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COMPARISON GEOMETRY REFERRED TO
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Abstract. We generalize the Alexandrov-Toponogov comparison theorem to the case
of complete Riemannian manifolds referrediarped product models. We prove the maximal
diameter theorem and the rigidity theorem. In particular, we discuss collapsing phenomena
where the curvature explosion may occur.

1. Introduction. Comparison theorems play an important role in investigating the
curvature and topology of Riemannian manifolds. It was Klingenberg [10] who first intro-
duced the notion of radial curvature of a pointed manif@id, o). The restriction on the
range of sectional or Ricci curvature of a certain class of manifolds is required to have a
uniform lower bound when the comparison theorems are used. However, our comparison
geometry developed in this note does not require any restriction on the range of curvature.
Pointed Hadamard surface¥ , ) with rotationally symmetric metric arouridare discussed
by Greene and Wu [6] and Abresch [1, 2], for example, as reference spaces of complete non-
compact pointed Riemannian (Kéhler) manifldHere the radial curvature with respect to a
base poinb € M is bounded below by that of a Hadamard model surface. Further investiga-
tions of the radial curvature and topology of pointed manifolds can be seen in, for example,
[13, 14, 15, 17, 20, 27].

Recently, the Alexandrov-Toponogov comparison theorem was established in [8, 9] for
pointed manifolds whose reference surfaces admit rotationally symmetric metrics. The topol-
ogy of pointed manifolds referred to such mbderfaces has been discussed in [9, 12, 25],
for example.

It is our purpose to develop comparison geometry whose reference spaces are warped
product models of the formd = (—1_, I4) x ¢ N, whereN is a connected compagi — 1)-
manifold, f is the warping function, and & | < oo are constants. The models previously
discussed are contained as special cases of our warped product models.

Let (M, N) be a pair of a connected complete Riemanniamanifold M and a con-
nected compact Riemanniéan— 1)-manifold N, whereN is isometrically immersed intd/.
Throughout this note, when the normal bundl@&’ over N is trivial, the distance function
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t : M — Rto N may take negative values. Heneas smooth onM \ C(N), whereC(N)
is the cut locus taVv, and defines the oriented distanceNo It defines the usual distance
to N when LN is non-trivial. Awarped product model is defined to be a paitM, N) for
which the sectional curvature &f on the plane sections containify depends only on the
(oriented) distance t&/, andr is constant on each component®fN). We first establish the
characterization of the warped product models. This is obtained in a manner similar to that
developed in [11].

Some notation is needed for the preciseestant of our characterization: on a pair
(M, N), ageodesi : [0,a) — M is called a minimizing geodesic from if y(0) € LN
and ifd(N, y (t)) = t for everyt € [0, a). Aradial curvature of (M, N) is by definition the
sectional curvaturé ,, (IT) of the planelT containing a unit vector tangent to a minimizing
geodesic fronV. If the normal bundleL N is trivial, thenM \ C(N) is expressed as the union
M_uU M., whereM_, (resp.M_) is the set of points taking non-negative values (respectively
non-positive values) of the oriented distancéMoThus, we define

(1.1 o+ = inf +d(N,x), li:= sup +d(N,x) <oo
xeC(N)NM 4 xeMy

if LN is trivial, and

(1.2) p:= inf d(N,x), |:=supd(N,x)=<o0
xeC(N) XeM

if LN is non-trivial. Clearly,o+ < |+, p < |, and equality holds if and only ifM, N) is
isometric to a warped product model.

With these understandings, we state our abtarization of the warped product models
as follows. We only state the case wher# is trivial and omit the other case.

THEOREM 1.1. Assume that the radial curvature of (M, N) depends only on the ori-
ented (resp. usual) distance to N and that the radial curvature function is non-constant near
—I_andl; (resp.l). Wethen have p+ = 11 (resp.p = 1) and M \ C(N) isisometric to one
of the following warped product models.

(1) (—l-,00) x7 S 1_ <00, f(~1-) =0, I4 = co (R"-mode!).

(2) Rxy N, |- =1y = o0 (cylinder model).

(3) (—o0,l4) xf N, Iy <I- =00, f(l4+) > 0,and M isisometric to the quotient
space of R xp N by the fixed point free isometric involution (open Mobius strip model).

4) (1,10 xS 11y <00, f(—12) = f4) = 0 (S"-model).

(5) (—l-.1p) x; 87 le <00, ) - fU2) =0, f(I4) + fU-) > 0,and M is
diffeomorphic to RP" (real projective model).

6) (I, xs N, I =l4 <oo, f(—l-) = f(I}4) > 0 (torus model).

