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Abstract. We consider a Banach space of finite-dimensional-Hilbert-space-valued
functions on a sigma-finite measure space. The norm of the function space is assumed to
satisfy some suitable conditions. Then we prove a pointwise local ergodic theorerCigr-a
semigroup of linear contractions on the function space, under an additional norm condition for
operators of the semigroup. Our result exteBdster and Chacon'’s local ergodic theorem for
scalar-valued functions.

81. Introduction. Let(H, ||-|) be a finite-dimensionadilbert space ands2, ¥, )
ao-finite measure space. L@k, || - |.) be a Banach space éf-valued strongly measurable
functions on($2, X, ). In what follows, two functionsf andg in L are not distinguished
provided thatf (w) = g(w) for almost allw € £2. We will assume throughout the paper that
the norm| - ||, of the spacd. satisfies the following properties:

(1) If f,geLand|f(w)| < |lg(w)| foralmostallw € 2, then| fllL < llgllL.

(I If gis anH-valued strongly measurable function @nand| g(w)| < || f(w)]|| for
almost allw € §2 for somef € L, theng € L.

(amy If E, e X,E, D Ey41foreachn > 1 andﬂ;’,":l E, = 0, then for everyf € L

lim llxg, - fllo =0,
n—o00

wherey g, denotes the characteristic functionf.

(IV) If fandgareinL, | f(w)| < |lg(w)| foralmost allw € £2 and| f|lL = ligllL,
then|| f(w)|| = |lg(w)]| for almost allw € £2.

It should be remarked that in addition to the usHavaluedL ,-spaces, with 1< p <
0o, there are many interesting-valued function spaces which satisfy Properties (I) to (V)
(e.g., H-valued Lorentz spaces arfd-valued Orlicz spaces, etc.). By simple examples it
follows that Properties (IlI) and (1V) are independent.

LetT = {T () |t > 0} be a(Co)-semigroup of linear contractions dn This means that
for eachr > 0, T'(¢) is a linear operator o, with ||T(¢)|| < 1, where||T ()| denotes the
operator norm of” (¢) determined by the normp- || of L, and the following hold:

(i) T(0) = I (the identity operator) an@dl(t + s) = T ()T (s) forz,s > 0.
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(i) Foreveryf e L,lim;_o|T()f — fllL =0.
Since for anf € L the vector-valued function — T(¢) f is continuous ori0, c0), it is
Bochner integrable on every bounded intervalb] C [0, co) with respect to the Lebesgue
measure. In this paper we would like to study the a.e. convergence of the ergodic averages

E/()[T(t)fdt (¢ > 0)
@ Jo

asa tends to zero. Since this does not make sense, when the ergodic averages are members
of the spacel. and not actual functions and ranges through all positive reals, we must
restrict ourselves to consider the case wher@nges through a countable subset of the interval
(0, 00). Thus, letD denote a countable dense subsailpbo). We then use the notation
D-lim and D-limsup
a—0 a—0
to mean that these limits are takernvatends to zero through the 48t However, the affirma-
tive answer cannot be expected in general if the semigfoup{7 (r)} does not satisfy any
additional hypothesis, as is found by an example of Akcoglu and Krengel (see [1]). Therefore
we assume in Theorem 1 below the following additional hypothesis (cf. [2]-[5]):
(x) There exists a constait > 1 such thatiff € L N Loo((£2, X, u); H), then for
everyt > Owe havel' (r) f € Loo((£2, X, n); H) and

o 17 fllo < Kl flloo s
where the nornj - ||e Of Loo((£2, X, w); H) is given as

I flloo = inf{a > O] || f(w)|| <« foralmostallw} (< 0).

Here we remark that, since limo ||T(#) f — fllL = 0 for f € L, if K satisfies (1) for
allt >0andf € LN L ((£2, X, n); H), then we must havk > 1, and that there exists an
example ofT = {T'(¢)} for which the hypothesiéx) holds with some constai > 1, butK
cannot be replaced by 1. To see this,uebe a periodic continuous function on the real line
such that the range af coincides with the intervdll, 2], and letp be a real number suth that
1 < p < oo. Then define

L:L,,(wdm):{f‘/oo |f|”wdm<oo},

[ee) 1/p
1fllz = (/ Ifl”wdm>

for f € L, wheref is a complex-valued Lebesgue measurable functionsamgnotes the
Lebesgue measure ontherealline. Itisclearthaf - ||.) becomesaBanach space satisfying
Properties (1) to (IV). If we define, far> 0andf € L,

w(t +x))1/”
w(x) ’

and

Iro)f(x)=f@ +X)(
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then, by a straightforward calculation, we see that {T'(¢r) |t > 0} becomes &Co)-
semigroup of linear isometries dn Further, since

