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Abstract. We study conformal vector fields on pseudo-Riemannian manifolds
which are locally gradient fields. This is closely related with a certain differential equation
for the Hessian of a real function. We obtain global solutions of the oscillator and
peandulum equation for the Hessian of this function on a pseudo-Riemannian manifold,
generalizing previous results by M. Obata, Y. Tashiro, and Y. Kerbrat. In particular, it
turns out that the pendulum equation characterizes a certain conformal type of metrics
carrying a conformal vector field with infinitely many zeros.

1. Introduction. Conformal mappings and conformal vector fields are classical
topics in geometry. Essential conformal vector fields on Riemannian spaces were studied
by Obata, Lelong-Ferrand and Alekseevskii [Al], [La2]. Conformal gradient fields
are essentially solutions of the differential equation V2φ = (Aφ/n) g. This equation was
studied since the 1920's by Brinkmann, Fialkow, Yano, Tashiro, Kerbrat and others.
In the Riemannian case the results are quite complete. In the pseudo-Riemannian case
a systematic approach has started in our previous paper [KR2] including a conformal
classification theorem.

A classical result by Obata and Tashiro characterizes the standard sphere as the
only complete Riemannian manifold admitting a non-constant solution of the equation
V2φ= —c2φg for a non-zero constant c. This is nothing but the classical harmonic
oscillator equation. In Section 3 we study the following generalization: given a function
h: R-+R, the conformal gradient field equation V2φ + h(φ) g = 0 imposes very strong
conditions on the underlying pseudo-Riemannian manifold. We give analogous results
for the case of the equation of the general undamped oscillator. This illustrates how a
metric can be modeled within a conformal class by a second order differential equation.
The metric in this case is completely determined by the equation and the choice of a
constant of integration which is essentially the energy of the undamped oscillator.
Similarly, for small energy, the pendulum equation on a pseudo-Riemannian manifold
determines the metric uniquely. In the Riemannian case it is conformal to the standard
sphere whereas in the case of an indefinite metric it is conformal to a noncompact
manifold M(Z). This manifold carries a conformal gradient field with infinitely many
zeros. A short announcement of the results in this paper appeared in [KR3].
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2. Conformal gradient fields and harmonic oscillator manifolds. From the view-

point of infinitesimal transformations [Yl], a vector field V is said to preserve a

certain geometric quantity if the Lie derivative <£v of this quantity vanishes. On a

pseudo-Riemannian manifold (M, g) a vector field V is called isometric if it preserves

the metric or if &vg = 0. Recall that by definition (&vg)(X9 Y) = g(S7xV, Y) + g(X, VyF)

for arbitrary tangent vectors X, Y where V denotes the Levi-Civita connection. V is

called conformal if it preserves the conformal class of the metric or if S£vg = 2 φ g for

some function φ. Necessarily this function is φ = (l/«)divF in this case. V is called

homothetic if φ is constant. In the particular case of a gradient field F = g r a d / we

have £?vg = = 2V2/, hence grad / is conformal if and only if V2f = φ g where

/i φ = Δ/ = div(grad/) is the Laplacian. As a short notation we will use the symbol

( )° for the traceless part of a (0, 2)-tensor, e.g.

In particular, a gradient field grad / is conformal if and only if (V2/)0 = 0. The equation

(V2/)° = 0 has been extensively studied in many papers [Fi], [Y2], [T], [Bo], [Kbl] ,

[Fel ] , [Kϋ]. It arises in various contexts. Especially, it occurs in connection with the

behavior of the Ricci tensor Ric^ in a conformal class of metrics and for conformal

vector fields on Einstein spaces, see [Br], [Kan], [BK], [KR1], [KR4]. The local

structure of all solutions of (V2φ)° = 0 for any function φ is well understood at least in

the case where grad φ is not a null vector on an open set. We recall the following lemma:

2.1. LEMMA. Let (M, g) be a pseudo-Riemannian manifold admiting a non-constant

solution φ of the equation (V2φ)° = 0. Then the following holds:

(i) In a neighborhood of any point with ||grad<p||2?£0, 9 w a warped product

g = ηdt2 + φ'2(t)g^ (η=±l is the sign of ||grad<p||2), φ is a function depending only on t,

the trajectories ofgmd <p/||grad φ\\ are geodesies, and φ satisfies φ" = η Aφ/n along these

trajectories.

