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Abstract. We generalize the Alexandrov-Toponogov comparison theorem to the case
of complete Riemannian manifolds referred to warped product models. We prove the maximal
diameter theorem and the rigidity theorem. In particular, we discuss collapsing phenomena
where the curvature explosion may occur.

1. Introduction. Comparison theorems play an important role in investigating the
curvature and topology of Riemannian manifolds. It was Klingenberg [10] who first intro-
duced the notion of radial curvature of a pointed manifold(M, o). The restriction on the
range of sectional or Ricci curvature of a certain class of manifolds is required to have a
uniform lower bound when the comparison theorems are used. However, our comparison
geometry developed in this note does not require any restriction on the range of curvature.
Pointed Hadamard surfaces(M̃, õ) with rotationally symmetric metric around̃o are discussed
by Greene and Wu [6] and Abresch [1, 2], for example, as reference spaces of complete non-
compact pointed Riemannian (Kähler) manifolds. Here the radial curvature with respect to a
base pointo ∈ M is bounded below by that of a Hadamard model surface. Further investiga-
tions of the radial curvature and topology of pointed manifolds can be seen in, for example,
[13, 14, 15, 17, 20, 27].

Recently, the Alexandrov-Toponogov comparison theorem was established in [8, 9] for
pointed manifolds whose reference surfaces admit rotationally symmetric metrics. The topol-
ogy of pointed manifolds referred to such model surfaces has been discussed in [9, 12, 25],
for example.

It is our purpose to develop comparison geometry whose reference spaces are warped
product models of the form̃M = (−l−, l+) ×f N , whereN is a connected compact(n − 1)-
manifold,f is the warping function, and 0< l± ≤ ∞ are constants. The models previously
discussed are contained as special cases of our warped product models.

Let (M,N) be a pair of a connected complete Riemanniann-manifold M and a con-
nected compact Riemannian(n−1)-manifoldN , whereN is isometrically immersed intoM.
Throughout this note, when the normal bundle⊥N over N is trivial, the distance function
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t : M → R to N may take negative values. Hence,t is smooth onM \ C(N), whereC(N)

is the cut locus toN , and defines the oriented distance toN . It defines the usual distance
to N when⊥N is non-trivial. A warped product model is defined to be a pair(M,N) for
which the sectional curvature ofM on the plane sections containing∇t depends only on the
(oriented) distance toN , andt is constant on each component ofC(N). We first establish the
characterization of the warped product models. This is obtained in a manner similar to that
developed in [11].

Some notation is needed for the precise statement of our characterization: on a pair
(M,N), a geodesicγ : [0, a) → M is called a minimizing geodesic fromN if γ̇ (0) ∈ ⊥N

and if d(N, γ (t)) = t for everyt ∈ [0, a). A radial curvature of (M,N) is by definition the
sectional curvatureKM(Π) of the planeΠ containing a unit vector tangent to a minimizing
geodesic fromN . If the normal bundle⊥N is trivial, thenM \C(N) is expressed as the union
M− ∪ M+, whereM+ (resp.M−) is the set of points taking non-negative values (respectively
non-positive values) of the oriented distance toN . Thus, we define

ρ± := inf
x∈C(N)∩M±

±d(N, x) , l± := sup
x∈M±

±d(N, x) ≤ ∞(1.1)

if ⊥N is trivial, and

ρ := inf
x∈C(N)

d(N, x) , l := sup
x∈M

d(N, x) ≤ ∞(1.2)

if ⊥N is non-trivial. Clearly,ρ± ≤ l±, ρ ≤ l, and equality holds if and only if(M,N) is
isometric to a warped product model.

With these understandings, we state our characterization of the warped product models
as follows. We only state the case where⊥N is trivial and omit the other case.

THEOREM 1.1. Assume that the radial curvature of (M,N) depends only on the ori-
ented (resp. usual) distance to N and that the radial curvature function is non-constant near
−l− and l+ (resp. l). We then have ρ± = l± (resp. ρ = l) and M \ C(N) is isometric to one
of the following warped product models.

(1) (−l−,∞) ×f Sn−1, l− < ∞, f (−l−) = 0, l+ = ∞ (Rn-model).
(2) R ×f N, l− = l+ = ∞ (cylinder model).
(3) (−∞, l+) ×f N , l+ < l− = ∞, f (l+) > 0, and M is isometric to the quotient

space of R ×
f̂

N by the fixed point free isometric involution (open Möbius strip model).

