
Tohoku Math. J.
51 (1999),489-537

A NOTE ON THE FACTORIZATION THEOREM
OF TORIC BIRATIONAL MAPS AFTER MORELLI

AND ITS TOROIDAL EXTENSION

DAN ABRAMOVICH,1 KENJI MATSUKI2 AND SULIMAN RASHID3

(Received April 23, 1998, revised June 29, 1999)

Abstract. Building upon a work of Morelli, we give a coherent presentation of
Morelli's algorithm for the weak and strong factorization of toric birational maps. We also
discuss its toroidal extension, which plays a crucial role in the recent solutions by Wlodarczyk
and Abramovich-Karu-Matsuki-Wlodarczyk of the weak factorization conjecture of general
birational maps.
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0. Introduction. This paper is a result of series of seminars held by the authors

during the summer of 1997 and continued from then on, toward a thorough understanding

of the following weak and strong factorization theorem of toric birational maps by Morelli

[Morelli 1] (cf. [Wlodarczykl]).

THEOREM 0.1 (Factorization Theorem for Toric Birational Maps). Every proper and

equivariant birational map f : XΔ --* XΔ' ("proper" in the sense of \Iitaka~\) between two

nonsingular toric varieties can be factored into a sequence of blowups and blowdowns with

smooth centers which are the closures of orbits.

If we allow the sequence to consist of blowups and blowdowns in any order, then the

factorization is called weak.
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If we insist on the sequence to consist only of blowups immediately followed by blow-

downs, then the factorization is called strong.

Our purpose is two-fold. The first is to give a coherent presentation of the proof in

[Morellil] both for the weak factorization and the strong factorization, modifying some dis-

crepancies found by King [King2] and by the authors in the due course of the seminars check-

ing the original arguments. Most of these discrepancies are minor, except for a couple of

essential points in the process of 7r-desingularization and in the process of showing that the

weak factorization implies the strong factorization.4 It is a mere attempt to see in a transparent

way the beautiful and brilliant original ideas of [Morellil,2] by sweeping dust off the surface.

The second is the generalization to the toroidal case, whose details are worked out as

a part of the Ph. D. thesis of the third author. Though it may be said that the toroidal

generalization is straightforward and even implicit in the original papers [Morellil,2] (cf.

[Wlodarczykl]), we would like to emphasize its importance in a more far-reaching problem

formulated as below, with a view toward its application to the factorization problem of general

birational maps.5

In a most naive way the "far-reaching" problem can be stated as follows: Let f : X -> Y

be a morphism (one may put the condition "with connected fibers" if one wishes) between

nonsingular complete (or projective) varieties. By replacing X and Y with their modifications

X' and 7', how "NICE" can one make the morphism f : Xf -> Y'Ί

X < X'

\> v
Y < Y'

Depending upon how we interpret the word "NICE" mathematically and what restrictions we

put on the modifications, we get the corresponding interesting questions such as semistable

reduction (when the morphism f is "NICE" if every fiber is reduced with only simple normal

crossings, dim Y — \ and the modifications for Y are restricted to finite morphisms while

the modifications for X are restricted to smooth blowups after base change), resolution of

hypersurface singularities (when the morphism f is "NICE" if every fiber has only simple

normal crossings, this time not necessarily reduced, dim Y = 1 and no modification for Y

and only smooth blowups are allowed for X). When / is birational and we require / ' to

4 As of Jan. 1998 we learned from Professor Fulton that Morelli himself offers correction in his homepage
[Morelli2] to the discrepancies in the process of 7Γ-desingularization found by King. We still need some clarification,
as is presented in this paper, to understand the correction. We thank Professor Morelli for guiding us toward a better
understanding through private communication.

5 Recently two independent proofs have appeared for the weak factorization conjecture of general birational
maps, one by [Wtodarczyk3] another by [Abramovich-Karu-Matsuki-Wlodarczykl. (Both proofs are based upon the
theory of birational cobordism of [Wlodarczyk2], which is inspired by the combinatorial cobordism of [Morellil]
discussed in Section 2 of this paper.) The former uses the algorithm for π-desingularization, while the latter uses the
strong factorization of toroidal birational maps directly in their proofs. Thus the importance of the toroidal extension
has only increased, as well as the need for a clear coherent presentation for the 7Γ-desingularization process. The
toroidalization conjecture and the strong factorization conjecture remain open.
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be an isomorphism in order for it to be "NICE", restricting the modifications of X and Y to

be smooth blowups, we obtain the long standing (and perhaps notorious) strong factorization

problem for general birational morphisms (cf. [Hironaka]).

Our interpretation is that we put "toroidal" for the word "NICE" and restrict the modifi-

cations of X and Y to be only smooth blowups.

CONJECTURE 0.2 (Toroidalization Conjecture). Let f : X -> Y be a morphism be-

tween nonsingular complete varieties. Then there exist sequences of blowups with smooth

centers for X and Y so that the induced morphism / ' : X' -* Y' is toroidal.

smooth blowups f

\f \ f toroidal

smooth blowups f

The conjecture is closely related to the recent work of [Abramovich-Karu], which in-

troduces the notion of "toroidal" morphisms explicitly for the first time, though implicitly

it can be recognized in [Kempf-Knudsen-Mumford-SaintDonat]. By only requiring "NICE"

morphisms to be toroidal instead of being isomorphisms, we can start dealing not only with

birational morphisms but also with fibering morphisms between varieties of different dimen-

sions. This seems to give us more freedom to seek some inductional structure. Actually we

expect that the powerful inductive method of [Bierstone-Milman] for the canonical resolution

of singularities, proceeding from the hypersurface case with only one defining equation to the

general case with several defining equations through the ingeneous use of invariants, should

be modified to be applied to our toroidalization problem, proceeding similarly from the case

dim Y = 1 to the general case dim Y > 1.

This interpretation not only generalizes the statement of the classical factorization prob-

lem but also gives the following approach to it:

EXPECTATION 0.3 (A Conjectural Approach to the Strong Factorization Problem via

Toroidalization). Given a birational morphism f : X —> Y between nonsingular complete

varieties,

(I) make it "toroidal" fr\X'-+ Y' modifying X and Y into X' and Yf by blowing up

along smooth centers via some Bierstone-Mίlman type argument, and then

(II) factor the toroidal birational morphism f : X' —> Y' into (equivariant) smooth

blowups and blowdowns by applying the toroidal version of the method of \Morelli\,rΣ\ (or

\Wlodarczyk\~\).

The toroidalization conjecture and the strong factorization of toroidal birational mor-

phisms would imply the strong factorization of general birational maps between nonsingular

complete varieties.

This line of ideas came up in our conversation as a day-dreaming inspired by [De-Jong],

only to find out later that an almost identical approach was already presented in [Kingl] and

has been pursued by him in reality, who has (privately) announced the affirmative solution to
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the toroidalization conjecture in the case dim X = 3. Actually our formulation above follows
his presentation in [Kingl]. He has also read [Morellil] carefully and his correspondence with
Morelli himself was kindly communicated to us by Bierstone. We thank both professors for
their generosity sharing their ideas with us and our indebtedness to them is both explicitly and
implicitly clear as well as to the original papers [Morelli 1,2] and [Wlodarczykl]. Another big
inspiration for the factorization problem comes from the recent result of [Cutkoskyl], which
affirmatively solves the local factorization problem in dimension 3 using valuation theory.
We thank Professor Cutkosky for kindly teaching us his method using valuation theory via
preprints and private conversations. In response, we communicated to him our idea above for
the global factorization, which turns out to be very similar to the idea of [Christensen] toward
the local factorization problem:

(I) First "monomialize" the given local birational morphism via valuation theory
([Cutkosky2] uses the word "monomialization", which is nothing but "toroidalization" in the
local case.), then

(II) factor the local monomial birational morphism (which is a toroidal birational mor-
phism).

[Cutkosky2,3] achieves the local factorization in arbitrary dimension along this line of
ideas, extending his method using valuation theory.6

We remark that [Reid3] gives factorization of toric birational maps into extremal divi-
sorial contractions and flips by establishing the Minimal Model Program for toric varieties
in arbitrary dimension. The Minimal Model Program in general, also known as the Mori
Program, is only established in dimension 3 (cf. [Mori 1,2, Kawamata 1,2,3, Kollar, Reid 1,2,
Shokurov]). We also remark that recently a new algorithm called the Sarkisov Program has
emerged (cf. [Sarkisov, Reid4]) to factor birational maps among uniruled varieties. Though
it is only established in dimension 3 in general (cf. [Corti]), the toric case is rather straight-
forward in arbitrary dimension (cf. [Matsuki]). We do not know of a way to solve the clas-
sical factorization problem into smooth blowups and blowdowns using such factorizations as
above.

Our organization, as being a note to [Morelli 1,2], follows exactly the structure of the
original paper [Morelli 1,2] with one last section on the toroidal case added. The content of
each section is outlined at the end of Section 1, where we explain the main ideas of Morelli.

Our hearty thanks go to Professor Oda for giving us invaluable suggestions at many
critical points of the paper. We thank the referee for a very careful reading of the first draft of
the paper and for providing us with meticulous and constructive comments.

1. Basic ideas. The purpose of this section is to present the basic ideas of the brilliant
solution of [Morellil,2] (see also [Wlodarczykl]) to the following conjecture of Miyake and

6 After monomializing a birational map in (I), which is the most subtle and difficult part, [Cutkosky2] refers to
the results of Morelli in (II). The first version of [Cutkosky3] factors the monomialized map in his own algorithm in
(II) avoiding the use of results of Morelli, which were found to contain discrepancies at the time. The second version
of [Cutkosky3], upon our communication, uses the strong factorization theorem of this paper by Morelli in (II) and
hence provides the strong factorization theorem in the local case.
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Oda (cf. [Odal]). We follow the usual notation-and terminology concerning the toric varieties

XA and their corresponding fans Δ, as presented in [Danilov, Fulton, Oda2].

CONJECTURE 1.1 (Weak and Strong Factorization of Toric Birational Maps by Miyake

and Oda). Every proper and equivariant birational map f : XA ---* XA' {"proper" in the

sense of [Iitaka~\) between two nonsingular toric varieties can be factored into a sequence of

blowups and blowdowns with smooth centers which are the closures of orbits.

If we allow the sequence to consist of blowups and blowdowns in any order, then the

factorization is called weak.

If we insist on the sequence to consist only of blowups immediately followed by blow-

downs, then the factorization is called strong.

In short, a toric birational map admits not only a weak factorization but also a strong

factorization.

As the toric varieties XA correspond to the fans Δ in NQ = N <g> Q, where N is the lattice

of one-parameter subgroups of the torus, and blowups to the smooth star subdivisions of Δ,

we can reformulate the above conjecture in the following purely combinatorial language:

CONJECTURE 1.2 (=Conjecture 1.1 in terms of Fans). Let Δ and Δ! be two nonsingu-

lar fans in NQ with the same support. Then there is a sequence of smooth star subdivisions

and inverse operations called smooth star assemblings starting from Δ and ending with Δ!.

If we allow the sequence to consist of smooth star subdivisions and smooth star assem-

blings in any order, then the factorization is called weak.

If we insist on the sequence to consist only of smooth star subdivisions immediately

followed by smooth star assemblings, then the factorization is called strong.

In order to understand Morelli's strategy toward the solution of Conjecture 1.1, we look

at the following simple example.

EXAMPLE 1.3. We take two fans Δ and Δ! to consist of the maximal cones in NQ =

&' = {yi34, K234}

where γijk = (υ, , υ/, vk) with

υi = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (1, 1, - 1 ) .

Then we observe that by taking the common refinement Δ of Δ and Δf, subdivided by

the vector

V\ + V2 = V3 + l>4 ,

the transformation from Δ to Δ! can be factored into a smooth star subdivision immediately

followed by a smooth star assembling

Δ <r- Δ -> Δ'

as asserted by Conjecture 1.2.
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Morelli's great idea is to incorporate all the information of this factorization into a

"cobordism" Σ, a fan in the vector space NQ = NQ 0 Q of one dimension higher, with

its lower face d-Σ being Δ and its upper face d+Σ being A'. Namely, we take

Σ = {σ and its proper faces} C NQ = NQ<8>Q

where σ = (pi, P2, P3, P4> with

and where the projection is denoted by

7τ : N+ = NQ Θ Q -> NQ .

The lower face

maps isomorphically onto Δ by the projection π and so does the upper face

d+Σ = {(pi, P3, p 4), (p2, P3, P4)}

isomoφhically onto Δ'.

Moreover, since σ does not map isomoφhically onto its image by π, i.e., since σ is

7Γ-dependent, we have the linear relation, unique up to scalar multiple, among the primitive

vectors υ, of the projections of the generators p, of σ

V\ + V2 — t>3 — l>4 = 0 .

From this linear relation, we can read off the point

V\ + V2 = V3 + V4

by which we have to subdivide Δ and Δ! to reach the common refinement Δ.

In short, we can realize the factorization from constructing the cobordism.

We can summarize Morelli's idea, demonstrated by the above example, in the following.

BASIC IDEA 1.4 (Morelli's Idea for Factorization). Let Δ and Δ! be two nonsingular

fans in NQ with the same support. Then we can realize the (weak) factorization by construct-

ing a cobordism Σ, a simplίcίal fan consisting of π-strongly convex cones (See Section 3 for

the precise definition.) in NQ = NQ 0 Q such that

(1.4.1) the lower face d-Σ and upeprface d+Σ of Σ map isomorphically onto Δ and

Δ! by the projection π

π : d-Σ - ^ Δ , π : d+Σ - ^ Δf,

(1.4.2) Σ is π-nonsingular (See Section 3 for the precise definition),

(1.4.3) Σ is collapsible (See Section 4 for the precise definition.).

In fact, let σ be a minimal simplex in Σ which is π -dependent. (We call such simplex σ

a circuit.) If σ is generated by the extremal rays p/
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then we have the linear relation among the primitive vectors ι>; of the projections of the gen-

erators Pi

k

Now by the π-nonsingularity of Σ and minimality of σ, it follows that we may assume that

all the coefficients n are either +1 or —1 after rescaling (cf. Theorem 3.2). Thus after renum-

bering the Vj, we may assume that the linear relation is given by

V{+V2-{ VVi - U/+1 Vjc =0.

We then observe that by taking the common refinement subdivided by the vector

V\+V2~\ h Vι = Vι+\ H \-Vk

the transformation from 3_σ to 3+σ can be factored into a smooth star subdivision of 3_σ

immediately followed by a smooth star assembling into 3+σ.

