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BOUNDARY VALUE PROBLEMS OF NONSINGULAR TYPE
ON THE SEMI-INFINITE INTERVAL
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Abstract. Existence of a positive solution is established for second order boundary

value problems on the semi-infinite interval.

1. Introduction. In this paper we discuss boundary value problems on the semi-

infinite interval. In particular we examine

ί y" + Φ(t)f(t, y, y') = 0, 0 < t < σo

{ v(0) = 0, y bounded on [0, oo),

ί y" + Φ(t)f(t,y,y')=O, 0<t < σ o
( L 2 ) I v(0) = 0 , lim y(t) exists,

I ί-*oo

and

ί y / 4 - 0 ( i ) / ( i , ^ / ) = O, 0<t < σ o
( L 3 )

I

in Section 2; here / : [0, oo) x [0, σo) x [0, σo) —• [0, σo). By putting physically reasonable

assumptions on / , we will show (1.1), (1.2) and (1.3) have solutions y e Cι[0, oo)ΠC2(0, σo)

with y > 0 on (0, σo) even if v = 0 is also a solution. Problems of the above type have been

discussed by many authors in the literature; we refer the reader to [2-11] and their references.

The technique we use to establish existence is based on (i) establishing new results (see [1]

also) on the finite interval [0, n] for each n e N+ = {1,2,...} and (ii) a diagonalization

argument. Consequently, the results of this paper are new and they extend and complement

previously known results. We remark that the diagonalization argument applied in this paper

has been used by many authors; see [2, 4, 6, 7].

To conclude this section we recall the following well-known existence principle [10] for

y ' + 0 ( ί ) F ( ί , 3 ; , y ) = O , 0<t<n

(1.4) < y(0)=a>0

y'(n) = b>0; here n e {1, 2,...} is fixed.

THEOREM 1.1. Suppose

(1.5) φ e C(0,π) withφ >0on (0, n) and φ e Ll[0,n]
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and

(1.6) F : [0, n] x R2 -> R is continuous

are satisfied. In addition, suppose there is a constant M > a + bn, independent ofλ, with

\y\i=max{\y\o,\y'\o}ΪM

for any solution y e C 1 [0, n] Π C2(0, n) to

y" + λφ(t)F(t,y,y') = O, 0<t<n
( L 7 ) λ ' y(0) = fl, y'(n) =

for each λ e (0, 1); here \u\o = sup[0,Π] \u(t)\. Then (1.4) has a solution y e Cι[0, n] Π

C2(0,n)with\y\{ <M.

2. Semi-infinite problem. In this section we discuss (1.1), (1.2) and (1.3). Through-

out this section we will assume the following conditions hold:

(2.1) φ G C(0, oo) with φ > 0 on (0, oo),

/ : [0, oo) x [0, oo) x [0, oo) -> [0, oo) is continuous with
(2 2)

1 /( ί , M, p) > 0 for (ί, M, /?) G [0, oo) x (0, oo) x (0, oo),

(2.3) β o o = / Φis)ds < oo,
./o

/•OO

(2.4) Λoo= / sφ(s)ds < o o ,

. /( ί , w, p) < if(max{M, /?}) on [0, oo) x (0, oo) x (0, oo) with

w > 0 continuous and nondecreasing on [0, oo),

(2.6) sup - — — — > 1
w(c)max{<2 R)

and

(2.7)

for a constant H > 0 there exists a function ψπ continuous

on [0, oo) and positive on (0, oo), and a constant y, 0 < γ < 1

with /(ί, w, p) > ψH(t)pγ on [0, oo) x [0, H]2 .

THEOREM 2.1. Suppose (2.1)-(2.7) hold. Then (1.1), (1.2) and (1.3) have solutions

y e Cι[0, oo) Π C2(0, oo) with y > 0 on (0, oo).

PROOF. First fixn e N+ = {1,2,...} and consider the family of problems

t, y, yf) = 0, 0 < t < n
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Choose M > 0 with

(2.9) — > 1.
w(M)max{<2oo, #00}

Next choose ε > 0 with ε < M/(n + 1) and

(2-10) / a f „ , ,_2ε > 1

Let no G Λf+ be chosen so that n/n$ < ε and let No = {no, no + 1,...}.
We first show that

1 y(0) = y\n) = 1/m

has a solution for each m e No', here

f(t,u,p), u>\/m, p>l/m

f(t, u, 1/m), u > 1/m, p < 1/m

f(t, 1/m, /?), M < 1/m, p > 1/m

/(ί, 1/m, 1/m), w < 1/m, / ? < l / m .

