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Abstract. We consider a Banach space of finite-dimensional-Hilbert-space-valued
functions on a sigma-finite measure space. The norm of the function space is assumed to
satisfy some suitable conditions. Then we prove a pointwise local ergodic theorem for a(C0)-
semigroup of linear contractions on the function space, under an additional norm condition for
operators of the semigroup. Our result extendsBaxter and Chacon’s local ergodic theorem for
scalar-valued functions.

§1. Introduction. Let (H, ‖ · ‖) be a finite-dimensional Hilbert space and(Ω,Σ,µ)

aσ -finite measure space. Let(L, ‖ · ‖L) be a Banach space ofH -valued strongly measurable
functions on(Ω,Σ,µ). In what follows, two functionsf andg in L are not distinguished
provided thatf (ω) = g(ω) for almost allω ∈ Ω . We will assume throughout the paper that
the norm‖ · ‖L of the spaceL satisfies the following properties:

(I) If f, g ∈ L and‖f (ω)‖ ≤ ‖g(ω)‖ for almost allω ∈ Ω , then‖f ‖L ≤ ‖g‖L.
(II) If g is anH -valued strongly measurable function onΩ and‖g(ω)‖ ≤ ‖f (ω)‖ for

almost allω ∈ Ω for somef ∈ L, theng ∈ L.
(III) If En ∈ Σ, En ⊃ En+1 for eachn ≥ 1 and

⋂∞
n=1 En = ∅, then for everyf ∈ L

lim
n→∞ ‖χEn · f ‖L = 0 ,

whereχEn denotes the characteristic function ofEn.
(IV) If f andg are inL, ‖f (ω)‖ ≤ ‖g(ω)‖ for almost allω ∈ Ω and‖f ‖L = ‖g‖L,

then‖f (ω)‖ = ‖g(ω)‖ for almost allω ∈ Ω .
It should be remarked that in addition to the usualH -valuedLp-spaces, with 1≤ p <

∞, there are many interestingH -valued function spaces which satisfy Properties (I) to (IV)
(e.g.,H -valued Lorentz spaces andH -valued Orlicz spaces, etc.). By simple examples it
follows that Properties (III) and (IV) are independent.

Let T = {T (t) | t ≥ 0} be a(C0)-semigroup of linear contractions onL. This means that
for eacht ≥ 0, T (t) is a linear operator onL with ‖T (t)‖ ≤ 1, where‖T (t)‖ denotes the
operator norm ofT (t) determined by the norm‖ · ‖L of L, and the following hold:

(i) T (0) = I (the identity operator) andT (t + s) = T (t)T (s) for t, s ≥ 0.
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(ii) For everyf ∈ L, limt→0 ‖T (t)f − f ‖L = 0.
Since for anf ∈ L the vector-valued functiont 	→ T (t)f is continuous on[0,∞), it is
Bochner integrable on every bounded interval[a, b] ⊂ [0,∞) with respect to the Lebesgue
measure. In this paper we would like to study the a.e. convergence of the ergodic averages

1

α

∫ α

0
T (t)f dt (α > 0)

asα tends to zero. Since this does not make sense, when the ergodic averages are members
of the spaceL and not actual functions andα ranges through all positive reals, we must
restrict ourselves to consider the case whereα ranges through a countable subset of the interval
(0,∞). Thus, letD denote a countable dense subset of(0,∞). We then use the notation

D- lim
α→0

and D- lim sup
α→0

to mean that these limits are taken asα tends to zero through the setD. However, the affirma-
tive answer cannot be expected in general if the semigroupT = {T (t)} does not satisfy any
additional hypothesis, as is found by an example of Akcoglu and Krengel (see [1]). Therefore
we assume in Theorem 1 below the following additional hypothesis (cf. [2]–[5]):

(∗) There exists a constantK ≥ 1 such that iff ∈ L ∩ L∞((Ω,Σ,µ); H), then for
everyt ≥ 0 we haveT (t)f ∈ L∞((Ω,Σ,µ); H) and

(1) ‖T (t)f ‖∞ ≤ K‖f ‖∞ ,

where the norm‖ · ‖∞ of L∞((Ω,Σ,µ); H) is given as

‖f ‖∞ = inf{α > 0 | ‖f (ω)‖ ≤ α for almost allω} (< ∞) .

Here we remark that, since limt→0 ‖T (t)f − f ‖L = 0 for f ∈ L, if K satisfies (1) for
all t > 0 andf ∈ L ∩L∞((Ω,Σ,µ); H), then we must haveK ≥ 1, and that there exists an
example ofT = {T (t)} for which the hypothesis(∗) holds with some constantK > 1, butK
cannot be replaced by 1. To see this, letw be a periodic continuous function on the real line
such that the range ofw coincides with the interval[1, 2], and letp be a real number suth that
1 ≤ p < ∞. Then define

L = Lp(w dm) =
{
f

∣∣∣∣
∫ ∞

−∞
|f |pw dm < ∞

}
,

and

‖f ‖L =
( ∫ ∞

−∞
|f |pw dm

)1/p

for f ∈ L, wheref is a complex-valued Lebesgue measurable function andm denotes the
Lebesgue measure on the real line. It is clear that(L, ‖ · ‖L) becomes a Banach space satisfying
Properties (I) to (IV). If we define, fort ≥ 0 andf ∈ L,

T (t)f (x) = f (t + x)

(
w(t + x)

w(x)

)1/p

,
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then, by a straightforward calculation, we see thatT = {T (t) | t ≥ 0} becomes a(C0)-
semigroup of linear isometries onL. Further, since

max

{(
w(t + x)

w(x)

)1/p ∣∣∣∣ x ∈ (−∞,∞), t ≥ 0

}
= 21/p ,

the semigroupT = {T (t)} satisfies the hypothesis(∗) with K = 21/p, and 21/p is the best
constant in the sense that if the hypothesis(∗) holds with some constantK ′, then we must
haveK ′ ≥ 21/p.

