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Abstract. We study a Riccati differential equation whose coefficient is expressible in
terms of a special Weierstrass pe-function. We show that all the solutions are meromorphic,
and examine the periodicity of them.

1. Introduction. In our preceding paper [4], we studied the Riccati differential equa-
tion

(1.1) w′ +w2 + 1

4
(1 −m2)℘ (0, g 3; z) = 0 ,

where
(1) m is a natural number such thatm ≥ 2, m �∈ 6N = {6n | n ∈ N};
(2) ℘(0, g 3; z) is the Weierstrass℘-function satisfying

(v′)2 = 4v3 − g 3 , g 3 �= 0 .

Let℘(z) be an arbitrary℘-function satisfying(v′)2 = 4v3 − g 2v− g 3, g
3
2 − 27g 2

3 �= 0.
As was explained in [4, Section 1], under a certain condition, if, for various values ofa, an
equation of the formw′ +w2 + a℘ (z) = 0 admits a plenty of meromorphic solutions, then it
is either (1.1) or

(1.2) w′ + w2 + 1

4
(1 −m2)℘0(z) = 0 ,

where
(1) m is a natural number such thatm ≥ 2, m �∈ 4N = {4n | n ∈ N};
(2) ℘0(z) = ℘(g 2,0; z) is the Weierstrass℘-function satisfying

(1.3) (v′)2 = 4v3 − g 2v , g 2 �= 0 .

Letω0
1, ω

0
2 be primitive periods of℘0(z) satisfying Im(ω0

2/ω
0
1) > 0 (cf. (2.3)).

The main results of this paper are stated as follows.
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THEOREM 1.1. All the solutions of (1.2)are meromorphic in the whole complex plane
C.

THEOREM 1.2. Suppose that m is even. Then,
(i) every solution of (1.2) is a doubly periodic function with periods (2ω0

1,2ω
0
2);

(ii) there exist exactly two distinct solutions with periods (ω0
1,2ω

0
2) (or with periods

(2ω0
1, ω

0
2));

(iii) there exists no solution with periods (ω0
1, ω

0
2).

THEOREM 1.3. For every odd integer m satisfying m ≥ 3, the equation (1.2)admits
no periodic solution except a doubly periodic one, which is expressible in the form:

ψm(z) = ℘ ′
0(z)

2℘0(z)
+

k∑
h=1

2℘0(z)℘
′
0(z)

℘0(z)2 − θm,h
if m = 8k + 3 , k = 0,1,2, . . . ,

ψm(z) = ℘ ′′
0(z)

℘ ′
0(z)

− ℘ ′
0(z)

2℘0(z)
+

k∑
h=1

2℘0(z)℘
′
0(z)

℘0(z)2 − θm,h
if m = 8k + 5 , k = 0,1,2, . . . ,

ψm(z) = ℘ ′′
0(z)

℘ ′
0(z)

+
k∑
h=1

2℘0(z)℘
′
0(z)

℘0(z)2 − θm,h
if m = 8k + 7 , k = 0,1,2, . . . ,

ψm(z) =
k+1∑
h=1

2℘0(z)℘
′
0(z)

℘0(z)2 − θm,h
if m = 8k + 9 , k = 0,1,2, . . . ,

where, for each (m, h), θm,h is some complex constant.

Using the properties of℘0(z) explained in Section 2, we prove these results in Sections
3 and 4. For a related result concerning linear systems with doubly periodic coefficients, see
[1].

