ijf^) in the notation of 1.1. Replacing h by a

suitable scalar multiple μh with μeF* if necessary, we will henceforce assume that

pi=
zP,qi = q for all \<i<m. We will also assume that g is non-compact, i.e., q>0,

unless otherwise expressed.

Let <& = @(V/D\ h) be the symmetric domain associated with g, which we regard

as the set of Cartan involutions of g. Let θe@ and 0 = (0f) with Cartan involutions 0f

of g^. Then 0 is "rational" if and only if θί is F-rational and one has θ—θ^ for all

1 <i<m. It is classical (cf., e.g., [W]) that all .F-rational Cartan involutions 0X of Qλ

are obtained in the form θt = — p'lgiC^') with positive unitary involutions p' of A such

that [pΛ, p r ] = 0 . Such an involution p' can be written as p' — pw with a positive

(£>', p)-hermitian form ft' on F, and 0^ is a Cartan involution of g*• for all / if

and only if h' can be taken to be totally positive. The hermitian form h' is then

uniquely determined modulo the multiplicative group of all totally positive elements

in F x , which we denote by F+. It is easy to see that one has [pΛ, p h ] = 0 if and only

if

(3.2) (Λ"1Λ/)2 = A1 with λeF* .

This condition implies h~ιh'h~ι =λhf~1, whence one has λeF+. Clearly λ is uniquely

determined by p' modulo (F+)2. We denote by 0>(V/D\ p, h) the set of all totally posi-

tive (D\ p)-hermitian forms h' on V satisfying (3.2). Then the correspondence 0ι->λ'

(modF+) gives a bijective correspondence between the set of rational points in Q)

and 0>(V/D\p,h)/Fl.

LEMMA 2. Let h!e&(V/D', p, h) and T=h~1h'. Then T is a D'-linear endo-

morphism of V having the following properties:

T2 = λ\ with λeFx

+ and TPh=T.

The last equation follows from the relation
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h(Tphv, v') = h(v, Tv') = h'(v, v') = h{Tv, v').

Now let θ = (θσ

ί

i) be the Cartan involution corresponding to h'e^(V/D\ p, h)

and ft the maximal compact subalgebra of gx corresponding to θι. Then for xeq1 one

has

(3.3) xelίoθίx = χoχPh'=-χolT,x] = 0.

[According to our convention, we denote the /Minear extension of p (resp. ph or pw)

to D'C = D'®F, C(resp. AC = A®F.C) by the same letter.]

By Lemma 2, one has Q^βT)ph = -y/^~βT. On the other hand, one has

Hence, if/? > q, one has ^J λ eFx and j λ σi = (λσi)1/2, which means ^ A e F+. In general,

one puts

(3.4) T
p + q

Then one has yj — βTf eg^F), and from the above one sees that the centralizer of

(^J — βT')σi in cjj1 coincides with the maximal compact subalgebra t\\ Hence, if one

puts

(3.5) Ho = (HOti), Ho-^

then Ho is an "//-element" of g and the matrix (Λ/f ® idMv)(//0 t ) is similar to

( v T l p ,
χp+q

for all \<i<m. We will henceforth assume that the complex structure on Q) is compati-

ble with this //-element. Then the point θ in Q) corresponding to Ho is a rational

point with CM-field F" = F(^J -βλ) endowed with the standard CM-type. The set of

all such rational points in 3) is denoted by @(F{y/-βλ)/F) (see [Sa], 1.3; 3.4).

Summing up, one has

THEOREM 3. Let <3 = @(V/D\ h) be the symmetric domain associated with g. For

h'e0>(V/D\ p, h)Jet T=h~1h'andT2 = λ\ withλeFl. Then, under the above assumption,

θ = (θσ^\ θι=—ph\%isa rational point in <2> with CM-field F" = FQ — βλ) {endowed with

the standard CM-type) and, for a fixed λeF+, the map h'\->θ gives a bijective

correspondence between {h'e&>(V/D', p, h)\(h~1 h')2 = λ\} and ^{F^J-βλ)/F).

3.2. For λeFl, set E=FQΎ), E' = EF, and D'E, = D'®F,E
f. We distinguish

three cases:

1. The case where λe(Fx)2, i.e., E=F.
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2. The case where λφ(Fx)2. In this case, one has [ E : F ] = [ E ' : F ] =

2.1. The case where D'E, remains division.

2.2. The case where D'E, is not division.

A rational point θ with CM-field FQ — βλ) will be called of the first, second, and

third type, according as λ is in Case 1, 2.1, and 2.2.