(ii) The zeros of grad φ are isolated. In a neighborhood of such a zero the metric

is a warped product in polar coordinates g = ηdt2 + (φ'2(t)/φη2{0))gη where gη denotes the

induced metric on the 'unit sphere" {x\ | |x| |2 = ̂ } in the pseudo-Euclidean space of the

same signature as g. In particular\ near a critical point ofφ the metric g is conformallyflat.

A poof of Lemma 2.1 has been given in our previous paper [KR2]. (i) is originally

due to Fialkow [Fi]. In the Riemannian case (ii) has been observed by Tashiro [T].

2.2. PROPOSITION (cf. [T], [Obi]). Assume that (M, g) is a complete Riemannian

manifold admitting a non-constant solution φ of the differential equation V2φ + c2φg = 0,

where cΦΰίs a real constant. Then (M, g) is isometric with the standard sphere of curvature

The proof of Proposition 2.2 is an easy consequence of Lemma 2.1 by the following
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argument: along any trajectory of grad φ/1| grad φ ||, the function φ satisfies φ " + c 2φ = 0,

the equation of the harmonic oscillator, hence φ is periodic. From a critical point one

determines the metric using Lemma 2.1(ii). The standard sphere may be called the

'harmonic oscillator manifold' because it is determined by the harmonic oscillator

equation.

2.3. PROPOSITION (cf. [T], [Kb2]). Assume that (M, g) is a complete pseudo-

Riemannian manifold admitting a non-constant solution φ of the differential equation

W2φ — c2φg = 0, where cΦO is a real constant. Assume furthermore that φ has a critical

point. Then (M, g) is isometric with the (pseudo-)hyperbolic space of curvature —c2: Hn,

HI or a covering of H\.

Proposition 2.3 follows by the same procedure as Proposition 2.2: from the critical

point one determines the metric by the equation φ" + ηc2φ = 0 where η= 1 in spacelike

directions and η = — 1 in timelike directions. In the indefinite case we can replace g by

— g. Then the equation becomes V2φ + c2φg = 0, and the solution becomes the

pseudo-sphere. If φ has no critical point on the manifold, then it is impossible to

determine its metrical or even topological type: examples are warped products with—

more or less—arbitrary fiber. A reformulation of Proposition 2.2 is the following:

2.4. COROLLARY. Let (M, g) be a complete Riemannian manifold carrying a

non-homothetic conformal vector field V. Assume that i?κ(L + (c2/2) mg) = 0 holds for a

certain real constant cφO. Then (M, g) is isometric with the sphere of curvature c2.

PROOF. By assumption <Sfvg = 2φg for a non-constant function φ. On the other

hand, from the well known equations (cf. [Yl; p. 160]) j£?κRic= — (n — 2)V2φ — Aφ g

and ί£vS = - (2/n)Aφ -2S φ one obtains <£VL = ψφ where L: = (1 /(n - 2){(n/2)Sg - Ric)

denotes the Schouten tensor. This implies 0 = c$?vL + (c2/2)g'vg = V2φ + c2φg. Now the

assertion follows from Proposition 2.2. •

3. Oscillator and pendulum manifolds. The argument in the proof of Proposition

2.2 does not essentially depend on the particular geometry of the sphere. It only depends

on the warped product structure of the metric and the periodicity of the solution φ,

regarded as a function in one real variable. This allows a generalization to a large class

of manifolds or equations, respectively. In this section we characterize certain metrics

on complete manifolds by the equation of the undamped oscillator or the pendulum.

The starting point is the characterization of standard spaces by the harmonic oscillator

equations in Propositions 2.2 and 2.3.

3.1. THEOREM (undamped oscillator manifolds). Let h: R^Rbe any given locally

Lipschitzian function satisfying xh(x)>0 for all x^O and \x

oh(ξ)dξ -> oo for ->x+oo.