(7) (=11 %N, -1y <00, f(l4)- f(I-) > 0,and M isisometric to the quotient
space of Sti_ +1y) X f N by the fixed point free isometric involution (Klein-bottle model).
Here S'(r) denotes the circle of circumference r and N is the orientable double cover of N.
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Here the warping functiong (on M) and f (on the oriented double cover 8f) have
the following properties: under the assumption of Theorem 1.1 Nfis trivial, we have the

radial curvature functiok : (—1_,1;) — Rof (M, N). Hence,f : (—I_,l1) — Ris the
solution of the Jacobi equation
(1.3) f"+Kf=0, fO=1, f(O=pu,

whereu is the principal curvature df with respecttovz|y. WhenLN is non-trivial, we also
have the radial curvature functiat : [0,]) — R of (M, N) and the solutiorf : [0,]) —
R of (1.3). We show, in the proof of Theorem 1.1 in Section 2, tfias symmetric and
determined by .

The proof of Theorem 1.1 requires fundamental properties of the cut@g@us(Lemma
2.1) and the relation between the radial curvature function and the cut locus (Lemma 2.2).
On each model as stated in Theorem L'1V) takes the following special form: it N is
trivial and C(N) is disconnected, the@(N) has exactly two connected componefitse
M; d(N,x) = +£l1}. Each component of (N) is isometric tof(+l+)N, whereaN for
a > 0 denotes the scaling @f by a. In particular, if f(£l1) = 0 forly < oo, {x €
M ; d(N, x) = tl1} consists of a single point which is the first focal pointNawith multi-
plicity dim M —1. If LN is non-trivial, thenC (N) is connected((N) = {x e M ; d(N, x) =
[},andC(N) = f(I)N. Clearly,C(N) =@ if |- =1, = oc.

Comparison geometry will be discusseat £ach warped product model as obtained in
Theorem 1.1. We say th#te reference spaceof (M, N) is(M*, N) (or (M, N) isreferred to
(M*, N)) if and only if the following properties are satisfied.

(1) (M*, N)is awarped product model.

(2) M\ N andM*\ N have the same number of connected components.

(3) Denote the radial curvature function@?*, N) by K : (~=I*,1%) — Rwhen LN
is trivial, and byK : [0, 1*) — Rwhen LN is non-trivial. Then, at each poipt € M \ N,
every radial curvature ofM, N) is bounded below by (d(N, p)), whered (N, %) is the
oriented or usual distance functionfbin M.

REMARK 1.2. Let(M, N) be referred toM™*, N). Let L be defined in (1.1) for
(M, N) and/i for (M*, N). The condition (3) requires that

(1.4) I+ < li .

The above inequality is automatically satisfied when the reference space is (1), (2), (4), or (5)
of Theorem 1.1 and the open Mébius strip model witN being non-trivial. However, (1.4)

is not necessarily satisfied for other warped product models. Therefore, we agree that (1.4) is
assumed in (3) of the above definition.

In Section 3 we establish the Alexandrov-Toponogov comparison theore(foN)
referred to(M*, N). Generalized geodesic triangles of the fatytw x y) are discussed. In
Section 4 we prove the maximal diameter theorem for compact manifolds and the rigidity
theorem for non-compact manifolds. Finally, in Section 5 we discuss collapsing phenom-
ena of radially curved manifolds whose limit spaces do not have constant dimensions. Such
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a phenomenon is seen in the two-dimensional case [24]. It should be emphasized that the
conditions on radial curvature make it possible to deal with such collapsing phenomena.

2. Characterization of warped product models. We first state relevant properties of
C(A) for a compact submanifold c M. LetI"(A, x) for x € M be the set of all minimizing
geodesics fromA to x.

LEMMA 2.1. Setting p := d(A, C(A)), we have the following.
(1) (Berger[4], Omori[19]) Ifg € C(A)and yp, y1 € I'(A, q) satisfy d(A,q) = p
and y0(0) # +y1(0), then the geodesic y,, A € [0, 1], defined by

— —A=Mro(p) = Ayi(p)
C A= Myole) + Aol

@) =exp(p—nv., 1€I[0,p]l, w

belongsto I' (A, ¢). In particular, ¢ isafocal pointto A along y;.

(2) Ifg € C(A) satisfiesd(A,q) = p and ¢ is not a focal point to A along y €
I'(A, g),theny(2p) € LA. Moreover, I' (A, ¢) consists of exactly two elements.

(3) (Berger [3]) If p € M attains a local maximum of the usual distance function
to A, then there exists, for every £ € M,, ac € I'(A, p) such that (¢, —5(1)) > 0. In
particular, we have p € C(A).

