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Abstract. We study a Riccati differential equation whose coefficient is expressible in
terms of a special Weierstrass pe-function. We show that all the solutions are meromorphic,
and examine the periodicity of them.

1. Introduction. In our preceding paper [4], we studied the Riccati differential equa-
tion

1
(1.1) w’+w2+z(1—mz)@(0,93: 2)=0,
where

(1) mis anatural number such that> 2, m ¢ 6N = {6n |n € N};
(2) (0, g3; z) is the Weierstrasg-function satisfying

W) =43—yg3, g3#0.

Let e (z) be an arbitrary-function satisfyingv')? = 4v3 — g v — g3, g3 — 2795 # 0.
As was explained in [4, Section 1], under ate@r condition, if, for various values ef, an
equation of the formv’ + w2 + ap (z) = 0 admits a plenty of meromorphic solutions, then it
is either (1.1) or

1
(1.2) w +w?+ 24— m?)po(z) = 0,

where
(1) mis anatural number such that> 2, m ¢ 4N = {4n |n € N};
(2) go(z) = © (g2, 0; z) is the Weierstrasg-function satisfying
(13) W) =4%— g, gp#0.

Letw?, w3 be primitive periods ofo(z) satisfying Imwd/w?) > 0 (cf. (2.3)).
The main results of this paper are stated as follows.
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THEOREM 1.1. All thesolutions of (1.2)are meromor phic in the whole complex plane
C.

THEOREM 1.2. Supposethat m iseven. Then,
(i) every solution of (1.2)isa doubly periodic function with periods (209, 203);

(i) there exist exactly two distinct solutions with periods (w9, 2w3) (or with periods
(209, 9));

(i)  there exists no solution with periods («?, 9).

THEOREM 1.3. For every odd integer m satisfying m > 3, the equation (1.2) admits
no periodic solution except a doubly periodic one, which is expressible in the form:

k

£0(2) Z 200(2)$4(2)

Ym(2) = ifm=8t+3, k=0,1,2,...,

290(2) = 90(2)? — Om.i
wm(Z)zzng;—;;é:(zz)) égﬁngm if m=8k+5, k=012...,
Y () = iﬁg +,§;§2§;)6—%@(Z it m=8+7, k=0,12,...,
”””1(1):2% ifm=8+9, k=0,12...,

where, for each (m, h), 6, 5 iS SOme complex constant.

Using the properties gbo(z) explained in Section 2, we prove these results in Sections
3 and 4. For a related result concerning linear systems with doubly periodic coefficients, see

[1].

2. Propertiesof the dliptic function go(z). We review basic facts concerning ellip-
tic functions (see [6], [7]). The elliptic functiopo(z) = e (g5, 0; z) satisfies (1.3), which is
written in the form
(V)2 = 4v(v — e (v — e2)(v — €3) ,

1/2

e1=937/2, ea=—g3%/2. es=0. g, #0.
Consider the expression gb(z):

1 1 1
22 p@=s+ 3 ( 1 ) 22 =72 (0,0,
e €= 20" 24

(2.1)

where$2, ; = pad + qo, (p, q) € Z2 constitute the lattice of poles. By (2.1) the periods

@9, w3 of po(z) may be given by

0
—1/4 0_ .0 dt
(2.3) 0)02\/2(] g0, w;=Iiw;, 802/ .
1 2 2 1 LT




RICCATI DIFFERENTIAL EQUATIONS 101

Then we have
PROPOSITION 2.1. po(w?/Z) =e¢; (j =1,2), po(@/2) = 0, where w3 = w? + o).

Furthermore the Weierstrassfunction

1
fo(2) = —+ Z ( +——+53 ) £(2) = —$0(2)
)EZZ Pq pP.q P.q

has the properties:

(2.4) o+ o) =@ +27), j=123,
0
1 /2
(25) ) =t)/2) = 5t < + + > ,
! ! Z)Zz 0/2 2pq  2pag ng
(2.6) 77(1)(1)2 - 77(2)(1)(1) =7i.

Relation (2.6) impliesn{, n9) # (0, 0). Observing that-i 2, , = $2, _p, from (2.3) and
(2.5), we obtain

PROPOSITION 2.2. 179/19 = ¢0(09/2)/¢0(03/2) = i.
Around each lattice pole = o1 = £2,(1),4(1), the Laurent series expansiongd(z) is
given by the following

PrROPOSITION 2.3. For anarbitrary pole z = o of go(z),

o
90(2) =Y ban(z —o)™ %, bo=1,
n=0

around z = op.