(4) (−l−, l+) ×f Sn−1, l−, l+ < ∞, f (−l−) = f (l+) = 0 (Sn-model).
(5) (−l−, l+) ×f Sn−1, l± < ∞, f (l+) · f (l−) = 0, f (l+) + f (l−) > 0, and M is

diffeomorphic to RPn (real projective model).
(6) (−l−, l+) ×f N, l− = l+ < ∞, f (−l−) = f (l+) > 0 (torus model).
(7) (−l−, l+)×f N , l−, l+ < ∞, f (l+) ·f (l−) > 0,and M is isometric to the quotient

space of S1(l− + l+) ×f N̂ by the fixed point free isometric involution (Klein-bottle model).
Here S1(r) denotes the circle of circumference r and N̂ is the orientable double cover of N .
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Here the warping functionsf (on M) andf̂ (on the oriented double cover ofM) have
the following properties: under the assumption of Theorem 1.1, if⊥N is trivial, we have the
radial curvature functionK : (−l−, l+) → R of (M,N). Hence,f : (−l−, l+) → R is the
solution of the Jacobi equation

f ′′ + Kf = 0 , f (0) = 1 , f ′(0) =: µ ,(1.3)

whereµ is the principal curvature ofN with respect to∇t|N . When⊥N is non-trivial, we also
have the radial curvature functionK : [0, l) → R of (M,N) and the solutionf : [0, l) →
R of (1.3). We show, in the proof of Theorem 1.1 in Section 2, thatf̂ is symmetric and
determined byf .

The proof of Theorem 1.1 requires fundamental properties of the cut locusC(N) (Lemma
2.1) and the relation between the radial curvature function and the cut locus (Lemma 2.2).
On each model as stated in Theorem 1.1,C(N) takes the following special form: if⊥N is
trivial and C(N) is disconnected, thenC(N) has exactly two connected components{x ∈
M ; d(N, x) = ±l±}. Each component ofC(N) is isometric tof (±l±)N , whereaN for
a ≥ 0 denotes the scaling ofN by a. In particular, iff (±l±) = 0 for l± < ∞, {x ∈
M ; d(N, x) = ±l±} consists of a single point which is the first focal point toN with multi-
plicity dim M−1. If ⊥N is non-trivial, thenC(N) is connected,C(N) = {x ∈ M ; d(N, x) =
l}, andC(N) = f (l)N . Clearly,C(N) = ∅ if l− = l+ = ∞.

Comparison geometry will be discussed for each warped product model as obtained in
Theorem 1.1. We say thatthe reference space of (M,N) is (M∗, N) (or (M,N) is referred to
(M∗, N)) if and only if the following properties are satisfied.

(1) (M∗, N) is a warped product model.
(2) M \ N andM∗ \ N have the same number of connected components.
(3) Denote the radial curvature function of(M∗, N) by K : (−l∗−, l∗+) → R when⊥N

is trivial, and byK : [0, l∗) → R when⊥N is non-trivial. Then, at each pointp ∈ M \ N ,
every radial curvature of(M,N) is bounded below byK(d(N, p)), whered(N, ∗) is the
oriented or usual distance function toN in M.

REMARK 1.2. Let (M,N) be referred to(M∗, N). Let l± be defined in (1.1) for
(M,N) andl∗± for (M∗, N). The condition (3) requires that

l± ≤ l∗± .(1.4)

The above inequality is automatically satisfied when the reference space is (1), (2), (4), or (5)
of Theorem 1.1 and the open Möbius strip model with⊥N being non-trivial. However, (1.4)
is not necessarily satisfied for other warped product models. Therefore, we agree that (1.4) is
assumed in (3) of the above definition.

In Section 3 we establish the Alexandrov-Toponogov comparison theorem for(M,N)

referred to(M∗, N). Generalized geodesic triangles of the form
(N x y) are discussed. In
Section 4 we prove the maximal diameter theorem for compact manifolds and the rigidity
theorem for non-compact manifolds. Finally, in Section 5 we discuss collapsing phenom-
ena of radially curved manifolds whose limit spaces do not have constant dimensions. Such
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a phenomenon is seen in the two-dimensional case [24]. It should be emphasized that the
conditions on radial curvature make it possible to deal with such collapsing phenomena.

2. Characterization of warped product models. We first state relevant properties of
C(A) for a compact submanifoldA ⊂ M. LetΓ (A, x) for x ∈ M be the set of all minimizing
geodesics fromA to x.

LEMMA 2.1. Setting ρ := d(A,C(A)), we have the following.
(1) (Berger [4], Omori [19]) If q ∈ C(A) and γ0, γ1 ∈ Γ (A, q) satisfy d(A, q) = ρ

and γ̇0(0) �= ±γ̇1(0), then the geodesic γλ, λ ∈ [0, 1], defined by

γλ(t) := expq (ρ − t)vλ , t ∈ [0, ρ] , vλ := −(1 − λ)γ̇0(ρ) − λγ̇1(ρ)

‖(1 − λ)γ̇0(ρ) + λγ̇1(ρ)‖ ,

belongs to Γ (A, q). In particular, q is a focal point to A along γλ.
(2) If q ∈ C(A) satisfies d(A, q) = ρ and q is not a focal point to A along γ ∈

Γ (A, q), then γ̇ (2ρ) ∈ ⊥A. Moreover, Γ (A, q) consists of exactly two elements.
(3) (Berger [3]) If p ∈ M attains a local maximum of the usual distance function

to A, then there exists, for every ξ ∈ Mp, a σ ∈ Γ (A,p) such that 〈ξ,−σ̇ (l)〉 ≥ 0. In
particular, we have p ∈ C(A).