Or more generally, we obtain the factorization between the lower face 9_Star(σ) and

upper face 3+Star(σ) of the closed star Star(σ) of σ, where

Star(σ) = {ζ e Σ; ζ c η D σ for some cone η € Σ}.

The π-nonsingularity also guarantees that the π-projections of all the lower and upper faces

and the common refinement obtained through the star subdivisions are nonsingular and the

star subdivisions are smooth.

This achieves the (weak) factorization for Star(σ) for one circuit σ of Σ. In order to

achieve the (weak) factorization for the entire Σ = | J Star(σ), where the union is taken over

all the circuits σ in Σ, we have to coordinate the way we take the (weak) factorizations for all

the circuits. This is done by requiring the collapsibility of the cobordism Σ.

In Section 2, we construct a cobordism Σ between two simplicial fans Δ and Δ! with

the same support. The simplicial cobordism constructed in this section only satisfies the con-

dition (1.4.1) above of Morelli's idea. The construction is done via a slick use of Sumihiro's

equivariant completion theorem [Sumihirol,2].

In Section 3, we discuss the (weak) factorization between the lower face d_Star(σ) and

upper face d+Star(σ), which we call the bistellar operation, more in detail assuming the π-

nonsingularity.

In Section 4, we achieve the condition (1.4.3), the collapsibility for the simplicial cobor-

dism Σ. By star subdividing Σ further to obtain Σ, we can make Σ projective via the use

of toric version of Moishezon's theorem. Projectivity implies collapsibility, achieving a col-

lapsible and simplicial cobordism Σ between d-Σ and d+Σ. We can explicitly construct a

collapsible and simplicial cobordism Σ\ (resp. Σj) between Δ and d-Σ (resp. between d+Σ

and Λ'\ as the latter is obtained through star subdivisions (resp. star assemblings) from the

former. Now we only have to take the composite Σ\ o Σ o Σ2 to be the one providing a new

collapsible and simplicial cobordism between Δ and Δ!.
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Section 5 is the most sutble and difficult part of the proof, achieving the condition (1.4.2),

i.e., the 7Γ-nonsingularity of the cobordism Σ. We introduce the invariant "π-multiplicity

profile" of a simplicial cobordism, which measures how far Σ is from being π-nonsingular,

and observe that it strictly drops after some appropriate star subdivisions. By the descending

chain condition on the set of the π -multiplicity profiles, we acquire the 7Γ-nonsingularity after

finitely many star subdivisions.

The arguments in Sections 2 through 5 put together provide the weak factorization, solv-

ing the weak form of Conjecture 1.1 affirmatively. The results are summarized in Section

6.

We should emphasize that the weak form of Conjecture 1.1 is also solved by [Wlodarczykl]

along a similar line of ideas but in a more combinatorial language.

In Section 7, we finally show the strong factorization, based upon the weak factorization

achieved in the previous sections. We obtain Σ by further star subdividing the cobordism Σ

corresponding to the weak factorization between A and Δ\ without affecting the lower face

of Σ but possibly smooth star subdividing the upper face of Σ, so that the bistellar operations

of the circuits in Σ only provide blowups starting from the lower face. We achieve the strong

factorization

Δ = d-Σ = d-Σ <r- d+Σ -> d+Σ = Λr,

the first left arrow representing a sequence of smooth star subdivisions and the second right

arrow representing a sequence of smooth star assemblings immediately after.

Section 7 discusses the generalization to the toroidal case. All the arguments above

for the toric case can be lifted immediately to the toroidal case, except for the existence

of a cobordism and 7Γ-collapsibility, where we used the global results like Sumihiro's and

Moishezon's theorems only valid in the toric case. We circumvent these difficulties by a trick

embedding a toroidal conical complex into a usual toric fan after barycentric star subdivisions.

2. Cobordism. We follow the usual notation and terminology concerning the toric

varieties XA and their corresponding fans Δ, as presented in [Danilov, Fulton, Oda2].

We recall the notion of star subdivisions of a fan Δ, the key operation repeatedly used in

this note.

DEFINITION 2.1. Let τ e Δ be a cone in a fan Δ. Let p be a ray passing in the relative

interior of τ. (Note that such τ e Δ containing p in its relative interior is uniquely determined

once the ray p is fixed.) Then we define the star subdivision p Δ of Δ with respect to p to be

p - Δ = (Δ — Star(τ)) Uf/j + τ ' + y τ ' a proper face of τ, v e l inker)}

where

Star(τ) = [ζ e Δ; ζ D τ]

Star(τ) = {ζ e Δ; ζ c η for some η e Star(τ)}

link^(τ) = { fe Star(τ); ζ Π τ = 0}

We call the inverse of a star subdivision a star assembling.
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When τ = (p i , . . . , p/) is generated by extremal rays p, with the primitive vectors

vi = n(pi) and the ray p is generated by the vector v\-\ h υ/, the star subdivision is called

the barycentric star subdivision with respect to τ.

When A is nonsingular, the barycentric star subdivision with respect to a face τ is called

a smooth star subdivision and its inverse a smooth star assembling.

The notion of a cobordism as defined below sits in the center of Morelli's idea.

DEFINITION 2.2. Let A and A! be two fans in NQ = N (g> Q with the same support,

where TV is the lattice of one-parameter subgroups of the torus. A cobordism Σ is a fan in

NQ = (N Θ Z) ® Q = NQ 0 Q equipped with the natural projection

7Γ : N+ = NQ Θ Q -> NQ

such that

(2.2.1) any cone r e Σ i s π-strongly convex, i.e.,

j c j e r , π(x) = —π{y) => JC = y — 0,

(2.2.2) the projection π gives an isomorphism btween d-Σ and A (resp. 3+Σ1 and

Z\') as linear complexes, i.e., there is a one-to-one correspondence between the cones σ_ of

d-Σ (resp. σ̂ _ of 3+i?) and the cones σ of Z\ (resp. σf of A') such that 7Γ : σ_ ->- σ (resp.

π : σ | -> σ r) is a linear isomorphism for each σ_ (resp. σ̂ _) and its corresponding σ (resp.

σO (Note that we do NOT require the map of lattices π : ( i V θ Z ) ί l σ _ -> TV Π σ (resp.

7Γ : (N θ Z) Π σ | -* iV Π σO to be an isomorphism.) We denote this isomorphism by

π : d-Σ Ά 4 (resp. π : d+Σ - ^ z\')

where

Θ-Σ1 = {τ e Σ; (JC, y - ε) <£ Supp(i )

for any (x,y) e τ with x e NQ, y e Q and any sufficiently small ε > 0}

(resp. a+i ; = {τ e IT; (JC, y + ε) fέ Supp(Γ)

for any (JC, y) e τ with x e NQ, y e Q and any sufficiently small ε > 0})

(2.2.3) the support Supp(U) of Σ lies between the lower face d-Σ and the upper face

a+i;,i.e.,

Supp(i ) = {(JC, y) e N^\ x e Supρ(^) = Supp(^) and y"ί < y < y+

where (JC, yί) e Supp(a_i:) and (JC, y^_) e Supp(3+i:)}.

We remark that actually we only need the condition (2.2.2) for the definition of a cobor-

dism and that the conditions (2.2.1) and (2.2.3) follow as the consequences of (2.2.2). We put

all of these conditions as parts of the definition above to clarify its basic properties.

THEOREM 2.3. Let A and A! be two simplicial fans in NQ = N <g> Q with the same

support. Then there exists a cobordism Σ between A and A!. We may also require Σ to be

simplicial.
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PROOF. First we embed A "at the level — 1 " into NQ SO that the embedding A- maps

isomorphically back onto A by the projection π. Namely, we take the fan A- in NQ consist-

ing of the cones σ_ of the form

where the corresponding cone σ = (p i , . . . , p^) e A is generated by the extremal rays pi

with the primitive vectors υ, = n(pi). Similarly we embed A! "at the level + 1 " into NQ SO

that the embedding Δ'+ maps isomorphically back onto A' by the projection π.

We take Γ to be the fan in NQ consisting of the cones in A- and A'+ and the cones ζ of

the form

where the υ vary among all the primitive vectors for the extremal rays pv such that pv is a

generator for some σ e A and some σ' e A! simultaneously.

Now by Sumihiro's equivariant completion theorem [Sumihirol,2], there exists a fan Σ°

with Supp(27°) = NQ and containing Γ as a subfan.

We only have to take Σ to be

Σ = {τ eΣ°;Supp(τ)cS]

where the set S is described as

S = {(*, y) eN+ xe Supp(Z\) = Supp(4'), J_ < y < y+

,yi) e Δ-,{x,y+) e Δ'+}.

The cobordism Σ constructed as above may not be simplicial. We take all the cones in

Σ which are not simplicial, and give them the partial order according to the inclusion relation.

We take a succession of barycentric star subdivisions with respect to these cones in the order

compatible with the partial order, starting with the maximal ones. The resulting fan Σ is

simplicial with the property

π : d-Σ = d-Σ ^ > A

π : a+Γ = d+Σ ^ > Δ\

providing a simplicial cobordism between A and A!. (We also refer the reader to [Oda-Park,

Park] for a more systematic treatment.)

3. Circuits and bistellar operations. In this section, we discuss how to read off the

information on the factorization from the circuits of a π-nonsingular cobordism.

DEFINITION 3.1. Let Σ be a simplicial fan in (N © Z) (8) Q = NQ with the natural

projection π : NQ ->• NQ. Assume that all the cones in Σ are π-strictly convex.

A cone σ e Σ is 7Γ-indepenent if π : σ —> 7r(σ) is an isomorphism. Otherwise σ is

π -dependent.

A cone σ e Σ is called a circuit if it is minimal among the π-dependent cones, i.e., if σ

is π-dependent and any proper face of σ is π-independent.
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A cone σ e Σ is π-nonsingular if the projection π(τ) of each π-independent face

τ C σ is nonsingular as a cone in NQ with respect to the lattice N. We say that the fan Σ is

7Γ-nonsingular if all the cones in Σ are π -nonsingular.

The following theorem describes the transformation, which we call the bistellar opera-

tion, from the lower face 3_σ to the upper face 3+σ of a circuit σ of a simplicial and π-

nonsingular cobordism Σ. (More generally the theorem describes the transformation from

the lower face 3_Star(σ) to the upper face 3+Star(σ) of the closed star of a circuit σ.) It turns

out that the bistellar operation corresponds to a smooth blowup immediately followed by a

smooth blowdown.

THEOREM 3.2. Let Σ be a simplicial and π-nonsingular coborbism in NQ. Let σ =

(p i , . . . , pk) £ Σ be a circuit generated by the extremal rays pi. From each extremal ray pi

we take the vector of the form (ι>;, w /) e NQ = NQ®Q where Vj = n(π (p/)) is the primitive

vector of the projection π (p/).

(3.2.1) There is a unique linear relation among the t>; (up to renumbering) of the form

V^ rava = v\ + + vι — ι>/+i — — vie = 0 for some 0 < / < k

with

(3.2.2) All the maximal faces γι (resp. γj) ofd-σ (resp. 3+σ) are of the form

Yi = (pi,.>> , Pi, , Pi, P/+1, •" ,Pk) 1 < i < I

(resp. Yj = ( p i , . . . , p/, p/+i , . . . , p ; , . . . , pk) I + 1 < j < k).

(3.2.3) Let lσ be the extremal ray in NQ generated by the vector

v\-\ \-vι = υ/+i H \-Vk

The smooth star subdivision of 7r(3_σ) with respect to lσ coincides with the smooth star

subdivision ofπ(d+σ) with respect to lσ, whose maximal faces are of the form

e transformation from 7r(3_σ) ίo π(3+σ) zs α smooth star subdivision followed

immediately after by a smooth star assembling. We call the transformation a bistellar opera-

tion.

Similarly, the transformation from 7r(3_Star(σ)) to 7r(3+Star(σ)) is a smooth star sub-

division followed immediately after by a smooth star assembling.

PROOF. (3.2.1) Since σ is a circuit, it is π-dependent and minimal by definition.

Hence we have a linear relation

ri Vi = 0 with ri φ 0 for all i.

Since σ is simplicial, the p, are linearly independent in NQ and hence Σ ri wi Φ 0 We

choose the signs of the n so that Σ riwi > 0. We only have to prove \r\ \ = |r2| = = |r*|.



5 0 0 D. ABRAMOVICH, K. MATSUKI AND S. RASHID

Indeed, since σ is π-nonsingular, we have

1 = | d e t ( υ i , υ 2 , . . . , υ*)l = | d e t ( υ i , . . . , υ, , . . .

d e t I —

which implies \r\ \ — \n | for all i.

(3.2.2) Note that since σ is a circuit, any maximal face γ of σ belongs either to 3_σ or

to 3+σ, exclusively.
v

Suppose γι = ( p i , . . . , pi,... , p^) e 3_σ. Then since σ is a circuit, for any point

p = ] P c α ( ι ; α , Wo) e Rellnt(y/) with ca > 0,

we have

p + (0, ε) € σ for sufficiently small ε > 0.

By setting ε = rε £ r α ιc α for ίε > 0, we obtain

/? + (0, ε) = Σ(C(X + ̂ Γ α)( υ α, ^Qf) + ίer/(υ, , u;, ) G σ ,

which implies ca + tεra > 0 for α φ i and ίεr, > 0. Therefore, we have n > 0. Similarly, if

Yj = (pi,... , pj,... , pk) e 9+σ, then we have rj < 0. This proves the assertion (3.2.2).

The assertion (3.2.3) follows immediately from (3.2.1) and (3.2.2).

The assertion about the transformation from π(3_Star(σ)) to π(3+Star(σ)) is an easy

consequence of the description of the transformation from π(3_σ) to π(3+σ).

This completes the proof of Theorem 3.2.

4. Collapsibility. Let Σ be a simplicial cobordism between simplicial fans A and A'.

Noting that

Σ = [JSt3i(σ)Ud-Σ
σ

where the union is taken over the circuits σ, we may try to factorize the transformation from

A to A! into smooth star subdivisions and smooth star assemblings by replacing 3_Star(σ)

with 3+Star(σ), if Σ is π-nonsingular. If we think of the cobordism built up out of "bubbles"

Star(σ), this process might be considered as a succession of "collapsing" these bubbles. The

following simple example shows that this succession of collapsing, which should correspond

to the factorization into smooth star subdivisions and smooth star assemblings, is not always

possible, unless we can arrange the way we break these bubbles in a certain order. This

possibility for the certain nice arrangement is what we call "collapsibility" in this section.