In this paper we will prove the following local ergodic theorem.

THEOREM 1. If T = {T (t) | t ≥ 0} is a (C0)-semigroup of linear contractions on L
and satisfies the additional hypothesis (∗), then for every f ∈ L

(2) D- lim
α→0

1

α

∫ α

0
T (t)f dt = f a.e.on Ω .

Here we note that Theorem 1 reduces to Baxter and Chacon’s local ergodic theorem
(cf. [2]) for scalar-valued functions, whenH = C (the field of complex numbers),L =
Lp((Ω,Σ,µ); C) with 1 ≤ p < ∞, andK = 1. The purpose of this paper is to extend their
theorem to finite-dimensional-Hilbert-space-valued function spaces including Lorentz spaces
and Orlicz spaces, etc. To this end we have examined their arguments thoroughly and found
out that their methods can be adapted to prove our Theorem 1. Incidentally, the hypothesis
thatT is a contraction semigroup cannot be weakened. This follows from Theorem 2 of [6].
The hypothesis thatH is finite-dimensional is essential in the paper, because Lemma 6 below
does not hold without it. It would be natural to ask whether or not Theorem 1 holds whenH

is an infinite-dimensional Hilbert space. This is an open problem.
As in [2], we also obtain a more general result. Namely, we have

THEOREM 2. Let T = {T (t) | t ≥ 0} be a (C0)-semigroup of linear contractions on
L. Suppose there exist a scalar-valued measurable function h on [0,∞) × Ω and a constant
K ≥ 1 such that

(i) h(t, ω) > 0 for every (t, ω) ∈ [0,∞) × Ω , and
(ii) f ∈ L and ‖f (ω)‖ ≤ h(t, ω) for almost all ω ∈ Ω imply that ‖T (s)f (ω)‖ ≤

Kh(t + s, ω) for almost all ω ∈ Ω and for every t, s ≥ 0.
Then (2) holds for all f ∈ L.

As is easily seen, to prove these theorems it may be assumed without loss of generality
thatH is areal Hilbert space. Thus, in the following,H will denote a real Hilbert space.

The authors would like to express their gratitude to the referee for helpful comments
which made the paper readable.

§2. Lemmas. In this section we prove some necessary lemmas.H andL will be the
same as in Introduction.

LEMMA 1. If (fn) is a sequence of functions in L such that
∑∞

n=1 ‖fn‖L < ∞, then∑∞
n=1 ‖fn(ω)‖ < ∞ for almost all ω ∈ Ω , and the function f (ω) = ∑∞

n=1 fn(ω) is in L and
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satisfies

lim
k→∞

∥∥∥∥f −
k∑

n=1

fn

∥∥∥∥
L

= 0 .

LEMMA 2. Let f ∈ L and fn ∈ L for n ≥ 1. If limn→∞ ‖f − fn‖L = 0, then there
exists a subsequence (fn′ ) of (fn) such that limn′→∞ fn′(ω) = f (ω) for almost all ω ∈ Ω .

LEMMA 3. Let (fn) be a sequence of functions in L. If limn→∞ fn(ω) = 0 for almost
all ω ∈ Ω and if there exists an f ∈ L such that ‖fn(ω)‖ ≤ ‖f (ω)‖ for almost all ω ∈ Ω

and for every n ≥ 1, then limn→∞ ‖fn‖L = 0.

These are elementary and hence proofs are omitted (see e.g. [7]).
An important consequence of Lemma 2 is that, to prove Theorems 1 and 2, it may be

assumed without loss of generality thatD is the set of all positive rationals. Hence, we will
assume below that

D = {r > 0 | r is rational} .

Next, letΩ∼ = [0,∞) × Ω . Let Σ∼ be the usual productσ -algebra of the Lebesgue
measurable subsets of[0,∞) andΣ, andµ∼ the product measure of the Lebesgue measure
on [0,∞) andµ. SupposeT = {T (t) | t ≥ 0} is a (C0)-semigroup of linear contractions on
L. For anf ∈ L andn ≥ 1, define the functionFn : [0,∞) → L by

(3) Fn(t) = T (i/n!)f if i/n! ≤ t < (i + 1)/n! .
(The factorn! will be useful for the proof of Lemma 5 below.) SinceT is a(C0)-semigroup,
it is easily seen that there exists a subsequence(n(k)) of (n) such that

∞∑
k=1

‖Fn(k)(t) − T (t)f ‖L < ∞ for all t ≥ 0 .

Thus, by Lemma 1,
∞∑

k=1

‖Fn(k)(t)(ω) − T (t)f (ω)‖ < ∞

for almost allω ∈ Ω , and hence we get

(4) lim
k→∞ ‖Fn(k)(t)(ω) − T (t)f (ω)‖ = 0

for almost allω ∈ Ω . Taking this into account, let

(5) F (t, ω) =
{

lim
k→∞Fn(k)(t)(ω) if the limit exists,

0 otherwise.

Then we have the following

LEMMA 4. The function F : Ω∼ → H is strongly measurable, and F(t, ·) is a repre-
sentative of the element T (t)f ∈ L for each t ≥ 0.