The following basic lemma and Lemma 2.1 are useful in the proof of Theorem 1.1. Their
proof is basically the same as that developed in [11] and is omitted here. LetM be a complete
manifold with non-empty boundary∂M = N . Let B(N, a) for a > 0 denote the metrica-
neighborhood aroundN . Then⊥N is trivial and we defineρ andl by (1.2). With this notation
we have

LEMMA 2.2 (Basic lemma). If the radial curvature of (M,N) depends only on the
distance to N = ∂M, then we have the following.

(1) ds2
M = dt2 + f 2(t)ds2

N(x) on B(N, ρ), where f satisfies (1.3).
(2) If ρ < l, then K(t) = K(ρ) holds for all t ∈ [ρ, l).

PROOF OFTHEOREM 1.1. It follows from Lemma 2.2 thatρ± = l± if ⊥N is trivial,
andρ = l if ⊥N is non-trivial. In the case wherel± = ∞ (or l = ∞), the conclusion is
straightforward.

Suppose thatl+ < ∞ andf (l+) = 0. If q ∈ C(N), then Lemma 2.1 implies thatq is the
focal point toN along every geodesic inΓ (N, q) and the multiplicity isn − 1. In particular,
we haveC(N) = {q}. Thus,M+ is diffeomorphic to a closedn-disk, whose boundaryN is
isometric to the standard(n − 1)-sphere of constant curvaturef (0)−2KN .

Suppose next thatl+ < ∞ andf (l+) > 0. Then Lemma 2.1 again implies that every
point q ∈ C(N) has the property thatΓ (N, q) consists of exactly two elements. Letγx :
[0, 2l+] → M+ for eachx ∈ N be the geodesic witḣγx(0) ∈ ⊥N . Then we havėγx(2l+) ∈
⊥N andγx(l+) ∈ C(N). A fixed point free isometric involutionι : N → N is well defined by
ι(x) := γx(2l+), x ∈ N . We then observe thatC(N) is isometric tof (l+)N/{ι,ι2=id}. Setting
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M̂ := [0, 2l+] ×
f̂

N , wheref̂ and the radial curvature function̂K : [0, 2l+] → R satisfy

f̂ (t) :=
{
f (t) , 0 ≤ t ≤ l+ ,

f (2l+ − t) , l+ ≤ t ≤ 2l+ ,
(2.1)

K̂(t) :=
{
K(t) , 0 ≤ t ≤ l+ ,

K(2l+ − t) , l+ ≤ t ≤ 2l+ ,
(2.2)

we see thatΦ : M̂ → M̂ defined by

Φ(t, x) := (2l+ − t, ι(x)) , (t, x) ∈ (0, 2l+) × N

is a fixed point free isometric involution andM+ is isometric toM̂/{Φ,Φ2=id}. The metric
structure ofM− is now obtained in the above discussion. Taking account of all possibilities,
we conclude the proof in this case.

The proof for the case wherel < ∞ and⊥N is non-trivial is essentially contained in the
discussion above, and is omitted here.

Assume finally thatM is compact,M \ N is connected, and⊥N is trivial. We then
observe thatl− = l+ = ρ+ = ρ− < ∞. It follows from Lemma 2.1 that there exist exactly
two elements inΓ (N, q) for everyq ∈ C(N). Two geodesics inΓ (N, q) make an angle
π at q and their initial vectors at points onN have opposite directions in⊥N . Thus, every
level hypersurfacet−1({a}), a ∈ (−l, l), is isometric tof (a)N . This completes the proof of
Theorem 1.1. �

REMARK 2.3. If ⊥N is non-trivial, thenN is totally geodesic. In general,N is totally
umbilic with principal curvatureµ = f ′(0).

3. Comparison theorems. We shall prove the Alexandrov-Toponogov comparison
theorem for(M,N) referred to(M∗, N). From now onwe assume that N is totally geodesic
in M and M∗. A generalized geodesic triangle 
(N x y) ⊂ M is defined by a tripleα, β, γ :
[0, 1] → M of minimizing geodesics (orN, x, y) as follows:

α̇(0), β̇(0) ∈ ⊥N , α(1) = γ (1) = y , β(1) = γ (0) = x .

Herex, y are chosen in the same component, sayM+ of M \ N , andα, β are minimizing
geodesics fromN . We considerN as a corner of
(N x y). We say that
(N x y) ⊂ M is a
generalized narrow triangle if and only if α(t) ∈ B(β(t), δ) for all t ∈ [0, 1], whereδ > 0 is
the convexity radius on the compact setα[0, 1] ∪ β[0, 1] ∪ γ [0, 1].