The following basic lemma and Lemma 2.1 are useful in the proof of Theorem 1.1. Their
proof is basically the same as that developed in [11] and is omitted her&! beta complete
manifold with non-empty boundayM = N. Let B(N, a) for a > 0 denote the metria-
neighborhood around¥. Then L N is trivial and we defing andl by (1.2). With this notation
we have

LEMMA 2.2 (Basic lemma). If the radial curvature of (M, N) depends only on the
distanceto N = 9 M, then we have the following.

(1) ds2, =dt?>+ f2(t)ds?(x) on B(N, p), where f satisfies (1.3).

(2) Ifp <l ,thenK(t) = K(p) holdsfor all r € [p, |).

PrOOF OFTHEOREM1.1. It follows from Lemma 2.2 thaty = | if LN is trivial,
andp = | if LN is non-trivial. In the case whellg = oo (or| = o0), the conclusion is
straightforward.

Suppose thdt. < coandf(I4) =0. If g € C(N), then Lemma 2.1 implies thatis the
focal point toN along every geodesic ifi (N, ¢) and the multiplicity is: — 1. In particular,
we haveC(N) = {¢q}. Thus,M is diffeomorphic to a closed-disk, whose boundary is
isometric to the standar@ — 1)-sphere of constant curvatuy&0) 2K .

Suppose next thdt. < oo and f (1) > 0. Then Lemma 2.1 again implies that every
pointg € C(N) has the property thal' (N, ¢g) consists of exactly two elements. Lgt :
[0, 214] — M. for eachx € N be the geodesic wit, (0) € LN. Then we have, (2l;) €
LN andy,(l+) € C(N). Afixed point free isometric involution: N — N is well defined by
t(x) := yx(24), x € N. We then observe th&(N) is isometric tof (14 )N/, 2_iq;- Setting
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M =10, 2] XN, wheref and the radial curvature functidf : [0, 2I,] — R satisfy

S PG O=<r=ly,
(2.1) Fo = {f(ZIJr -1, ly<r=<2y,

s K@, O<t=<ly,
(2.2) K@) = {K(ZIJr -0, ly<r=<2,,

we see that : M — M defined by
D, x) =24+ —1,1(x), @&x)e0,2;)xN

is a fixed point free isometric involution and is isometric tol\?l/{@,q)z:id}. The metric
structure ofM_ is now obtained in the above discussion. Taking account of all possibilities,
we conclude the proof in this case.

The proof for the case whete< co and_L N is non-trivial is essentially contained in the
discussion above, and is omitted here.

Assume finally thatM is compact,M \ N is connected, and N is trivial. We then
observe that. =1, = p; = p_ < oo. It follows from Lemma 2.1 that there exist exactly
two elements in"(N, g) for everyg € C(N). Two geodesics il (N, g) make an angle
 atg and their initial vectors at points oN have opposite directions ihN. Thus, every
level hypersurface 1({a}), a € (I, 1), is isometric tof (a) N. This completes the proof of
Theorem 1.1. O

REMARK 2.3. If LN is non-trivial, thenV is totally geodesic. In generay; is totally
umbilic with principal curvature. = f(0).

3. Comparison theorems. We shall prove the Alexandrov-Toponogov comparison
theorem for M, N) referred to(M*, N). From now onwe assume that N istotally geodesic
in M and M*. A generalized geodesic triangle A(N x y) C M is defined by a tripler, 8, y :
[0, 1] — M of minimizing geodesics (oW, x, y) as follows:

@0),0 € LN, a) =y =y, BL=y0=x.

Herex, y are chosen in the same component, 8ay of M \ N, anda, 8 are minimizing
geodesics fronV. We considetV as a corner oiA(N x y). We say tha\(N x y) C M isa
generalized narrow triangle if and only if «(¢) € B(B(t), 8) forall ¢ € [0, 1], wheres > O is
the convexity radius on the compact &0, 1] U 8[0, 1] U y[O, 1].

THEOREM 3.1. Assumethat (M, N) isreferred to (M*, N). If a generalized narrow
triangle A(N x y) C M admitsthe corresponding generalized narrow triangle A(N x*y*) C
M* such that

d(N,x) =d(N,x*), d(N,y)=d(N,y"), dx,y)=dx" y"),
then we have
(3.1) /Nxy > /Nx*y*, [Nyx > /[Ny*x*.
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Note that the existence of the corresponding narrow triangh’inis ensured if either
I = ocorli < ooandf(l}) = 0. Inthe case wher€ < oo and f(I7) > O, itis not
certainin general if,. < I%. Itis shown later (see the last paragraph in Section 4) that we can
take the corresponding triangle in a suitable finite covenf, N) so as to satisfiy. < I7%.

The Alexandrov convexity theorem is stated as follows.

THEOREM 3.2. Under the same assumption as in Theorem 3.1, if y, y* : [0, 1] —
M, M* aretheedgesof A(N x y), A(N x* y*) oppositeto N suchthat y(0) =x, y(1) =y
and y*(0) = x*, y*(1) = y*, then

(3.2) d(N,y(®) =d(N,y*(1)), te[01].