PROOF. Obvious from the above construction ofF .
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In the following we will denote

(6) T (t)(f, ω) := F(t, ω) for (t, ω) ∈ Ω∼ .

By Fubini’s theorem the function(t, ω) 	→ T (t)(f, ω) is uniquely determined modulo sets of
measure zero.

LEMMA 5. Assume that the semigroup T satisfies the additional hypothesis (∗), and
that f ∈ L ∩ L∞((Ω,Σ,µ); H). Then, for every β > 0, the function fβ ∈ L defined by

fβ = ∫ β

0 T (t)f dt satisfies

D- lim
α→0

1

α

∫ α

0
T (t)fβdt = fβ a.e. on Ω .

PROOF. We may assume without loss of generality that

‖T (t)(f, ω)‖ ≤ K‖f ‖∞ for all (t, ω) ∈ Ω∼ .

For each fixedω ∈ Ω , theH -valued functiont 	→ T (t)(f, ω) is Bochner integrable on every
bounded interval in[0,∞) with respect to the Lebesgue measure by Fubini’s theorem, and
theH -valued functionFβ onΩ∼ defined by

(7) Fβ(u, ω) =
∫ u+β

u

T (t)(f, ω)dt for (u, ω) ∈ Ω∼

is strongly measurable with respect to(Ω∼,Σ∼, µ∼).
On the other hand, sinceT = {T (t)} is strongly continuous on[0,∞), it follows that

(8) lim
n→∞

∥∥∥∥
∫ u+β

u

T (t)f dt − 1

n!
[n! (u+β)]∑
i=[n! u]

T (i/n!)f
∥∥∥∥

L

= 0

for everyu ≥ 0, [t] being the largest integer contained in[0, t] for t ∈ [0,∞). Here we notice
that if i/n! ≤ t < (i + 1)/n!, i.e. i = [n!t], then, by (3),

T (i/n!)f (ω) = Fn(t)(ω) = T (i/n!)(f, ω) for ω ∈ Ω .

Hence, by Fubini’s theorem together with (4) and (5), to the subsequence(n(k)) in (4) there
corresponds a setN(f ) ∈ Σ, with µ(N(f )) = 0, such that ifω /∈ N(f ), then

lim
k→∞ T (i(k)/n(k)!)(f, ω) = T (t)(f, ω)

for almost everyt ∈ [0,∞), wherei(k) = [n(k)!t]. Thus, by the Lebesgue convergence
theorem,

(9)

lim
k→∞

1

n(k)!
[n(k)! (u+β)]∑
i=[n(k)! u]

T (i/n(k)!)f (ω)

=
∫ u+β

u

T (t)(f, ω)dt = Fβ(u, ω) for ω /∈ N(f ) .

Combining this with (8), we then see from Lemma 2 that for each fixedu ≥ 0, theH -valued
function ω 	→ Fβ(u, ω) is a representative of the elementT (u)fβ = ∫ u+β

u
T (t)f dt ∈ L.



48 S. HASEGAWA AND R. SATO

Hence the functionFβ(u, ω) on Ω∼ can be regarded as the functionT (u)(fβ, ω), defined
in (6), for the elementfβ ∈ L ∩ L∞((Ω,Σ,µ); H). Since for eachω ∈ Ω the function
u 	→ Fβ(u, ω) is continuous on[0,∞), it follows as above that for everyα > 0 the function
ω 	→ ∫ α

0 Fβ(u, ω)du onΩ is a representative of
∫ α

0 T (u)fβdu ∈ L, and therefore

(10)
D- lim

α→0

(
1

α

∫ α

0
T (u)fβdu

)
(ω) = D- lim

α→0

1

α

∫ α

0
Fβ(u, ω)du

= Fβ(0, ω) = T (0)fβ(ω) = fβ(ω)

for almost allω ∈ Ω , whence the proof is complete.

LEMMA 6. Let δ > 0 and E ∈ Σ. Assume that {Fα | α ∈ D} is a family of H-valued
strongly measurable functions on (Ω,Σ,µ) such that ‖Fα(ω)‖ ≤ δ on E for all α ∈ D, and
such that to each α ∈ D and ω ∈ E there corresponds β ∈ D with

(11) β ≤ α and ‖Fβ(ω)‖ = δ .

Then there exists an H-valued strongly measurable function F0 on E, with ‖F0(ω)‖ = δ on
E, such that to each ω ∈ E there corresponds a sequence (αi) in D with

(12) αi ↓ 0 and lim
i→∞ Fαi (ω) = F0(ω) .

PROOF. SinceH is finite-dimensional by hypothesis, the set

H(δ) = {x ∈ H | ‖x‖ = δ}
is a compact subset ofH . Thus there exists a sequence(∆n) of partitions ofH(δ) such that
the diameter of each member of∆n is less than 1/2n, and such that∆n+1 is a refinement of
∆n for eachn ≥ 1. We may write

∆1 = {A1(1), . . . , A1(l1)} ,

and

∆n = {An(i1, . . . , in) | 1 ≤ i1 ≤ l1, . . . , 1 ≤ in ≤ ln} for n ≥ 2 ,

where{An(i1, . . . , in−1, j) | 1 ≤ j ≤ ln} becomes a partition of the setAn−1(i1, . . . , in−1).
Define

(i1, . . . , in) < (j1, . . . , jn)

if there exists somek, with 1 ≤ k ≤ n, for whichik < jk and(i1, . . . , ik−1) = (j1, . . . , jk−1)

hold. Using this order defined on each set

Γn := {1, . . . , l1} × . . . × {1, . . . , ln} ,

we will construct a sequence(hn(ω)) for ω ∈ E, wherehn(ω) is an element ofΓn for each
n ≥ 1. First, ifω ∈ E, let

h1(ω) = min{1 ≤ i ≤ l1 | {β ∈ D | β ≤ α andFβ(ω) ∈ A1(i)} �= ∅ for eachα ∈ D} .