REMARK. AS mentioned in the Introduction, the notion of the rational points is

a special case of the "isolated fixed points" in [Sh] and [M]. Actually, if one puts

σ 0e Afv(Z)1)(8)fiΛ= Θ MV(D°% ,
i = l

then j 0 satisfies the condition in [M], 1.4 and the symmetric domain Q) (with the

complex structure specified above) is identified with Jf jo in [M]. In the notation there,

C(j0) is the commutor of T in MV(D') and hence

Therefore P=C(j0) (the commutor of C(/Ό) m MV(D')) coincides with the center of

C(j0) (which assures thaty 0 is an "isolated fixed point"). One has

P1@P2, Pλ^P2^Ff in Case 1 ,
P=<

in Case 2 .

In Case 2, E'/Eis a CM-extension with GsA(E'IE) = {l, p0}. Let Ga\(Ef / F) = {I, τ}.

We extend σ f: F' c^ C to an imbedding E' c^C (denoted by the same letter) by setting

^ X σi = (Xσi)1/2 (σ1 being the inclusion map). Then {σ^E, τσ^E (1 </<m)} is the set of

distinct imbeddings of E into R and the standard CM-type of E' = E(yJ — βX) is given by

(3.6) J~βλσi = J-βλp°τσi = y^T((jSA)σί)1/2 .

In Case 2.2, let D'E^Mδ{D\) with a central division algebra D\ of degree δι = δlδ'.

Then a simple right ideal of D'E. is of D' r rank δ' and of D'-rank 2/δ\ Since δr>\, one

has δ' = 2 and δί=δ/2.
The following necessary condition for the existence of rational points was obtained

by K. Oiso by a different method (unpublished).

THEOREM 4. Suppose that the symmetric domain @(V/D', h) has a rational point.

Then, in addition to (Rl), the following condition (R2) is satisfied.

(R2) δ\qorp = q.

PROOF. By the assumption, 0>(V/D', p, h)Φ0. Let hfe^(V/D\ p, h) and T=

h~ιh', T2 = λ\ with λeFl. Then by the observation in 3.1, one has p = q in Case 2.

Hence it is enough to show that in Case 1 one has δ\q. In this case, one has ^J λ EFX

if p>q). Hence, for simplicity, replacing h by ^ λ h, we assume that λ=\. Put



RATIONAL STRUCTURES OF SYMMETRIC DOMAINS 411

V±={veV\Tv=±v} .

Then V+ are Z)'-submodules and one has a direct sum decomposition V= V+ © V _. It

is easy to see that the subspaces V+ and F_ are mutually orthogonal with respect to

h and h'. Let v1 = rank D ,F + and let (eu , ev) be an orthogonal Z)'-basis of V with

respect to h such that (eu , eVl) is a D'-basis of V+. Then one has a matrix expression

of h in £>' of the form

and hence

Since Λ' is totally positive, one should have ak»0 (1 <fc<vx) and β f c«0 (vt + 1 <A:<v).

Thus one has

p = δvί, q = δ(v-v1),

which proves our assertion. q.e.d.

COROLLARY. Suppose that @ = @( V/D', h) is not of tube type and has a last rational

boundary component of positive dimension (i.e., @ is "of type (U2)", see 5.1). Then 2

has no rational points.

PROOF. Suppose that Q) has a rational point. Then by Theorem 4 and the

assumptions the last rational boundary component J % of 3) is of type ( I ^ o ) with

Po>ao>Q a n d δ\q0. It then follows that vo = (po + qo)/δ>3, which contradicts

Theorem 1. q.e.d.

3.3. Assuming the existence of rational points with CM-field F(<J — βλ), we fur-

ther consider Case 2. In the above notation, let VE.= F ® Γ F and, extending T to

an endomorphism of VE> by linearity, put

Then one has a direct sum decomposition

VE, = y+ © y_ , y_ = γ\ ,

where the subspaces V± are D'E -invariant and mutually orthogonal with respect to (the

natural extensions of) h and h'.

In Case 2.1 where D'E. is division, let v1 = D^-rank V+; then one has v = 2vι. Let

(eί9 , eVι) be an orthogonal /)^-basis of V+ with respect to h\ then one has

(3-7) h\V+^dmg(au--',aVί), akeD'E,.