The Clairaut relation for geodesics oM *, N) plays an important role in developing
comparison geometry. Our model does not have the trigonometric rule for geodesic triangles.
If y*: R — M* is a geodesic transversal to a meridian, then the Clairaut relation implies
thaty*(s) is linearly independent ¥z (y*(s)) for all s € R. Thus, we obtain a ruled surface
S(y*) ¢ M* generated by the meridiangagsing through each point ¢f*(R). If Prp :

M* — N is the second projection such thapRrx) := x, (r,x) € M*, thenx : R - N
defined byx(s) := Pr(y*(s)) is a regular smooth curve, which may be considered as the
base curve of(y*). We define a regular parameterizatipn R? > S(y*) c M* of S(y*)

by @(r, u) := (t,x(u)), (t,u) € R% The metric onS(y*) induced throughy is given by
dsfg(y*) = di? + f2(t)du?, (t,u) € R%. We then have the Clairaut relation for a warped
product mode(M*, N).

LeEmMA 3.3 (The Clairaut relation). Let y* : R — M* be a geodesic transversal
to a meridian and S(y*) Cc M™ the ruled surface generated by y*. If we set y*(s) =
(t(s), x(s)) € M* and

als) == L(y*(s), Vi(y*(s)), s€eR,
then there exists a constant C (y*) depending only on y* such that
(3.3) ft(s))sina(s) =C(y*), seR.

To each generalized triangle(N x* y*) C M™* we assign the ruled surfaséy *), where
y*:[0,1] - M*isthe edge of\(N x* y*) opposite taV. Since each point af (y*) admits
a radial directionvt, the Gaussian curvature @iy *) does not exceed the radial curvature
of M*. Our discussion of the angle comparison is applied to the ruled susfacs.

PROOF OFTHEOREMS3.1AND 3.2. For a sufficiently small fixed > 0 we define a
warped product mode¥; whose radial curvature functiok, is defined byK, := K — ¢.
We may consider that the generalized narrow triamg{&/xy}) C M} corresponding to
A(N x y) exists. LetS(y}) C M} be the ruled surface generated by the ege [0, 1] —
M} of A(Nx}y}) opposite toN. Let A(Nx}J:) C S(y;) be another generalized narrow
triangle such that

(3.4) LyxN = LYex}N, d(y,x)=dPe,x}), d(N,x)=d(N,x}).
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For a minimizing geodesig; : [0, 1] — S(y;) from N to . = &. (1), we find a vector field
Y} along the edg@;* opposite tay, such that
a: (1) = eXPg: (1) Yo, Yfll<é, tel0,1].
We also have the corresponding vector figldalongg by the trivial identification of parallel
fields alongg andg;. Setting foreach G ¢ <1,
01 () 1= €XPy(r) sYe (), o/ (s) == eXPgx (1) sY¥@), sel0,1],
we observe that the maps V* : [0, 1] x [0, 1] — M, S(y,*) defined by
V(t,s):=oi(s), V*(t,8):=0(s), (t, ) €[0,1]x[O0,1]

are geodesic variations along each geodesje,*. In particular, bottv — V (¢, 1) and
t — V*(t,1) are curves, to which the Berger comparison theorem is appliek, lis the
Gaussian curvature &(y;), then, forevery 0< ¢ <1,

Ku(B@), Ye() = K(A(N, B(1))) > Ke(d(N, B(1))) = KF(BE(1)).

Here the last inequality follows from the fact that meridians are asymptotic lin€ ).
Sincex[0, 1] is sufficiently close tg[0, 1], we have

Kt (dVie.5)(0/00), d Vi) (3/95) = Kags (Ve (0/00), AV (3/95)
=K (o/(s)), s,t€l0,1].

The Jacobi fields along, ando,* associated with the geodesic variationg, s) andV*(t, s)
have the same initial condition. The Berg@mparison theorem implies that

1
d(N. 50 = L(@:) = /0 1AV 1, (3/30) 1

1
> /0 1 dVin@/30)1di = d(N. y),

and, henced(N, 3.) > d(N, y¥) = d(N, y). This proves that
(3.5) [Nxy > [/Nx}y:, [Nyx=>/Nyx}.