(Here we notice that, sinceFβ(ω) depends onω, if α ∈ D is fixed, then the numberi for
whichFβ(ω) ∈ A1(i) holds for someβ ≤ α, depends also onω. This observation leads to the
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conclusion thath1(ω) is a function ofω ∈ E.) Next, if h1(ω), . . . , hn(ω) have been defined,
then let

hn+1(ω)

= min

{
(i1, . . . , in, in+1)

∣∣∣∣ hn(ω) = (i1, . . . , in), and for eachα ∈ D
{β ∈ D | β ≤ α andFβ(ω) ∈ An+1(i1, . . . , in, in+1)} �= ∅

}
.

By this process we get an infinite sequenceh1(ω), h2(ω), . . . . Then, by putting

(13) {F0(ω)} =
∞⋂

n=1

An(hn(ω)) ,

whereAn(hn(ω)) denotes the closure of the setAn(hn(ω)), we define anH -valued strongly
measurable functionF0 onE such that‖F0(ω)‖ = δ for all ω ∈ E. Then, from the definition
of F0(ω), there exists a sequence(αi) in D, with αi ↓ 0, such that

(14) lim
i→∞ ‖Fαi (ω) − F0(ω)‖ = 0 .

This completes the proof.

Lemma 6 is a key lemma of the paper. As is observed in a simple example, it does not
hold if H is not finite-dimensional. The next lemma is Lemma 1 of [2], which is proved easily
by induction and hence we omit the proof.

LEMMA 7. Let T be a linear operator on L and f ∈ L. If hk, gk ∈ L for 0 ≤ k ≤ n

and dk ∈ L for 1 ≤ k ≤ n satisfy f = h0 + g0 and T gk = dk+1 + gk+1, hk+1 = dk+1 + hk

for 0 ≤ k ≤ n − 1, then

T nf = T nh0 +
n−1∑
i=0

T idn−1 + gn , and(15)

n∑
i=0

T if =
n∑

i=0

T ihn−i +
n∑

i=0

gi .(16)

We extend Baxter and Chacon’s truncation operation for complex numbers to vectors of
H as follows. Forγ > 0, let

S(γ ) = {x ∈ H | ‖x‖ ≤ γ } ,

and for(x, y) ∈ S(γ ) × H , define

(17) Cγ (x, y) = x + λ · (y − x)

with λ = max{t | 0 ≤ t ≤ 1, ‖x + t · (y − x)‖ ≤ γ }. It follows easily thatCγ is continuous
on S(γ ) × H , and hence iff andg areH -valued strongly measurable functions onΩ and
‖f (ω)‖ ≤ γ for ω ∈ Ω , then theH -valued function

(18) Cγ (f, g)(ω) = Cγ (f (ω), g(ω))

becomes strongly measurable onΩ .
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LEMMA 8. Suppose T is a linear contraction on L. Assume that there exists a constant
K ≥ 1 such that if f ∈ L ∩ L∞((Ω,Σ,µ); H), then ‖T nf (ω)‖ ≤ K‖f ‖∞ for almost all
ω ∈ Ω and for every n ≥ 0. Let f ∈ L, A ∈ Σ and β > 0 be such that β > ‖f (ω)‖ for
ω ∈ A. Assume that R is an H-valued strongly measurable function on A and N ≥ 1 is an
integer such that to each ω ∈ A there corresponds j, with 0 ≤ j ≤ N , for which

(19) R(ω) = 1

j + 1

j∑
i=0

T if (ω)

holds. Then ‖R(ω)‖ ≥ 3Kβ for ω ∈ A implies that there exist functions d1, . . . , dN , g in L
such that

(i) dk(ω) = 0 for ω ∈ Ω \A and ‖d1(ω)+· · ·+dk(ω)‖ ≤ 2β for ω ∈ A, 1 ≤ k ≤ N ,
(ii) T Nf = T NCβ(0, f ) + (dN + T dN−1 + · · · + T N−1d1) + g,
(iii) ‖g‖L ≤ ‖f − Cβ(0, f )‖L,
(iv) Cβ(f,R)(ω) = f (ω) + d1(ω) + · · · + dN(ω) for almost every ω ∈ A.

PROOF. Let h0 = Cβ(0, f ) andg0 = f − h0. If hi andgi for 0 ≤ i ≤ k anddi for
1 ≤ i ≤ k have been defined inL, then using the functiona(ω) onΩ defined by

a(ω) =
{

sgn[Cβ(f,R)(ω) − h0(ω)] for ω ∈ A ,

0 otherwise,

where sgnx = x/‖x‖ if x ∈ H with x �= 0, and sgnx = 0 if x = 0 ∈ H , we set

Uk+1(ω) =
{〈T gk(ω), a(ω)〉 · a(ω) if 〈T gk(ω), a(ω)〉 is positive,

0 otherwise,

where〈·, ·〉 denotes the inner product ofH (it is here that we use the fact thatH is a real
Hilbert space),

hk+1 = Cβ(hk, hk + Uk+1) ,(20)

dk+1 = hk+1 − hk ,(21)

gk+1 = T gk − dk+1 .(22)

By (20) and (21)

dk+1(ω) = λk+1(ω)Uk+1(ω) with 0 ≤ λk+1(ω) ≤ 1 ,

and hence‖gk+1(ω)‖ ≤ ‖T gk(ω)‖ for ω ∈ Ω . It follows from Property (I) and the hypothesis
‖T ‖ ≤ 1 that

‖gk+1‖L ≤ ‖T gk‖L ≤ ‖gk‖L .