Let (M, g) be a complete Riemannian manifold admitting a non-constant solution φ of the

equation V2φ + h(φ)' g = 0. Then M is conformally diffeomorphic to the standard sphere.
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Moreover, the metric g is uniquely determined by h and a certain positive constant which

corresponds to the energy of the undamped oscillator. In other words: The equation

V2φ + h(φ)* g = 0 determines a one-parameter family of Riemannian manifolds, each

conformal to the sphere.

(Alternatively: assume that gradφ is a conformal vector field with div(gradφ) =
— nh{φ).) In the special case h(φ) = c2φ (the harmonic oscillator) this one-parameter
family of metrics degenerates to the unique standard metric on Sn of curvature c2.
Other examples are given by h(φ): = φ2k+1.

PROOF. By Lemma 2.1 along any trajectory of grad(p/||gradφ||, the function
φ = φ(t) satisfies the equation of the undamped oscillator

The metric g is a warped product

It is well known (see [BN]) that under the given assumption every solution of the
undamped oscillator is periodic. Therefore every solution has a critical point. Then by
Lemma 2.1(ii) g# is the standard metric on the sphere of certain radius.

In more detail the solutions are the following: Integration of the equation of the
undamped oscillator leads to

l Cφ

— φ '2 + h(x)dx = C ( = constant).
2 Jo

This constant C is nothing but the total energy function if one regards φ = φ(t) as the
motion of a point depending on the time /. By assumption it is clear that C>0. Let
H(y): = γQh(x)dx. Then a second step of integration leads to the following expression
for the inverse function t = t(φ):

Γ dy

where φ0 must be chosen so that H(φ0) < C. The periodicity of φ can be expressed by
the fact that this formula for t(φ) describes a branch between two zeros of the
denominator, i.e. between two points φl9 φ2 with H(φ1) = H(φ2) = C.

After a shift of the parameter t we can assume that φ'(0) = 0 and φ(0)>0. Then
φ(0) is uniquely determined by H(φ)=C because His monotone in [0, oo). The equation
φ" + h(φ) = 0 itself determines φ"(0)<0. Therefore around the corresponding critical
point of φ on M the metric g looks like

9 φ"\ϋ) Gl '
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where gγ is the metric of the unit sphere (cf. Proposition 2.3(ii)). This expression for g
holds for any interval [0, t~\ as long as φ'(t)Φθ for 0<t<t. If τ denotes the smallest
positive zero of φ\ then

produces a singularity at t = τ unless the factor of gγ is appropriate. On the other hand,
by assumption g has no singularity. Therefore this factor must be appropriate, i.e.
(φ")2(τ) = (φ")2(0). Therefore the warped product (0, τJx^S"1"1 together with the two
critical points at t = 0 and t = τ is conformal to the standard sphere. The metric is
uniquely determined by h and C.

If σ denotes the smallest zero of φ' which is greater than τ, then in the interval
[τ, σ] the same happens. The warped product metric is exactly the same, just
parametrized beckwards. Here we use the facts that h(σ) = h(Q) and that φ" depends
only on φ. If in addition h is an odd function, then the metric has an additional
symmetry: there is an isometric reflection interchanging the two exceptional points.
Furthermore it is fairly clear that the metric g depends continuously on the choice of
C because the expression for the inverse function φ'1 does. In the special case when
h is linear this choice of C has no influence on the metric: (M, g) is. a round sphere of
a radius depending only on h. •

If one tries to find a generalization of Theorem 3.1 in the case of an indefinite
metric, one has the same kind of relationship as between Propositions 2.2 and 2.3. First
of all, one has to assume that the solution has a critical point. Secondly, there is the
problem that the equation φ" + h(φ) = 0 along spacelike directions corresponds to the
equation φ" — h(φ) = 0 along timelike directions. The solutions of the latter equation
are not necessarily defined over R which would exclude complete metrics of this type.
Therefore, we have to restrict ourselves to a special subclass of equations.