Let0 = g < 11 < --- < tr = 1 be chosen such that for each= 1,... k%,
A(Ny(ti—1)y(;)) is a generalized narrow triangle and admits the corresponding general-
ized triangleA(Ny (ti—1) vy (1)) C S(y;) satisfying (3.5). The broken geodesic with cor-
ners atx} = yf(t0),..., v, (&) is convex inS(y)). Therefore, the stretching technique
on S(yF) shows that IfA(Nx P () C S(y)) is the generalized triangle correspond-
ing to A(Nxy(1;)), then the sequence of angleSNx*p(t;)}i=12,.« atx} is monotone
non-increasing in. If z = y (1) and if z¥ € x}p7 (%) is the point corresponding to on
A(NxFpl (1)), thend(N,z) > d(N,z}) and the sequencgl(N, z})}; is monotone non-
increasing in. We conclude the proof by letting O. O
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We shall prove the angle comparison theorem for generalized geodesic triangles on
(M, N) referred taM*, N). Given a generalized triangle(Nxy) C M, with edgesy, 8, v :
[0,1] — M, and its corresponding generalized triangléNx*y*) C M7 with edges
o*, B*, v* 1 [0,1] — M*, we always denote the edge oppositeMdy y, y*. The parti-
tion of A(Nx*y*) into narrow trianglegA(Ny*(ti—1)y*(ti))}i=1.2....x forms the boundary
of a locally convex region o5(y*). With this notation we state the following.

THEOREM 3.4. Assume that (M*, N) satisfies f(I) = 0or | = oo, and that
(M, N) isreferred to (M*, N). For every generalized triangle A(N x y) € M there ex-
ists a generalized geodesic triangle A(N x* y*) C S(y*) such that

d(N,x) =d(N,x*), d(N,y)=d(N,y"), dx,y)=I[x"y,
/Nxy > /Nx*y*, [/Nyx > /Ny*x*.

Here |x*y*| denotes the length of the edge x*y* which is not necessarily minimizing.

4. The maximal diameter theorem and rigidity theorem. In [9] we have proved
the maximal diametetheorem for a compaciV, o) referred to ar8*-model(M*, 0*). Note
that if (M, N) is referred tolM*, N) and if f(£l%) = 0, thenl. < I%.. However, we do not
know in general whethdr. < I holds whenf (£I%) > 0. The maximal diameter theorem
follows from Theorem 3.1. Its proof is omitted here.

THEOREM 4.1 (The maximal diameter theorem)We have the following.

(i) Let(M*, N)beanS'-model with warping function f : (—I*,1%) — R satisfying
f/(0)=0.1f (M, N) isreferred to (M*, N), then |+ < I and the equality holdsif and only
if M isisometricto M*.

(i) Let (M*, N) be an RP"-model with non-trivial LN. If (M, N) is referred to
(M*, N), then| < I and the equality holdsif and only if M isisometric to M*.

The volume comparison theorem due to Heintze et al. [7, 16] implies the following.

THEOREM 4.2 (The maximal volume theorem)Let (M*, N) be a Klein-bottle model
or atorusmodel and (M, N) bereferredto (M*, N) suchthat |+ < I%.. Then

vol(My) < vol(M%),

and the equalities hold simultaneously if and only if (M, N) or its double cover isisometric
to a torus model.

We shall discuss the rigidity theorems for non-compact manifolds. Sakai [21, 22, 23] has
established the rigidity theorem for cylindeodels under the condition of Ricci curvature.
The following theorem halseen proved in [25] whetW ™, 0*) is anR"*-model.
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THEOREM 4.3. Let (M*, N) bethereference space of (M, N) such that both M. and
M_ are non-compact. Then M is diffeomorphic to M* if one of the following is satisfied:

(4.2) Iirpinf f@) = Iin;inf f(@®) =0,
1} —0o0 1100
(4.2) lim sup f(r) < oco.
t—+00

Moreover, M isisometric to M* if

0 0
(4.3) / F2@)dt = / F2(n)dt = o0.
—00 0

PROOF OFTHEOREM4.3. We concentrate our discussion &ff and M. We first
prove that ifo* : [0, 00) — M7 is an arbitrary fixed meridian, then there exists a unique
asymptotic class of all rays oW} . Indeed, ifx* € M} \ 0 *[0, oo) andift* : [0, o0) — M7
is aray fromx™ asymptotic tar*, we then prove that*(0) = Vr(x*). If (4.1) is satisfied, then
the conclusion follows fron€ (z*) = 0. HereC (¢ *) is the Clairaut constant af‘. Suppose
that (4.2) and*(0) # Vi (x*) are satisfied. Suppose further that (4.1) is not satisfied. Then
there existz > 0 andzg >> 1 such that

di? + f2(du® = (1 +a®dr®, 1> 10
holds a|0ng[*(s) = (t(s), u(s)) (Cf. [25, 26]) If 1< so < s1, then

51— 50 = V14 a?(t(s1) — 1(s0)) -
On the other hand, (4.2) implies that there exists a constan® such that
d(t*(s),0™(t(s))) <b, s=0.
Then, the triangle inequality implies that
d(t*(s0), T"(51)) = 51— 50
< d(t*(s0), 0" (t(50))) + (s1) — t(s0) + d(r™(s1), 0" (t(51)))
<t(s1) —t(so) +2b.
Thus, a contradiction is derived for a sufficiently lasgeind, hence, (4.2) implies the unique-
ness of the asymptotic classMi; .
We next prove that (4.1) or (4.2) implies that(i#7, N) is referred to(M*, N), then
C(N) =¢#in M. Leto : [0,00) — My be an arbitrary fixed ray fron¥. Letx € M \

o[0, co) andoy : [0, c0) — M be aray asymptotic te with o, (0) = x. Theorem 3.4 then
implies that

[Nxoy(t)=m, t>0.