Then, lettingg = gN , we obtain‖g‖L = ‖gN‖L ≤ ‖g0‖L = ‖f − Cβ(0, f )‖L, whence
(iii) follows. (ii) is a consequence of Lemma 7.

SinceUk+1(ω) = 0 onΩ \ A, 0 ≤ k ≤ N − 1, by definition, it follows from (20) and
(21) thatdk(ω) = 0 onΩ \ A, 1 ≤ k ≤ N . On the other hand, since

(23) hk − h0 = dk + dk−1 + · · · + d1 on Ω (by (21)) ,
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it follows that ‖d1(ω) + · · · + dk(ω)‖ ≤ ‖hk(ω)‖ + ‖h0(ω)‖ ≤ 2β for ω ∈ A. Thus (i)
follows.

To prove (iv), we use (23) and the fact thatf (ω) = Cβ(0, f )(ω) = h0(ω) for ω ∈ A; it
suffices to show that the following holds:

(24) Cβ(f,R)(ω) = hN(ω) for almost allω ∈ A .

If (24) did not hold, then there would existE ∈ Σ, with E ⊂ A andµ(E) > 0, such that

(25) Cβ(f,R)(ω) �= hN(ω) for ω ∈ E .

Then forω ∈ E and 0≤ k ≤ N − 1 we have, from the definition ofhN(ω), that

(26) dk+1(ω) = Uk+1(ω) and hk(ω) �= Cβ(f,R)(ω)

and that

(27) 〈gk+1(ω), Cβ(f,R)(ω) − f (ω)〉 ≤ 0 .

On the other hand, by hypothesis, there existsj with 0 ≤ j ≤ N such that

(j + 1)R(ω) =
j∑

i=0

T if (ω)

= hj (ω) + T hj−1(ω) + · · · + T jh0(ω) +
j∑

i=0

gi (ω) ,

by Lemma 7. Thus, from (27) and the fact that sgn[R(ω)−f (ω)] = a(ω) ( �= 0), we find that

(28) 〈(j + 1)R(ω), a(ω)〉 ≤
〈 j∑

i=0

T ihj−i (ω), a(ω)

〉
.

However,

〈R(ω), a(ω)〉 = 〈R(ω) − f (ω), a(ω)〉 + 〈f (ω), a(ω)〉
> 2Kβ − β ≥ Kβ ,

because‖R(ω) − f (ω)‖ > 2Kβ and‖f (ω)‖ < β ≤ Kβ for ω ∈ E. Moreover,〈 j∑
i=0

T ihj−i (ω), a(ω)

〉
≤ (j + 1)Kβ ,

because‖T ihj−i (ω)‖ ≤ K‖hj−i‖∞ ≤ Kβ. Hence, from (28), we deduce that(j + 1)Kβ <

(j + 1)Kβ, a contradiction. This completes the proof.

LEMMA 9. Suppose the semigroup T = {T (t)} satisfies the additional hypothesis (∗).
Then for every f ∈ L,

(29) D- lim sup
α→0

∥∥∥∥ 1

α

( ∫ α

0
T (t)f dt

)
(ω)

∥∥∥∥ ≤ 3K‖f (ω)‖
for almost all ω ∈ Ω .
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PROOF. Let F ∗ be the nonnegative measurable function onΩ defined by

(30) F ∗(ω) = D- lim sup
α→0

∥∥∥∥ 1

α

( ∫ α

0
T (t)f dt

)
(ω)

∥∥∥∥ (ω ∈ Ω) .

It suffices to show that ifγ > 0 andF ∗(ω) > 3Kγ for almost allω ∈ E, whereE ∈ Σ and
0 < µ(E) < ∞, then‖f (ω)‖ ≥ γ for almost allω ∈ E.

Assume the contrary. Namely, there existγ > 0 andE ∈ Σ with 0 < µ(E) < ∞ such
that

(31) F ∗(ω) > 3Kγ and ‖f (ω)‖ < γ for ω ∈ E .

Here, using Property (II), we may assume without loss of generality that there existse ∈ L

with

(32) χE(ω) = ‖e(ω)‖ for ω ∈ Ω .

For anα ∈ D, let Fα be the function inL defined by

(33) Fα(ω) =

C3Kγ

(
f,

1

α

∫ α

0
T (t)f dt

)
(ω) if ω ∈ E ,

0 otherwise.

SinceF ∗(ω) > 3Kγ for ω ∈ E by (31), the family{Fα | α ∈ D} satisfies the hypothesis of
Lemma 6 withδ = 3Kγ . Thus there exists a functionF0 ∈ L such that

(34) ‖F0(ω)‖ = 3Kγ · χE(ω) for ω ∈ Ω ,

and also such that to eachω ∈ E there corresponds a sequence(αi) in D, with αi ↓ 0, for
which

(35)

∥∥∥∥ 1

αi

(∫ αi

0
T (t)f dt

)
(ω)

∥∥∥∥ > 3Kγ for i ≥ 1 ,

and

(36) lim
i→∞ Fαi (ω) = F0(ω)

hold. Leth be the function inL defined by

(37) h(ω) =
{
Cγ (f, F0)(ω) − f (ω) if ω ∈ E ,

0 otherwise.