To show that (2.1 l ) m has a solution, we consider the family of problems

f*(ί, y, y') = 0, 0 < ί < n

• )λ \ y(0) = yf{n) = 1/m, m 6 yVo

for 0 < λ < 1. Let y e Cι[0, n] Π C2(0, π) be any solution of (2.12)^. Then y' > 1/m and

y > 1/m on [0, n\. Also from (2.5) we have

-y'\t)<φ(t)w{\y\χ) fori 6 ( 0 , π ) ;

here |;y|i = max{|j |o, iyio} and |w|o = sup [ 0 n] \u(t)\. Integrate from t to n to obtain

(2.13) y(t)<w(\y\{) Γφ(x)dx + - f o r ί € [ 0 , n ] .
Jt m

In particular

(2.14) y'(P)<w(\y\ι)Qoo + ε.

Also, by using (2.13) and the equality /0" sφ(s)ds = /o

π /f

π φ(x)dxdt,

n 1 r
j(n) < 1 h tu(|}Ίi) / sφ(s)ds

mm Jo

and so

(2.15)

Combine (2.14) and (2.15) to obtain

(2.16) uXlylQαuulcL ^

Now (2.10) together with (2.16) implies \y\\ φ M.
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Thus Theorem 1.1 implies that (2.11)m has a solution ym,n with |jm,«|i < M. In fact

(2.17) - < ym,n{t) <M and -<y'm n(t) <M for t e [0, n]

m m

and ym,n satisfies

t,y,y') = O, 0<t <n

Now (2.7) guarantees the existence of a function ΨM(O continuous on [0, oo) and positive

on (0, oo), and a constant y, 0 < y < 1, with /( ί , ym,n(t), ^ ^ ( O ) > ψM(t)[y'mn(t)Y for

it, ym,n(t), yf

m n(t)) e [0, n] x [0, M] 2 . Of course, we have immediately that

/ pn \ 1/(1—y)

(2.18) y'm%n(t) > ί (1 -y) I ψM(s)Φ(s)ds\ for t G [0, n]

and so

/»? / /•« \ 1/(1—y)

(2.19) ym,n(t) > I ί (1 - y) / ψM{s)φ{s)ds \ dx for ί G [0, π ] .

It is also immediate that

I {ymn}meNo is a bounded, equicontinuous
(2.2U) \

[ family on [0, n] for each y = 0, 1.

The Arzela-Ascoli Theorem guarantees the existence of a subsequence N of No and a

function yn G Cι[0, n] with y ^ converging uniformly on [0, n] to yn

J as m -^ oo through

W; here = 0, 1. Also yn(0) = 0 = y'n(n) and

pt / pn \ 1/(1—y)

(2.21) yn(t) > I ί (1 - y) / ψM(s)φ{s)ds\ dx for t e [0, n ] ,

in particular, yn > 0 on (0, ή\. Now ym,n, m G TV, satisfies

1 1 / "
Jm Λ ( 0 = 1 1 4- / sφ(s)f(s, ym n(s), ym n(s))ds

(2.22) ' m m Jo
pn

+ f I φ(s)f(s, ym,n(s), y'mn{s))ds .

Fix ί G [0, n] and let m -> oo through N in (2.22) to obtain
yn(t)= f sφ(s)f(s,yn(s),yn(s))ds + t f φ(s)f(s,yn(s),yn(s))ds.

Jo Jt

Consequently, y e C2(0, n] with y'n' + φ(t)f(t, yn, yn) = 0 for 0 < t < n. Also from (2.17)

we have

(2.23) 0<yn(t) <M and 0 < y'n(t) < M for t G [0, n],

and the differential equation yields

(2.24) 0 < -yr

n\t) < φ{t)Hoo for t e (0, n]
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here HOQ = sup{/0, w, p); (t, u, p) e [0, oo) x [0, M]2}. In addition we have

/

n roo

φ(x)dx < Hoo I φ(x)dx for t e [0, n].

To show that (1.1), (1.2) and (1.3) have a solution, we will apply a diagonalization argument.

Let

ί Λ _ ί yn(t), te[0,n]
U n { t ) - \ yn(n), f € [ / i , o o ) .

Notice that un e C1 [0, oo) with

(2.26) 0<un(t) <M and 0 < u'n(t) < M for t e [0, oo),

and for t, s e [0, oo) it is easy to see that
(2.27) K(t) - u'n{s)\ < Ho

/ '
Js

φ(x)dx

In addition

/

oo

φ(x)dx for r e [0,oo),

and

rt / rn \l/d-y)

(2.29) un(t)> ((1 - K) / iMi)0(s)έ/sl Ac for ί e [0,n].

Also notice for n e N+ that

r 7 r1 \1/(1"κ)

(2.30) un(t) > ί (1 - γ) I ψM(s)Φ(s)ds I dx = a\(t) for ί e [0, 1].

The Arzela-Ascoli Theorem guarantees the existence of a subsequence N\ of Λ^+ and a func-

tion z\ G Cι[0, 1] with M̂  converging uniformly on [0, 1] to z[^ as n -> oo through iVi

here 7 = 0, 1. Also from (2.30), z\(t) > a\(t) for t e [0, 1] (in particular, z\ > 0 on (0, 1]).