2. Properties of the elliptic function ℘0(z). We review basic facts concerning ellip-
tic functions (see [6], [7]). The elliptic function℘0(z) = ℘(g 2,0; z) satisfies (1.3), which is
written in the form

(v′)2 = 4v(v − e1)(v − e2)(v − e3) ,

e1 = g 1/2
2 /2 , e2 = −g 1/2

2 /2 , e3 = 0 , g 2 �= 0 .
(2.1)

Consider the expression of℘0(z):

℘0(z) = 1

z2 +
∑

(p,q)∈Z2∗

(
1

(z−Ωp,q)2
− 1

Ω2
p,q

)
, Z2∗ = Z2 − {(0,0)} ,(2.2)

whereΩp,q = pω0
1 + qω0

2, (p, q) ∈ Z2∗ constitute the lattice of poles. By (2.1) the periods
ω0

1, ω
0
2 of ℘0(z)may be given by

ω0
1 = √

2g −1/4
2 ε0 , ω0

2 = iω0
1 , ε0 =

∫ 0

−1

dt√
t3 − t

.(2.3)
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Then we have

PROPOSITION 2.1. ℘0(ω
0
j /2) = ej (j = 1,2), ℘0(ω

0
3/2) = 0, where ω0

3 = ω0
1 +ω0

2.

Furthermore the Weierstrassζ -function

ζ0(z) = 1

z
+

∑
(p,q)∈Z2∗

(
1

z−Ωp,q
+ 1

Ωp,q
+ z

Ω2
p,q

)
, ζ ′

0(z) = −℘0(z)

has the properties:

ζ0(z+ ω0
j ) = ζ0(z)+ 2η0

j , j = 1,2,3,(2.4)

η0
j = ζ0(ω

0
j /2) = 1

ω0
j /2

+
∑

(p,q)∈Z2∗

(
1

ω0
j /2 −Ωp,q

+ 1

Ωp,q
+ ω0

j /2

Ω2
p,q

)
,(2.5)

η0
1ω

0
2 − η0

2ω
0
1 = πi .(2.6)

Relation (2.6) implies(η0
1, η

0
2) �= (0,0). Observing that−iΩp,q = Ωq,−p, from (2.3) and

(2.5), we obtain

PROPOSITION 2.2. η0
1/η

0
2 = ζ0(ω

0
1/2)/ζ0(ω

0
2/2) = i.

Around each lattice polez = σL = Ωp(L),q(L), the Laurent series expansion of℘0(z) is
given by the following

PROPOSITION 2.3. For an arbitrary pole z = σL of ℘0(z),

℘0(z) =
∞∑
n=0

b4n(z− σL)
4n−2 , b0 = 1,

around z = σL.

PROOF. It suffices to consider the case whereσL = 0. We put℘0(z) = ∑∞
k=0 bkz

k−2,

b0 = 1, nearz = 0. Then−℘0(iz) = ∑∞
k=0 i

kbkz
k−2. Since−iΩp,q = Ωq,−p, we have

℘0(z) = −℘0(iz), which impliesbk = 0 for k �∈ 4N. �
Let�0(z) = ℘0(z)

1/2 be a branch such that limz→0 z�0(z) = 1. Then�0(z) is a doubly
periodic function with the periods(2ω0

1, ω
0
3), which has two simple poles with residues 1 and

−1 in its period parallelogram. A simple computation leads us to the following

PROPOSITION 2.4. The functions �0(z) and W0(z) = 2� ′
0(z) = ℘ ′

0(z)℘0(z)
−1/2

satisfy

� ′
0(z)

2 = �0(z)
4 − g 2/4 ,(2.7)

and

W ′′
0 (z) = 6℘0(z)W0(z) ,(2.8)

respectively.
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3. Proofs of Theorems 1.1 and 1.2. Consider the linear differential equation

u′′ + 1 −m2

4
℘0(z)u = 0 ,(3.1)

which is associated with (1.2).

LEMMA 3.1. Let z = σL be an arbitrary lattice pole of ℘0(z). Then (3.1) admits
linearly independent solutions expressed in the form

U1(z) = (z − σL)
(1−m)/2

∞∑
j=0

β
(1)
j (z− σL)

4j , β
(1)
0 = 1 ,

U2(z) = (z − σL)
(1+m)/2

∞∑
j=0

β
(2)
j (z− σL)

4j , β
(2)
0 = 1 ,

around z = σL.