In particular, every geodesic : [0, co) — M, with t(0) € LN is a ray fromN which is
asymptotic tar. This proves thaC(N) N M+ = ¢ and, hence, thaw is diffeomorphic to
the normal bundle ove¥ in M. Thus, the first part of the proof is concluded.

We finally show that if (4.3) is satisfied, thekiy (6 (¢), X) = K(t) for every X €
ToyM with X 1o (r). Let Yi(1), Ya(1), ..., Y,—1(¢) be N-Jacobi fields along such that
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{Y1(0), Y2(0), ..., ¥,_1(0)} forms an orthonormal basis @, N andY;(0) = Y;(0) =
- =Y, 41(0) = 0. ThenY1(r) A Ya(t) A --- A Y,_1(2) gives the volume element at(r)
of ther-level hypersurfac&V; = {x € M, ; d(N, x) = t} and, moreover/ (¢t) := { Y1(t) A
Yo(t) A -+ A Yo_1(t) }Y/ =D satisfies a well-known equation

Ric(5(2)) _ 1 2
n—1 J = (n—l)ZZ(MZ wiJ,

i<j

(4.4) J"+

andJ(0) = 1, J'(0) = 0O (see [5]). Herqu1(r), u2(1), ..., un—1(¢) are the principal curva-

tures ofN; ato (¢) with respect to the unit normél(z). The corresponding functian*(¢) for

N ={x* e M} ; d(N*, x*) = t} satisfies

Ric(a* (1)) *
-1

Actually, Ric(6*(#))/(n — 1) = K (¢) holds, and we see thg = J* from initial conditions.

Applying [25, Lemma 3.1], we obtaif = J*,

(4.5) JN" + =0, J*"O =1, (U0 =0.

Ric(o (1)) 1 2
i— i) =K(@),
Tt (n_l)zg;(“ i) )
andu(t) := pu1(t) = u2() = --- = uy—1(t). The assumption for the radial curvature of

(M, N) implies thatK 3/ (6 (¢), X) = K (). Since the principal curvatuge® () of N/ is given
asu*@t) = f'(t)/f @) = (), we see thaiV, is isometric toN;* and, hence, tha¥ is
isometric toM*. ]

In the case wheréM*, N) is a torus model, the following corollary is a direct conse-
quence of Theorem 4.3.

COROLLARY 4.4. Iftheinfinite cover (M*, N) of atorusmodel (M*, N) isthe refer-
ence space of (M, N), and if M, and M_ are non-compact, then M isisometric to M*.

REMARK 4.5. Let(M*, N) be a torus model withtM*\C(N) = (=I*,[*) xs N,
f(=I*) = fI*) > 0, and its infinite coveR X N have the property that/2is the fun-
damental period of . If (M, N) is referred taR Xz N and if M is compact, we then choose
the finite covertM*, N) of (M, N) and two positive integers; andk_ such that

(ko —D)I* <I_ <k I*, (ky—1)I* <l <kyl*,

whereM* is isometric toSt (k. + k_) I*) x PN, andS!(r) is the circle of circumference
In principle, we can develop comparison geometry(fiar, N) referred to a cylinder or
Klein-bottle model(M*, N).

5. Collapsing radially curved manifolds. To describe our collapsing phenomena,
we shall introduce new models. When Bi-model defined ofiR” is realized inR"*! as a
hypersurface of revolution around thg,1-axis, f is the profile curve parameterized by arc
length measured from the base point, which is the point of intersection with the rotation axis.
Then f(¢) is the radius of the standald — 1)-sphere in the hyperplane orthogonal to the
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xp+1-axis. Roughly speaking, a singular model is obtained when the profile curve touches the
rotation axis. More precisely,singular n-model (M, 9) with base point at 6 is, by definition,
a metric space whose pseudo meitié arounds is expressed as

(5.1) ds? =dr* + fz(t)dsgn_l(@), (t,0) € (0,00) x S*71.