Clearly (eτ

l5 , ̂ ^) is an orthogonal D^-basis of K_ = V\ and one has
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In the D^-basis (el9 , eVί, e\, , eτ

Vι) of VE> one then has

Λ'^diagG/Xα!, '9y/TaVι, -y/Ta\, , -

Hence one has ^/ A α f c»0 (1 <fc<V!) and/? = ̂  = δv1. It should be noted that one has

(3.8) det(/z)~^Vl Π N(<*i)ί+τ *n F*/N(F'/F).

In Case 2.2 where D'E. is not division, one has 2|<5. The space V9 viewed as a

(Γ, D')-module, can be endowed with a structure of (right) D ̂ -module by setting

Tv = ̂ J λ v for ve V. Since D^-modules are completely reducible, the problem can be

reduced to the case where V is irreducible. Then, the space K, being isomorphic to a

simple right ideal of D'E,, is of D'-rank one. Hence, let V= {e^jy and set Teί=eίtί with

tx e D'. Then D'E. contains matrix units ekl {k, 1= 1, 2) such that

(3.9) e n = — 0 ^ ' Λ ^ 1

Let Z>Ί be the centralizer of {ekI (k, ί=\, 2)} in D ^ . Then from the above D\ is a central

division algebra of degree δγ =δ/2 with unitary involution with respect to E'/E and one

has an ^"-isomorphism ME.: D'E. ^ M2{D\). Let p1 be a totally positive involution of

D\ with respect to E'jE. Then one has

(3.10) ME{xf>) = A-liME{x)fHA (xeD')

with ^GHer2(Z)'1), which one assumes to be totally positive. Let h(e1,e1) = aί. Then

one has h\eu e1) = h(e1, e1t1) = a1tι and so aίί1=(a1ί1)
p = tp

1a1. It follows that

ME{a^ME.(td = M^t^M^ia^ = A~

Since

\[J 0
o _

setting ME{ ) = AME{ \ one has

It follows that the expressions of h and Λ' in £>Ί are of the form

(3.11) hME(a1) (

i 0

0
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Hence one has y/~λa'1»0 and ^Ja'[«0.

4. The necessary and sufficient conditions for the existence of rational points.

4.1. We retain the notation and the assumptions in §3. First we consider Case 1.

THEOREM 5. The symmetric domain @ = @(V/D\ h) has a rational point of the first

type if and only if condition (Rl) and the following condition (R2.1) are satisfied:

(R2.1) δ\q.

PROOF. The "only if" part was already shown in the proof of Theorem 4. By

virtue of the result in [Sa2], 3.4, for the proof of the "if" part one may assume that

ro = 0, i.e., h is anisotropic. If h is definite (<7 = 0), then 3 reduces to a point, which

may be regarded as a rational point of the first type. (Note that in our case the

special CM-field mentioned in [Sa2], 3.4, 2° coincides with F(yJ — β).) If h is aniso-

tropic but indefinite (#>0), then by (R2.1) and Theorem 2 one has v = 2, p = q = δ and

det(AJ +(- \)δ. Take any ax eHer^/) ' , p) which is totally positive. By [Sc], Th. 10.6.9,

one can then find ίZ2GHer1(Z)/, p) which is totally negative and satisfying the relation

N(a2) = N(aiy
1det(h). Then h and the hermitian form represented by the matrix

diag(«l9 a2) have the same invariants and hence are mutually equivalent ([Sc], Cor.

10.6.6). In other words, one has

,0 a2J

for some D'-basis of V. Then the hermitian form h' on V defined by

0

\0 -a2

in the same basis belongs to 3P(V/Df, p, h) and gives a rational point in 3) of the first

type. q.e.d.

4.2. Next, suppose that λ is in Case 2, i.e., λeFl, but φ(F*)2.

THEOREM 6. Assume that λ is in Case 2.1. Then the symmetric domain 3) =

3(V/D\ h) has a rational point of the second type with CM-field F(^J — βλ) if and only

if conditions (Rl), (R2.1) and the following conditions (R2.2) and (R3) are satisfied:

(R2.2) p = q.

(R3) ( - 1 )δv/2det(h) e N(E/F)N(F'/F).

REMARK. Note that under condition (R2.2) one has δv/2=p and hence p = 0 or

= δ/2 (mode)). Note also that, if one sets

then condition (R3) is equivalent to saying that F" = F(J — βλ) splits D(h) (see Example
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1 below).