THEOREM 3.1. Assume that (M,N) is referred to (M∗, N). If a generalized narrow
triangle 
(N x y) ⊂ M admits the corresponding generalized narrow triangle 
(N x∗y∗) ⊂
M∗ such that

d(N, x) = d(N, x∗) , d(N, y) = d(N, y∗) , d(x, y) = d(x∗, y∗) ,

then we have

� Nxy ≥ � Nx∗y∗ , � Nyx ≥ � Ny∗x∗ .(3.1)
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Note that the existence of the corresponding narrow triangle inM∗+ is ensured if either
l∗+ = ∞ or l∗+ < ∞ andf (l∗+) = 0. In the case wherel∗+ < ∞ andf (l∗+) > 0, it is not
certain in general ifl+ ≤ l∗+. It is shown later (see the last paragraph in Section 4) that we can
take the corresponding triangle in a suitable finite cover of(M∗, N) so as to satisfyl± ≤ l∗±.

The Alexandrov convexity theorem is stated as follows.

THEOREM 3.2. Under the same assumption as in Theorem 3.1, if γ, γ ∗ : [0, 1] →
M,M∗ are the edges of 
(N x y), 
(N x∗ y∗) opposite to N such that γ (0) = x, γ (1) = y

and γ ∗(0) = x∗, γ ∗(1) = y∗, then

d(N, γ (t)) ≥ d(N, γ ∗(t)) , t ∈ [0, 1] .(3.2)

The Clairaut relation for geodesics on(M∗, N) plays an important role in developing
comparison geometry. Our model does not have the trigonometric rule for geodesic triangles.
If γ ∗ : R → M∗ is a geodesic transversal to a meridian, then the Clairaut relation implies
thatγ̇ ∗(s) is linearly independent of∇t (γ ∗(s)) for all s ∈ R. Thus, we obtain a ruled surface
S(γ ∗) ⊂ M∗ generated by the meridians passing through each point ofγ ∗(R). If Pr2 :
M∗ → N is the second projection such that Pr2(t, x) := x, (t, x) ∈ M∗, thenx : R → N

defined byx(s) := Pr2(γ ∗(s)) is a regular smooth curve, which may be considered as the
base curve ofS(γ ∗). We define a regular parameterizationϕ : R2 → S(γ ∗) ⊂ M∗ of S(γ ∗)
by ϕ(t, u) := (t, x(u)), (t, u) ∈ R2. The metric onS(γ ∗) induced throughϕ is given by
ds2

S(γ ∗) = dt2 + f 2(t) du2, (t, u) ∈ R2. We then have the Clairaut relation for a warped
product model(M∗, N).

LEMMA 3.3 (The Clairaut relation). Let γ ∗ : R → M∗ be a geodesic transversal
to a meridian and S(γ ∗) ⊂ M∗ the ruled surface generated by γ ∗. If we set γ ∗(s) =
(t (s), x(s)) ∈ M∗ and

α(s) := � (γ̇ ∗(s),∇t (γ ∗(s))) , s ∈ R ,

then there exists a constant C(γ ∗) depending only on γ ∗ such that

f (t (s)) sin α(s) = C(γ ∗) , s ∈ R .(3.3)

To each generalized triangle
(N x∗ y∗) ⊂ M∗ we assign the ruled surfaceS(γ ∗), where
γ ∗ : [0, 1] → M∗ is the edge of
(N x∗ y∗) opposite toN . Since each point ofS(γ ∗) admits
a radial direction∇t, the Gaussian curvature onS(γ ∗) does not exceed the radial curvature
of M∗. Our discussion of the angle comparison is applied to the ruled surfaceS(γ ∗).

PROOF OFTHEOREMS3.1 AND 3.2. For a sufficiently small fixedε > 0 we define a
warped product modelM∗

ε whose radial curvature functionKε is defined byKε := K − ε.
We may consider that the generalized narrow triangle
(Nx∗

ε y∗
ε ) ⊂ M∗

ε corresponding to

(N x y) exists. LetS(γ ∗

ε ) ⊂ M∗
ε be the ruled surface generated by the edgeγ ∗

ε : [0, 1] →
M∗

ε of 
(Nx∗
ε y∗

ε ) opposite toN . Let 
(Nx∗
ε ŷε) ⊂ S(γ ∗

ε ) be another generalized narrow
triangle such that

� yxN = � ŷεx
∗
ε N , d(y, x) = d(ŷε, x

∗
ε ) , d(N, x) = d(N, x∗

ε ) .(3.4)
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For a minimizing geodesiĉαε : [0, 1] → S(γ ∗
ε ) from N to ŷε = α̂ε(1), we find a vector field

Y ∗
ε along the edgeβ∗

ε opposite toŷε such that

α̂ε(t) = expβ∗
ε (t) Y ∗

ε (t) , ‖Y ∗
ε ‖ < δ , t ∈ [0, 1] .