PROOF. Aroundz = σL, we have

℘0(z) = (z− σL)
−2P0((z− σL)

4)

with

P0(t) =
∞∑
n=0

b4nt
n , b0 = 1

(cf. Proposition 2.3). Consider the equation

t2
d2u

dt2
+ 3

4
t
du

dt
+ 1 −m2

64
P0(t)u = 0(3.2)

around the regular singular pointt = 0. The rootsρ1 = (1 − m)/8 andρ2 = (1 + m)/8 of
the indicial equation

ρ(ρ − 1)+ 3

4
ρ + 1 −m2

64
= 0

satisfyρ2 − ρ1 = m/4 �∈ Z. Hence, (3.2) admits local solutions of the form

ϕ1(t) = t(1−m)/8
∞∑
j=0

β
(1)
j tj , ϕ2(t) = t(1+m)/8

∞∑
j=0

β
(2)
j tj , β

(1)
0 = β

(2)
0 = 1 ,

aroundt = 0 (see [2], [3]). By the transformationt = (z − σL)
4, (3.2) becomes (3.1)

admitting the solutionsU1(z) = ϕ1((z − σL)
4), U2(z) = ϕ2((z − σL)

4). This completes the
proof. �

An arbitrary solutionw(z) of (1.2) is written in the formw(z) = U ′(z)/U(z), where
U(z) is a solution of (3.1). By Lemma 3.1,w(z) is meromorphic in the whole complex plane
C, which completes the proof of Theorem 1.1.

Theorem 1.2 is proved by the same argument as that of the proof of [4, Theorem 3.1].
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4. Proof of Theorem 1.3.
4.1. Casem = 8k + 3. Whenm = 8k + 3, k = 0,1,2, . . . , we write (3.1) in the

form

L∗(u) = 0 , L∗ = (d/dz)2 − (4k + 1)(4k + 2)℘0(z) .(4.1)

In what follows,℘0(z)
1/2 denotes the branch given in Section 2. Then we have

PROPOSITION 4.1. For every k ∈ N ∪ {0}, (4.1)admits a doubly periodic solution of
the form

Xm(z) = ℘0(z)
1/2

k∏
h=1

(℘0(z)
2 − θm,h)

(m = 8k + 3) with periods (2ω0
1, ω

0
3).

PROOF. Let∆1/2
0 be the period parallelogram of℘0(z)

1/2 with vertices(−ω0
1 −ω0

3)/2,

(3ω0
1 −ω0

3)/2, (−ω0
1 +ω0

3)/2 and(3ω0
1 +ω0

3)/2. The poles of℘0(z)
1/2 in∆1/2

0 arez = 0 and
z = ω0

1, whose residues are 1 and−1, respectively. By Proposition 2.3, for everyq ∈ N∪{0},
we have

℘0(z)
1/2℘0(z)

q = z−2q−1
∞∑
n=0

b
(q)

4n z
4n , b

(q)

0 = 1 ,(4.2.1)

aroundz = 0, and

℘0(z)
1/2℘0(z)

q = −(z− ω0
1)

−2q−1
∞∑
n=0

b
(q)

4n (z− ω0
1)

4n ,(4.2.2)

aroundz = ω0
1. Then, forν = 0,1, . . . , k − 1, k,

L∗(℘0(z)
1/2℘0(z)

2ν) = z−4ν−3
∞∑
n=0

B
ν,k
4n z

4n

= B
ν,k
0 z−4ν−3 + B

ν,k
4 z−4ν+1 + · · · + B

ν,k
4ν z

−3 +O(z) ,

whereBν,k0 = (4ν + 1)(4ν + 2) − (4k + 1)(4k + 2). Observing thatBk,k0 = 0, Bν,k0 �= 0
(ν �= k), we can chooseCk,n ∈ C, n = 0,1, . . . , k, satisfyingCk,k = 1 in such a way that

L∗
(
℘0(z)

1/2
k∑
n=0

Ck,n℘0(z)
2n

)
= O(z) ,

nearz = 0. Then, by (4.2.1) and (4.2.2),

L∗
(
℘0(z)