EXAMPLE 4.1. We take two sets of vectors in NQ = Z2 <g> Q

{vλ = (1, 0), v2 = (0, 1), v3 = ( - 1 , 0), v4 = (0, -1)}

{v[ = (1, 1), v'2 = ( - 1 , 1), υ'3 = ( - 1 , -1) , v'i = (1, -1)}
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and fans A and Δ! whose maximal cones consist of

A 3σ\2 = (υ\, V2), σ23 = (v2, V3>. σ 3 4 = (υ3, υ 4 ) , σ 4 i = (υ4, v\)

Af 3 σ'n = (υ[, v'2), σ^3 = ( ^ υ'3), σ^4 = ( t ^ υ'4), σ^ = (i;^, υj).

If we take the simplicial fan Σ in NQ whose maximal cones consist of

then Σ is a simplicial π-nonsingular cobordism between A and ^ .

Observe, however, that we cannot "collapse" any one of the maximal cones σi^ to

replace 9-σ^ fc' with θ+σ/; j ^ . In fact, the circuit graph attached to Σ as defined below is a

directed cycle consisting of eight vertices

σ 3 4 2 ' -> ^2'VA " > OΓ413/

DEFINITION 4.2. Let Σ1 be a simplicial cobordism in NQ. We define a directed graph,

which we call the circuit graph of Σ as follows: The vertices of the circuit graph consist of the

circuits σ of Σ. We draw an edge from σ to σ' if there is a point p e d+Star(σ) Π θ_Star(σO

such that

p - (0, ε) e Star(σ), p + (0, ε) e Star(σ') for sufficiently small ε > 0.

We say Σ is collapsible if the circuit graph contains no directed cycle. When Σ is collapsible,

the circuit graph determines a partial order among the circuits: σ < σ' if there is an edge

THEOREM 4.3. Let A and A! be two simplicial fans in NQ with the same support.

Then there exists a simplicial and collapsible cobordism Σ in NQ between A and A!.

PROOF. The proof consists of several steps. The main idea of Morelli's is to reduce the

collapsibility to the projectivity.

Step 1. Show that the projectivity induces the collapsibility.

PROPOSITION 4.4. Let Σ be a simplicial cobordism in NQ and assume that Σ is a

(part of a) projective fan. Then Σ is collapsible.

PROOF. Since Σ is a part of a projective fan (i.e. a part of a fan Σ' whose corresponding

tone variety XΣ' is projective), there exists a function h : Supp(iJ) ->• Q which is piecewise
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linear with respect to the fan Σ and which is strictly convex, i.e., we have

-{*(v)+*(«)}>

whenever the line segment ΰΰ is in Supp(U) and the strict inequality holds whenever v and u

are in two distinct maximal cones (cf. [Fulton, Oda2]).

Let σ and σf be two circuits with a directed edge, i.e., there exists a point p e 3+Star(σ) Π

3_Star(σ') such that

p - (0, ε) e Star(σ), p + (0, ε) e Star(σ') for sufficiently small ε > 0.

Take a maximal π-dependent cone p e η D σ (resp. p e η' D σf) of Star(σ) (resp. Star(σ'))

such that /? — (0, ε) e η (resp. /? + (0, ε) e ηf).

Take also linear functions hη, hη>, hσ, hσ> which coincide with h\ , Λ| „ h\σ, h\σ,9

respectively.

Then by the strict convexity of the function h, setting the coordinates of p = (x,y) we

have {/Z(JC, v + ε) + h(x, y — ε)}/2 > h(x, y) or equivalently hη>(0, 1) > ^^(0, 1), and hence

hσ>(0, 1) > hσ(0, 1). (Note that (0, 1) e spanρ(σ) for any π-dependent cone σ.)

If σ i , . . . , σ\ are circuits determining a directed path in the circuit graph of Σ, then

the above observation shows hσχ (0, 1) < < hσι(Q, 1). Thus the path cannot be a cycle.

Therefore, Σ is collapsible.

Step 2. Show the toric version of Moishezon's theorem.

THEOREM 4.5. Let Σ be a fan in N£. Then there exists a fan Σ obtained from Σ by

a sequence of star subdivisions such that Σ is a (part of a) projectίve fan.

PROOF. We may assume that Supp(U) = Ni and that Σ is simplicial and nonsingular

by applying some appropriate sequence of star subdivisions to the original Σ.

By the toric version of Chow's Lemma (see, e.g., [Oda2], § 2.3), we have a projective

fan Σ' mapping to Σ, i.e., we have a projective toric variety XΣ1 with an equivariant proper

birational morphism onto XΣ

g : XΣ> -> XΣ

By the toric version of Hironaka's elimination of points of indeterminacy (cf. [DeConcini-

Procesi].) we can take a fan Σ obtained from Σ by a sequence of smooth star subdivisions

such that there exists an equivariant proper birational morphism

f:Xέ^XΣ>.

Since g o / is projective as it is a sequence of smooth blowups and since g is separated, / is

also projective. Now since Σ1 is a projective fan, so is Σ.

Step 3. Composition of (collapsible) cobordisms.

Starting from a simplicial cobordism Σ between A and Δ! constructed as in Theorem

2.3 and then applying Step 2, we obtain a simplicial cobordism Σ between d-Σ and d+Σ,

where Σ is a (part of a) projective fan and hence collapsible and where d-Σ (resp. d+Σ)

is obtained from A (resp. Ar) by a sequence of star subdivisions. (Or equivalently A (resp.
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Δ') is obtained from d-Σ (resp. d+Σ) by a sequence of star assemblings.) We only have to

construct a collapsible and simplicial cobordism ΣA between Δ and d-Σ and another ΣΔ>

between d+Σ and Δ! so that we compose them together ΣA^Σ o ΣA> to obtain a collpasible

and simplicial cobordism between Δ and A'.

PROPOSITION-DEFINITION 4.6. Let Σ\ and Σ2 be cobordisms in N^ such that

(4.6.1) Σ\ U Σ2 is again a fan in NQ,

(4.6.2) Σι Π Σ2 = d+Σγ Π d-Σ2,

(4.6.3) for any cone σ e d+Σ2

π(σ) <£ a{7r(a+i:i U d+Σ2)} and π(σ) C d(π(d+Σ2)) => σ e d+Σ\ ,

and for any cone σ e d+Σ\

π(σ) £ d{π(d-Σ\ U d-Σ2)} and π(σ) C d(π(d-Σι)) =» σ e d-Σ2.

Then the union Σ\ U Σ2, which we call the composite of Σ\ with Σ2 and denote by

Σ\ o Σ2, is a cobordism.

Moreover, if both Σ\ and Σ2 are simplicial and collapsible, then so is the composite

Σ\ o Σ2.

PROOF. By the condition (4.6.1) the composite Σ\ o Σ2 is a fan. The conditions (4.6.2)

and (4.6.3) guarantee π : d-(Σ\ o Σ2) ->- NQ and π : 3+(ΣΊ o Σ2) -> NQ are isomoφhisms

of linear complexes onto their images. Thus Σ\ oΣ2\$>di cobordism. The "Moreover" part of

the assertion is also clear.

We note that in case d+Σ\ = d-Σ2 the condition (4.6.3) is automatically satisfied.

PROPOSITION 4.7. Let Abe a simplicial fan in NQ obtained from another simplicial

fan Δ in NQ by a sequence of star subdivisions and star assemblings. Suppose Δ is embedded

in NQ

s\Δ^>N+

so that π o s is the identity of the fan.

Then there exists a simplicial and collapsible cobordism Σ between Δ and Δ (resp.

between Δ and A) such that d-Σ = s(Δ) (resp. d+Σ = s(Δ)).

PROOF. We only have to prove the assertion when the sequence consists of a single star

subdivision or a star assembling.

Suppose Δ is obtained from Δ by a star subdivision with respect to a ray p passing

through the relative interior of a face τ e Δ. Say that the ray p is generated by a primitive

vector vp. Then we only have to take by fixing some sufficiently large yp > 0

Σ = s(Δ) U {{s(ζ), (υp, vp)); ζ e Δ, ζ C σ for some σ e Δ with σ 3 p].

Suppose Δ is obtained from Δ by a star assembling, which is the inverse of a star sub-

division with respect to a ray p passing through the relative interior of a face τ e Δ. Let

τ = (p i , . . . , pk) be generated by extremal rays p; with the primitive vectors vPi = n(pι).

We construct Σ\,... , Σk with 57 : Δ ->• d+Σι and Σ as required inductively.
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Fixing some sufficiently large yPι > 0, we take

Σ\ = s(Δ) U {(s(ζ), (υPί,yPι))\ ζ e Δ, ζ Cσ for some σ e A withσ 3 p\].

Obviously 3+ΣΊ is isomorphic to A via the projection π, and we set the inverse s\ : A

Suppose we have already constructed Σ\,... , 27, _i with a sequence of positive numbers

0 < yPί < - < yPi_x where each positive number is sufficiently larger than the previous

one, and with the isomorphisms s\, ... , J, _ I from A to 3 + Σ Ί , . . . , 9+I7, _i, respectively.

Then by fixing some positive number yPi which is sufficiently larger than yPi_λ, we take

Σi = Σi-\ U {(si-ι(ζ), (vPi,yPi)); ζ e A, ζ c σ for s o m e σ e z l with σ 3 p, }.

Again clearly 3+Σ1/ is isomoφhic to A via the projection π, and we set the inverse Si : Δ -+

d+Σi.

Thus we have constructed Σ\,... ,27*. We only have to set

Σ = ΣkU (s*(pi),... , Jfc(pifc)) U (jjk(pi),... , sk(pk), sk(p))

This completes the proof of Proposition 4.7.

Thus we complete Step 3 and hence the proof of Theorem 4.5.

In Section 5, starting from a collapsible and simplicial cobordism between two non-

singular fans A and A! (which we constructed in this section), we try to construct another

cobordism which is not only collapsible and simplicial but also 7Γ-nonsingular, by further star

subdividing the original cobordism. It is worthwhile to note that the collapsibility is preserved

under star subdivisions.

LEMMA 4.8. Let Σ be a simplicial cobordism in NQ, which is collapsible. Then any

simplicial cobordism Σ obtained from Σ by a star subdivision, with respect to a ray p, is

again collapsible.

PROOF. Note first that if Σ consists of the closed star of a single circuit, then p Σ =

p Star(σ) is easily seen to be collapsible.

In general, number the circuits σ\, σ2,. . . , σm of Σ so that σ; is minimal among σ, ,

1,... , σm according to the order given by the circuit graph. Then setting

Σ = ( J Star(σ, )U3+2;,
i=\

we have
m

p-Σ = ( J p Star(σ/)Uyθ a+2;
i = l

and

p-Σ = {p. Star(σi)} o . . o {p Star(σm)} o [p d+Σ}

is collapsible by the first observation and by Proposition-Definition 4.6.
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5. π-Desingularization. The purpose of this section, which is technically the most

subtle, is to show the following theorem of "π-desingularization".

THEOREM 5.1. Let Σ be a simplicial cobordism in NQ. Then there exists a simpli-

cial cobordism Σ obtained from Σ by a sequence of star subdivisions such that Σ is π-

nonsingular. Moreover, the sequence can be taken so that any π -independent and already

π -nonsingularface of Σ remains unaffected during the process.

Naively, just LIKE the case of the usual desingularization of tone fans, we would like to

subdivide any π -independent face with π -multiplicity bigger than 1 so that its π -multiplicity

drops. However, UNLIKE the case of the usual desingularization, we might introduce a new

π -independent face of uncontrollably high π -multiplicity if we subdivide blindly, though we

may succeed in decreasing the π -multiplicity of the π -independent face that we picked orig-

inally. This is where the difficulty lies! We outline Morelli's ingeneous strategy to subdivide

carefully to avoid introducing new π -independent faces with high π -multiplicity and achieve

π-desingularization. It consists of the following four steps:

Step 1: Introduce the invariant "π-multiplicity profile" 7Γ-m.p.(i7) of a simplicial co-

bordism 27, which measures how far Σ is from being π -nonsingular.

Step 2: Observe that the star subdivision ηr = Mid(τ, lq) η of a simplex η by an

interior point of a face τ does not increase the π-multiplicity profile, i.e.,

π-m.p.(ηf) < π-m.p.(η)

if

(i) τ is "codefinite" with respect to η, and

(ii) the interior point corresponds to the midray Mid(τ, lq), where the ray lq is gener-

ated by a lattice point q e par(7r(τ)).

Moreover, if τ is contained in a maximal π -independent face γ of η with the maximum

π-multiplicity hη, i.e., if

τ C γ and π-m\x\i(γ) = hη = max{π-mult(£); ζ C η],

then the π -multiplicity profile strictly drops

π-m.p.(ηf) < π-m.p.(η).

Step 3: Let τ be a π-independent face in the closed star Star(σ) of a circuit σ i n Σ .

Introduce the notion of the star subdivision by the negative or positive center point of σ. We

can find Σ° such that

(i) Σ° is obtained by a succession of appropriate star subdivisions by negative or posi-

tive center points of circuits inside of σ,

(ii) the π-multiplicity profile does not increase, i.e.,

7Γ-m.p.(i;0) < 7Γ-m.p.(2;),

(iii) τ is a face of Σ° such that τ is codefinite with respect to every cone η e Σ°

containing r.
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Step 4: Combine Step 2 and Step 3 to find Σ obtained from Σ by a succession of star

subdivisions such that the π -multiplicity profile strictly drops

π-m.p.(Σ) < π-m.p.(Σ).

As the set of the π -multiplicity profiles satisfies the descending chain condition, we reach a

7Γ-nonsingular cobordism after finitely many star subdivisions as required.

In fact, by Step 3 we can find a π-independent face τ of a maximal cone η' C Σ° such

that

(i) π-m.p.(η') is maximum among the π-multiplicity profiles of all the maximal cones

of 27°,

(ii) τ is contained in a maximal π -independent face γ of η' with the maximum π-

multiplicity π-va\x\i{γ) = hη>,

(iii) τ is codefinite with respect to ηr and with respect to all the other maximal cones

containing τ,

(iv) we can find a lattice point q e par(π(τ)).

We only have to set Σ = Mid(τ, lq) Σ° to observe by Step 2 that π-m.p.(Σ) <

π-m.p.(Σ).
This completes the process of 7Γ-desingularization.

Now we discuss the details of each step.

Step 1.

DEFINITION 5.2. Let γ be a simplicial cone in N~X. If γ is π-independent, then we

define the π -multiplicity of γ to be

π-mult(y) = | det(υi,.. . , vk)\,

where the υ, = /i(π(p/)) are the primitive vectors of the projections of the extremal rays p,

generating / = (p\,... , pk). If γ is π-dependent, then we set π-mxx\i(γ) = 0 by definition.