{(w(t—i—x))l/p
max _
w(x)

the semigroul = {7 (1)} satisfies the hypothesig) with K = 2%/7 and 2/7 is the best
constant in the sense that if the hypothgsisholds with some constark’, then we must
havek’ > 21/7,

In this paper we will prove the following local ergodic theorem.

x € (—00, 00), tzO} =2lr,

THEOREM 1. If T = {T(t) |t > 0} isa (Cp)-semigroup of linear contractions on L
and satisfies the additional hypothesis (x), then for every f € L

2) D- lim 1/ T(t)fdt=f a.eons2.
a—=0a Jo

Here we note that Theorem 1 reduces to Baxter and Chacon’s local ergodic theorem
(cf. [2]) for scalar-valued functions, wheH = C (the field of complex numbers), =
L,((£2,%,1); C)with1l < p < oo, andK = 1. The purpose of this paper is to extend their
theorem to finite-dimensionadilbert-space-valued functiorpaces including Lorentz spaces
and Orlicz spaces, etc. To this end we have araththeir arguments thoroughly and found
out that their methods can be adapted to prove our Theorem 1. Incidentally, the hypothesis
thatT is a contraction semigroup cannot be weakened. This follows from Theorem 2 of [6].
The hypothesis thatl is finite-dimensional is essential in the paper, because Lemma 6 below
does not hold without it. It would be natural to ask whether or not Theorem 1 holds #hen
is an infinite-dimensional Hilbéspace. This is an open problem.

As in [2], we also obtain a more general result. Namely, we have

THEOREM 2. LetT = {T ()|t > 0} be a (Co)-semigroup of linear contractions on
L. Suppose there exist a scalar-valued measurable function h on [0, co) x £2 and a constant
K > 1suchthat

(i) h(, o) > Ofor every (¢, w) € [0, 00) x £2, and

@iy f e Land|f(w)| < h(t,w) for almost all w € £ imply that ||T(s) f(w)| <
Kh(t + s, w) for almost all w € 2 and for every ¢, s > 0.

Then (2) holdsfor all f € L.

As is easily seen, to prove these theorems it may be assumed without loss of generality
thatH is areal Hilbert space. Thus, in the followind{ will denote a real Hilbert space.

The authors would like to express their gratitude to the referee for helpful comments
which made the paper readable.

§2. Lemmas. In this section we prove some necessary lemnihgandL will be the
same as in Introduction.

LEMMA 1. If (f,) isasequence of functionsin L such that "7, || fullz < oo, then
Youlilfu(@)] < oo for almost all w € §2, and the function f(w) = Y724 fu(w) isinL and
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satisfies

k
li — =0.
n=1 L
LEMMA 2. LetfeLandf, e Lforn>1.Iflim,5x|f — fullL =0, thenthere
exists a subsequence ( f,,) of (f,) suchthat lim,/_, o f/(w) = f(w) for almost all w € £2.

LEMMA 3. Let (f,) beasequenceof functionsin L. If lim,_, » f,(w) = 0 for almost
all w € 2 andif thereexistsan f € L suchthat || f;,(w)|| < || f(w)]| for almost all w € 2
and for everyn > 1,thenlim, . || fzllL = O.

These are elementary and hence proofs are omitted (see e.qg. [7]).

An important consequence of Lemma 2 is that, to prove Theorems 1 and 2, it may be
assumed without loss of generality tHats the set of all positive rationals. Hence, we will
assume below that

D = {r > 0| r isrationa} .

Next, let2™ = [0, c0) x £2. Let X~ be the usual produet-algebra of the Lebesgue
measurable subsets [#f, co) and X', andu™ the product measure of the Lebesgue measure
on [0, co) andu. Supposel = {T(¢) |t > 0} is a(Cop)-semigroup of linear contractions on
L. Foranf € L andn > 1, define the functiorF), : [0, co) — L by

3 F.()=TG/n)f if i/nl<t<(G+21)/n.

(The factorn! will be useful for the proof of Lemma 5 below.) Sin@es a (Co)-semigroup,
it is easily seen that there exists a subsequén@e) of (n) such that

o0
Z | Fuy (1) = T() 1l < 0o forall £ > 0.
k=1

Thus, by Lemma 1,

D N Faay (@) = T(@) f(@)]| < 00

k=1
for almost allw € £2, and hence we get
4) lemoo | Fngioy (1) (@) = T(@) f ()|l =0

for almost allw € 2. Taking this into account, let
lim F,q (1) (w) if the limit exists,

(5) F(t,w) = { k=00 .

0 otherwise

Then we have the following

LEMMA 4. Thefunction F : 2~ — H isstrongly measurable, and F(z, -) isarepre-
sentative of theelement T (¢) f € L for eachr > 0.