Sinceh(ω) �= 0 for ω ∈ E andf (ω) − Cγ (0, f )(ω) = 0 for ω ∈ E, by (31) and (34), it
follows from Property (IV) that

‖f − Cγ (0, f ) − h‖L > ‖f − Cγ (0, f )‖L .

Take anε > 0 so that

(38) 5ε < ‖f − Cγ (0, f ) − h‖L − ‖f − Cγ (0, f )‖L .

Then choose an integerl ≥ 1 so that

(39)
4γ ‖e‖L

l
< ε .
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Next chooseδ ∈ D with 0 < δ < 1 so that 0≤ t < (l + 1)δ implies

(40) ‖(I − T (t))f ‖L < ε , ‖(I − T (t))Cγ (0, f )‖L < ε ,

and

(41) ‖(I − T (t))h‖L < ε .

Finally, letη > 0 be fixed arbitrarily. By (35) and (36) we can choose an integern ≥ 1
and a setE1 ∈ Σ, with E1 ⊂ E andµ(E \ E1) < η, so that ifω ∈ E1, then there exists an
integerk, with 1 ≤ k ≤ n, for which

(42)
1

kδ/n

∥∥∥∥
( ∫ kδ/n

0
T (t)f dt

)
(ω)

∥∥∥∥ > 3Kγ

and

(43) ‖Cγ (f, F0)(ω) − Cγ (f, Fkδ/n)(ω)‖ < η

hold. Thus, by (33) and the fact thatγ < 3Kγ , we deduce that

Cγ

(
f,

n

kδ

∫ kδ/n

0
T (t)f dt

)
(ω) = Cγ (f, Fkδ/n)(ω) ,

and that

(44)

∥∥∥∥Cγ (f, F0)(ω) − Cγ

(
f,

n

kδ

∫ kδ/n

0
T (t)f dt

)
(ω)

∥∥∥∥ < η .

We then apply Lemma 2 and Cantor’s diagonal method to infer that there exists a strictly
increasing sequence(n(k)) of positive integers such that

( ∫ α

0
T (t)f dt

)
(ω) = lim

k→∞
δ

n(k)!
(α/δ)n(k)!−1∑

i=0

T

(
iδ

n(k)!
)

f (ω)

for almost allω ∈ Ω and for everyα ∈ D. Then, using (42) and (44), we can choose a
sufficiently large integerN ≥ 1 and a setA ∈ Σ, with A ⊂ E1 ⊂ E andµ(E \ A) < η, such
thatN/n is a positive integer and ifω ∈ A, then there exists an integerk, with 1 ≤ k ≤ n, for
which

(45)

∥∥∥∥ n

kN

(k/n)N−1∑
i=0

T

(
iδ

N

)
f (ω)

∥∥∥∥ > 3Kγ

and

(46)

∥∥∥∥Cγ (f, F0)(ω) − Cγ

(
f,

n

kN

(k/n)N−1∑
i=0

T

(
iδ

N

)
f

)
(ω)

∥∥∥∥ < η
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hold. Denoting byk(ω) the smallest positive integerk satisfying (45) and (46), we then define
a functionR in L by

(47) R(ω) =




n

k(ω)N

(k(ω)/n)N−1∑
i=0

T

(
iδ

N

)
f (ω) if ω ∈ A ,

0 otherwise.

Let T = T (δ/N). Then forω ∈ A, we have‖R(ω)‖ > 3Kγ , and further

R(ω) = 1

j + 1

j∑
i=0

T if (ω) with j = k(ω)

n
N − 1 .

Thus by Lemma 8 there exist functionsd1, . . . , dN , g in L such that
(i) dk(ω) = 0 for ω ∈ Ω \ A and‖∑k

i=1 di(ω)‖ ≤ 2γ for ω ∈ A, 1 ≤ k ≤ N ,
(ii) T Nf = T NCγ (0, f ) + (dN + T dN−1 + · · · + T N−1d1) + g,
(iii) ‖g‖L ≤ ‖f − Cγ (0, f )‖L,
(iv) Cγ (f,R)(ω) = f (ω) + ∑N

i=1 di(ω) for almost allω ∈ A.
Let

W = 1

lN

lN−1∑
i=0

T i .

Then, since

W

( N∑
i=1

T N−idi −
N∑

i=1

di

)

= 1

lN

N−1∑
k=1

[−T k−1(d1 + · · · + dN−k) + T lN+k−1(d1 + · · · + dN−k)] ,

we apply (i) and (39) to obtain that∥∥∥∥W

( N∑
i=1

T N−idi −
N∑

i=1

di

)∥∥∥∥
L

≤ 2

lN

N−1∑
k=1

‖d1 + · · · + dN−k‖L

≤ 2(N − 1)

lN
2γ · ‖e‖L < ε .

Hence, by (ii), we have

(48)

∥∥∥∥W(T Nf − T NCγ (0, f )) − W

( N∑
i=1

di + g
)∥∥∥∥

L

< ε .

On the other hand, since

W(T Nf − T NCγ (0, f )) = 1

lN

lN−1∑
i=0

T

(
i + N

N
δ

)
(f − Cγ (0, f )) ,
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it follows from (40) that

(49) ‖W(T Nf − T NCγ (0, f )) − (f − Cγ (0, f ))‖L < 2ε .

Combining this with (48) yields

(50)

∥∥∥∥(f − Cγ (0, f )) − W

( N∑
i=1

di + g
)∥∥∥∥

L

< 3ε .

Next, let

(51) h1(ω) =
{
Cγ (f,R)(ω) − f (ω) if ω ∈ A ,

0 otherwise.