3.2. THEOREM (undamped oscillator manifolds with indefinite metric). Let h\ /?-•
R be a globally Lipschitzian function satisfying xh(x)>0 for all xΦO and \x

Qh(ξ)dξ^>

oo for x -• ± oo. Let (M, g) be a complete pseudo-Riemannian manifold with an indefi-

nite metric admitting a non-constant solution φ of the equation V2φ + Λ(φ) g = 0 with

at least one critical point. Then M is conformally diffeomorphic to S\ or to a covering of

Sn

n- ί. Moreover, the metric g is uniquely determined by h and a certain positive constant.

Conversely, there is a complete metric g of this type.

In the special case h(φ) = c2φ the metric is uniquely determined, see Proposition
2.3 for — g instead of g. The assumption concerning a critical point in Theorem 3.2
can be replaced by the assumption that | |gradφ| | 2>0 somewhere.

PROOF. The proof consists of a combination of the proofs of Proposition 2.3 and
Theorem 3.1. Along radial geodesies emanating from the critical point of φ we have
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φ"±h(φ) = 0,

where the sign is the sign of ||gradφ||2. In spacelike directions this leads to the same
solution as in Theorem 3.1. They all are periodic by the assumptions on h. Therefore
φ has at least two critical points, just as in the case of an indefinite metric in Proposition
2.3. In timelike directions the equation φ" — h(φ) = 0 has a complete solution φ: R^R
by the assumption of the global Lipschitz condition. In some sense h is 'almost linear'
leading to an 'almost sinh-like' solution φ. The global conformal equivalence with the
pseudo-sphere or its covering follows from [KR2; Sect. 6]. •

Furthermore, we want to discuss the analogous problem for the equation of the
undamped pendulum φ " + ω 2 sin φ = 0 for a real constant ω > 0. In this case the function
h(φ) = ω2 sin φ does not satisfy the assumption of Theorem 3.1. In fact, it is well known
that the solutions are periodic only for small energy and that they are non-periodic
beyond a critical level. Thus we expect the topology of the manifold to change exactly
at this critical energy level.

3.3. REMARK (pendulum equation). Solutions of the pendulum equation

f"(t)+ ω2 sin f(t) = O

or, equivalently,

/ / 2 (0-2ω 2 cos/(/) + 2ω2 = C

with positive total energy C can be expressed using Jacobi's elliptic functions u i—• sn(κ, /c),
MI—>cn(M, k\ MI—»dn(w, k) (cf. [Law; 5.1]). Here ke(0, 1) denotes the modulus, k'e(0, 1)
the complementary modulus satisfying k2 + kr2 = 1.

There are analytic functions K=K(k), K' = K\k) which allow to express the
periods of Jacobi's elliptic functions in terms of the modulus.

If the total energy C satisfies C<4ω2 then the solution

/(/) = 2 arcsin(/r sn(ω/, k))

with C=4ω2k2 and /(0) = 0 is periodic with period T=4K/ω. In this case the amplitude
is f(K/ω) = 2 arcsin(fc) e (0, π).

The elliptic function

G(z) = 2ωkcn(ωt, k)

has periods 4K/ω and (4K'/ω)i. The zeros occur at z = (K/ω)(2m+ l) + (2K'/ω)in; m,
neZ and the poles at z = (2K/ω)m + (K'/ω)(2n+ \)i; m,neZ. All poles and zeros are
simple. Then the solution / satisfies f'(t) — G(t) for all teR.

For later use we define
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t + — =2 arcsin(£ sn(ωί + K, k))
ωj

and

f_(t) = π- 2 arcsin(fc' sn(ω/ + K\ k')).

Then it follows that f+ are solutions of / + + ω 2 s i n / ± = 0 or of (f±)2 +
ω2 cos(/±)-f-2ω2 = 4ω2k2, respectively.

Since fί(t) = G(t + K/ω) and fL(t) = iG(i(t + K/ω)), it follows that for all m>0

= k'2 = l/2 implies f_(t) = π-f+(t). In the limit case C=4ω2 (i.e., k^> 1) we obtain

) = 2arcsin(tanh(ωθ).