PROOF. The "only if" part follows immediately from 3.3. To prove the "if" part,

we may (hence will) again assume that h is anisotropic (and v>0). Then, by the

assumptions, one has v = 2,p = q = δ and there exists ζeEx such that (— \)δdet{h)~ξ1+τ

in Fx /N(F'/F). Here ζ1+τ is totally positive and ξ may be replaced by ξη with any

η e Ex with η1 +τ= 1. Since the set {η e E\ η1 +τ= 1} may be viewed as the set of F-rational

points on a quadratic curve C defined over F, C(F) = (RF/QC)(Q), which is dense in

(RF/QC)(R\ one can choose ξ to be totally positive. (The author owes this argument

to Y. Morita.) By [Sc], Th. 10.6.9, one can then find a^eϋer^D'^, p) which is to-

tally positive and satisfying N(a\)~ξ in EX/N(E'/E). Take e\ e VE. with e\ φe'{. Then

(e\, e'l) is a D^-basis of VE.. Put aί=yJ λ ~ίa\ and let hx be a (D'E., p)-hermitian form

on VE. with matrix expression

in the basis (e\, e'ι). Then one has h\—hx, i.e., hx comes from a (£>', p)-hermitian form

on V (which one denotes by the same letter hγ) by scalar extension. By the choice of

ai, one has

sign(Λ?)=(δ, δ) = signίΛ") (1 < i< m)

and by (3.8)

in FX/N(F/F). Hence, by [Sc], Cor. 10.6.6, h and ht are equivalent over D'. This im-

plies that there exists e'[ e VE, such that e'[ ¥=e'[τ and

,0 a\,

in the Z)^-basis (e'[, ef[τ). Then the hermitian form h' on V defined by

0

in the same basis belongs to 0>(V, D\ p, h) and gives a rational point in 2 of the sec-

ond type with CM-field FQ -βλ).

EXAMPLE 1: ( 1 ^ ) . Let β,λeFx

+ and F' = FQ^β\ E=F(yfλ) be as above and

take aeFl, φN(F/F). Let D' = F' and A = diag(lJ -α)eHer 2 (F '/F). Then (phqd =

(1, 1) (1 <i<m), h is anisotropic (Th. 2), and D(h) = (oc, -β)F. Clearly, Z)(/z) is division

and totally indefinite. It is easy to see that one has an F-isomorphism

(4.1) 9 l ( F ) = su(2,
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where sl(l, D(h)) = D(h)_ = {ueD(h) | trD{h)/F(u) = 0}. ((4.1) gives the isomorphism (1.2)

with δ= 1.) Conditions (Rl), (R2.1), (R2.2) are clearly satisfied, and we are in Case 2.1.

Condition (R3) is equivalent to saying that one has

(4.2) λ = ξ2-φι\ + βηl) w i th ξ9ηl9η2eF9

or equivalently, —βλe D(h)2_. Thus we see that the corresponding domain Q) has rational

points of the second type with CM-field F" = F(y/ - βλ) if and only if F" splits D(h).

4.3. In order to treat the third case, we need more preparation. Suppose there is

given a central division algebra D\ of degree δί=δ/2 over E' = F'Q λ) such that one

has an ^"-isomorphism D'E'~M2(D'ί). Then, since D\~D'l, one has an /^-isomorphism

φ: D\ -^ D'l. For xλ eD\, set xψ = φ~ιx\. Then one has

(4.3) ^ l 2 = Φ " > " τ ω = /Γ1Xi/i

for some fx e D\x, where one may (hence will) assume that fψ = fι

We fix an ^"-isomorphism ME, \ D'E^ M2(D\). Then one has

(4.4)

with C€GL2(D\). It is easy to see that

(4.4a) y(
VO

with γeFfX. We also fix a totally positive involution px of D\ with respect to E'/E and

a totally positive element A in Her2(/)Ί, p j satisfying (3.10). Put pψ = [τ]~1pί[τ'];

then one has

with bx in Her^Z);, px). It follows from (4.3) and (4.5) that

(4 5a) bιbψ = βj^fι

LEMMA 3. One has

(4.6) ιC

with εeEx.

PROOF. For xeD'E>, one has χpτ = χτp. Hence, computing M{l\xpτ) = Mψ(xτp) in

two different ways by (3.10), (4.4) and (4.5), one has

J CME{xyc[ μ [ τ ] ,
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and

Hence one has

with εeE'x, which proves (4.6). This relation implies that εPo = ε, i.e., εeEx. q.e.d.

From (4.6), using (4.5a), one obtains βί=ε~1~τγ1+p0. Taking the norm of both
sides of (4.4a), (4.5a) and (4.6), one has

(4.4b)

(4.5b)

(4.6b)

where (and in what follows) N and N1 denote the reduced norm of M2(D\) and D\,
respectively. By (4.4b) one has (N1(yf1)~ίN(C))1+τ=\. Hence there exists ηeE'x,
determined modulo F'x, such that

Then by (4.5b) and (4.6b) one sees that

(4.7) ω = N{A)(N1{εbί)y1η1+poeFx .