PROOF. It suffices to consider the case where= 0. We putpo(z) = Y oo brz" 2,
bo = 1, nearz = 0. Then—gpo(iz) = Y soqikbrz"=2. Since—iR, , = 24—, We have
$0(z) = —go(iz), which impliesb, = 0 fork ¢ 4N. O

Let wo(z) = po(z)Y/2 be a branch such that lim o zwo(z) = 1. Thenwo(z) is a doubly

periodic function with the period(éZw‘l), wg), which has two simple poles with residues 1 and
—1in its period parallelogram. A simple computation leads us to the following

PROPOSITION 2.4. The functions wo(z) and Wo(z) = 2wj(z) = $4(2)e0(z)"Y?

satisfy

(2.7) @§(2)? = wo(2)* — g2/4,
and
(2.8) W (z) = 690(2) Wo(z) ,

respectively.
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3. Proofsof Theoremsl.1land 1.2. Consider the linear differential equation
2

4m po(x)u =0,

(3.1) u” +
which is associated with (1.2).

LEMMA 3.1. Let z = op be an arbitrary lattice pole of pg(z). Then (3.1) admits
linearly independent solutions expressed in the form

o
Ur(2) =z — o) T2y g -, piY =1,
j=0

o
U2(2) = (z —op) M2y B2 — o), B =1,
Jj=0
around z = op.
PrROOFE Aroundz = oy, we have
90(2) = (z — o) 2Po((z — o1)*)
with
(e.¢]
Po(t) =) bmt", bo=1
n=0
(cf. Proposition 2.3). Consider the equation
t2d2” n 3tdu n 1—m?2
dt2 4 dt 64
around the regular singular point= 0. The rootsp; = (1 — m)/8 andpz = (1 + m)/8 of
the indicial equation

(3.2)

Po()u =0

1—m?

3
I =0
pp—1+ iy,
satisfyps, — p1 = m/4 ¢ Z. Hence, (3.2) admits local solutions of the form

o (@]
— D.j 2)_j 1 2
gr(t) = 17BN g gp(e) =1 HTMBY g gl = P =1,
=0 =0

aroundr = 0 (see [2], [3]). By the transformation = (z — o7)%, (3.2) becomes (3.1)
admitting the solution#/1(z) = ¢1((z — 01.)%), Ua(z) = ¢2((z — o1.)*). This completes the
proof. O

An arbitrary solutionw(z) of (1.2) is written in the formw(z) = U’(z)/U(z), where
U(z) is a solution of (3.1). By Lemma 3.14(z) is meromorphic in the whole complex plane
C, which completes the proof of Theorem 1.1.

Theorem 1.2 is proved by the same argument as that of the proof of [4, Theorem 3.1].
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4, Proof of Theorem 1.3.
4.1. Casen = 8k +3. Whenm =8+ 3,k =0,12,..., we write (3.1) in the
form

(4.1) L*(u) =0, L*=(d/dz)?>— (4k + 1)(4k + 2)p0(2) .

In what follows,0(z)1/? denotes the branch given in Section 2. Then we have

PROPOSITION 4.1. For every k € N U {0}, (4.1) admits a doubly periodic solution of
the form

k
X (2) = 90(2)"? [ [ (90(2)% = On.1)
h=1

(m = 8k + 3) with periods (209, ®3).

PROOF.  LetA/? be the period parallelogram gh(z)~/2 with vertices(—w? — ) /2,

(B0 — 03)/2, (—wd+w3)/2 and(30 + »3) /2. The poles ofoo(z)Y/2 in Aé/z arez =0and
z= wg’, whose residues are 1 ard, respectively. By Proposition 2.3, for eveyye NU{0},
we have

o0
(4.2.1) 902 2p0(2)? =z H71Y bl b =1,
n=0

aroundz = 0, and

o
(4.2.2) 90 2p0(@)1 = —(z — o)L bz — ),
n=0

aroundz = . Then, forv = 0,1,... .k — 1k,

o
L*(p0(2)Y?p0(2)%") = Z74v732 BZ;lkZ4n
n=0

_ Bcl)),kz—4v73 + BZ,]‘Z*‘WJF]- +.o 4 BZ\’)kzi3 + 0(2),

whereBy* = (4v + 1)(4v + 2) — (4k + 1)(4k + 2). Observing thaBy* = 0, By* # 0
(v # k), we can choos€}, , € C,n=0,1,...,k, satisfyingCy x = 1 in such a way that

k
L*<@0(Z)1/22Ck,n500(z)2") =0,

n=0
nearz = 0. Then, by (4.2.1) and (4.2.2),

k
L*<@o(z)l/22 Ck,nKJO(Z)zn) =0(z— o)

n=0
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also holds neat = w(l). By this fact and the Liouville theorem, we conclude that

k k

Xn(2) = 90(2)"? Y Cins0(@)”" = po()"? [ [ (90(2)” = Om.n)
n=0 h=1

satisfies
L*(Xm(2)) =0,
which implies the proposition. O
Itis easy to see that

X,,(2) 92 +i 200(2)9h(2)

4.3 () = -
3 Y = X T 2000 T 50 =

is a solution of (1.2).