1/2
k∑
n=0

Ck,n℘0(z)
2n

)
= O(z− ω0

1)
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also holds nearz = ω0
1. By this fact and the Liouville theorem, we conclude that

Xm(z) = ℘0(z)
1/2

k∑
n=0

Ck,n℘0(z)
2n = ℘0(z)

1/2
k∏
h=1

(℘0(z)
2 − θm,h)

satisfies

L∗(Xm(z)) ≡ 0 ,

which implies the proposition. �
It is easy to see that

ψm(z) = X′
m(z)

Xm(z)
= ℘ ′

0(z)

2℘0(z)
+

k∑
h=1

2℘0(z)℘
′
0(z)

℘0(z)2 − θm,h
(4.3)

is a solution of (1.2).
In order to verify that there exists no periodic solution of (1.2) other thanψm(z), we

examine another solution of (4.1). By the uniqueness of the solution of an initial value prob-
lem associated with (4.1), every zero ofXm(z) is simple. Hence each constantθm,h satisfies
θm,h �= 0, θm,h �= θm,i for i �= h. It is easy to see that all zeros are located symmetrically with
respect toz = 0. Furthermore,Xm(z)2 is a doubly periodic function with periods(ω0

1, ω
0
2). It

follows from these facts and the Liouville theorem, that

1

Xm(z)2
= 1

2

∑
τ∈Z

1

X′
m(τ)

2
(℘0(z− τ )+ ℘0(z+ τ )− 2℘0(τ )) ,

whereZ denotes the set of all zeros ofXm(z) in

∆0 = {s1ω0
1 + s2ω

0
2 | − 1/2< s1 ≤ 1/2, −1/2< s2 ≤ 1/2} .(4.4)

Then we have another solution of (4.1) written in the form

Ym(z) = Xm(z)

∫ z

z0

dt

Xm(t)2
= −Xm(z)

2

∑
τ∈Z

1

X′
m(τ)

2 (ζ0(z − τ )+ ζ0(z+ τ )+ 2℘0(τ )z)

(see Section 2). For the linearly independent solutionsXm(z) andYm(z), we have the Floquet
matrices

Mj =
(

1 δj
0 1

)
, δj = −ω0

j

∑
τ∈Z

℘0(τ )

X′
m(τ)

2 − 2η0
j

∑
τ∈Z

1

X′
m(τ)

2 (j = 1,2) ,

satisfying[ω0
j ](Xm(z), Ym(z)) = (Xm(z), Ym(z))Mj , where[ω0

j ] denotes the analytic contin-

uation along the segment[z, z+ ω0
j ] (cf. Section 2 and [4, Section 3]). Note thatZ is written

in the form

Z = Z0 ∪
( k⋃
h=1

Zh

)
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with

Z0 = {τ ∈ Z |℘0(τ ) = 0} ,
Zh = {±τh,−,±τh,+ ∈ Z |℘0(±τh,−) = −θ1/2

m,h, ℘0(±τh,+) = θ
1/2
m,h} .

LEMMA 4.2. We have ∑
τ∈Z

℘0(τ )

X′
m(τ)

2 = 0 .

PROOF. Since every zero ofXm(z) is simple,

∑
τ∈Z0

℘0(τ )

X′
m(τ)

2
= 0 .(4.5)

Observe that

X′
m(τh,±)2 = ℘0(τh,±) · 4℘ ′

0(τh,±)2℘0(τh,±)2
∏
q �=h

(℘0(τh,±)2 − θm,q)
2

= 4℘0(τh,±)4(4℘0(τh,±)2 − g 2)
∏
q �=h

(℘0(τh,±)2 − θm,q)
2

= 4θ2
m,h(4θm,h − g 2)

∏
q �=h

(θm,h − θm,q)
2 = Γh �= 0 ,

and that

X′
m(−τh,±)2 = Γh �= 0 .