Let η be a simplicial and π-strictly convex cone in NQ with

hη = max{π-mult(y); γ is a π-independent face of η],

kη = dim σ where σ is the unique circuit contained in η ,

rη = the number of the maximal π -independent faces of η

having the maximum π -multiplicity hη .

We define the π -multiplicity profile π-m.p.(^) of η to be the ordered quadruple of numbers

7Γ-m.p.(77) = (aη, bη, cη, dη)
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where

η

Cη

dη

= hη,

I °
~ 1 i

=1°,
- Γ

if rη <

if rη >

if bη =

if bη =

if cη =

if Cη >

1

1,

= 0

: 1

0

0.

We order the set of the π -multiplicity profiles of all the simplicial and π -strictly convex

cones in NQ lexicographically.

We define the π-multiplicity profile π-m.p.(Σ) of a simplicial cobordism Σ in NQ to be

π-m.p.(Σ) = [gz',s]

where

QΣ — max{7Γ-m.p.(r/); η is a maximal simplicial cone of Σ]

and where s is the number of the maximal simplicial cones of Σ having the maximum π-

multiplicity profile QΣ

When a simplicial cobordism Σ consists of only one maximal simplicial and π-strictly

convex cone η (and its faces), we understand as a convention

π-m.p.(Σ) = [τr-m.p.(^); 1] = π-m.p.fa).

The definition of the invariant π -multiplicity profile may look heuristic at this point. At

the end of the section, we discuss how Morelli reached this definition after a couple of false

trials in [Morelli 1,2]. The behavior of the π -multiplicity profile under several kinds of star

subdivisions will be the key in Step 3.

Step 2.

DEFINITION 5.3. Let η be a simplicial, π-dependent and π-strictly convex cone in

NQ. A π-independent face τ of η is said to be codefinite with respect to η if the set of

generators of τ does not contain both positive and negative extremal rays p, of η. That is to

say, if Σ ri vi = 0 is the nontrivial linear relation for η among the primitive vectors υ, =

n(π(pi)), then the generators for r contain only those extremal rays in the set {p;; r, < 0} or

in the set {p;; r, > 0}, exclusively.

NOTATION 5.4. Let τ be a cone in a simplicial cobordism Σ in NQ and / a ray in

7r(τ). Then we define the "midray" Mid(τ, /) to be the ray generated by the middle point of

the line segment τ Π π~ι (n(l)). (If τ Π π~ι (n(l)) consists of a point, then Mid(τ, /) is the ray

generated by that point.)
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Let γ = (p i , . . . , pk) be a π-independent cone in NQ generated by the extremal rays p;

with the corresponding primitive generators υ, = n(π(pi)) e N. Then we define the set

par(7r()/)) = \m e N; m = ^ α / i ; , , 0 < α, < 1

I
PROPOSITION 5.5. L ί̂ τbeaπ -independent face of a simplicial, π -dependent and π -

strictly convex cone η in NQ. Assume τ is codefinite with respect to η. Let η' = Mid(τ, lq) η

be the star subdivision of η by the midray Mid(τ, lq) where the ray lq is generated by a

lattice point q e par(π(τ)). Then the π-multiplicity profile does not increase under the star

subdivision, i.e.,

7Γ-m.p.(τ/) < 7Γ-m.p.(τ7).

Moreover, ifτ is contained in a maximal codimension one face yofη with

π-mult(y) = hη = max{7Γ-mult(£); ζ C η},

then the π-multiplicity strictly decreases, i.e.,

π-m.p.(η') < π-m.p.(η).

PROOF. We claim first that all the NEW maximal π-independent faces γ' of ηf have

7Γ-multiplicities strictly smaller than hη, i.e.,

TΓ-multCy7) < hη.

Let τ = (p i , . . . , pn) be generated by the extremal rays p; with the corresponding prim-

itive vectors υ, = n(π(pi)), i = 1,... , n. We can write 0 φ q = Σi aivi w i m 0 < α, < 1

for all i, as q e par(π(τ)).

Any new maximal π-independent face γf in ηf has the form

/ = p r + τ ' + v

where p' = Mid(τ, lq), τ' is a proper face of τ with p' φ τ' and where v e link^(τ).

Observe that in general a maximal π -independent face of a simplicial cone in NQ has

codimension at most one and hence we may assume that in the above expression τr has codi-

mension at most two in τ.

Case: τ' has codimension one in τ.

The face τf omits, say, pj among the extremal rays of τ. Then

7Γ-mult(p' + τf + i/) < aj 7Γ-mult(τ + v) < aj hη < hη .

Case: τf has codimension two in τ.

The face τf omits, say, py and pu among the extremal rays of τ. Observe that in this

case τ + v is necessarily π -dependent. Indeed, if τ + v is π -independent, then there exists a

codimension one face τ"(D τf) of τ such that we have π-independent faces

contradicting the maximality of p1 + τ' + v.
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Let v = ( p w + i , . . . , pm) be generated by the extremal rays p; with the correspond-

ing primitive vectors v/ = n ( π ( p ; ) ) , i = « + l , . . . , m a s before. Then, since τ + v is

π -dependent, we have a nontrivial linear dependence relation Σ ί = i ri>i;i = 0 ^n order to

compute the π-multiplicity, choose a basis of {spanρ7r(τ + v)} Π TV. Then

' + τ' + v)

(O)

+ ak det(vjt,

On the other hand, we have

=

=

det(#, v i , . . . ,

y^fl i det(v;,
i

aj -aeX{Vj,v\,

VI,

...,vk,
V

V
,Vj,...

. . . , υ « ) l
V

. . . , V * , . . . , V m

, vjk, — ,υm)

)

=

=

^ n det(v/,

ry det(vy , vi,

H- r^ det(v£, t

V

. . . ,vj,

V

V

V

V

, υ * , . . .
V

. W m )

• , W m ) | .

Since τ is codefinite with respect to η, either rj and r̂  have the same sign or one of them is

0. (If rj — rjc = 0, then τ' + v would be π-dependent since Σ ^ it r«υ* = Σ / rϊ'υi = 0.

But p r + τ r + v, containing τ' + v, is π-independent, a contradiction!) In the former case,
V V V V

det(υj, υ\,... , ι>y,... , ϋjk,... , vm) and d e t ( ^ , f i , . . . , Vj,..

signs and hence continuing the formula (O) we have

tfy I det(υ/, υ i , . . . , Vj,... , υ*,

α ^ | d e t ( v j t , v i , . . . , Vy , . . .

< max{f ly 'hη,ak hη] < hη .

In the latter case (say, rj = 0 while n φ 0), we have

V V

d e t ( v £ , v i , . . . , Vy , . . . , V £ ,

and hence continuing the formula (O) we obtain
V V

= I fly * det(Vy, Vl, . . . , Vy, . . . , Vjt, . .

V

i;^,... , υm) have opposite

υ m ) | ,

vm) = 0

vm)\ < aj -hη < h η .

form

This completes the proof of the claim.

Observe that η = ( p i , . . . , pn, p Π + i , . . . , pm) and that a maximal cone ζf oίηf has the

f' = {p\ p i , . . . , Py,... , Pm> for some = 1,... , m .
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The only possible and old maximal π-independent face of ζf is ( p i , . . . , pj,... , pm) and

hence the above claim implies 7r-m.p.(f') < (hη, 0, 0, 0). Note that 7Γ-m.p.(^) > (hη, 0, 0, 0)

and that if the equality holds then there is only one maximal π -independent face γ c η with

π-mult(}/) = hη and hence we have possibly only one maximal cone ζ' of η', namely the

one containing y, having the π -multiplicity profile equal to (hη, 0, 0, 0). Therefore, we have

either

π-m.p.(η) = (hη, 1, *, *) = [(*„, 1, *, * ) ; 1] > [(hη, 0, 0, 0), s] > π-m.p.(η')

or

π-m.p.fo) = (*„, 0, 0, 0) = [(hη, 0, 0, 0); 1] > π-m.p.(η').

If τ is contained in a maximal codimension one face γ of η with π-mult(y) = hη, then in the

latter case we have the strict inequality.

This completes the proof of Proposition 5.5.

As shown above, the star subdivision by a π -independent face behaves well (choosing an

appropriate division point in the interior) if it is codefinite with respect to a π -dependent cone

containing it, i.e., if it is codefinite with respect to a circuit in its closed star. In the following,

we study how to make a given π -independent face codefinite with respect to all the circuits in

its closed star, after some specific star subdivisions.

Step 3. Let σ = ( p i , . . . , pk) be a simplicial and 7Γ-strictly convex cone which is a

circuit of dimension k in NQ, where the extremal rays pi of σ are generated by (ty, Wi) E

Λf+ = NQΦQ with Vi = n(π(pi)),i = 1, . . . , k, being the primitive vectors in N. Let τ be a

codimension one face of σ with the maximum π -multiplicity hσ among all the π -independent

faces of σ. Say,

τ = τa = ( p i , . . . , p α , . . . ,/<>*).

We have the unique linear dependence relation

k

(t|) Y^ r; Vi = 0 with the conditions \ra | = 1 and r\w\-\ h^iϋjt > 0 .

We note that 0 < |r, | < 1 for i = 1, . . . , k where \n \ = 1 if and only if 7Γ-mult(τ;) = hσ for
V

T , = ( p i , . . . , P / , . . . , P A : ) -

The first inequality 0 < |r, | comes from the fact that σ is a circuit and the second

inequality and the assertion about the equality comes from the easy observation

7Γ-mult(τ;) = π-mult((pi, . . . , p / , . . . , Pk})

A ί V- '
det I v\,... , Vi,... , — ra va = χ^ rj VJ , . . . , Vk

\ JΦa I

= \n\ | d e t θ i , . . . , Vi,... , u α , . . .

= Inl 7Γ-mult(τ) < 7r-mult(τ).
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Thus we conclude that the relation (tj) is independent of the choice of a codimension one

π -independent face τ of σ as long as τ has the maximum π -multiplicity hσ.

DEFINITION 5.6. Let σ be a circuit of NQ as above. Then the negative (resp. positive)

center point Ctr_(σ) (resp. Ctr+(σ)) of σ is defined to be

Ctr_(σ) = Σ Vi (resp. Ctr+(σ) = Σ υt ) .

LEMMA 5.7. Let σ be a circuit ofNg. Then

Ctr_(σ), Ctr+(σ) G Rellnt(7r(σ)).

PROOF. We observe

k

Ctr_(σ) = ΣVi = Σ Vi + ΣnVi = Σ nVi + Σ ( 1 + n>)Vi

ϊ)υi \ forO < ε < 1

where

{ = εri when r, > 0

= 1 - ε + ε(l + n) when r, < 0

Since n φ 0 and r, > — 1 for all ί, we see

c, > 0 for all i = 1,... ,k.

Thus we conclude

Ctr_(σ) €RelInt(τr(σ)).

The argument for the statement Ctr+(σ) G Rellnt(7r(σ)) is identical.

LEMMA 5.8. Let σ be a circuit in NQ as above with the negative center point Ctr_(σ)

{resp. the positive center point Ctr+(σ)). Let /_ {resp. 1+) be the ray generated by Ctr_(σ)

{resp. Ctr+(σ)) and σ' = Mid(σ, /_) σ {resp. σ' = Mid(σ, /+) σ) be the subdivision of σ

by the midray Mid(σ, /_) {resp. Mid(σ, /+)). Then every codimension one face ζ of σ with

the maximum π-multiplicity hσ {which stays unchanged through the subdivision and hence

can be considered a face ζ G σr) is codefinite with respect to the {unique) maximal cone in

the closed star of ζ in σf.

PROOF. We use the same notation as above. We only prove the statement for the nega-

tive center as the proof is identical for the positive center.

Observe fist that we have

Mid(σ, /_) G Rellnt(σ),
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since Ctr_(σ) e Rellnt(π(σ)) by Lemma 5.7. Therefore, the star subdivision with respect to

Mid(σ, /_) does not affect ζ, i.e., ζ e σf.
v

Observe secondly (say, ζ = ζj = (p\,... , py,.. . , Pk)) that

ζj has maximal π -multiplicity <Φ=> |ry | = 1.

Case: r}• = 1.

In this case, since Ctr_(σ) = Σr <o u, and since the maximal cone σy containing ζj in

σ' is of the form σy = (Mid(σ, /_), p\,... , py,.. . , pk), the linear relation for σy is given by

C t r _ ( σ ) - ^ υ / = 0 .
rt<0

As fy contains only the extremal rays corresponding to the υ, , which have the same sign (or

0) in the linear relation, ζj is codeίinite with respect to the (unique) maximal cone σy in the

closed star of ζj in σ'.

Case: ry = — 1.

In this case, since Ctr_(σ) = Σr >orivi + Σ-\<r <o(* + ri)υi a n ( * s m c e t n e m a χ i -
v

mal cone σy containing ζj is of the form σy = (Mid(σ, /_), p\,... , py,.. . , >ô ), the linear

relation for σy is given by

Ctr_(σ)- ΣriVi~ Σ O+'-IOVI^O.
r/>0 -l<r/<0

As ξ"y contains only the extremal rays corresponding to the Vi, which have the same sign (or 0)

in the linear relation, ζj is codefinite with respect to the (unique) maximal cone in the closed

star σy of ζj in σ'.

This completes the proof of Lemma 5.8.

This lemma suggests that we should use the star subdivision by the negative or positive

center of a circuit to achieve codeflniteness of a face τ in order to bring the situation of

Proposition 5.4 in Step 2. But the lemma only achieves the codeflniteness for a face τ which

is contained in a maximal π -independent face with the maximum π -multiplicity but does not

analyze the behavior of the π-multiplicity profile. In our process of π-desingularization, we

need to achieve codeflniteness for a face τ which is not contained in a maximal π -independent

face with the maximum π-multiplicity and the analysis of the π-multiplicity profile is crucial.

Both of these needs are fulfilled by the following proposition, which is at the technical heart

of this section.

PROPOSITION 5.9. Let σ be a circuit ofάimσ > 2 in NQ. Then, by choosing σf to

be either the star subdivision ofσ coresponding to the negative center point or the one by the

positive center point, i.e.,

σ' — Mid(σ, /_) σ or Mid(σ, /+) σ ,

where /_ (resp. /+) is the ray generated by the negative (resp. positive) center point Ctr_(σ)

(resp. Ctr+(σ)), we see σ' satisfies one of the following:
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A: Every maximal cone δf ofσ' has the π-multiplicity profile strictly smaller than that

ofσ, i.e.,

π-m.ip.(δ') < 7Γ-m.p.(σ).