In order to verify that there exists no periodic solution of (1.2) other thaiz), we
examine another solution of (4.1). By the unigqueness of the solution of an initial value prob-
lem associated with (4.1), every zeroXf,(z) is simple. Hence each constaht; satisfies
Om.n # 0, 6. # O i fOri # h. Itis easy to see that all zeros are located symmetrically with
respect ta; = 0. FurthermoreX,, (z)? is a doubly periodic function with perioc[s)(l), wg). It
follows from these facts and the Liouville theorem, that

: Zl((>+(+)2(>)
5 =z - -1 T) — 7)),
Xu@?2 ~ 22 X, 0 folz o
whereZ denotes the set of all zeros &f,(z) in
(4.4) Ag = {5109 + 5209 | —1/2 <51 <1/2, —=1/2 < 52 < 1/2}.

Then we have another solution of (4.1) written in the form

*d Xm 1
Y (2) = X () / X (tt)z =- Z(Z) X5 (7240 =) + 0z + ) + 200(7)2)
z m tez =M

(see Section 2). For the linearly independent solutiongz) andY,, (z), we have the Floquet
matrices

(1 5 0 $o(T) 2 .
" (0 1) U= @ ZX’()2 =12,

satisfying[w?](xm (2), Y (2) = (X (2), Y (2))M;, Where[a)?] denotes the analytic contin-
uation along the segmeft, z + w?] (cf. Section 2 and [4, Section 3]). Note thats written

in the form
k

z:zou<Uzh>

h=1
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with
Zo={t € Z| po(z) =0},
1/2

1/2
Zn = {£th—. £+ € Z|po(Em.-) = 6,5, po(Etn1) = 6,1}

LEMMA 4.2. Wehave

go(T)
> A 0.
ez m

PROOFE  Since every zero ok, (z) is simple,

(4.5) Z Po(r) _ 4

Observe that

X, (th,£)% = po(th.2) - 490(th.£)%00(th £)? [ [ (90(th )% = Om.q)°

q#h
= 4p0(th, +) (Bpo(th,+)° — g2) l_[ (90(Th,+)? — On.g)?
q#h
=405 (401 — 92) [ [ On —Omg)® = Th #0,

q#h
and that
X, (=t52)? = I, # 0.
Hence we have

(4.6) Z go(T)

/ 2
teZy Xm (T)

= I}, *((9o(Th,-) + 90(Th,+)) + (90(—Th,-) + £0(=T,4))) = 0.
From (4.5) and (4.6), the lemma immediately follows. O
By Lemma 4.2, we havg; = —2779 > ez X (172 (j = 1, 2), which satisfy(81, 82) #
(0, 0). Indeed, ifs; = 82 = 0, then all the solutions of (4.1) are doubly periodic, and hence

there exists a nontrivial solution of (4.1) vanishing at every polggit); which contradicts
the Liouville theorem. Leé be the ratio

5 — 31/62, if 62#0,
—]o, if 62=0.

Now, we note the following criteria, which is proved by the same way as in the proof of [4,
Proposition 4.5].

LEMMA 4.3. If§ ¢ Q, then there exists no periodic solution of (1.2) other than (4.3).
If § € Q, then every solution of (1.2) other than (4.3)is purely simply periodic.
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SinceY", ., X,,(t)~2 # 0, using Proposition 2.2, we have
4.7) 8= r)l/nzzi.
Hence, by Lemma 4.3, there exists no periodic solution other than (4.3).

4.2, Casen = 8k+ 7. Whenm = 8k+ 7,k =0,1,2,..., we can construct a
solution of (3.1) expressible in the form

k—1 k
X (2) = 0(2) <@0(Z)2k +y én@o(z)2”> =90 [ [ (90 = 1),
n=0 h=1

by an argument analogous to that for the case 8k + 3 (see also [4, Section 4]). Then

X, 9@ o~ 2000)9h:)
4.8 m(z) = 222 — it hntal
( ) 1// @ Xm(2) @(,)(Z) hg;_ QO(Z)Z - Qm,h

is a periodic solution of (1.2). By the same argument as in Section 4.1, we obtain the Floguet
matrices

~ 1 35; 5 go(T) 0
M; = 7, E E =12,
/ (0 1) %= < X, T2 2 X, )2 )

whereZ denotes the set of all zeros &f, (z) in Ag (cf. (4.4)). Decompose the sgtinto
k
Z=7'U ( U zh) |
(4'9) 51 /h:1 0 0 0
7 = {7: | 600(7:) = O} = {0)1/2, w2/2, CL)3/2} .