We also have the corresponding vector fieldYε alongβ by the trivial identification of parallel
fields alongβ andβ∗

ε . Setting for each 0≤ t ≤ 1,

σt (s) := expβ(t) sYε(t) , σ ∗
t (s) := expβ∗

ε (t) sY ∗
ε (t) , s ∈ [0, 1] ,

we observe that the mapsV, V ∗ : [0, 1] × [0, 1] → M, S(γ ∗
ε ) defined by

V (t, s) := σt (s) , V ∗(t, s) := σ ∗
t (s) , (t, s) ∈ [0, 1] × [0, 1]

are geodesic variations along each geodesicσt , σ ∗
t . In particular, botht �→ V (t, 1) and

t �→ V ∗(t, 1) are curves, to which the Berger comparison theorem is applied. IfK∗
ε is the

Gaussian curvature ofS(γ ∗
ε ), then, for every 0≤ t ≤ 1,

KM(β̇(t), Yε(t)) ≥ K(d(N, β(t))) > Kε(d(N, β(t))) ≥ K∗
ε (β∗

ε (t)) .

Here the last inequality follows from the fact that meridians are asymptotic lines onS(γ ∗).
Sinceα[0, 1] is sufficiently close toβ[0, 1], we have

KM(dV(t,s)(∂/∂t), dV(t,s)(∂/∂s) ≥ KM∗
ε
(dV ∗

(t,s)(∂/∂t), dV ∗
(t,s)(∂/∂s))

= K∗
ε (σ ∗

t (s)), s, t ∈ [0, 1] .

The Jacobi fields alongσt andσ ∗
t associated with the geodesic variationsV (t, s) andV ∗(t, s)

have the same initial condition. The Berger comparison theorem implies that

d(N, ŷε) = L(α̂ε) =
∫ 1

0
‖ dV ∗

(t,1)(∂/∂t)‖dt

≥
∫ 1

0
‖ dV(t,1)(∂/∂t)‖dt ≥ d(N, y) ,

and, hence,d(N, ŷε) ≥ d(N, y∗
ε ) = d(N, y). This proves that

� Nxy ≥ � Nx∗
ε y∗

ε , � Nyx ≥ � Ny∗
ε x∗

ε .(3.5)

Let 0 = t0 < t1 < · · · < tk = 1 be chosen such that for eachi = 1, . . . , k,

(Nγ (ti−1)γ (ti)) is a generalized narrow triangle and admits the corresponding general-
ized triangle
(Nγ ∗

ε (ti−1)γ
∗
ε (ti)) ⊂ S(γ ∗

ε ) satisfying (3.5). The broken geodesic with cor-
ners atx∗

ε = γ ∗
ε (t0), . . . , γ

∗
ε (tk) is convex inS(γ ∗

ε ). Therefore, the stretching technique
on S(γ ∗

ε ) shows that if
(Nx∗
ε γ̂ ∗

ε (ti)) ⊂ S(γ ∗
ε ) is the generalized triangle correspond-

ing to 
(Nxγ (ti )), then the sequence of angles{� Nx∗
ε γ̂ ∗

ε (ti )}i=1,2,...,k at x∗
ε is monotone

non-increasing ini. If z = γ (t) and if z∗
i ∈ x∗

ε γ̂ ∗
ε (ti ) is the point corresponding toz on


(Nx∗
ε γ̂ ∗

ε (ti)), thend(N, z) ≥ d(N, z∗
i ) and the sequence{d(N, z∗

i )}i is monotone non-
increasing ini. We conclude the proof by lettingε ↓ 0. �
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We shall prove the angle comparison theorem for generalized geodesic triangles on
(M,N) referred to(M∗, N). Given a generalized triangle
(Nxy) ⊂ M+ with edgesα, β, γ :
[0, 1] → M+ and its corresponding generalized triangle
(Nx∗y∗) ⊂ M∗+ with edges
α∗, β∗, γ ∗ : [0, 1] → M∗, we always denote the edge opposite toN by γ, γ ∗. The parti-
tion of 
(Nx∗y∗) into narrow triangles{
(Nγ ∗(ti−1)γ

∗(ti ))}i=1,2,...,k forms the boundary
of a locally convex region onS(γ ∗). With this notation we state the following.

THEOREM 3.4. Assume that (M∗, N) satisfies f (l+) = 0 or l+ = ∞, and that
(M,N) is referred to (M∗, N). For every generalized triangle 
(N x y) ⊂ M+ there ex-
ists a generalized geodesic triangle 
(N x∗ y∗) ⊂ S(γ ∗) such that

d(N, x) = d(N, x∗) , d(N, y) = d(N, y∗) , d(x, y) = |x∗y∗| ,
� Nxy ≥ � Nx∗y∗ , � Nyx ≥ � Ny∗x∗ .