In particular, we have

π-m.p.(σ') < 7Γ-m.p.(σ).

B: Every maximal cone δ' ofσ', except for one maximal cone K' , has the π-multiplicity

profile strictly smaller than that of σ, i.e.,

π-m.p.(δ') < 7Γ-m.p.(σ)

and the exceptional maximal cone κ! has the same π -multiplicity profile as that of σ, i.e.,

π-m.p.(κ') — 7Γ-m.p.(σ).

In particular, we have

π-m.p.(σ') = π-m.p.(σ).

Moreover, there exists a maximal π-independent face γrofκf such that

(B-o) γ' is also a face ofσ {i.e., γ' remains untouched under the subdivision),

(B-ii) γ' has the maximum π-multiplicity, i.e., π-mult(y') = hσ> = hσ,

(B-iii) γ' is code finite with respect to κf.

PROOF. Let σ = {p\,... , pk), where the extremal rays p\ are generated by (ι>;, wt) e

NQ with Vi = n{π{pi)), i = 1,... ,k, being the primitive vectors for the projections.

Let Σ ri vi = 0 be the nontrivial linear relation so that Σ rι Wi = 0 and

\nI = 1 <=* 7Γ-mult(τ;) = hσ for τ, = (p\,... , pi,... , pk).

Note that the maximal cones σ[ of σ' are of the form

where po is the midray Mid(σ, /_) or Mid(σ, /+) depending on the choice of the negative or

positive center point.

We compute the π -multiplicity of the maximal faces r/ of σ

τ-j = (po, p \ , . . . , pi,... , pj,... ,pk)

as follows:

Case of the negative center point: po = Mid(σ, /_).

We let e- e Nbe the integer such that Σra<o va = e- ' n(π(Po)) w i t n n(π(Po)) being

the primitive vector.
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Subcase r, > 0:

7Γ-mult(τ/0) = 7Γ-mult(τ/),

TΓ-multίτ/. ) = — det
ra<0

0 when r7- > 0,

—π-mult(τi) when r\ < 0.
e-

Subcase n < 0:

7r-mult(τ/0) = 7r-mult(τ/),

π-mult(τ/) =
1

det
V V

υa,υ\,... , υ, , . . . , υ, , . . . ,
\rα<0

—π-mult(τ ; ) when r/ > 0,

— |7Γ-mult(τ;) — 7Γ-mult(τ/)| when r, < 0.
e-

V V V V

Note that det(u;, v\,... , υ, , . . . , υ ; , . . . ,Vk) and det(υ ; , υ i , . . . , υ, , . . . , υ 7 , . . .

have opposite signs, since

0 = det i , . . . , υ, , . . . , v/ , . . . ,

= 0.

Symmetrically we compute the other case.

Case of the positive center point: po = Mid(σ, /+).

We let e+ e N be the integer such that Σr >o u« = e+ ' n(π(Po)) with n(π(po)) being

the primitive vector.

Subcase r/ < 0:

7Γ-mult(τ/0) = 7Γ-mult(τ;),

π-mult(τ/y ) = — det |

0 when ry < 0,

—π-mult(τ, ) when rj > 0.
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Subcase r, > 0:

7Γ-mult(τ/0) = 7Γ-mult(τ;),

π-mult(τ^) = —

—7Γ-mult(τ/) when r ; < 0,

— |π-mult(τ7) — 7Γ-mult(τ;)| when rj > 0.

Using this computation, we can now easily derive the conclusion of the proposition di-

viding it into the cases according to the cardinalities of the following sets:

/+ = {/; n > 0}, / " = {/; n < 0}, /+ = {*; n = 1}, I- = {i; n = -1} .

Case: 2 < j(/f < Jt/J1"

In this case, we choose the negative center point and let po = Mid(σ, /_).

When 0 < n < 1, we have aσr = hσ> < hσ = aσ.

When 0 < r/ = 1, we have aσι — hσ> = hσ = aσ. If e- > 1, then rσ/ = 1 and

hence bσ> = 0 < bσ = 1. If e- = 1, then rσ/ > tt/f > 2 and hence £σ/ = 1 = fcσ. But
cσ r = kσ> <kσ = cσ, since π-mult(τ/,) = 0 for / e / + D /i+.

When —1 < r, < 0 and ^_ > 1, we have <v = ^σ.r < hσ = aσ.

When — 1 = r, < 0 and ^_ > 1, we have ασ/ = hσ> = hσ = aσ. But rσ> = 1 and hence

bσ>=0<bσ = l.

When —1 < r, < 0 and e- = 1, we have aσ> = Λσ/ = hσ = aσ, rσr > tJ/^ > 2

and hence feσ/ = 1 = £ σ . We also have cσr = kσ> < kσ = cσ, since σ is a circuit. But

dσ> = rσ> = rσ - tt/f + 1 < rσ = dσ, since τ[ = |π-mult(τ ; ) - τr-mult(τ, )| < hσ for

j e I~J φi.
Thus we have

7Γ-m.p.(σ/) < 7Γ-m.p.(σ)

for all the maximal cones σ[ of σf.

Therefore, in this case with the choice of the negative center we conclude we are in Case

A and

π-m.p.ίσ') < 7Γ-m.p.(σ).

Case: 1 = tJ/f < tt/^
In this case, we choose the negative center point and let po = Mid(σ, /_).

When 0 < r, < 1, we have aσ> = hσ; < hσ = aσ and hence π-m.p.(σ/) < 7r-m.p.(σ).

When 0 < r, = 1, we have aσ; = hσ> — hσ = aσ. If fl/~ = tt/f = 1 or ^_ > 1, then

rσr = 1 and hence bσf = 0 < bσ = 1. If JJ/~ > 1 and e_ = 1, then rσ; > 1 and hence

bσ> = 1 = bσ. But we have cσ> = kσ> < kσ = cσ, since π-mu\t(τlj) = 0 for j e / + D I*.

Thus we have 7r-m.p.(σ/) < 7Γ-m.p.(σ).
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When — 1 < rι < 0 and e- > 1, we have aσ> = hσ> < hσ = aσ and hence 7Γ-m.p.(σ/) <

7Γ-m.p.(σ).

When - 1 = r, < 0 and e- > 1, we have aσ> = hσ> — hσ = aσ. But rσ> — 1 and hence

bσ> = 0 < bσ = 1. Thus we have π-m.p.(σ[) < 7r-m.p.(σ).

When —1 < n < 0 and e_ = 1, we have aσ> ~ hσ> = hσ = aσ, rσ> > JJ/j"1" > 2

and hence bσ> = 1 = bσ. We also have cσ> = kσ> < kσ = c σ , since σ is a circuit. But

dσr = rσ> = rσ - tt/f + 1 < rσ = dσ, since x[. = |7r-mult(τ; ) - π-mult(τ/)| < hσ

for j e /j~, j Φ i Thus we have π-m.p.(σ/) < π-m.p.(σ). The equality holds only when

Π = — 1 with / being the sole member of /j~, in which case the face τj0 = τf has the maximum

7Γ-multiplicity /zσ and it is codeflnite with respect to σ[ by Lemma 5.8.

Therefore, in this case with the choice of the negative center we conclude that we are in

Case A and

π-m.p.(σf) < 7Γ-m.p.(σ) if e~ > 1

and that we are in Case B and

π-m.p.(σ') = π-m.p.(σ) if e- = 1.

Case: 1 = JJ/f = $1+ < JJ/+.

In this case, we choose the negative center point and let po = Mid(σ, /_).

When 0 < r/ < 1, we have aσι = hσ{ < hσ = aσ and hence π-m.p.(σ/) < 7Γ-m.p.(σ).

When 0 < r, = 1 and e- > 1, we have aσ> = hσ> = hσ = aσ. But rσ> = 1 and hence

bσf = 0 < bσ = 1. Thus we have 7Γ-m.p.(σ/) < 7Γ-m.p.(σ).

When 0 < Γ/ = 1 and e- = 1, we have aσ> = hσ> = hσ = aσ. If (J/~ = JJ/j" = 1, then

rσ/ = 1 and hence bσι = 0 < Z7σ = 1. If (J/~ > 1, then rσ; > 1 and hence bσ> = 1 = bσ. But

we have cσ> = kσ' < kσ = cσ, since 7Γ-mult(τ/) = 0 for j e / + D /j+, j : ^ /. Thus we have

7Γ-m.p.(σ/) < π-m.p.(σ).

When — 1 < n < 0 and e- > 1, we have aσ> = hσ> < hσ = aσ and hence π-m.p.(σ/) <

π-m.p.(σ).

When — 1 < rι < 0 and e- = 1, we have aσι = hσ> = hσ — aσ. But rσ\ = 1 and hence

bσ> — 0 < bσ = 1. Thus we have 7Γ-m.p.(σ/) < 7Γ-m.p.(σ).

When r, = — 1 and e_ > 1, we have ασ/ = hσ> = hσ = aσ. But rσ/ = 1 and hence

bσ> = 0 < bσ = 1. Thus we have 7Γ-m.p.(σ/) < 7Γ-m.p.(σ).

When r, = — 1 and e- = 1, / is the sole member of /j~ and we have aσ> = Λσ/ =

hσ = β σ , rσ/ = 2 and hence bσ> = 1 = bσ. Moreover, we have cσ/ = A:σ/ = kσ = cσ and

ί/σ.' = rσ> = 2 = rσ = dσr Thus we have 7r-m.p.(σ/) = 7r-m.p.(σ). The face τ/0 = τ, has

the maximum π-multiplicity ^ and it is codefinite with respect to σ[ by Lemma 5.8.

Therefore, in this case with the choice of the negative center we conclude that we are in

Case A and

π-m.p.ίσ') < 7Γ-m.p.(σ) if e- > 1
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and that we are in Case B and

π-m.p.(σf) = π-m.p.(σ) if e- = 1.

Case: 0 = JJ/f < 2 < fl/j*".

In this case, we choose the positive center point and let po = Mid(σ, /+).

When — 1 < r; < 0, we have aσ> — hσ> < hσ = aσ and hence 7Γ-m.p.(σ/) < 7Γ-m.p.(σ).

When 0 < n < 1, we have aσ> — hσ> < hσ = aσ and hence π-m.p.(σ/) < π-m.p.(σ).

When r, = 1, we have aσ> = hσ> = hσ = aσ. But rσ; = 1 and hence bσ> — 0 < bσ = 1.

Thus we have π-m.p.(σ/) < π-m.p.(σ).

Therefore, in this case with the choice of the positive center we conclude that we are in

Case A and

π-m.p.(σ') < 7Γ-m.p.(σ).

Case: 0 = JJ/f < 1 = JJ/+

In this case, we choose the positive center point and let po = Mid(σ, /+).

When — 1 < r, < 0, we have aσ> = hσ> < hσ = aσ and hence 7r-m.p.(σ/) < 7Γ-m.p.(σ).

When 0 < r, < 1, we have aσ' — hσ> < hσ = aσ and hence π-m.p.(σ/) < π-m.p.(σ).

When T{ = 1, i.e., / is the sole member of /j*", we have aσ> = hσ> = hσ = aσ, rσ> = 1

and hence bσ> — 0 = bσ. Moreover, we have cσ; = kσ> = kσ = cσ and dσ; = rσ> = 1 =

rσ = dσr Thus we have 7Γ-m.p.(σ/) = 7Γ-m.p.(α). The face τ/0 = r, has the maximum

π-multiplicity hσ and it is codefinite with respect to σ[ by Lemma 5.8.

Therefore, in this case with the choice of the positive center we conclude we are in Case

Band

π-m.p.Cσ') = 7Γ-m.p.(σ).

Symmetrically, we also conclude:

Case: 2 < JJ/+ < β/f

With the choice of the positive center point, we are in Case A.

Case: 1 = (J/+ < tt/f

With the choice of the positive center point, we are in Case A if e+ > 1 and in Case B if

e+ = l.

Case: 1 = «/+ = Jt/f < β/~

With the choice of the positive center point, we are in Case A if e+ > 1 and in Case B if

e+ = l.

Case: 0 = U/+ < 2 < Jj/f

With the choice of the negative center point, we are in Case A.

Case: 0 = »/+ < 1 = β/f

With the choice of the negative center point, we are in Case B.

Since the above cases exhaust all the possibilities, we complete the proof for Proposition

5.9.

The next lemma shows that the π -multiplicity of a cone can be computed easily from

that of the unique circuit contained in it.
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LEMMA 5.10. Let σ be a circuit in a simplίcίal cobordism Σ in Nt and η be a max-

imal cone in Star(σ). Then any maximal π -independent face γofη is of the form

γ = τ + v

where τ = γ Π σ is a maximal π-independent face ofσ and v is the unique maximal cone of

link^σ).
Moreover, there exists e e N such that for any γ as above (once η is fixed) we have the

formula

π-mult(y) = 7Γ-mult(τ) e.

In particular, we have

π-m.p.(η) = (aη, bη, cη, dη) = (e aσ, bσ, cσ, dσ).

PROOF. Let σ = ( p i , . . . , pk) and η = (p i , . . . , p&, p ^ + i , . . . , p/) be generated

by the extremal rays pf with the corresponding primitive vectors of the projections υ, =

n(π(pi)) e N. Then a maximal π-independent face γ of η is of the form

γ = ( p i , . . . , p / , . . . , p * , p * + i , . . . ,Pι) = τ + v

v
where τ = ( p i , . . . , p ; , . . . , Pk) = γ Π σ and v = (pjt+i,... , p/) is the unique maximal
cone of link^(σ). This proves the first assertion.

For "Moreover" part, we have the exact sequence

where L = spanρ(π(σ)) ΠN, Nη = spanρ(7r(r;)) ΠN and Q is the cokernel, which is torsion

free and hence a free Z-module. Take a Z-basis {MI, . . . , M^_I, M^+I, . . . , M/} of Nη so that

[u\,... , M£_i} is a Z-basis of L and {M&+I , . . . , M/} maps to a Z-basis of Q. With respect to

this basis of Nη, the π -multiplicity of γ can be computed

7Γ-mult(}/) = det ί j = det A det E = π-mult(τ) e,

where
v /A\

(l>l, . . . , Vj, . . . , Vk) — \ n\ a n ( i (W^-hl 5 » ul) =

This completes the proof of the lemma.

Now it is easy to see the following main consequence of Step 3.