Zn ={t190(t)* = 61} -
Using the formulas

90(@9/2) =g3/%/2, @0(608/2) —93%/2,  po(@3/2) =0,

X, (@%/2)% = 95 (o) /2)21_[(600(0) /2% = Om.1)?
h=1

k
= %]‘[ (92/4—Omi)® (=12,

we have
£0(7)
4.10 = =
( ) Z X! (7)2
ez
Furthermore, by the same argument as in the proof of Lemma 4.2, we have
(4.11) 500(7) —0 (h=1.... .k.

X, (0)?
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From (4.9), (4.10), (4.11) and Proposition 2.2, it follows that §1/5, = i. Hence, applying

Lemma 4.3, we conclude that there exists no periodic solution of (1.2) other than (4.8).
4.3. Cases: = 8k +5andm = 8 +9. Whenm = 8k + 5, (3.1) is written in the

form

(4.12) Li(u) =0, Ly =(d/dz)? — (4k + 2)(4k + 3 po(2) .

Then we have

PrROPOSITION 4.4. Foreveryk =0,1,2, ..., (4.12)admits a solution expressed as

k
(4.13) Wi (2) = 96(2)90() ? )~ Crapo(2)™”
n=0

with ék,k =1

PrROOF We show the conclusion by induction @n By (2.8) the functionWy(z) =
94(2)po(z) Y2 satisfies (4.12) wittk = 0. Suppose that, fok = 0,1,... ,«x — 1, (4.12)
admits a solution expressed as (4.13). By Proposition 4.1, for suitably chosen cottants
n=20,1,...,«, the function

X(@) =90 Capo()”, Cc=1

n=0
satisfies
(4.14) X"(z) = (4k + 1)(4k + 2)0(2) X (2) .
Differentiate (4.14) and pub, (z) = X’(z). Observing that
R e (2) b
0 X _ K — -1/2 / 2n /
o0 Y@ " 3y 1z = PR nX:(:)C,,KJo(Z) , C,eC,

we have

k=1
L (we(2) = (4 + 2)(4¢ + 3po(2) <506(Z)@0(Z)1/ 2y CZ&OO(Z)Z") . CjecC.
n=0

By supposition,
Ly (Wi (2) + Vie—1Wi—1(2)) = Lie (W (2)) + Yie—10u,c-180(2) Wi —1(2) ,
Prx—1= (4 +2)(4k +3) — (4« — 2)(4x — 1) # 0.
Hence, ify,_1 = —(4k + 2)(4k + 3)C)_;/picc—1, then

k=2
LW (2) + Ve-1We-1(2) = (4 + 2) (4 + 3)g0(2) <@6(Z)@0(Z)_1/ 2y C,i3>@o(z)2”> :
n=0
Repeating this procedure, we may chops€j =0, ... , « — 1) in such a way thaW, (z) =
wy (2) + Z’]‘;l v; W;(2) satisfies (4.12) witlk = «. Thus the proposition is verified. 0O
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We can write (4.13) in the form

k
Wi (2) = pp(0() 2 [ [ (90()? = i) .
h=1

which yields the solutiony,, (z) = W, (z)/ Wi (z) of (1.2) withm = 8k + 5.

Next consider the case whene = 8k + 9, k = 0,1,2,.... It is easy to see that

Vo(z) = 6g0(z)? — 9g,/10 satisfies

Vi (z) = 20p0(z) Vo(2)

which means tha¥p(z) is a solution of (3.1) withn = 9. Using this fact, from the solution of
(3.1) withm = 8k + 7 given in Section 4.2, we can derive a solution of (3.1) with= 8k +9

written in the form

k+1

Vi(@) = [ [(90(z)? = 6.,

h=1

by the same argument as in the proof of Proposition 4.4. Thgnz) = V/(z)/Vk(2) is a
doubly periodic solution of (1.2) witmm = 8k + 9. Furthermore, in both cases = 8k + 5

andm = 8k + 9, we can also verify the non-existence of periodic solutions of (1.2) other than

Y¥m (z) by the same way as in Section 4This completes the proof.
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