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HYPERGEOMETRIC POLYNOMIALS OVER FINITE FIELDS

MASAO KOIKE*

(Received August 25, 1997, revised June 12, 1998)

Abstract. Honda found certain hypergeometric polynomials over the prime field
which can be expressed as a product of linear factors. In this paper we give a different
proof of his result by using elementary functions described by hypergeometric series of
Gauss. We can find another hypergeometric polynomials which Honda missed.

Introduction. Let p be any odd prime and let Fp denote the prime field of

characteristic p. For any a in Fp and 0<neZ, we put (a)o=\ and (a)n = a(a +1)

(a + n — 1) if « > 1. For any α, b, c in Fp9 we define the hypergeometric polynomials over

the finite field Fp by

where we stop the sum as soon as the numerator vanishes and assume that the

denominator does not vanish before the numerator does.

These polynomials have already appeared in Deuring [1], Igusa [4], Ihara [5],

Honda [3] and others.

Honda [3] proved the following result: Let/>>5 and let φ denote the Legendre

character of Fp. For any e, ε'e {1, — 1}, we define

εA*)= Π (x-

Then Honda proved:

THEOREM 0.1 (Honda).

where a[Q is a constant which takes value 1, 2 or 1/2.
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Honda proved these identities by showing that these polynomials satisfy the same
differential equation of degree 2. Thus his proof does not clarify the meaning of these
identities. He also mentioned that the remaining two polynomials should not have these
descriptions by hypergeometric polynomials.

Contrary to his remark, we prove:

THEOREM 0.2.

where a[pL1 is equal to 1 if p= 1 (mod4) and —2 ifp = 3 (mod4) and a[p\ is equal to 1
ifp=\ (mod4) and —1/2 ifp = 3 (mod4).

Our method of proof is to use elementary functions described by hypergeometric
series of Gauss [2];

(1)

The polynomials on the left hand side are cyclotomic polynomials, so the above
results seem to be connected with the theory of cyclotomic fields.

1. Proof of Theorem 0.2. Let / = (p — l)/2. We quote the following identity from
[3, p. 183]:

F_ι_ι(x)2 = const

Hence we know the degree of F^lt.1(x). Since degir_1>_1(x) + degF1>_1 =
deg Fί_1(x) + degFγΛ{x) =p — 2, we get

PROPOSITION 1.1.

(//2-1, if p=\ (mod4),

:(/"-l)/2, if ^ 3 (mod4).

l(f-l)/2, if ^ 3 (mod4).

First we prove Theorem 0.2 for Fί,-i(x). Take the identity (1) for n—f and t=\.
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Then, taking reduction mod/?, we obtain a new identity in Fp[u]\

(3) (1 +κ)' + (l -UV = 2F(±-, 1 , 1 ; u2

Assume that/? = 1 (mod 4). Let #(w) denote the left hand side of (3). It is clear that

g(ot) = O implies that g{ — α) = 0. Also, 0, 1 and —1 are not roots of g(u) = 0.

LEMMA 1.2.

PROOF. Let α be a root of g(u) = 0 and put β = (l 4-α)/(l — α). Then #(α) = 0 is

equivalent to /^-f 1=0, which implies that β belongs to the prime field and φ(β) =

- 1 . Since α = (j8-l)/(l+j8), α belongs to Fp and 1 -a2 = (4β)/(l + β)2. Therefore

<£(l-α 2) = 0 G 8 ) = - l , and α 2 belongs to 5 ^ . ! . Since - α = (l/0-l)/(l + l/j5), both j8

and l/)8 correspond to α 2 . Hence the number of different α 2 is f/2, which is equal to

the cardinality of Slt-1 by Proposition 1.1.

Since / is even, we get

(4) / / 2

From (3), it follows that

(5)

This completes the proof in this case.

Assume that/? = 3 (mod4). Then / is odd, hence the degree of g(u) i s/—1, which

is even. Then an argument similar to the proof of Lemma 1.2 shows that the statement

in Lemma 1.2 is also true in this case. Since the coefficient of uf ~Γ in g(u) is p — 1, we get

(6)

From (3), we get

(7)

Now we prove Theorem 0.2 for FlΛ(x).

Take the identity (2) for n =f and t=\. Taking reduction modulo /?, we obtain a

new identity in Fp[u]:

(8) ( + ) ( ) W ( , ,

Put
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g()

u

Then, by the same argument as above, we can prove

If p = 1 (mod 4), the degree of g(u) is /—2 and the coefficient of uf~2 is 1, so

(9) g(u) = FίΛ(u2).

From (8), it follows that

(10) F1,1(x) =

If p = 3 (mod 4), the degree of g{u) is /— 1, and the coefficient of uf~ι is — 2, so

(11) g{u)=~2FιΛ{u2).

Hence, we get

(12) FιΛ(x)= - ± F ( 1 , | , } ;

This completes the proof of Theorem 0.2.

REMARK. Honda's theorem can also be proved by our method. The identities in

Fp[u] which are used to prove his theorem are the following:

f — , — , — ; M
4 4 2

= uF(—,—,— u2

\4 4 2

REMARK. There is another method to prove Honda's theorem, which uses

Tschebysheff polynomials whose roots generate the maximal real subflelds of cyclotomic

fields. The fact that the decomposition of primes are completely known in these fields

enables us to know the factorization of the reduction modulo p of Tschebysheff

polynomials.

2. Generalization and comment. We understand that our theorem shows that all

roots of certain hypergeometric polynomials belong to the prime field. We should remark

that this resembles the fact that all roots of F(l/2, 1/2, 1; x) = 0 belong to the quadratic

extension of the prime field, which are super-singular A-invariants of elliptic curves ([1],

[4]).
By our method of proof of Theorem 0.2, we can find a series of hypergeometric
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polynomials whose roots belong to the prime field. For example, we can prove the
following theorem.

THEOREM 2.1. Let p>5 be a prime. Let d be a positive even integer such that
d I (p-l). Then the roots ofF(l/2d, l/2d+ 1/2, 1/2; x) = 0 belong to the prime field.
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