Here |x∗y∗| denotes the length of the edge x∗y∗ which is not necessarily minimizing.

4. The maximal diameter theorem and rigidity theorem. In [9] we have proved
the maximal diametertheorem for a compact(M, o) referred to anSn-model(M∗, o∗). Note
that if (M,N) is referred to(M∗, N) and if f (±l∗±) = 0, thenl± ≤ l∗±. However, we do not
know in general whetherl± ≤ l∗± holds whenf (±l∗±) > 0. The maximal diameter theorem
follows from Theorem 3.1. Its proof is omitted here.

THEOREM 4.1 (The maximal diameter theorem).We have the following.
(i) Let (M∗, N) be an Sn-model with warping function f : (−l∗−, l∗+) → R satisfying

f ′(0) = 0. If (M,N) is referred to (M∗, N), then l± ≤ l∗± and the equality holds if and only
if M is isometric to M∗.

(ii) Let (M∗, N) be an RPn-model with non-trivial ⊥N . If (M,N) is referred to
(M∗, N), then l ≤ l∗ and the equality holds if and only if M is isometric to M∗.

The volume comparison theorem due to Heintze et al. [7, 16] implies the following.

THEOREM 4.2 (The maximal volume theorem).Let (M∗, N) be a Klein-bottle model
or a torus model and (M,N) be referred to (M∗, N) such that l± ≤ l∗±. Then

vol(M±) ≤ vol(M∗±) ,

and the equalities hold simultaneously if and only if (M,N) or its double cover is isometric
to a torus model.

We shall discuss the rigidity theorems for non-compact manifolds. Sakai [21, 22, 23] has
established the rigidity theorem for cylinder models under the condition of Ricci curvature.
The following theorem hasbeen proved in [25] when(M∗, o∗) is anRn-model.
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THEOREM 4.3. Let (M∗, N) be the reference space of (M,N) such that both M+ and
M− are non-compact. Then M is diffeomorphic to M∗ if one of the following is satisfied:

lim inf
t↓−∞ f (t) = lim inf

t↑∞ f (t) = 0 ,(4.1)

lim sup
t→±∞

f (t) < ∞ .(4.2)

Moreover, M is isometric to M∗ if∫ 0

−∞
f −2(t)dt =

∫ ∞

0
f −2(t)dt = ∞ .(4.3)

PROOF OFTHEOREM 4.3. We concentrate our discussion onM∗+ andM+. We first
prove that ifσ ∗ : [0,∞) → M∗+ is an arbitrary fixed meridian, then there exists a unique
asymptotic class of all rays onM∗+. Indeed, ifx∗ ∈ M∗+ \σ ∗[0,∞) and ifτ ∗ : [0,∞) → M∗+
is a ray fromx∗ asymptotic toσ ∗, we then prove thaṫτ ∗(0) = ∇t (x∗). If (4.1) is satisfied, then
the conclusion follows fromC(τ ∗) = 0. HereC(τ ∗) is the Clairaut constant ofτ ∗. Suppose
that (4.2) anḋτ ∗(0) �= ∇t (x∗) are satisfied. Suppose further that (4.1) is not satisfied. Then
there exista > 0 andt0 � 1 such that

dt2 + f 2(t)du2 ≥ (1 + a2)dt2 , t ≥ t0

holds alongτ ∗(s) = (t (s), u(s)) (cf. [25, 26]). If 1� s0 < s1, then

s1 − s0 ≥
√

1 + a2(t (s1) − t (s0)) .

On the other hand, (4.2) implies that there exists a constantb > 0 such that

d(τ ∗(s), σ ∗(t (s))) ≤ b , s ≥ 0 .

Then, the triangle inequality implies that

d(τ ∗(s0), τ
∗(s1)) = s1 − s0

≤ d(τ ∗(s0), σ
∗(t (s0))) + t (s1) − t (s0) + d(τ ∗(s1), σ

∗(t (s1)))

≤ t (s1) − t (s0) + 2b .

Thus, a contradiction is derived for a sufficiently larges1 and, hence, (4.2) implies the unique-
ness of the asymptotic class inM∗+.

We next prove that (4.1) or (4.2) implies that if(M,N) is referred to(M∗, N), then
C(N) = ∅ in M. Let σ : [0,∞) → M+ be an arbitrary fixed ray fromN . Let x ∈ M+ \
σ [0,∞) andσx : [0,∞) → M+ be a ray asymptotic toσ with σx(0) = x. Theorem 3.4 then
implies that

� N x σx(t) = π , t > 0 .

In particular, every geodesicτ : [0,∞) → M+ with τ̇ (0) ∈ ⊥N is a ray fromN which is
asymptotic toσ . This proves thatC(N) ∩ M+ = ∅ and, hence, thatM+ is diffeomorphic to
the normal bundle overN in M+. Thus, the first part of the proof is concluded.