By (37), (46), (47) and (31) we then deduce that

(52) ‖h(ω) − h1(ω)‖ ≤ η · χA(ω) + 2γ · χE\A(ω) for ω ∈ Ω .

Hence, ifη > 0 is taken to be sufficiently small, then, sinceµ(E \ A) < η, it follows from
Property (III) that

(53) ‖h − h1‖L ≤ η‖e‖L + 2γ ‖eE\A‖L < ε ,

whereeE\A(ω) = e(ω) if ω ∈ E \ A, and= 0 if ω /∈ E \ A. We also deduce by (iv), (i) and
(51) that

W(d1 + · · · + dN) − h = Wh1 − h = W(h1 − h) + Wh − h ,

and by (41),

‖Wh − h‖L ≤ 1

lN

lN−1∑
i=0

∥∥∥∥T

(
iδ

N

)
h − h

∥∥∥∥
L

< ε .

Thus‖W(d1 + · · · + dN) − h‖L < 2ε, and consequently we get

(54) ‖f − Cγ (0, f ) − h − Wg‖L < 5ε .

But this is impossible, because

‖f − Cγ (0, f ) − h − Wg‖L ≥ ‖f − Cγ (0, f ) − h‖L − ‖Wg‖L

≥ ‖f − Cγ (0, f ) − h‖L − ‖g‖L > 5ε (by (iii) and (38)),

and hence the proof is complete.

§3. Proof of Theorem 1. Let f ∈ L. Since the set

M =
{
g ∈ L

∣∣∣∣ D- lim
α→0

(
1

α

∫ α

0
T (t)gdt

)
(ω) = g(ω) for almost allω ∈ Ω

}

is dense inL by Lemma 5 together with Lemma 3, we can choose a sequence(fn) of functions
in M such that limn→∞ ‖f − fn‖L = 0 and also such that

(55) D- lim
α→0

1

α

( ∫ α

0
T (t)fndt

)
(ω) = fn(ω) for almost allω ∈ Ω
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for eachn ≥ 1. Here, by Lemma 2, we may assume that

(56) lim
n→∞ fn(ω) = f (ω) for almost allω ∈ Ω .

Then, since

1

α

∫ α

0
T (t)f dt − f = 1

α

∫ α

0
T (t)(f − fn)dt +

(
1

α

∫ α

0
T (t)fndt − fn

)
+ (fn − f ) ,

we have

D- lim sup
α→0

∥∥∥∥ 1

α

( ∫ α

0
T (t)f dt

)
(ω) − f (ω)

∥∥∥∥
≤ D- lim sup

α→0

∥∥∥∥ 1

α

( ∫ α

0
T (t)(f − fn)dt

)
(ω)

∥∥∥∥ + ‖fn(ω) − f (ω)‖
≤ 4K‖fn(ω) − f (ω)‖ for almost allω ∈ Ω ,

by Lemma 9. Hence, by (56), we find

D- lim sup
α→0

∥∥∥∥ 1

α

(∫ α

0
T (t)f dt

)
(ω) − f (ω)

∥∥∥∥ = 0

for almost allω ∈ Ω , and this completes the proof.

§4. Proof of Theorem 2. Let f ∼ be anH -valued strongly measurable function on
Ω∼. Assume thatf ∼(t, ·) ∈ L for almost allt ≥ 0. Then, since there exists a sequence(f ∼

n )

of H -valued stongly measurable simple functions onΩ∼ such that for everyω∼ = (t, ω) ∈
Ω∼

‖f ∼
n (ω∼)‖ ≤ ‖f ∼

n+1(ω
∼)‖ for n ≥ 1,(57)

‖f ∼
n (ω∼) − f ∼(ω∼)‖ ≤ 2‖f ∼(ω∼)‖ for n ≥ 1 , and(58)

lim
n→∞ ‖f ∼

n (ω∼) − f ∼(ω∼)‖ = 0 ,(59)

it follows from Lemma 3 that for almost allt ≥ 0, limn→∞ ‖f ∼(t, ·) − f ∼
n (t, ·)‖L = 0, and

thus
‖f ∼(t, ·)‖L = lim

n→∞ ‖f ∼
n (t, ·)‖L .

Since the functionst 	→ ‖f ∼
n (t, ·)‖L are Lebesgue measurable on the interval[0,∞), which

can be seen from Lemma 3 together with a standard approximation argument, it follows that
the functiont 	→ ‖f ∼(t, ·)‖L is Lebesgue measurable on the interval[0,∞), and thus we can
define

(60) ‖f ∼‖Ω∼ =
∫ ∞

0
‖f ∼(t, ·)‖Ldt .

Let L∼ be the set of allf ∼ such that‖f ∼‖Ω∼ < ∞, and put

‖f ∼‖L∼ = ‖f ∼‖Ω∼ (< ∞) for f ∼ ∈ L∼ .

It is easily checked that(L∼, ‖ · ‖L∼) is a Banach space satisfying Properties (I) to (IV)
replaced(L, ‖ · ‖L) with (L∼, ‖ · ‖L∼).
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Let T be a bounded linear operator onL. If f ∼ is a strongly measurable simple function
in L∼ of the form

f ∼(ω∼) =
n∑

i=1

χE∼
i
(ω∼) · xi ,

wherexi ∈ H andE∼
i (∈ Σ∼) has the formE∼

i = Bi × Ei for some Lebesgue measurable
subsetBi of [0,∞) andEi ∈ Σ, then define

(T ∼f ∼)(t, ω) = (Tf ∼(t, ·))(ω) for (t, ω) ∈ Ω∼ .