COROLLARY 5.11. Let τbea π -independent face contained in the closed star Star(σ)

of a circuit σ. Then there exists {Star(σ)}° obtained by a succession of star subdivisions by

the negative or positive center points of the circuits (of the intermediate subdivisions) inside

ofσ such that

(5.11.1) the π-multiplicity profile does not increase, i.e.,

7Γ-m.p.({Star(σ)}°) < 7r-m.p.(Star(σ)),
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(5.11.2) τ is a face o/{Star(σ)}0 and τ is codefinite with respect to every cone v e

{Star(σ)}° containing τ.

PROOF. We prove the assertion by induction on the π-multiplicity profile of σ.

If 7Γ-m.p.(σ) = (1, *, *, *), then by taking {Star(σ)}° to be the star subdivision corre-

sponding to the negative or positive point of σ, we see easily that the condition (5.11.1) is

satisfied, while the condition (5.11.2) is a consequence of Lemma 5.8.

We assume that the assertion holds for the case with the π -multiplicity profile smaller

than 7Γ-m.p.(σ). If dimσ = 2, then τ is already codefinite with respect to σ and there is

nothing more to prove. So we may assume dimσ > 2. We take the star subdivision by the

negative or positive center of σ, according to Proposition 5.9, so that either the case A or the

case B holds and hence the π-multiplicity does not increase.

If the case A holds, noting that the circuits of all the maximal cones of the star subdivision

are contained in σ we see the assertion holds immediately by the induction hypothesis, since

all the maximal cones have the π -multiplicity profile strictly smaller than π-m.p.(σ).

Suppose the case B holds. If r Π σ is contained in κf, then τ Π σ is necessarily contained

in γ' and hence codefinite with respect to κf. The other maximal cones have the π-multiplicity

profile strictly smaller than τr-m.p.(σ) and the assertion again holds by the induction hypoth-

esis.

This completes the proof of Corollary 5.11 and Step 3.

Now we discuss Step 4.

Step 4. We start from a simplicial cobordism Σ.

If Σ is π-nonsingular, then we are done.

So we may assume Σ is not 7Γ-nonsingular and hence 7r-m.p.(I7) = {QΣ\ S) with QΣ >

(1 , * , * , * ) . We only have to construct Σ obtained from Σ by a succession of star subdivisions

such that π-m.p.(Σ) < π-m.p.(Σ).
Let η be a maximal cone of Σ such that 7Γ-m.p.(^) = gΣ with σ being the unique circuit

contained in η.

If dim σ < 2, then we let γ be a maximal π -independent face of η with 7r-mult(y) = hη.

We let τ be a minimal π-singular (i.e. not 7Γ-nonsingular) face of y so that we can pick a point

q G par(7r(τ)).

If dim σ > 2, then we take the star subdivision Σ' of Σ with respect to the negative

or positive center point of σ so that either the case A or the case B occurs according to

Proposition 5.9.

If the case A occurs, then π-m.\*.{Σ') < 7Γ-m.p.(I7) and we simply have to set Σ° = Σ'.

If the case B occurs, then we take the exceptional cone K' of σ' with π-m.p.(κ') =

7Γ-m.p.(σ) as described in Proposition 5.9 and take the maximal π-independent face γ of η

such that y ί l α ' = γf, where γ' is a face of K' satisfying the conditions (B-o), (B-i) and

(B-ii) in Proposition 5.9. Observe that by Lemma 5.10 there is a maximal cone η' of Σ'

such that ηf fλ σ' = κ\ 7Γ-m.p.(τ/) = gΣ' — gΣ, y is a face of ηf as well as that of η,

7Γ-mult(y) = hη' = hη and that γ is codefinite with respect to η''.
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We also take τ to be a minimal 7Γ-singular (i.e. not π-nonsingular) face of γ so that we

can pick a point q e par(π(τ)).

Now we consider the situation where dim σ < 2 and the situation where dim σ > 2 with

the case B together.

Take all the circuits θf (except for the one contained in κf) of Σ' such that τ c Star(#0-

By Corollary 5.11 of Step 3 for each θf we can find {Star^')}0 obtained by a succession of

star subdivisions by the negative or positive center points of the circuits (of the intermediate

subdivisions) inside of θf such that the π-multiplicity profile does not increase, i.e.,

< π-m.p.(Star(0')),

and that τ is a face of {Star^')}0 and τ is codefinite with respect to every cone v e {Star(#)}°

containing τ.

Note that these star subdivisions can be carried out simultaneously without affecting each

other and that hence we obtain a simplicial cobordism Σ° obtained from Σ by a successive

star subdivisions such that

(0) the π-multiplicity profile does not increase, i.e.,

7Γ-m.p.(i;0) < π-m.p.(Σ),

(1) ηf (ηf = η in the case dim σ = 2) is a maximal cone in Σ° with

π-m.p.(η) = gΣo = gΣ, = gΣ ,

(ii) τ is contained in a maximal π -independent face γ of ηr with the maximum π-

multiplicity 7rmult(y) = hηr,

(iii) τ is codefinite with respect to ηf and with respect to all the other maximal cones

containing τ,

(iv) we can find a lattice point q e par(7r(τ)).

We only have to set Σ = Mid(τ, lq) Σ° to observe by Proposition 5.5 in Step 2 that

π-m.p.(Σ) < 7Γ-m.p.(iΓ).

By the descending chain condition of the set of the π -multiplicity profiles, this completes

the process of π-desingularization. Remark that by construction the process leaves any π-

independent and already π-nonsingular face of Σ unaffected.

REMARK 5.12. We discuss the comparison of our arguments with the original papers

[Morellil,2].

(5.12.1) (Definition of the negative or positive center point.)

The definition of the negative or positive center point Ctr_(σ), Ctr+(σ) as presented

here and in [Morelli2] is different from the original definition of the center point Ctr(σ, τ) in

[Morellil]. In spite of the assertions in [Morellil], Ctr(σ, τ) is not always in Rellnt(π(τ)),

as one can see in some easy examples. This causes a problem in the original argument in

[Morellil], as the subdivision corresponding to the center point may affect not only the cones

in the closed star Star(σ) but also possibly some other cones, which we do not have any control

over. This is the first problematic point in the argument of [Morellil] noticed by [King2].
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(5.12.2) (Definition of the π-multiplicity profile.)

In [Morellil], the π-multiplicity profile 7Γ-m.p.(^) of a simplicial cone η was defined to

be

π-m.p.(^) = (7Γ-mult()/i),... , π-mult(γι))

where y i , . . . , yι are the maximal π-independent faces of η with

7Γ-mult(}/i) > 7Γ-mult(}/2) > > π-mu\t(γι).

Proposition 5.5 holds with this definition, while Proposition 5.9 fails to hold, as [King2]

noticed.

(With the slightly coarser definition of the π -multiplicity profile

π-m.p.(ij) = (hη,rη),

Proposition 5.5 holds, while Proposition 5.9 fails to hold in a similar way.)

In [Morelli2], the π-multiplicity profile π-m.p.(η) of a simplicial cone η was changed

and defined to be

π-m.p.(η) = (hη,kη,rη).

Proposition 5.9 holds with this definition, while now in turn Proposition 5.5 fails to hold.

The current and correct definition of the π -multiplicity profile, as presented here, was

suggested to us by Morelli after we discussed the dilemma as above through e-mail.

(5.12.3) (How to choose r with q e par(7r(τ)) and make it codefinite.)

[Morellil] could be read (by a naive reader like us) in such a way that it suggests that

for a maximal π-independent face γ with the maximum π-multiplicity π-va\x\t{γ) = h > 1

we could take q e par(7r(y)), which is clearly false in the case dim NQ > 3. The subdivision

with respect to q e par(π(y)) would only affect the cones in the star Star(y) and we would

only have to analyze those circuits σ such that γ c Star(σ). Then the face ζ = γ Π σ has

the maximum π-multiplicity hσ and only Lemma 5.8 would suffice to achieve codefiniteness

after the subdivision by the negative or positive center point.

But in general it is only a subface τ c γ which contains a point q e par(7r(r)). Now we

have to analyze those circuits σ such that τ c Star(σ) but maybe γ <£_ Star(σ). Lemma 5.8 is

not sufficient any more to achieve the codefiniteness for τ. This is another problematic point

in the argument of [Morellil] noticed by [King2].

[Morelli2] tries to fix this problem via the use of Proposition 5.9 and what Morelli calls

the trivial subdivision of a circuit σ.

Our argument here to achieve Corollary 5.11 solves the problem by induction on π-

multiplicity profile based upon Proposition 5.9 and does not use the trivial subdivision.

6. The weak factorization theorem. In this section, we harvest the fruit "Weak Fac-

torization Theorem" grown upon the tree of the results of the previous sections.

PROPOSITION 6.1. We have the weak factorization of a proper equivariant birational

map between two nonsingular tone varieties XΔ and XΔ> if and only if there exists a simpli-

cial, collapsible and π-nonsingular cobordism Σ between the fans A and A'.
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PROOF. Suppose we have the weak factorization of a proper equivariant birational map

between two nonsingular tone varieties XΔ and XA>. Then the fan A! is obtained from A by

a sequence of smooth star subdivisions and smooth star assemblings (in arbitrary order). By

Proposition 4.7 there exists a simplicial and collapsible cobordism Σ between A and A\

which is also π-nonsingular by construction (cf. the proof of Proposition 4.7).

Conversely, suppose there exists a simplicial, collapsible and π -nonsingular cobordism

Σ between the fans A and A!. Write

Σ = U Star(σ)ua_i;
σ

where the union is taken over all the circuits σ. By the collapsibility of Σ, we can order

the circuits σ i , . . . , σm so that each σ, is minimal among the circuits σ, , a/+i , . . . , σm with

respect to the partial order given by the circuit graph of Σ. Accordingly, we have a sequence

of fans

A = A0 = π(d-Σ) = π Id- | ( J Star(σ, ) U

l
Δ\ = π

71 j
)/

ί k | \

d- I ( J Star(σ ) U d+Σ \ J
1=2 J/

= 7Γ

Ak = d+Σ = Af.

Note that the fan Δj+\ is obtained from Δj by replacing 3_Star(σ;) with 9+Star(σ,),

which is the bistellar operation analyzed in Section 3 and corresponds to a smooth star subdi-

vision followed by a smooth star assembling. Therefore, we conclude X&' is obtained from

XA by a sequence of equivariant smooth blowups and smooth blowdowns.

THEOREM 6.2 (The Weak Factorization Theorem). We have the weak factorization for

every proper and equivariant birational map between two nonsingular toric varieties X& and

XAΊ i e i Conjecture 1.1 holds in the weak from.

PROOF. Let A and Af be the corresponding nonsingular fans in NQ with the same

support. Then by Theorem 4.3 there exists a simplicial and collapsible cobordism Σ in NQ

between A and A!. Theorem 5.1 implies there is a simplicial fan Σ obtained from Σ by a

sequence of star subdivisions such that Σ is π -nonsingular and that the process leaves all the

π -independent and π -nonsingular cones of Σ unaffected. By Lemma 4.8 we see that Σ is

also collapsible as well as simplicial and π -nonsingular and that the lower face and upper face

of Σ are unaffected and hence isomorphic to A and A', respectively. Thus Σ is a simplicial,
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collapsible and π-nonsingular cobordism between A and A!. By Proposition 6.1, we have the

weak factorization between XA and X^. This completes the proof of Theorem 6.2.

7. The strong factorization theorem. The purpose of this section is to show the

strong factorization therem, i.e., a proper and equivariant birational map XA --•> XΛ' be-

tween smooth toric varieties can be factored into a sequence of smooth equivariant blowups

XA ^- XA" followed immediately by smooth equivariant blowdowns XA" -> XΔΊ based

upon the weak factorization theorem (of Section 6 or [Wlodarczykl]). The main difference

between the weak and strong factorization theorems is that the former allows the sequence to

consist of blowups and blowdowns in any order for the factorization, while the latter allows

the sequence to consist only of blowups first and immediately followed by blowdowns. We

should emphasize that this section uses only the statement of the weak factorization theorem

and hence is independent of the methods of the previous sections and that the reader, if he

wishes, can use [Wlodarczykl]'s result as the starting point for this section (though we con-

tinue to phrase the statements in Morelli's terminology that we have been using up to Section

6).

Our strategy goes as follows. We start with a simplicial, collapsible and 7Γ-nonsingular

cobordism Σ between A and Af, whose existence is guaranteed by Theorem 6.2. We con-

struct a new cobordism Σ from Σ applying an appropriate sequence of star subdivisions

such that d-Σ = d-Σ is unaffected through the process of the star subdivisions and that the

cobordism Σ represents, via the bistellar operations (cf. Theorem 3.2), a sequence consisting

only of smooth star subdivisions starting from A = π(d-Σ) = π(3-Σ) and ending with

π(d+Σ). Observing that π(d+Σ) is obtained from π{d+Σ) — A! by a sequence consisting

only of smooth star subdivisions, or equivalently A! = π(d+Σ) is obtained from π(d+Σ) by

a sequence consisting only of smooth star assemblings, we achieve the strong factorization

A = π(d-Σ) = π(d-Σ) <- π(d+Σ) -> π{d+Σ) = Af.

First we identify the condition for the bistellar operation to consist of a single smooth

star subdivision.

DEFINITION 7.1. A π -nonsingular simplicial circuit

σ = ((υi,u>i), (υ2,tu2), ••• Λvk,u*k)) CNQΘQ = N+

is called pointing up (resp. pointing down) if it has exactly one positive (resp. negative) ex-

tremal ray, i.e., we have the linear relation among the primitive vectors υ, = n(π(pi)) of the

projections of the extremal rays p; for σ (after re-numbering)

V\ — V2 — ' ' — Vjc = 0 With W\ — W2 — ' ' ' — Wjc > 0

(resp. — v\ + V2 + - - + vjc =0 with — w\ + W2 + + Wk > 0).

LEMMA 7.2. Let Σ be a simplicial and π-nonsingular cobordism in N~X and σ e Σ

a circuit which is pointing up. Let

σ = ((υi, tui), (υ2, w2), , (υ*, wk)) c NQ Θ Q = N^
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with the linear relation among the primitive vectors υ, = n(π(pi)) of the projections of the

extremal rays pi for σ

v\ — V2 — — vjc = 0 with w\ — W2 — - - - — Wk > 0.

Then the bistellar operation going from 7r(3_Star(σ)) to 7τ(3+Star(σ)) is a smooth star sub-

division with respect to the ray generated by

v\ = v2 H h Vk

If σ is pointing down with the linear relation

—v\ +V2~\ h Vk = 0 with — w\ + W2 H h Wk > 0,

then the bistellar operation going from 7τ(3_Star(σ)) to π(3+Star(σ)) is a smooth star as-

sembling, the inverse of a smooth star subdivision going from 7τ(3+Star(σ)) to 7τ(θ_Star(σ))

with respect to the ray generated by

v\ = V2 H \-vk.