We finally show that if (4.3) is satisfied, thenKM(σ̇ (t),X) = K(t) for every X ∈
Tσ(t)M with X⊥σ̇ (t). Let Y1(t), Y2(t), . . . , Yn−1(t) be N-Jacobi fields alongσ such that
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{Y1(0), Y2(0), . . . , Yn−1(0)} forms an orthonormal basis ofTσ(0)N andY ′
1(0) = Y ′

2(0) =
· · · = Y ′

n−1(0) = 0. ThenY1(t) ∧ Y2(t) ∧ · · · ∧ Yn−1(t) gives the volume element atσ(t)

of the t-level hypersurfaceNt = {x ∈ M+ ; d(N, x) = t} and, moreover,J (t) := { Y1(t) ∧
Y2(t) ∧ · · · ∧ Yn−1(t) }1/(n−1) satisfies a well-known equation

J ′′ + Ric(σ̇ (t))

n − 1
J = − 1

(n − 1)2

∑
i<j

(µi − µj)
2J ,(4.4)

andJ (0) = 1, J ′(0) = 0 (see [5]). Hereµ1(t), µ2(t), . . . , µn−1(t) are the principal curva-
tures ofNt atσ(t) with respect to the unit normalσ̇ (t). The corresponding functionJ ∗(t) for
N∗

t = {x∗ ∈ M∗+ ; d(N∗, x∗) = t} satisfies

(J ∗)′′ + Ric(σ̇ ∗(t))
n − 1

J ∗ = 0 , J ∗(0) = 1 , (J ∗)′(0) = 0 .(4.5)

Actually, Ric(σ̇ ∗(t))/(n − 1) = K(t) holds, and we see thatf = J ∗ from initial conditions.
Applying [25, Lemma 3.1], we obtainJ = J ∗,

Ric(σ̇ (t))

n − 1
+ 1

(n − 1)2

∑
i<j

(µi − µj)
2 = K(t) ,

andµ(t) := µ1(t) = µ2(t) = · · · = µn−1(t). The assumption for the radial curvature of
(M,N) implies thatKM(σ̇ (t),X) = K(t). Since the principal curvatureµ∗(t) of N∗

t is given
asµ∗(t) = f ′(t)/f (t) = µ(t), we see thatNt is isometric toN∗

t and, hence, thatM is
isometric toM∗. �

In the case where(M∗, N) is a torus model, the following corollary is a direct conse-
quence of Theorem 4.3.

COROLLARY 4.4. If the infinite cover (M̂∗, N) of a torus model (M∗, N) is the refer-
ence space of (M,N), and if M+ and M− are non-compact, then M is isometric to M̂∗.

REMARK 4.5. Let (M∗, N) be a torus model withM∗\C(N) = (−l∗, l∗) ×f N ,
f (−l∗) = f (l∗) > 0, and its infinite coverR ×f̃ N have the property that 2l∗ is the fun-

damental period of̃f . If (M,N) is referred toR ×f̃ N and if M is compact, we then choose

the finite cover(M̂∗, N) of (M,N) and two positive integersk+ andk− such that

(k− − 1) l∗ < l− ≤ k−l∗ , (k+ − 1) l∗ < l+ ≤ k+l∗ ,

whereM̂∗ is isometric toS1((k+ + k−) l∗) ×f̃ N , andS1(r) is the circle of circumferencer.
In principle, we can develop comparison geometry for(M,N) referred to a cylinder or

Klein-bottle model(M̂∗, N).

5. Collapsing radially curved manifolds. To describe our collapsing phenomena,
we shall introduce new models. When anRn-model defined onRn is realized inRn+1 as a
hypersurface of revolution around thexn+1-axis,f is the profile curve parameterized by arc
length measured from the base point, which is the point of intersection with the rotation axis.
Thenf (t) is the radius of the standard(n − 1)-sphere in the hyperplane orthogonal to the
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xn+1-axis. Roughly speaking, a singular model is obtained when the profile curve touches the
rotation axis. More precisely, asingular n-model (M̂, ô) with base point at ô is, by definition,
a metric space whose pseudo metricdŝ2 aroundô is expressed as

dŝ2 = dt2 + f̂ 2(t)ds2
Sn−1(Θ) , (t,Θ) ∈ (0,∞) × Sn−1 .(5.1)

Here the warping function̂f : (0,∞) → R of M̂ is non-negative, continuous on (0,∞), and
smooth on the interior Int(supp(f̂ )) of supp(f̂ ). Further, the radial curvature function̂K is
defined and smooth on Int(supp(f̂ )) on which the following Jacobi equation is satisfied:

f̂ ′′ + K̂f̂ = 0 , f̂ (0) = 0 , f̂ ′(0) = 1 .(5.2)

Clearly, a singularn-model(M̂, ô) has dimension 1 in a neighborhood of(t,Θ) ∈ (0,∞) \
(supp(f̂ )) and dimensionn in Int(supp(f̂ )).