Hence / is monotonic and approaches for t -> + oo the unstable equilibrium given by
the bottom up position of the pendulum.

If C>4ω 2, then the solution / is strictly monotonic and satisfies

. fit) (ωt
sin = sn , k

2 U
with C = 4ω2/fc2, ke(0, 1). The derivative

is periodic with period 2kK/ω.

3.4. THEOREM (pendulum manifolds). Let (M, g) be a complete Riemannίan
manifold admitting a non-constant solution φ of the equation of the undamped pendulum

Depending on the choice of a certain positive constant C (the total energy of the pendulum),
the following holds:

( i ) ifC<4ω2, then (M, g) is conformally diffeomorphic to Sn; the metric is uniquely
determined by C,

(ii) ifC>4ω2, then (M,g) is a warped product Rxφ.M^ where φ' is periodic,
(iii) ί/C=4ω 2, then (M, g) is a warped product Rxφ,M^ where lim^-t^ φ' = 0.

PROOF. The proof follows the pattern of the proof of Theorem 3.1. Along the
trajectories of gradφ/||gradφ|| the function φ satisfies the pendulum equation
φ" + ω2 ' sinφ = 0. Locally g is a warped product g = dt2 + φ'2(t)g*. The total energy C
is given by C = φr2(t) — 2ω2 cos φ + 2ω2. Therefore, by Remark 3.3 there are the following
three cases to be considered.
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If C<C0:=4ω2 then the solution φ(t) = 2arcsin(A:sn(ωί + K, k)) is periodic.

Therefore φ' has zeros leading to a conformal sphere as in Theorem 3.1 ( = Case (i)).

If C—Co then the solution is φ(ί) = 2arcsin(tanh(ωί)), hence φ'(ί) = 2ωsech(ωί),

i.e. φ' is positive everywhere leading to the warped product Rxφ,M^. This case

corresponds to the critical energy C0 = 4ω2 of an unstable equilibrium of the pendulum

([BN; pp. 177-178). More precisely, the ideal boundary points t= ±oo represent this

unstable bottom up position of the pendulum.

If C>CQ then the solution φ is given by sin(φ(ί)/2) = sn(ω//fc, k), hence φ'(t) =

(2ω/k) dn(ωt/k, k) is positive everywhere and periodic leading again to the warped

product Rxφ>M^.

It is particularly interesting to study the same pendulum equation V2φ +

ω2 sin(φ)g = 0 on pseudo-Riemannian manifolds with an indefinite metric because a new

type of examples comes in. In fact, this leads to a conformal type of non-compact

spaces carrying conformal gradient fields with infinitely many zeros. This manifold

M(Z) and one particular analytic metric has been constructed in [KR2]. For the reader's

convenience we briefly recall the construction. It is denoted by M(Z) because the set

of zeros is in natural bijection with Z including a Z-action which is half transitive on

the set of zeros.

For fixed &e(0, 1) and ω > 0 we define a building block B as the following open

subspace of Rn

κ\

K'2-<\\v\\l<K2
•y 1 1 - ^ I I J C - Λ

ω2 ω2

We define the manifold

M(Z)= ΌB_1VBOΌB1U

by gluing copies Bj of B along the components

K2

ω
dBJ={yeRn

κ

K'2

ω

of the boundary dB as follows: Identify dBf with dB% and dBx with dB0 and then

dB^ with dBϊ. By proceeding this way we obtain M(Z) as a differentiable manifold.

On each building block B we have (outside the light cone of 0) polar coordinates

(t,x)eRx(Sn

κ-
1uHn

κ-+\)

(cf. [KR2; Ch. 3]). The induced metric of/?" on each block together with the inversion

(t9x)

understood as a map from Bj to Bj+1 for | | x | | 2 >0 and as a map from Bj to Bj_x for
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| | x | | 2 <0, defines a conformal structure on M(Z). For our purpose here, we describe a

metric induced by the pendulum equation and its solution as follows:

Let

φ+(t) = 2 arcsin(fc sn(ωt + K, k))

and

<p_(ί) = π — 2arcsin(/:'sn(ω/ + Λ ,̂ k')).