Hence we have
∑
τ∈Zh

℘0(τ )

X′
m(τ)

2(4.6)

= Γ −1
h ((℘0(τh,−)+ ℘0(τh,+))+ (℘0(−τh,−)+ ℘0(−τh,+))) = 0 .

From (4.5) and (4.6), the lemma immediately follows. �
By Lemma 4.2, we haveδj = −2η0

j

∑
τ∈Z X′

m(τ)
−2 (j = 1,2),which satisfy(δ1, δ2) �=

(0,0). Indeed, ifδ1 = δ2 = 0, then all the solutions of (4.1) are doubly periodic, and hence
there exists a nontrivial solution of (4.1) vanishing at every pole of℘0(z); which contradicts
the Liouville theorem. Letδ be the ratio

δ =
{
δ1/δ2 , if δ2 �= 0 ,
0 , if δ2 = 0 .

Now, we note the following criteria, which is proved by the same way as in the proof of [4,
Proposition 4.5].

LEMMA 4.3. If δ �∈ Q, then there exists no periodic solution of (1.2)other than (4.3).
If δ ∈ Q, then every solution of (1.2)other than (4.3) is purely simply periodic.
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Since
∑
τ∈Z X′

m(τ)
−2 �= 0, using Proposition 2.2, we have

δ = η0
1/η

0
2 = i .(4.7)

Hence, by Lemma 4.3, there exists no periodic solution other than (4.3).

4.2. Casem = 8k + 7. Whenm = 8k + 7, k = 0,1,2, . . . , we can construct a
solution of (3.1) expressible in the form

X̃m(z) = ℘ ′
0(z)

(
℘0(z)

2k +
k−1∑
n=0

C̃n℘0(z)
2n

)
= ℘ ′

0(z)

k∏
h=1

(℘0(z)
2 − θm,h) ,

by an argument analogous to that for the casem = 8k + 3 (see also [4, Section 4]). Then

ψm(z) = X̃′
m(z)

X̃m(z)
= ℘ ′′

0(z)

℘ ′
0(z)

+
k∑
h=1

2℘0(z)℘
′
0(z)

℘0(z)2 − θm,h
(4.8)

is a periodic solution of (1.2). By the same argument as in Section 4.1, we obtain the Floquet
matrices

M̃j =
(

1 δ̃j
0 1

)
, δ̃j = −ω0

j

∑
τ∈Z̃

℘0(τ )

X̃′
m(τ)

2
− 2η0

j

∑
τ∈Z̃

1

X̃′
m(τ)

2
(j = 1,2) ,

whereZ̃ denotes the set of all zeros ofX̃m(z) in ∆0 (cf. (4.4)). Decompose the setZ̃ into

Z̃ = Z̃′ ∪
( k⋃
h=1

Z̃h

)
,

Z̃′ = {
τ |℘ ′

0(τ ) = 0
} = {ω0

1/2, ω
0
2/2, ω

0
3/2

}
,

Z̃h = {
τ |℘0(τ )

2 = θm,h} .

(4.9)

Using the formulas

℘0(ω
0
1/2) =g 1/2

2 /2 , ℘0(ω
0
2/2) = −g 1/2

2 /2 , ℘0(ω
0
3/2) = 0 ,

X̃′
m(ω

0
j /2)

2 = ℘ ′′
0(ω

0
j /2)

2
k∏
h=1

(℘0(ω
0
j /2)

2 − θm,h)
2

= g 2
2

k∏
h=1

(g 2/4 − θm,h)
2 (j = 1,2) ,

we have ∑
τ∈Z̃′

℘0(τ )

X̃′
m(τ)

2
= 0 .(4.10)

Furthermore, by the same argument as in the proof of Lemma 4.2, we have
∑
τ∈Z̃h

℘0(τ )

X̃′
m(τ)

2
= 0 (h = 1, . . . , k) .(4.11)
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From (4.9), (4.10), (4.11) and Proposition 2.2, it follows thatδ̃ = δ̃1/δ̃2 = i. Hence, applying
Lemma 4.3, we conclude that there exists no periodic solution of (1.2) other than (4.8).