Here the warping functio_rf : (0, 0) — Rof Mis non-negative, continuous on (0, oo), and
smooth on the interior Int(supf f)) of supp f). Further, the radial curvature functida is
defined and smooth on I@upg f)) on which the following Jacobi equation is satisfied:

(5.2) f"+Kf=0, fO)y=0, f©O=1.

CIearIyA, a singulan—model(M, 0) has gimension 1 in a neighborhood(@f®) € (0, co0) \
(supf f)) and dimensiom in Int(supf f)).

We next consider a sequencerofnodels{(M.’?, ojf)}jzlgz,m converging to a singular
model (M, 6). Each modekM;‘, oj?) has the metrials]fl;ﬁ of the form (5.1) with the radial
curvature functiorK;!‘ : [0, 00) — R satisfying (5.2) for its warping functioyi]?" : (0, 00) —
R. We assume that the radial curvature functibrand the warping functiorf of a singular
model (M, o) are obtained as the limits of the sequenp@?}lzl,z,_,_ and{ fj}i=1.2,... in the
following way:

dk froodkf

5.3 lim =—- fork=0,1,2 and IlmK*=K.
( ) j—o0 dtk dtk j—o0 J

Here the convergence is uniform on every compact set ¢sup /)). The pseudo metric of
(M, 6) is expressed as (5.)\e say that a sequence { (M %, oj)}j=1,2,,,, of n-models converges
to a singular model (M, ) if and only if (5.3) holds.

THEOREM 5.1. Let {(M;!‘, a;’f)}.,-zl,z,_,_ be a sequence of models converging to a singu-
lar model (M, ). Let {(M;,0})}j=12,.. beasequenceof complete non-compactr-manifolds
such that each (M;,o0;) is referred to (M;F,o’]‘f). Then the pointed Hausdorff limit of
{(Mj,0))}j=12.. existsandisisometric to the singular n-model (M, 0) if the warping func-
tions satisfy

(5.4) / (fH2dt =00, j=12.....
1

A similar observation is made on a sequencg(@f;, N)};—1 2 . referred to warped
product models. Le{(M;.‘, N)}j=12. be a sequence of cylinder models such that each
(M;.‘, N) has its warping functiorf;‘ : R — Ry and radial curvature functiof; : R — R,
andN C M;.‘ is totally geodesic. Assume that there exists a non-negative piecewise smooth

function f : R — R, and the radial curvature functioki : Int(suppf)) — R satisfying
(5.3). The singular spaqe?l, N) is obtained by the pointed Hausdorff limit of the sequence
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{(M;‘.‘, N)}j=12.., where the pseudo metric is expressed by
(5.5) dsi;[ =di’ + f2(t)ds? (x), (1,x) € (—00,00) X N.

THEOREM 5.2. Let {(M;F, N)}j=1.2,.. be a sequence of cylinder models converging

to a singular model (M, N). Let {(Mj, N)}j=1.2,. bea sequence of complete non-compact
n-manifolds such that each (M;, N) isreferred to (M;.‘, N). We then have

lim d,gu(M;, N) = (M,N) (isometric)
Jj—>00
if the warping functions satisfy

/m(f;"rz(t)dr =00, j=12....
0

The key point of the proof of Theorems 5.1 and 5.2 is the Sturm comparison theorem for
the Jacobi equation (see [25, Lemma 3.1]) definefDono):

ffO+ K@) fi(t)=0, fi(0)=0, f(O=1, t>0i=12.

Assume thatk; > Kz and f1 > 0 on (0,00). Lemma 3.1 in [25] implies that if
ffo fz_z(t)dt = oo, thenfi = fo andK1 = K> on [0, c0). By a slight modification of

the proof of [25, Lemma 3.1], we observe that the same conclusion is valid for the initial
conditionsf; (0) =1, f/(0) =0, i =1,2.

PROOF OFTHEOREMS5.1AND 5.2, Lety; : [0,00) - M;for j =1,2,... bearay
with y;(0) = o; andY; a Jacobi field along; such that

Y;(0 =0, [IYOI=1, j=12....
The radial curvaturé y, (y; (1), Y;(¢)) is bounded below b ;(r). We then observe that
Ky (yj(0), Yj(0)) =K;@), Yj@t)=fi(OE;@), =0,

whereE; is the parallel field along; such thatz;(0) = Y} (0). We see from [25] thav/; is
isometric toM;F. This proves Theorem 5.1.

The proof of Theorem 5.2 is now immediate from the above discussion and Theorem
4.3. ]

REFERENCES

[1] U.ABRESCH Lower curvature bounds, Toponogov's theorem, and bounded topology, Ann. Sci. Ecole Norm.
Sup. (4) 18 (1985), 651-670.

[2] U. ABRESCH Lower curvature bounds, Toponogov's theorem, and bounded topology II, Ann. Sci. Ecole
Norm. Sup. (4) 20 (1987), 475-502.