The proof is immediate from Theorem 3.2.

LEMMA 7.3. Let Σ be a simplicίal and π-nonsingular cobordism. Let

τ = ((υι,wι),- , (v/,u;/)>

be a π-independent cone of Σ with the Vi = n(π(pi)) being the primitive vectors of the

projections of the extremal rays pi for τ. Let pτ be the midray Mid(τ, /r(τ))> where r(τ) € N
is the vector r{τ) = v\-\ (-1>/, called the "π-barycenter" ofτ. Ifτ is codefinie with respect

to all the circuits σ e Σ with τ £ Star(σ), then pτ Σ stays π-nonsingular.

PROOF. Note that though in the statement of Proposition 5.5 the point q was assumed

to be taken from par(7r(τ)), we only need the description

q = 2^ ai vi w i th 0 < α/ < 1

(allowing the equality ax• = 1) to conclude that the maximum of the π -multiplicities of the

π -independent cones does not increase. Thus we can apply the argument in the proof of

Proposition 5.5 with

q = r(τ) = υ\ H hw/

to conclude that the maximum of the π -multiplicities of the π -independent cones does not

increase and in particular pτ Σ = Mid(τ, lτ) Σ stays π-nonsingular.

DEFINITION 7.4. Let / be a subset, consisting only of π-independent cones, of a sim-

plicial cobordism Σ. Assume / is join closed, i.e.,

τ, τ' e I = » τ + τ' e I (provided τ + τ' e Σ).

We denote

I. Σ = &„... fr, Σ

where pXi is the midray Mid(τ, , /Γ(T.)) with r(τ;) being the π-barycenter of τ, , as described

in Lemma 7.3, and where the τ; are cones in / so ordered that dimτ/ > dimτ/+i for all
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i. (Observe that, as / is join closed, / Σ is independent of the choice of the order and is

well-defined.)

The following simple observation of Morelli is the basis of our method in this section.

LEMMA 7.5. Let σ be a circuit in a simplicial and π-nonsingular cobordism Σ. Let

σ = ((υi, w\), , (υm, wm), (υm+\, ιum+i), , (vkwk)),

where υ\, ... ,υm, υ m + i , . . . ,Vk are the primitive vectors in N of the projections of the ex-

tremal rays for σ, having the unique linear relation

v\-\ \-vm- υ m +i υk = 0 with w\ H \-wm - wm+\ wk > 0.

Let

σ+ = ((υi, w\), , (υOT, wm)> αnJ σ_ = ((υ m + i , tum+i), , ( ^

(7.5.1) The fan pσ+ Star(σ), wΛer̂  p σ + w ^ midray Mid(σ+, lr(σ+)) with r(σ+) being

the π-barycenter ofσ+, is π-nonsingular and the closed star of a π-nonsingular pointing up

circuit σ'.

(7.5.2) If σ is pointing up and I is a join closed subset ofσ-, then I Star(σ) is π-

nonsingular and the closed star of a π-nonsingular pointing up circuit.

PROOF. (7.5.1) First note that, since σ is π-strongly convex and hence does not con-

tain a nonzero vector 0 φ (0, w) e NQ = NQ($Q, it is impossible to have all the coefficients

in the linear relation to be +1 or all to be — 1.

Let η e Star(σ) be a simplicial cone of the form

η = ((iii, w[), , (M/, WΊ), (υi, w\), , (υ*, wk)).

Then the maximal cones of pσ+ η are of the form

( (MI, w[), , (ii/, w[), (MI, tui), ,(ϋ/,Vu;f), , (υm, iϋm),

(vm+i, wm+\), ••• , (i jfc, ^ ) , ί r(σ+), ^ u;/ I)

omitting one of (vi, Wi), 1 < i < m, from the generators of σ + . Therefore,

σf =
m \

, ^ u ; / J,
i=ι /

is the unique circuit in p σ + Star(σ) and

ρσ+ - Star(σ) = Star(σ').

As pσ+ is generated by the vector (r (σ+), Σ ^ ! u;,-) = (Σ™=\ υ, , J ^ ^ ! u;,-), the unique linear

relation for σ' is

Vk = 0 ,
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where n(π(pσ+)) = £?Li vi w i t n (Σί=i wi) ~ wm+\ Wk > 0. Therefore, the circuit

σf is pointing up. We note that 7Γ-nonsingularity is preserved as σ + is obviously codefinite

with respect to the circuit σ.

(7.5.2) We use the same notation as in (7.5.1) with σ + = ((v\, w\)) being the only

positive extremal ray of the pointing up circuit σ. Let ζ be the maximal cone in /. Then the

maximal cones η' of Pζ η, where Pζ is the midray Mid(£, lr(ζ)), are of the form

Uuι,w[), ••• , (w/,

• , (Vj, Wj), , (ϋjfc, Wk),

Therefore,

), all the v, , tϋ, ) ^ f, ί r(f),

is the unique circuit in pζ Star(σ), which is pointing up with the unique linear relation

v\ - Σ Vi -n

where n(π(βξ)) = Σ(vhWi)eζ υi w i t h ^l ~ Σ(υitwiHζwi ' ( Σ ^ , ^ ) ^ ^ ) > ° W i t h

η e Star(σ) being arbitrary, we also have

pζ Star(σ) = Star(σ^).

Moreover, every cone in the complement I' of ζ in / (i.e., V consists of the proper subfaces

of ζ) is disjoint from σζ. Therefore, σζ is still the unique circuit, which is pointing up, in

/ Star(σ) = ί pζ - Star(σ)

and

/ Star(σ) = Star(σ^).

This completes the proof of Lemma 7.5.

The following is an easy consequence of Lemma 7.5.

LEMMA 7.6. Let Σ be a simplicial, collapsible and π-nonsingular cobordίsm whose

circuits are all pointing up and let I C d-Σ be a join closed subset. Assume the condition

(*):
(•) / Π Star(σ) C ( Γ G Γ ; T C σ_} = 9_σ for any circuit σ e Σ .

Then Σr = I Σ is again a simplicial, collapsible and π-nonsingular cobordism con-

taining only pointing up circuits.

PROOF. By Lemma 4.8 and Lemma 7.3 the cobordism Σ' is gain simplicial, collapsible

and π -nonsingular. We only have to check that / Star(σ) = (/ Π Star(σ)) Star(σ) contains

only pointing up circuits for any circuit σ e Σ, which follows immediately from the condition

(*) and (7.5.2) in Lemma 7.5.
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REMARK 7.7. Lemma 7.6 is a modification of Lemma 9.7 in [Morellil] (together

with the notion of "neatly founded"), which unfortunately has a counter-example as below.

We observe that the notion of "neatly founded" is used only in the form of the condition (•) in

the argument of [Morellil] and we carry out our argument here all through with the condition

(•) instead of the notion of "neatly founded".

Below we recall the definition of "neatly founded" and Lemma 9.7 in [Morellil] and

then present a counter-example.

[Morellil] defines that Σ is "neatly founded" if for each down definite face τ e Σ (A

face τ e Σ is down definite if τ e d-Σ but τ ^ d+Σ.), there is a circuit σ e Σ such that

τ = σ_.

LEMMA 9.7 in [Morellil]. Let Σ be a neatly founded, simplicial, collapsible and π-

nonsingular cobordism whose circuits are all pointing up, and let I C d-Σ be join closed.

Then Σ1 = I Σ is again a simplicial, collapsible and π -nonsingular cobordism containing

only pointing up circuits.

A counter-example to Lemma 9.7 in [Morellil]:

We take

p\ = (υ\,0)

P5 = (v\ +U2 + 2υ3,2)

in NQ = (N 0 Z) <g>Q = NQ®Q with dim NQ = 3 where v\, ι>2, t>3 form a Z-basis for N.

We set Σ to be

(Pi, P2, P3, PA) and its faces,

Σ = - (P2, P3, P4, P5> and its faces,

(Pi, P3, P4, P5> and its faces

The fan Σ is by construction a simplicial, collapsible and π -nonsingular cobordism be-

tween Δ = d-Σ and Δ! = 3+Σ1.

The cobordism Σ1 is neatly founded as (pi, P2, P3) is the only down definite face and

there is a circuit (p\, P2, P3, P4) such that

(Pl,P2,P3> = (Pl,P2,P3,P4>-

All circuits (pi, P2, P3, P4> and (P3, P4, P5) are pointing up.

Take

/ = {(p2, P3) and its faces}.

Now Σ and / satisfy all the conditions of Lemma 9.7. On the other hand, Σ' = I Σ

contains a circuit

(P2, M, P4, ps) where M — (V2 + V3, 0),
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which is NOT pointing up!

We resume our proof of the implication the "weak" factorization=>-the "strong" factor-

ization.

PROPOSITION 7.8. Let Σ be a simplicial, collapsible and π-nonsίngular cobordίsm

containing only pointing up circuits. Then there is a simplicial, collapsible and π -nonsingular

cobordίsm Σ' such that

(7.8.1) Σ' contains only pointing up circuits,

(7.8.2) Σ' satisfies the condition (*)/or any join closed subset I C 9-Σ",

(7.8.3) Σ' is obtained from Σby a sequence of star subdivisions, none of which involve

d-Σ, of the π-independent faces which are codefinite with respect to all the circuits.

PROOF. Express the collapsible Σ as

Σ = Star(σm) o Star(σm_i) o o Star(σi) o d+Σ

for the circuits σm,σm-\,... , σ\ e Σ so that σ, is minimal among σ, , σ, _ i , . . . , σ\ accord-

ing to the partial order given by the circuit graph. We prove the lemma by induction on m.

Case m = 1: This case is the building block of the construction in the induction step and

we state it in the form of a lemma as below.

LEMMA 7.9. Let Σ be a simplicial, collapsible and π-nonsingular cobordism con-

taining only pointing up circuits. Let Star(σ) be the closed star of a circuit σ e Σ. Let

J = {(σ+, v>; v e linkr(σ)}.

Then

(7.9.1) J Star(σ) contains only pointing up circuits,

(7.9.2) J Star(σ) satisfies the condition (*) for any join closed subset J C d-{J

Star(σ)}, and

(7.9.3) J Star(σ) is obtained from Star(σ) by a sequence of star subdivisions, none of

which involve 3_Star(σ), of the π -independent faces which are codefinite with respect to all

the circuits.

PROOF. Let

σ = {(v\, w\), (ϋ2, w2),... , (ϋjk, Wk))

where v\, ι>2,... , Vk are primitive vectors in TV satisfying the unique linear relation

υi — V2 — — υk = 0 with w\ — u>2 — — Wk > 0 .

Let η e Star(σ) be a simplicial cone of the form

η = ( ( M l , W[), . . . , (Ui, Wι), (V\, W\), . . . , (Vk, Wk)) -

Then the circuits of J η = {J Π η] η are the cones of the form

, v)), tϋi + Σ w'j)> (V2'W2^ •'• ' ί ^ ' ^ ) ' al l the(ι* y , u ^ ) e v
(uj,w'.)ev '
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for v € linkη(σ) (including σ = σ& = ((r(σ+), w\) = (υ\, w\), (υ2, wi), .. , (υ*, Wk)) for

v = 0) satisfying the unique linear relation

lυ\+ ^ UjJ-V2 Vk~ Σ UJ = 0

^ (uj,wfj)ev ' (uj,w'j)εv

with I w\ + ^ w'jA — u>2 — - — Wk — ^ w'j > 0 .

^ (uj,w'j)(Ξv ' (uj,w'j)ev

Thus J η contains only pointing up circuits. Since η e Star(σ) is arbitrary, we conclude

J Star(σ) contains only pointing up circuits, proving (7.9.1).

We also observe that the maximal cones of Star(σv) are of the form

(συ, Mid((υi, V, / '

where

are the (UJ, ŵ Ô's NOT belonging to v, ordered in the specified way by a permutation p.

Therefore, any cone in the lower face 3_Star(συ), if not included in σv, is also in the upper

face but not in the lower face of the closed star of some other circuit of J Star(σ). Therefore,

we conclude that for any join closed subset / C d-{J Star(σ)} we have

/ Π Star(σy) = d-{J Star(σ)} Π {τ e J Star(σ); τ c σy}

C {τ G 7 Star(σ); τ C (σv)-} = 3_συ .

Since ^ € Star(σ) is arbitrary, this proves (7.9.2).

The condition (7.9.3) is obvious from the construction.

This completes the proof of Lemma 7.9.

We go back to the proof of Proposition 7.8 resuming the induction.

Suppose m > 1. Set

Σm-\ = Star(σm_i) o o Star(σi) o d+Σ

and apply the induction hypothesis to Σm-\ to obtain Σ'm_χ satisfying the conditions (7.8.1),

(7.8.2) and (7.8.3). Then Star(σm) o Σ'm_γ is the result of a sequence of star subdivisions,

none of which involve d-Σ, of the π -independent faces which are codefinite with respect to

all the circuits. Let

J = {(Om)+, v>; v e linki;(σm)}.

We show that J (Star(σm) o Σ'm_χ) satisfies the conditions (7.8.1), (7.8.2) and (7.8.3).

Since Σ'm_χ satisfies the condition (7.8.1) and J c d-Σ;

m_ι is join closed, the condition

(*) for J with Lemma 7.6 implies that J Σ'm_χ is a simplicial, collapsible and 7Γ-nonsingular

cobordism containing only pointing up circuits. Lemma 7.9 implies that J Star(σm) is also
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a simplicial, collapsible and π-nonsingular cobordism containing only pointing up circuits.

Therefore,

Σ' = J (Star(σm) o Σ'm_x) = {J Star(σm)) o (J . Σ'm_χ)

is a simplicial, collapsible and 7Γ-nonsingular cobordism satisfying the condition (7.8.1).

Observe that

d-Σ' = 3_Star(σm) U (d-Σ'm_x - Rellnt(/)).

Thus by construction we have the condition (7.8.2).

Let / be any join closed subset of d-Σ'. Let σ' e Σ' be a circuit. If σ' e J Star(σm),

then by Lemma 7.9 we have

/ Π Star(σ') = (/ Π J Star(σm)) Π Star(σ') C d-σ'.