The proof of the following lemma is straightforward.

LEMMA 4. The class of ω modulo N(E/F) N(F/F) is independent of the choices of
D\, <P> fu Pi? ME.9 A, bx and C, and is uniquely determined only by D', p and E'.

We call ω a correcting factor for (p, E'/F'). (In Case 2.1, one may consider that
ω=l.)

4.4. For an actual computation, it will be convenient to take D\ and ME> in the
following manner. Let W={e1}D. be an irreducible Z>^-module. Then for ξeE' one
has ξeί=eίi(ξ) with an (F'-linear) imbedding /: E' ^ D'. One can then construct matrix
units ekl (k, /= 1, 2) in D'E, satisfying (3.9) with tι = i(yJ λ). Setting D\=ellD'E.elu one
has an ^'-isomorphism ME,\ DE^+M2(Df

1) defined as follows: for xeD'E> one has
ME>(x) = (xiJ) with xijeD\ if and only if

Since e\ί = e22, one has D'{ = e22D'Ee22, and the map φ: x1\-+e2ίxίe12 gives an
^'-isomorphism D\ ^ D'l. One has
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Also from e\1=e22 one obtains

eτ2i=Ciέ?12, e\2 = e2ίcϊ1

with cί eD\, c[f] = c1. Hence one has (4.4) with

Then by (4.4a) one has cί=γfί and hence N(C) = (-\)δ/2Ni(yfi). It follows that one
can choose η to be = (yj λ )δ/2 and hence

(4.7a) ω = N(A)Nί(εbίy
1λδ/2 .

LEMMA 5. Suppose D'u ME> and ω are chosen as above. Let xeHer^/)', p) and
suppose that

with x\, x'leHer^D'i, pγ). Then one has x'[=e,b1x'[x] and

(4.8) N(x) = ω-1λδ/2N1(x\)1+τ.

PROOF. By (4.4) and (4.6) one has

c c
0 V VO jcj/ V 0

whence one has %'ί =εZ?1x'1
[τl. It follows from (4.7a) that

which proves (4.8). q.e.d.

EXAMPLE 2. The notation being as above, suppose further that the condition
tp

1=t1 is satisfied. Then one obtains

with dxeD\, d\ = dx. It follows that D'f = D\ so that one can set p1=p|/>/

1. Then one
has (3.10) with

0 d,
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By (4.6) one obtains

and hence N(A) = Nι(d1) = Nί(εbί). Therefore by (4.7a) one has

(4.7b) ω = λδ/2~(-\)δ/2 (mocΓN(E/F)).

For instance, suppose that D' is given in the form of a cyclic algebra D' =

(Z'/F, σ, γf), Z' = ZF with a totally real Z. Then there exists an injection i: Z'-»Z>'

and ueD' such that

(4.9) />' = * £ i ( z y , u-h(ξ)u=ι{ξ"), uδ = y'.
i = 0

One can define a (totaly positive) unitary involution p with respect to F'/F by

setting

(4.10) ι(ξf = ι(ξp0) and wp = i ( φ ~ * ,

where α is a (totally positive) element of Z satisfying the condition Nz/F((x) = NFΊF(y')

(see the assumptions in 2.4). Since δ = 2δu there is a unique totally real quadratic

subextension E/Foΐ Z/F. If E=F(yJ λ ) and p are given in this manner, then tί = ι(^J λ)

satisfies the condition t^ = tί.

4.5. We retain the assumptions and the notation in 4.3. We obtain the follow-

ing

THEOREM 7. Assume that λ is in Case 2.2. Then the symmetric domain <2> = @( V/D\ h)

has a rational point of the third type with CM-field F(yJ — βλ) if and only if conditions

(Rl), (R2.2) and the following condition (R3') are satisfied:

(R3') ( - 1 )δv/2ωv det(A) e N(E/F) N(F/F),

where ω is the correcting factor for (p, E'/F').

REMARK. Note that the class of ωvdet(/z) is determined only by the involution ph

and £". Note also that, as in the case of Theorem 6, condition (R3') is equivalent to

saying that F" = F(^J — βλ) splits the quaternion algebra similar to D(h)®F( — β, ω)v

F.