[3] M. BERGER Les variétés riemanniennék/4)-pincées, Ann. Scuola Norm. Sup. Pisa (3) 14 (1960), 161-170.

[4] M. BERGER Sur les variétés a courbure positive de diamétre minimum, Comment. Math. Helv. 35 (1961),
28-34.

[5] M. E. GAGE, Upper bounds for the first eigenvalue of the Lapt8aitrami operator, Indiana Univ. Math. J.
29 (1980), 897-912.



(6]
[7]
[8]

[9]

[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
(18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]

[27]

WARPED PRODUCT MODELS 473

R. GREENE ANDH. C. Wu, Function theory on manifolds which possess a pole, Lecture Notes Math. 699,
Springer, Berlin, 1979.

E. HEINTZE AND H. KARCHER, A general comparison theorem with applications to volume estimates for
submanifolds, Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), 451-470.

Y. | TOKAWA, Y. MACHIGASHIRA AND K. SHIOHAMA , Generalized Toponogov'’s theorem for manifolds with
radial curvature bounded below, Exploration iongplex and Riemannian geometry, 121-130, Contemp.
Math. 332, Amer. Math. Soc., Providence, R.l., 2003.

Y. I TOKAWA, Y. MACHIGASHIRA AND K. SHIOHAMA, Maximal diameter theorems for manifolds with re-
stricted radial curvature, Proceedings of thelRacific Rim Geometry Conference (Sendai, 2000), 6168,
Tohoku Math. Publ. 20, Tohoku Univ., Sendai, 2001.

W. KLINGENBERG, Manifolds with restricted conjugatecus, Ann. of Math. (2) 78 (1963), 527-547.

N. KATZ AND K. KONDO, Generalized space forms, Trans. Amer. Math. Soc. 354 (2002), 2279-2284.

K. KoNDO, The topology of complete manifolds with rad@lrvature bounded below, Preprint, Saga Univer-
sity, 2002.

Y. MACHIGASHIRA, Manifolds with pinched radial curvature, Proc. Amer. Math. Soc. 118 (1993), 979-985.

Y. MACHIGASHIRA, Complete open manifolds of non-negativeied curvature, Pacific J. Math. 165 (1994),
153-160.

Y. MACHIGASHIRA AND K. SHIOHAMA, Riemannian manifolds with positive radial curvature, Japan. J.
Math. (N. S.) 19 (1993), 419-430.

M. MAEDA, Volume estimate of submanifolds in compact Riemannian manifolds, J. Math. Soc. Japan 30
(1978), 533-551.

Y. MAsHIKO, K. NAGANO AND K. OTSUKA, The asymptotic cones of manifolds of roughly non-negative
radial curvature, J. Math. Soc. Japan 57 (2005), 55-68.

Y. MASHIKO AND K. SHIOHAMA , The axiom of plane for warped product models and its application, Kyushu
J. Math. 59 (2005), 385-392.

H.OMORI, A class of Riemannian metrics on a manifold, J. Differential Geometry 2 (1968), 233-252.

Y. OTsu, Topology of complete open manifolds with nonnegative Ricci curvature, Geometry of manifolds
(Matsumoto, 1988), 295-302, Perspect. Math. 8, Academic Press, Boston, M.A., 1990.

T. SAKAI, On Riemannian manifolds admitting a function whose gradient is of constant norm, Kodai Math. J.
19 (1996), 39-51.

T. SakAl, Warped products and Riemannian manifolds admitting a function whose gradient is of constant
norm, Math. J. Okayama Univ. 39 (1997), 165-185.

T. SAKAI, On Riemannian manifolds admitting a function whose gradient is of constant norm Il, Kodai Math.
J. 21 (1998), 102-124.

T. SHIOYA, The limit spaces of two-dimensional manifoldghwniformly bounded integral curvature, Trans.
Amer. Math. Soc. 351 (1999), 1765-1801.

K. SHIOHAMA AND M. TANAKA, Compactification and maximal diameter theorem for noncompact mani-
folds with radial curvaturebounded below, Math. Z. 241 (2002), 341-351.

M. TANAKA , On the cut loci of a von Mangoldt’s surface of revolution, J. Math. Soc. Japan 44 (1992), 631—
641.

S. H. ZHu, A volume comparison theorem for manifolds with asymptotically nonnegative curvatureand its
applications, Amer. J. Math. 116 (1994), 669—682.

DEPARTMENT OFMATHEMATICS
FACULTY OF SCIENCE AND ENGINEERING
SAGA UNIVERSITY

HONJYO-MACHI, SAGA, 840-8502
JAPAN

E-mail addresses: mashiko@ms.saga-u.ac.jp

shiohama@ms.saga-u.ac.jp