Then

φ "± + co 2 sin φ = 0 ,

see Remark 3.3. We define a function by φ(t, x) = φη(t) η= \\x\\2 outside the light cone

of 0. The equations in Remark 3.3 imply that this function extends to an analytic

function on B, as was shown in Proposition 3.5 of [KR2]. Consequently,

2 ^ W
φ'η2{0) η

extends to an analytic metric on B. It also follows that the function φ on B satisfies

The only critical point on B is the center 0 of B. The boundary dB is totally geodesic

since φ'+(K/ω) = φ+(K/ω) = 0 resp. φ"-{K'/ω) = φ_(K'/ω) = 0. Hence the metric extends

to an analytic metric gkω on M(Z) and the function extends to a function φ on M(Z)

solving the pendulum equation. The critical points are precisely the central points of

the building blocks. Using the pendulum equation and the differential equations for

geodesies in a warped product [ON; p. 208], one can also show that gKω is geodesically

complete. Moreover, gkω admits an isometric Z-action permuting the set of critical

points of φ. Every geodesic through a critical point is closed. It describes the periodic

motion of an ordinary pendulum.

3.5. THEOREM (pendulum manifolds with indefinite metric). Let (M, g) be a

complete pseudo-Riemannian manifold with a metric of signature (K, ri) for 2 < K < n — 2.

Assume that for a constant ω # 0 there exists a non-constant solution φ of the pendulum

equation

V2φ + ω 2 sinφ # = 0 .

Depending on the choice of a certain positive constant C (the total energy of the pendulum)

the following holds:

(i) If C < 4 ω 2 , then (M,g) is isometric to one of the manifolds (M(Z),gkω)

constructed above where k = C/4ω2.

(ii) If C > 4 ω 2 , then (M, g) is a warped product R x -M^ where φ' is periodic.
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Conversely, for any choice of CφAω2 and any signature {including (1, ή) and (n— 1, n))

there exists such a complete pseudo-Riemannίan manifold (M, g).

For C=4ω2 there is such a warped product as in Theorem 3.4 but it is not
null-complete (compare [ON; p. 209]). In the case of signature (1, n) there are additional
global conformal types of manifolds, due to the fact that the 'unit sphere' has three or
four connected components.

PROOF. First of all, the 'improper' case ||gradφ||2 = 0 everywhere does not occur
because otherwise V2φ = 0 and consequently φ is constant. Along any trajectory of
grad φ, parametrized by are length, the equation is

where the sign is the sign of ||grad(p||2. It is equivalent to

where C>0 denotes the total energy (see Remark 3.3).
(i) If C<4ω 2 , then any solution φ is periodic and has therefore a critical point.

In polar coordinates (ί, x) around a critical point, φ can be written as φ(tix) = φη(t),
η= \\x\\2, and g takes the form

φη IP)

where φ (̂0) = 0. This is nothing but the metric gkω on the building block B (see above).
By periodicity and completeness g coincides globally with gkω on M(Z).

(ii) If C> 4ω2, then any solution φ is strictly monotonic with a periodic derivative
φ'. By Lemma 2.1 g contains a warped product ηdt2 + φ'η{t)g*. This is complete, and
therefore it coincides with g. •

3.6. REMARKS. The manifold M(Z) carries a conformal vector field which is
essential and complete with a set of zeros in natural bijection with Z. For an arbitrary
proper subset y4cZwe can restrict the vector field to M(Z)\A and still obtain an
essential and complete conformal field. In this way one obtains uncountably many
conformally distinct examples. In the Riemannian case an essential and complete
conformal vector field exists only on Sn and En (see [Al], [Ob2], [La2], [Fe2], [Yo]).
Such an analogous classification theorem does not seem to be known in the indefinite
case. In fact, at least all the examples M(Z)\A would have to occur in such a
classification. Furthermore, the essential homothetic vector fields studied in [A2] would
have to occur also.
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