It follows thatT ∼f ∼ is in L∼, and that

‖T ∼f ∼‖L∼ =
∫ ∞

0
‖Tf ∼(t, ·)‖Ldt ≤ ‖T ‖

∫ ∞

0
‖f ∼(t, ·)‖Ldt = ‖T ‖‖f ∼‖L∼ .

ThusT ∼ can be uniquely extended to a bounded linear operator onL∼. We will use the same
symbolT ∼ to denote the extended operator. By applying Lemmas 1 and 2 to both(L, ‖ · ‖L)

and (L∼, ‖ · ‖L∼) and using an approximation argument, we see without difficulty that if
f ∼ ∈ L∼, then there exists a representative(T ∼f ∼)(t, ω) of the elementT ∼f ∼ ∈ L∼ such
that for almost everyt ≥ 0,

(61) (T ∼f ∼)(t, ω) = (Tf ∼(t, ·))(ω) for almost allω ∈ Ω .

Let S be another bounded linear operator onL. By using (61), we deduce immediately
that (T S)∼ = T ∼S∼ on L∼. Thus, if T ∼ = {T (t)∼ | t ≥ 0} denotes the family of linear
contractions onL∼ induced from the semigroupT = {T (t) | t ≥ 0} on L by the above
method, thenT∼ becomes a semigroup onL∼, and an approximation argument implies that

(62) lim
t→0

‖T (t)∼f ∼ − f ∼‖L∼ = 0

for f ∼ ∈ L∼. That is,T ∼ is a(C0)-semigroup of linear contractions onL∼.
For t ∈ [0,∞) andf ∼ ∈ L∼, let

(A(t)f ∼)(u, ω) =
{

0 if 0 ≤ u < t ,

f ∼(u − t, ω) if u ≥ t .

Clearly, A = {A(t) | t ≥ 0} is a (C0)-semigroup of linear isometries onL∼ such that
A(t)T (s)∼ = T (s)∼A(t) onL∼ for all t, s ≥ 0. Define

(63) V (t) = A(t)T (t)∼ (t ≥ 0) .

It then follows thatV = {V (t) | t ≥ 0} becomes a(C0)-semigroup of linear contractions on
L∼.

Let h be the function appearing in Theorem 2. Then define

L∼(h) = {f ∼/h | f ∼ ∈ L∼} and ‖f ∼/h‖L∼(h) = ‖f ∼‖L∼ .

Obviously,(L∼(h), ‖ · ‖L∼(h)) is a Banach space satisfying Properties (I) to (IV) replaced
(L, ‖ · ‖L) with (L∼(h), ‖ · ‖L∼(h)), and the mappingϑ : L∼ → L∼(h) defined by

ϑf ∼ = f ∼/h
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is an invertible linear isometry with the property that, for every family{f ∼
α | α ∈ D} ⊂ L∼,

D- limα→0 f ∼
α exists a.e. onΩ∼ if and only if D- limα→0 ϑf ∼

α exists a.e. onΩ∼.
Let U = {U(t) | t ≥ 0} be a(C0)-semigroup of linear contractions onL∼(h) defined by

(64) U(t) = ϑV (t)ϑ−1 for t ≥ 0 .

Then forf ∼/h ∈ L∼(h) ∩ L∞((Ω∼,Σ∼, µ∼); H) we have

U(t)(f ∼/h) = 1

h
V (t)f ∼ = 1

h
A(t)T (t)∼f ∼ = 1

h
T (t)∼A(t)f ∼ ,

and without loss of generality we may assume that

‖f ∼(u, ω)‖ ≤ ‖f ∼/h‖∞h(u, ω)

for all (u, ω) ∈ Ω∼. Hence we see that
(a) for everyu with 0 ≤ u < t, (U(t)(f ∼/h))(u, ω) = 0 for ω ∈ Ω , and
(b) for almost everyu with u ≥ t (with respect to the Lebesgue measure),

‖(U(t)(f ∼/h))(u, ω)‖ = 1

h(u, ω)
‖(T (t)f ∼(u − t, ·))(ω)‖

≤ K‖f ∼/h‖∞
for almost allω ∈ Ω , by (61) and (ii) of Theorem 2.

Therefore we can apply Theorem 1 to the semigroupU = {U(t) | t ≥ 0} to infer that

(65) D- lim
α→0

1

α

∫ α

0
V (t)f ∼dt = f ∼ a.e. onΩ∼

for eachf ∼ ∈ L∼.
To complete the proof, fixf ∈ L andb > 0. Define a functionf ∼ in L∼ by

f ∼(u, ω) =
{
f (ω) if 0 ≤ u < b ,

0 if u ≥ b .

It follows that

(V (t)f ∼)(u, ω) = (A(t)T (t)∼f ∼)(u, ω)

=
{
(T (t)f )(ω) if u ∈ [t, b + t) ,

0 if u ∈ [0,∞) \ [t, b + t) .

In particular, if 0≤ t ≤ b/2 ≤ u < b, then

(66) (V (t)f ∼)(u, ω) = (T (t)f )(ω) for ω ∈ Ω ,

so that for anyα, with 0 < α < b/2, and anyu, with b/2 ≤ u < b, we find

1

α

( ∫ α

0
V (t)f ∼dt

)
(u, ω) = 1

α

( ∫ α

0
T (t)f dt

)
(ω) for ω ∈ Ω .

Hence, by (65),

D- lim
α→0

1

α

( ∫ α

0
T (t)f dt

)
(ω) = f (ω)

for almost allω ∈ Ω . This completes the proof.
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