We next consider a sequence ofn-models{(M∗
j , o∗

j )}j=1,2,... converging to a singular

model (M̂, ô). Each model(M∗
j , o∗

j ) has the metricds2
M∗

j
of the form (5.1) with the radial

curvature functionK∗
j : [0,∞) → R satisfying (5.2) for its warping functionf ∗

j : (0,∞) →
R. We assume that the radial curvature functionK̂ and the warping function̂f of a singular
model(M̂, ô) are obtained as the limits of the sequences{K∗

j }l=1,2,... and{fj }l=1,2,... in the
following way:

lim
j→∞

dkf ∗
j

dtk
= dkf̂

dtk
for k = 0, 1, 2 and lim

j→∞ K∗
j = K̂ .(5.3)

Here the convergence is uniform on every compact set of Int(supp(f̂ )). The pseudo metric of
(M̂, ô) is expressed as (5.1).We say that a sequence {(M∗

j , o∗
j )}j=1,2,... of n-models converges

to a singular model (M̂, ô) if and only if (5.3) holds.

THEOREM 5.1. Let {(M∗
j , o∗

j )}j=1,2,... be a sequence of models converging to a singu-

lar model (M̂, ô). Let {(Mj , oj )}j=1,2,... be a sequence of complete non-compactn-manifolds
such that each (Mj , oj ) is referred to (M∗

j , o∗
j ). Then the pointed Hausdorff limit of

{(Mj , oj )}j=1,2,... exists and is isometric to the singular n-model (M̂, ô) if the warping func-
tions satisfy

∫ ∞

1
(f ∗

j )−2(t)dt = ∞ , j = 1, 2, . . . .(5.4)

A similar observation is made on a sequence of{(Mj ,N)}j=1,2,... referred to warped
product models. Let{(M∗

j , N)}j=1,2... be a sequence of cylinder models such that each
(M∗

j , N) has its warping functionf ∗
j : R → R+ and radial curvature functionKj : R → R,

andN ⊂ M∗
j is totally geodesic. Assume that there exists a non-negative piecewise smooth

function f̂ : R → R+ and the radial curvature function̂K : Int(supp(f̂ )) → R satisfying
(5.3). The singular space(M̂,N) is obtained by the pointed Hausdorff limit of the sequence
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{(M∗
j , N)}j=1,2..., where the pseudo metric is expressed by

ds2
M̂

= dt2 + f̂ 2(t) ds2
N(x) , (t, x) ∈ (−∞,∞) × N .(5.5)

THEOREM 5.2. Let {(M∗
j , N)}j=1,2,... be a sequence of cylinder models converging

to a singular model (M̂,N). Let {(Mj ,N)}j=1,2,... be a sequence of complete non-compact
n-manifolds such that each (Mj ,N) is referred to (M∗

j , N). We then have

lim
j→∞ dpGH (Mj ,N) = (M̂,N) (isometric)

if the warping functions satisfy∫ ∞

0
(f ∗

j )−2(t)dt = ∞ , j = 1, 2, . . . .

The key point of the proof of Theorems 5.1 and 5.2 is the Sturm comparison theorem for
the Jacobi equation (see [25, Lemma 3.1]) defined on[0,∞):

f ′′
i (t) + Ki(t)fi(t) = 0 , fi(0) = 0 , f ′

i (0) = 1 , t ≥ 0, i = 1, 2 .

Assume thatK1 ≥ K2 and f1 > 0 on (0,∞). Lemma 3.1 in [25] implies that if∫ ∞
1 f −2

2 (t)dt = ∞, thenf1 = f2 andK1 = K2 on [0,∞). By a slight modification of
the proof of [25, Lemma 3.1], we observe that the same conclusion is valid for the initial
conditionsfi(0) = 1, f ′

i (0) = 0, i = 1, 2.

PROOF OFTHEOREMS5.1 AND 5.2. Letγj : [0,∞) → Mj for j = 1, 2, . . . be a ray
with γj (0) = oj andYj a Jacobi field alongγj such that

Yj (0) = 0 , ‖Y ′(0)‖ = 1 , j = 1, 2, . . . .

The radial curvatureKMj (γ̇j (t), Yj (t)) is bounded below byKj(t). We then observe that

KMj (γ̇j (t), Yj (t)) = Kj(t) , Yj (t) = fj (t)Ej (t) , t ≥ 0 ,

whereEj is the parallel field alongγj such thatEj(0) = Y ′
j (0). We see from [25] thatMj is

isometric toM∗
j . This proves Theorem 5.1.

The proof of Theorem 5.2 is now immediate from the above discussion and Theorem
4.3. �
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