If σ' e J - Σ'm_χ and σ' £ Σf

m_γ, then there exists a circuit σ = ((υi, w\),... , (vk,

Σ'm_χ such that

σ' = σζ =Uv\,w\), all the (v/, u;/) i\ £ f

where £ is the maximal cone i n / n { τ € Σ'm_χ\τ Cσ}, using the same notation as in Lemma

7.5. Observe that for any maximal cone r)n e Star(σO if a face τ c η" contains a new ray

used for the subdividing operation "/•" as one of the generators then τ ^ /. Therefore, by

looking at the description of ηf in Lemma 7.5 and η" obtained from η' by the star subdivision

of some faces of ζ, we conclude

IΓι{τ C Σf;τ C η"} = ( / Π | τ e i : ' ; r C σ'}) Π d-σ1 C d-σ'.

If σ' e J ^ _ ! and also σ r e Σ'm_v then the condition (*) for Σ'm_χ implies

/ Π Star(σ') c d-σ'.

Thus we have the condition (•) for Σ' proving the condition (7.8.2).

This completes the proof of Proposition 7.8.

THEOREM 7.10. Any simplicial, collapsible and π -nonsingular cobordism Σ between

A and A' can be made into a simplicial, collapsible and π-nonsingular cobordism Σ' between

A and A!' by a sequence of star subdivisions such that Σ' contains only pointing up circuits

and that A" is obtained from A' by a sequence of smooth star subdivisions.

PROOF. Express

Σ = Star(σm) o Star(σm_i) o o Star(σi) o d+Σ

for the circuits σm, σ m _i , . . . , σ\ e Σ so that σ; is minimal among σ;, σ/_i,... , σ\ accord-

ing to the partial order given by the circuit graph.
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Define a sequence of cobordisms Σk, Σf

k inductively as follows: Let

Σk =pσ+ (Star(σk) o Σ'k_x)
σ

where Σf

k_χ for k > 2 is obtained from Σk-\ by the procedure described in Proposition 7.8

to satisfy the conditions (7.8.1), (7.8.2) and (7.8.3). We remark that

d-Σk = d-Σ'k = a_(Star(σ*) o Star(σ*_i) o o Star(σi) o d+Σ).

Note then that inductively by Lemma 7.5, Lemma 7.6 and Proposition 7.8 Σk is a simplicial,

collapsible and 7Γ-nonsingular cobordism containing only pointing up circuits. Finally Σ =

Σm is a simplicial, collapsible and π-nonsingular cobordism containing only pointing up

circuits between A = π(d-Σ) = π(d-Σ) and A" = π(d+Σ), which is obtained from A! by

a sequence of smooth star subdivisions.

This completes the proof of Theorem 7.10.

COROLLARY 7.11 (The Strong Factorization Theorem). We have the strong factoriza-

tion for every proper and equivariant birational map between two nonsingular toric varieties

XΔ and XΔ>, i.e., Conjecture 1.1 holds in the strong form. In particular, if both XA and XA>

are protective, then the factorization can be chosen so that all the intermediate toric varieties

are also protective.

PROOF. Let A and A! be the corresponding two nonsingular fans in NQ with the same

support. Then by Proposition 6.1 and Theorem 6.2 there exists a simplicial, collapsible and

7Γ-nonsingular cobordism Σ between A and A!. By Theorem 7.10 we can make Σ into a

simplicial, collapsible and π -nonsingular cobordism Σ with only pointing up circuits between

A and a fan A!' such that A!' is obtained from A! by a sequence of smooth star subdivisions.

By Lemma 7.2 A!' = π(d+Σ) is also obtained from π(d-Σ) = A by a sequence of smooth

star subdivisions. Thus we have the factorization

A = π(d-Σ) = π(d-Σ) <- 7r(3+Γ) -> π(d+Σ) = Af,

which corresponds to the strong factorization

8. The toroidal case. The purpose of this section is to generalize the main theorem

of the previous sections, namely the strong factorization of a proper and equivariant birational

map between two nonsingular toric varieties, to the one in the toroidal case.

First we recall several definitions about the toroidal embeddings (cf. [Kempf-Knudsen-

Mumford-SaintDonat]) and the notion of a "toroidal" morphism as in [Abramovich-Karu].

DEFINITION 8.1 (Toroidal Embeddings). Given a normal variety X and an open subset

Ux C X, the embedding Ux c X is called toroidal if for every closed point x e X there

exist an affine toric variety Xσ, a closed point s e Xσ and an isomorphism of complete local
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algebras

Oχ.χ = Oχ,,s

so that the ideal in Oχ,x generated by the ideal ofX — Uχ corresponds under this isomorphism

to the ideal in Oχσs generated by the ideal of Xσ — T, where T is the torus. The affine toric

variety Xσ is called a local model of X at x.

We will always assume that the irreducible components of ( J ί G / E\ = X — Ux are

normal, i.e., Ux c X is a toroidal embedding without self-intersection. (In fact, in most

of the cases X is nonsingular and [jieI Eι c X is a divisor with normal crossings whose

irreducible components are all nonsingular.)

The irreducible components of C\ieJ E[ for / c /, together with Ux, define a stratifica-

tion of X. (These components and X are the closures of the strata. The closures of the strata

formally correspond to the closures of the orbits in local models.)

Let S be a stratum in X, which is by definition an open set in an irreducible component

of Π/e7 Ei f°Γ s o m e J C I. The star Star(S) is the union of those strata containing S in their

closure (each of them corresponds to some K c J C /). To the stratum S one associates the

following data:

Ms: the group of Cartier divisors in Star^) supported in Star(S) — Ux

Ns :=Hom(M 5 ,Z)

Ml c Ms: effective Cartier divisors

σs cNj>: the dual of M+.

If ( Z σ , s) is a local model at x e X in the stratum S, then

Ms = Mσ/σL , Ns = NσΠ span(

The cones glue together to form a conical complex

Ms = Mσ/σL , Ns = NσΠ span(σ) and σs = σ .

where \Δχ\ = {Js σs is the support of Δx and the lattices Ns form an integral structure on

Δx withσ 5 ^> N%.

DEFINITION 8.2 (Toroidal Morphisms). A dominant morphism

/ : (Ux C X) -> (UY C Y)

of toroidal embeddings is called toroidal if for every closed point x e X there exist local

models (Xσ, s) at x and XτJ at y = f(x) and a toric morphism g : Xσ -> Xτ such that the

following diagram commutes

OχtX = Oχσ,s

V- T-
Oγ,y = OXτ,,.

Now we can state our main result of this section.

THEOREM 8.3. Let

X)^ (UY c Y)
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be a proper birational and toroidal morphism between toroidal embeddings, where X and Y

are nonsingular and U/e/ Ei = X ~ Ux and (J j e J Fj = Y — Uy are divisors with normal

crossings whose irreducible components are all nonsingular. Then there exist a toroidal em-

bedding {Uy, V) and sequences of blowups, with centers being smooth closed strata, which

factor/

(Uχ,X) <r-(Uv,V)-+ (Uγ,Y).

LEMMA 8.4. Let

f:(UxcX)^ (UY C Y)

be a toroidal morphism between two toroidal embeddings.

(8.4.1) f induces a morphism fΔ : Ax —> Ay of complexes such that each σs e Δx

maps to some σs' e Δy linearly fΔ : σs c-> σs with the map of lattices of the integral

structures Nσs -> Nσs'.

(8.4.2) If f is proper and birational, then each σs e Δx maps ίnjectively into some

σs G Δy linearly f^\σs<^^σs and the lattice Nσs is a saturated sublattice of Nσs
f. In

short, Δx is a refinement of Ay with \Aχ\ = \Aγ\ preserving the integral structure. More-

over, once we fix the toroidal embedding (Uy C Y), there is a one-to-one correspondence

between the set of refinements f^:Δχ-^Δγ preserving the integral structures and the set

of toroidal embeddings mapping proper birationally onto (Uy C Y) by toroidal morphisms

f : (Ux C X) -> (UY C Y).

PROOF. For a proof, we refer the reader to [Kempf-Knudsen-Mumford-SaintDonat]

and [Abramovich-Karu]. We only note that a proper birational toroidal morphism between

toroidal embeddings without self-intersection is always allowable in the sense of [Kempf-

Knudsen-Mumford-SaintDonat].

We can reformulate via the lemma our main theorem of this section in terms of the

conical complexes (which are always assumed to be finite in this section).

THEOREM 8.5. Let f& : Δ! -> Abe a map between two nonsingular conical com-

plexes, which represents a refinement preserving the integral structure. Then there exist a

nonsingular conical complex A" obtained both from Δr and from A by some sequences of

smooth star subdivisions which factor f^

Δ^- A" -> A.

Given a conical complex A, we consider the space Ns 0 Z, for each Ns = Nσs associ-

ated to the cone σs e A, which can be glued together naturally via the glueing of TV5 to form

the integral structure. We denote this space NΔ Θ Z. By considering the space (Ns 0 Z) <8> Q

and glueing them together, we obtain the space

(Λ^)+ = (NΔ 0 Z) (8) Q = (NΔ)Q 0 Q

with the lattices Ns 0 Z also glued together to form the integral structure NΔ 0 Z.

If /Δ : A! -> A is a refinement of A preserving the integral structures, then we can

identify (NA>)~Q with (NA)Q having the same integral structure NΔ' 0 Z = NΔφZ.
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Observe that as in the case of toric fans we can define a cobordism Σ in the space (NA)Q

between A! and A as well as the notions of collapsibility, 7Γ-nonsingularity, pointing up, etc.

Once this is understood, we can carry out the same strategy as the one presented in

Section 1 through 7 by Morelli to factor a proper birational toroidal morphism and we only

have to prove:

THEOREM 8.6. Let fA'>A!^Abea map between two nonsingular conical com-

plexes, which represents a refinement preserving the integral structure. Then there exists a

simplicial, collapsible and π-nonsingular cobordism Σ in (NΔ)Q between conical complexes

Δ!' and A such that A!' is obtained from A! by a sequence of smooth star subdivisions and that

Σ consists only of pointing up circuits and hence A!1 is also obtained from A by a sequence

of smooth star subdivisions.

PROOF. We follow exactly the line of argument developed in the previous sections.

First we claim that there exists a simplicial and collapsible cobordism Σ between A and

A!. Recall that in order to construct a cobordism and make it collapsible in the argument for

the toric case we have utilized such global theorems as Sumihiro's and Moishezon's, which

are no longer applicable in the toroidal case. This calamity can be avoided by using the

following simple lemma.

LEMMA 8.7. Let Abe a simplicial conical complex. Then we can embed the bary cen-

tric star subdivision Aβ (cf. Definition 2.1) into a toric fan AT

B in some vector space NQ, i.e.,

there is a bijective map i : \Aβ\ -> \AT

B \ such that it restricts to a linear isomorphism to each

cone i : σ -» στ. {Note that we do NOT require i to preserve the integral structure.)

PROOF. We prove by induction on the dimension d of A and the number of the cones

of the maximal dimension d.

When d = 1, i.e., A is a finite number of lines, the assertion is obvious.

Suppose the assertion is proved already for a simplicial conical complex of either dimen-

sion < d or dimension d with k — 1 number of the cones of the maximal dimension d. Take

a simplicial conical complex A of dimension d with k number of the cones of the maximal

dimension d. Choose one cone σ of dimension d and let Aσ = A — {σ}. By the induction

hypothesis, we can embed the barycentric star subdivision (Aσ)β into a toric fan (Aσ)
τ

B in

some vector space NQ

i':\(Aσ)B\^>\(Aσ)
τ

B\.

We take NQ = Nf

Q®Q and regard N'Q = Λ^Θ{0} c NQ. We only have to take the embedding

i : AB -> AT

B to be the one such that

i\{Δσ)B=if:\(Aσ)B\^\(Aσ)
τ

B\cN'QcNQ and /(r(α)) = ( 0 , l ) 6 ^ θ β ,

where r{σ) is the barycenter of σ (in the sense of Definition 2.1 and hence corresponding to

the sum of the primitive vectors of the extremal rays for σ) and the map i on the cones in AB

containing r(σ) is defined in the obvious way.

We resume the proof of Theorem 8.6.
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Take the barycentric star subdivisions Δf

B and Δβ of the conical complexes Δ! and Δ,

respectively, and let Δβ be a simplicial common refinement of Δf

B and Δβ. By Lemma 8.7

we can embed Δ'B into a toric fan ΔrT

B in some vector space NQ. AS Δβ is a refinement of

Δ'B, it can also be embedded as a toric fan ΔT

B in the same space NQ by the extension of the

same map. We can take ΔoT

B, obtained by a sequence of star subdivisions from ΔrT

B such

that it is a refinement of ΔT

B (cf. [DeConcini-Procesi]). By replacing the original Δβ with

the pull-back of ΔoT

B, we may assume that Δβ is a refinement of Δβ and Δf

B and that Δβ is

obtained from Δ!B by a sequence of star subdivisions.

By Lemma 8.7 we can embed Δβ into a toric fan ΔT

B in some vector space NQ. AS

Δβ is a refinement of Z\#, it can also be embedded as a toric fan ΔT

B in the same space by

the extension of the same map. Now we can apply the arguments in Section 3 and Section 4

to conclude there is a simplicial and collapsible cobordism in NQ between (ΔT

B) and (ΔT

B),

where (ΔT

B) is obtained from ΔT

B by a sequence of star subdivisions and (A^) is obtained

from ΔT

B by another sequence of star subdivisions. We can pull back this cobordism to obtain

a simplicial and collapsible cobordism Σ in (NA)Q between (Δβ) and (Δβ), where (Δβ)

is obtained from Δ by a sequence of star subdivisions (via the barycentric star subdivision

Δβ) and (Δβ) is obtained from Δ! by a sequence of star subdivisions (via the barycentric

star subdivision Δr

B and Δβ). Now we apply Proposition 4.8, which is also valid in the

toroidal case, to the lower face θ_ Σ and to the upper face 3+ Σ to extend it to a simplicial and

collapsible cobordism Σ between Δ and Δ'.

Now apply the process of 7Γ-desingularization described in Section 5, which is word for

word valid also in the toroidal case to make Σ a simplicial, collapsible and 7Γ-nonsingular

cobordism between Δ and Δϊ'.

Finally apply the process described in Section 7, which is again word for word valid in

the toroidal case, to the cobordism above to obtain the desired simplicial, collapsible and π-

nonsingular cobordism Σ between A" and Δ such that A" is obtained from Δ! by a sequence

of smooth star subdivisions and that Σ consists only of pointing up circuits and hence A" is

also obtained from Δ by a sequence of smooth star subdivisions.

This completes the proof of Theorem 8.6 and the verification of the strong factorization

theorem for proper birational toroidal morphisms.
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