PROOF. The "only if" part follows from 3.3, Case 2.2 and Lemma 5. To prove

the "if" part, suppose that conditions (Rl), (R2.2) and (R3') are satisfied. Without any

loss of generality, we may further assume that h is anisotropic; then by Theorem 2 we

have v= 1 or 2. We give a proof only in the first case, since the proof in the second

case is similar.

We choose D\, ME, and ω as explained in 4.4. In the case v= 1, one has p = q = δ/2

by (R2.2). By (R3;) there exists ξeEx such that

( - 1 )δ/2ω det(A) ~ξ1+τ (modx N(F/F)).
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Then one has εδl2ξ1+τ»0. As in the proof of Theorem 6 one may assume that ξσί>0

for all \<ί<m. Then by [Sc], Th. 10.6.9, one can find a'eHer^D^, px) such that

N1(a') = (jTyδ/2ξ and af<Ti>0, εσiaf[τ]σi<0 for 1 <ί<m. Put a" = zbxa'™ and find xeD'E,

such that ME(x) = diag(a\ a"). Then it is easy to check that xτ = xp = x, i.e.,

x e Her^D', p). Moreover, one has sign(xσi) = (<5/2, δ/2) and by Lemma 5

Let V= {eγ}D> and let h1 be a (£>', p)-hermitian form on V with A ^ , eί) = x. Then by

[Sc], Cor. 10.6.6, A and Ax are equivalent over D'. This means that there exists e\ e V

such that h(e\,e\) = x. Then the (/)', p)-hermitian form A' defined by h\e\,e\) = xt1

with t1=i(y/ λ) belongs to &*{V, D\ p, A) and gives a rational point in ^ of the third

type with CM-field F{yJ~^βλ). q.Q.d.

4.6. We consider here a special case where δ1 is #<&/. In this case, one has

(4.11) Df = Df

0®F,D'2, D'0E.*iD'ί9 D'2E.~ 1 ,

where D'o and D'2 are central division algebras over F of degree (^ and 2, respectively.

We follow the notation of 4.4 and, in doing so, choose etj in D'2E.. Then one has c1eF',

i.e., one may set c1=y, f1=e11. This implies that [ τ ] 2 = l, i.e., {1, φ} is a 1-cocycle,

which defines an i^-form of D\. (It is easy to see that, conversely, if fx can be taken

to be = 1, then δx is odd.) One denotes by φ the /^-isomorphism D\ ^ D ' 0 F defined

by ψ(x1) = x0<=>x1=x0®e11(x1eD'1, xoeD'OE). Then one has

(4.12) Ψ(xi) = xi + φ(xi)9 Φ(xψ) = ψ(x1)
τ (x^D^.

The F'-form of D\ mentioned above is given by D'0®e11.

By [A], Ch. X, the algebras D\ (/=0, 2) have a totally positive unitary involution p\

(/=0,2) with respect to F'\F. One defines the involution px of Z)i by setting

χp^ = φ~ί(ιj/(x1)f>^ for XlsD\. Then by (4.12) one has pψ = Pι. Hence one may set

On the other hand, let x2^x2 denote the canonical involution of the quaternion

algebra D'2. Then the map x2\->x/

2

1, being a semilinear involutive automorphism of D2,

defines an F-form D2(p'2) of D'2\

(4.13) D2(p'2) = {x2eD'2\x£ = x2}.

From D2(p'2)E> = D'2E~\, one can conclude that

where D2 and D3 are central quaternion algebras over Fsuch that D2E~ 1 and Z>3F,~ 1.

Then one has D'2 = D2(p2)Γ~D2F,, which means that D2 is also an F-form of D'2. We

regard D2 as contained in D'2 and denote by p2 the (not totally positive) unitary

involution of Df

2 such that D2 = D2(p2). Since D2E~ 1, one may choose etj in D2E. Then
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one has yeFand

D2 = {λ,y)p.

For x = xo®x2 (xoeD'o, x2eD'2) let

χp = a~1(xp

o°®xp

2

2)a

with aeD', ap — —a. Then by the definitions one has

ME(4° ® Aτ) = Ψ - W J~ι ιME{x2γ°J

with

< - Γ
J I

J = I

J o
Hence one has

with ^=yM£,(α)eHer 2(Z) /

1, p j . Since p is totally positive, one can choose a so that A

is totally positive. From aτ = a one has Alτ] = JC~1AC. Hence it follows from Lemma

3 and (4.4c) that ε = — y (and bί=eiί). Therefore by (4.7a) one obtains

(4.7c) ω = N(a)Nι{εbίy
iλδι~yN(a) (mod*N(E/F)).