Let Nf = Nι\[l}. Notice from (2.29) that

(2.31) un(t) > ί (1 - γ) I ψM(s)Φ(s)ds 1 dx = a2(t) for t e [0, 2].

The Arzela-Ascoli Theorem guarantees the existence of a subsequence N2 of N^~ and a func-

tion Z2 £ C ![0, 2] with MJΓ converging uniformly on [0, 2] to z^ a s n ~* °° through N2;

here 7 = 0, 1. Also from (2.31), ziit) > aiit) for t e [0, 2] (in particular, z2 > 0 on (0, 2]).

Note that zi = z\ on [0, 1], since N2 c Λ̂ /". Let N^ = Â2 \ {2}. Proceed inductively to

obtain for /: = 1, 2 , . . . a subsequence Λ^ of Λ ^ j and a function Zk G C^O, A:] with w ^

converging uniformly on [0, k] to z^ as n ->• 00 through Λ^; here j = 0, 1. Also

/•r / /-it x 1/(1—K)

Zkit) > akit) = / ί (1 - y) / ψM{s)φ{s)ds \ dx for ί e [0, * ] ,
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(so in particular, zk > 0 on (0, k]). Note that Zk = Zk-ι on [0, k — 1]. Let N^ = Nk\ {k}.

Define a function y as follows. Fix t e (0, oo) and let k e N+ with t < k. Define

y(t) = zk(t). Note that y is well-defined and y(t) = zkif) > 0. We can do this for each

t e (0, oo) and so y e Cι[0, oo) with y > 0 on (0, oo). In addition, 0 < y(t) < M,

0 < y'(t) < M, and y'(t) < H^ ft°°φ(x)dx for t e [0, oo).

Fix x e [0, oo) and choose k > x, k e N+. Then, for n e N^, we have

ίx fk

yn(x) = y'ni£)x + / sφ(s)f(s, yn(s), y'n(s))ds+x / φ(s)f(s, yn(s), yf

n(s))ds .

Jo Jx

Let n -» oo through Λ/̂~ to obtain

px pk
+ / sφ(s)f(s,zk(s),zk(s))ds+x φ(s)f(s,zk(s),zk(s))ds.

JO Jx
Thus

= y'(k)x+ Γ sφ(s)f(s,y(s),y'(s))ds+x [ φ(s)f(s,y(s),yf(s))ds.
Jθ Jx

Consequently, _y e C2(0, oo) with y" + φ(t)f(t, y, yf) = 0 for 0 < t < oo. Thus y is a

solution of (1.1) with y > 0 on (0, oo). In addition, y is a solution of (1.2), since yr > 0 on

[0, oo) and 0 < y < M on [0, oo). Finally, since y'(0 < #oo ft°° φ(x)dx for ί e [0, oo), we

have that y is a solution of (1.3). D

EXAMPLE 2.1. The boundary value problem

ί y" + iy'Ϋe-% = 0 , 0 < t < oo
( 2 < 3 2 ) j y(0) = 0, ^ ^ ' ( 0 = 0,

with 0 < β < 1, has a solution y e C1 [0, oo) Π C2(0, oo) with y > 0 on (0, oo).

REMARK 2.1. Notice that y == 0 is also a solution of (2.32) if β φ 0. Of course, one

could construct explicitly a solution to (2.32).

We will apply Theorem 2.1 with 0(0 = e~ι and w(x) = xβ. Clearly (2.1)-(2.5) and

(2.7) (with ψH = 1 and γ = β) hold. Also
c c

sup = sup —g = oo,
CG(0,OO) ^(c)max{2oo, Roo] CG(0,OO) C

so (2.6) is satisfied. Theorem 2.1 now guarantees that (2.32) has a solution y G C^O, OO) Π

C2(0, oo) with y > 0 on (0, oo).

EXAMPLE 2.2. Consider the boundary value problem

y" + μ(ya + ^o)((yO^ + η\)e~* = 0, 0 < t < oo
( 2 > 3 3 ) ] y(0) = 0, l im/(ί) =

with α > 0, 0 < β < 1, η0 > 0, η\ > 0, and μ > 0. If

(2.34) μ < sup
ce(0,oo) (cCC '
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then (2.33) has a solution y e Cι[0, oo) Π C2(0, σo) with y > 0 on (0, oo).

REMARK 2.2. Notice that y = 0 is also a solution of (2.33), if ηι = 0 and β φ 0.

REMARK 2.3. If a + β < 1, then (2.34) is satisfied for all μ > 0.

We will apply Theorem 2.1 with φ(t) = μe~ι and w(x) = (xa + ηo)(xβ + η\) Clearly,

(2.1)-(2.5) and (2.7) (with ψH = η0 and γ = β) hold. Also

c \ c
SUp = — SUp •= ,

ce(0,oo) w(c) maxfβoo, #00} μ ce(0,oo) (ca + *)o)(cP + η\)

so (2.34) guarantees that (2.6) is true. Theorem 2.1 now establishes the result.
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