4.3. Casesm = 8k + 5 andm = 8k + 9. Whenm = 8k + 5, (3.1) is written in the
form

Lk(u) = 0 , Lk = (d/dz)2 − (4k + 2)(4k + 3)℘0(z) .(4.12)

Then we have

PROPOSITION 4.4. For every k = 0,1,2, . . . , (4.12)admits a solution expressed as

Wk(z) = ℘ ′
0(z)℘0(z)

−1/2
k∑
n=0

C̃k,n℘0(z)
2n(4.13)

with C̃k,k = 1.

PROOF. We show the conclusion by induction onk. By (2.8) the functionW0(z) =
℘ ′

0(z)℘0(z)
−1/2 satisfies (4.12) withk = 0. Suppose that, fork = 0,1, . . . , κ − 1, (4.12)

admits a solution expressed as (4.13). By Proposition 4.1, for suitably chosen constantsCn,

n = 0,1, . . . , κ, the function

X(z) = ℘0(z)
1/2

κ∑
n=0

Cn℘0(z)
2n , Cκ = 1

satisfies

X′′(z) = (4κ + 1)(4κ + 2)℘0(z)X(z) .(4.14)

Differentiate (4.14) and putwκ(z) = X′(z). Observing that

℘ ′
0(z)

℘0(z)
X(z)− wκ(z)

2κ + 1/2
= ℘ ′

0(z)℘0(z)
−1/2

κ−1∑
n=0

C′
n℘0(z)

2n , C′
n ∈ C ,

we have

Lκ(wκ(z)) = (4κ + 2)(4κ + 3)℘0(z)

(
℘ ′

0(z)℘0(z)
−1/2

κ−1∑
n=0

C′′
n℘0(z)

2n
)
, C′′

n ∈ C .

By supposition,

Lκ(wκ(z)+ γκ−1Wκ−1(z)) = Lκ(wκ(z))+ γκ−1ρκ,κ−1℘0(z)Wκ−1(z) ,

ρκ,κ−1 = (4κ + 2)(4κ + 3)− (4κ − 2)(4κ − 1) �= 0 .

Hence, ifγκ−1 = −(4κ + 2)(4κ + 3)C′′
κ−1/ρκ,κ−1, then

Lκ(wκ(z)+ γκ−1Wκ−1(z)) = (4κ + 2)(4κ + 3)℘0(z)

(
℘ ′

0(z)℘0(z)
−1/2

κ−2∑
n=0

C(3)n ℘0(z)
2n

)
.

Repeating this procedure, we may chooseγj (j = 0, . . . , κ − 1) in such a way thatWκ(z) =
wκ(z)+ ∑κ−1

j=0 γjWj (z) satisfies (4.12) withk = κ. Thus the proposition is verified. �
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We can write (4.13) in the form

Wk(z) = ℘ ′
0(z)℘0(z)

−1/2
k∏
h=1

(℘0(z)
2 − θm,h) ,

which yields the solutionψm(z) = W ′
k(z)/Wk(z) of (1.2) withm = 8k + 5.

Next consider the case wherem = 8k + 9, k = 0,1,2, . . . . It is easy to see that
V0(z) = 6℘0(z)

2 − 9g 2/10 satisfies

V ′′
0 (z) = 20℘0(z)V0(z) ,

which means thatV0(z) is a solution of (3.1) withm = 9. Using this fact, from the solution of
(3.1) withm = 8k+7 given in Section 4.2, we can derive a solution of (3.1) withm = 8k+9
written in the form

Vk(z) =
k+1∏
h=1

(℘0(z)
2 − θm,h) ,

by the same argument as in the proof of Proposition 4.4. Then,ψm(z) = V ′
k(z)/Vk(z) is a

doubly periodic solution of (1.2) withm = 8k + 9. Furthermore, in both casesm = 8k + 5
andm = 8k+9,we can also verify the non-existence of periodic solutions of (1.2) other than
ψm(z) by the same way as in Section 4.1. This completes the proof.
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