In Example 3 below, we need the following lemma, which we state in a little more

general situation.

LEMMA 6. Let p2 andp'2 be unitary involutions ofD'2 with respect to F'jFandlet

xp'2 = a2

ιxp2a2 for xeD'2

with a2 e D'2 , ap

2

2 = —a2. Then one has

(4.14) D2(p'2)~D2(p2)®P{-β, -N2{a2))F ,

N2 denoting the reduced norm of D'2.

COROLLARY. A unitary involution p'2 is totally positive if and only ifD2(pf

2) is totally

definite.

This follows from Lemma 6 by taking p2 as specified above.

PROOF OF LEMMA 6. One writes a2 and xeD'2 in the form

ai — (χ2\/~β + u' with a2eF, u'eD2(p2)_ ,

x = x' + <^/ — βx" with x\ x"eD2(p2).

Then an easy computation shows that one has
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When w' = 0, the assertion of the lemma is trivial. Hence, assuming u'φO, one sets

D2(p2)={l,u',u",u'u"}F = (y'9y")F

with u'2 = y', u"2 = y" and u'u" = —u"u'. Then one has

Since -N2(a2)β = (oclβ + y')β is in N(F[y/-βγ% one has

DiiPiW, y")P®F{-β, ~N2(a2))F ,

which proves our assertion. q.e.d.

EXAMPLE 3: (I^i). The notation being as above, consider the case δ1 = \, i.e.,
Df = D'2, and v = l . Let h^iμ^) with ap

x=au (pi9qi) = (l, 1) (\<i<m). Then one has

where x ^ ^ α ^ x ^ i =(αα1)"1xp 2αα1. Thus one has

(4.15) Qί(F) = D(ph)_=ύ(\,

(which gives the isomorphism (1.2) with δ = 2). By Lemma 6 one has

which (or (4.15)) shows that D(ph) is totally indefinite. Since D(p2) = (λ, y)F, it follows
from (4.7c) that

D(pJF..~(-β9ω)F..®F..D(h)F...

Thus, in this case, condition (R3r) is equivalent to saying that F" splits D{ρh).

5. Classification.
5.1. In general, let Q) be a β-irreducible symmetric domain of g-rank r0 satisfying

the condition (Rl). Such a domain 3f is classified into the following four types ([Sa2],
3.4):

(Tl) The case where 3) is of tube type and the "last" (i.e., the ro-th) rational
boundary components reduce to a point.

(T2) The case where Θ is of tube type and the last rational boundary components
are of positive dimension.

(Ul) The case where 3) is not of tube type and the last rational boundary
components reduce to a point.

(U2) The case where 3) is not of tube type and the last rational boundary
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components are of positive dimension.
For the domains of classical type listed in 1.1 we obtain the following classification:
(Tl): (IΠ<}>), (lilt2)) (v even, >2, ro = v/2), ( I V ^ ) (v>5, r o = 1, 2),

(II<2>) (v even, >4, ro = v/2), (1^) (ro=p/δ = v/2>\).
(T2): (IΠ(

V

2)) (v odd, > 1 , ro = (v-l)/2), (IV<2

2>_2) (v>3, ro = 0, 1),
(Πt2)) (v even, >4, ro = v/2-l), (II4-IV<6

2>) ( r o = l ) ,

(Ul): (IIt2>) (v odd, >3, ro = (v-l)/2), (Ijft) {p>q>l, ro = q/δ<v/2).
(U2): (II(

V

2)) (v odd, >3, ro = (v-3)/2), (Ijft) (/»<?> 1, ro<qlδ<v/2).

5.2. Let J^o be a last rational boundary component of ̂  and let g^}

0 = ΛF/Q(9(^O,I)

(with 9^1,4 defined over F) be the semisimple hermitian part of the reductive quotient
of the parabolic subalgebra corresponding to J^. (In the notation of [Sa2], g ^ is
β-isomorphic to g^ i υ for κejf^o.) g ^ is the Lie algebra of the semisimple β-group
acting on ̂ 0. For the domain of type (Tl), g(^}

0 reduces to {1}. For the domain of
type (Ul), g^0 is of type (I(

v^,0)
 w i t n v0 > 1. As was shown in [Sa2], the domain 2 of type

(Tl) has rational points with any CM-field and CM-type and the one of type (Ul) has
rational points with a particular CM-field and CM-type. The domain of type (U2) has no
rational points (by 1.2 and Cor. to Th. 4).

As for the domain of type (T2) we have the following three cases.
(a) (III(

V

2)) (v odd, > 1), (IV<2

2>_2) (v>3, ro= 1).
(b) (II<V

2)) (v even, >4, ro = v/2- 1), (II4-IV(

6

2^) (ro = 1).
. (c) (IV42M^ = 0 ) ( ^ ( I 2 ^

In the case (a), J^o is of type (IIIi2)), and one has

(5.1) q^(Q)^^oΛ(F) = ̂ (\, D) = {xeD\tvD/Fx = 0}

with "the" given totally indefinite division quaternion algebra D over F. Hence the
domain Q) has rational points with any CM-field which splits D.

In the case (b), ^ 0 is again of type (IIIO, but the Lie algebra g£}

0 has compact
factors. In fact, g ^ has 2m or 3m simple factors (over /?), but has only m non-compact
simple factors. To be more precise, let A = diag(αl5 , <zv), a\ = VLieF, and
A=(-\yάet(h) = Y\v

i=ι(xi. Then the action of the Galois group Gal(β/F) on the root
diagram of g ^ t i is non-trivial (i.e., the arrow prevails in Figure 1) if and only if one
has J f 1 (mo<ΠF x) 2).

When A ~ 1, ̂ \ has two β-simple factors corresponding to the "last" two vertices
of the root diagram of ̂ }

oΛ; they are given (in Q-rational points) by sl(l, D^) (i= 1, 2),
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(over Fσi) (over R)

FIGURE 2

where D^s are (central division) quaternion algebras over F such that D1®D2~D.

(The numeration of the vertices of the root diagram is as shown in Figure 1.) When

^"M> 9<Fo n a s instead a (>-simple factor given by /? ^- (sI(l,Z>Ί)), where D\ is a

(central division) quaternion algebra over F(yJ A ). This β-simple factor is not pure,

having m compact and m non-compact simple factors (over R). For (II(

4

2)) and (II4-IV(

6

2))

(ro = 1), one has one more (?-simple factor corresponding to the "first" vertex of the

root diagram of g ^ i , which is given by $1(1, D). For (Π(

4

2)) this Q-simple factor is

compact. But for (Π4-IV(

6

2)) it is not pure, having mι compact and m — mx non-compact

simple factors (over R). [The relation of the root diagrams for (II4-IV(

6

2)) over Fσi

(1 <ί<m) and over R is shown in Figure 2.] Thus one sees that, except for the special

case (II(

V

2)) (ro = v/2—1) with Δ~\ for which one of the D?s, say Du is totally definite

(hence the other, D2, is totally indefinite), (all) the non-compact (λ-simple factor(s) of

gί^ is (are) not pure, and hence the domain 3) has no rational points. In that special

case, where D2 is totally indefinite, g ^ has, along with one or two compact (λ-simple

factor(s), a pure non-compact β-simple factor, which is of type (IΠi2 )); hence 3) has

rational points with CM-fields which split D2. In particular, the case (Π4

2 )) with Dx

totally definite reduces to the case (a), (IV(

6

2)).

In the case (c), according as p = 0 or δ/2 (mod<5), ^Fo is of type (1^) (v = 2) or

(I§/2,a/2) ( v = 1) In the first case, the domain & has rational points of the first and second

type (Th. 5 and 6). In particular, the case (I^i) reduces to the case (a), (III(i2)) (Example

1). In the second case, the domain 3) has no rational points of the first and second type,

but has rational points of the third type with CM-field F(^J — βλ) for which condition

(R3') is satisfied (Th. 7). In particular, the case ( 1 ^ ) reduces to the case (a), ( I Π ^ )

(Example 3).

REMARK. For the domains of exceptional type, satisfying (Rl), we have the

following possibilities for gx. We use the notation in the list of Tits [T].

(Tl) ( £ 2 8

3 ) ( r 0 = 3).

(T2) (3DlΛ), (6DlΛ) ( r o = l ) , {E%2) (ro = 2).

(Ul) {2Ele

2){r0 = 2).

(U2) (2£if1)(r0=l).
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The fact that these are the only possibilities in the list of Tits follows from a kind
of Hasse principle given by Harder ([H], Satz 4.3.3). Among the domains of type (T2),
the domain 3) corresponding to (E*)2) has the last rational boundary component ^Q

of type (ΠI(i2)) (as in the above case (a)). Hence 3} has rational points. For the one
corresponding to (3/>4,i) or {6D\Λ) the Lie algebra g ^ is β-simple but not pure, having
2m compact and m non-compact factors (similarly to the case (b) above). Hence 3 has
no rational points.
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