PrRoOFE Obvious from the above construction Bf
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In the following we will denote
(6) T()(f, w) = F(t,w) for (t,w) € 27 .
By Fubini's theorem the functiott, w) — T (¢)(f, w) is uniquely determined modulo sets of
measure zero.

LEMMA 5. Assume that the semigroup T satisfies the additional hypothesis (x), and
that f € L N Loo((£2, X, u); H). Then, for every g > 0, the function fg € L defined by

fo = JE T(0) fdr satisfies

.1 e
D- lim —/ T(t)fpdt = fg aeon 2.
a—0a Jo
PrROOFE We may assume without loss of generality that
ITO o)l <Kl flloe forall (t,w) € 27.

For each fixedv € §2, the H-valued functiorr — T (¢)(f, w) is Bochner integrable on every
bounded interval if0, co) with respect to the Lebesgue measure by Fubini's theorem, and
the H-valued functionFg on 2™ defined by

u+p
(7 Fg(u,w) = / T@)(f, w)dt for (u,w) e 27

is strongly measurable with respect(f@™, ¥, u™).
On the other hand, sinde= {T'(¢)} is strongly continuous of0, co), it follows that

u+B [n! (u+p)]
/ T()fdt — — > TG/

" i=[nlu]

=0
L

)] lim

for everyu > 0, [¢] being the largest integer contained® ¢] for ¢ € [0, oo). Here we notice
thatifi/n! <t < (i +1)/n!,i.e.i = [n't], then, by (3),

TG/n)f(w)=F,@0)(w)=T3G/n)(f,w) forwe 2.
Hence, by Fubini's theorem together with (4) and (5), to the subsequetice in (4) there
corresponds a s (f) € X', with w(N(f)) = 0, such thatito ¢ N(f), then
kILmoo TR/ nOH(f, w) =T @®)(f, ®)

for almost everyr € [0, c0), wherei(k) = [n(k)!t]. Thus, by the Lebesgue convergence
theorem,

[n()! (u+p)]

. ) \
Jm o5 Y. TG/n(nf (@)
9) i=[n(k)!u]
u+p

=/ T(t)(f, w)dt = Fg(u,w) for w ¢ N(f).

u

Combining this with (8), we then see from Lemma 2 that for each fixedO, the H-valued
functionw — Fg(u, w) is a representative of the elemeht) fg = fu‘””g T()fdr € L.
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Hence the functiorFg(u, @) on 2~ can be regarded as the functi®viu)( /3, w), defined
in (6), for the elementfs € L N Loo((£2, ¥, u); H). Since for eachw € $2 the function
u — Fg(u, o) is continuous o1i0, co), it follows as above that for every > 0 the function
w > [ Fp(u, w)du on$2 is a representative of) 7' (u) fgdu € L, and therefore

. 1 [ Y
10 D-Dllan0 <E/0 T(u)f,gdu) (w) = D-JILT]OE/O Fg(u, w)du
= Fp(0,w) = T(0) fp(w) = fp(w)
for almost allw € 2, whence the proof is complete.

LEMMA 6. Letd > O0and E € ¥. Assumethat {F, |« € D} isafamily of H-valued
strongly measurable functions on (§2, X, u) such that || F, ()| < § onEfor all « € D, and
suchthat toeach o € D and w € E there corresponds 8 € D with

(1D B=a and |Fglw)|=34.

Then there exists an H-valued strongly measurable function Fp on E, with || Fo(w)| = § on
E, such that to each w € E there corresponds a sequence (¢;) in D with

(12) a; L0 and lim Fy, (w) = Fo(w).
1—> 00
PROOFE SinceH is finite-dimensional by hypothesis, the set
H@)={xe H|l|x| =4}

is a compact subset df. Thus there exists a sequeneg,) of partitions of H (§) such that
the diameter of each member 4f, is less than 12", and such that\, ;; is a refinement of
A, foreachn > 1. We may write

A1 = {A1(D), ..., A1)},

and
Ay =1{A,Gi, ..., 0 |1l<it<lh,...,1<i,<l,} forn>2,
where{A, (i1, ... ,in—1, j) |1 < j <l,} becomes a partition of the s&f,_1(i1, ..., is—1).
Define

(i1, 5in) < (1, ooy Jn)
if there exists some, with 1 < k < n, forwhichi; < jiy and(iq, ..., ixr-1) = (j1, ..., Jk—1)
hold. Using this order defined on each set

I, ={1,..., 1} x...x{1,...,1,},

we will construct a sequendg, (w)) for w € E, whereh, () is an element of, for each
n > 1. First, ifw € E, let

hi(@)=minfl<i <} |[{feD|B <aandFg(w) € A1(i)} # ¥ for eacho € D}.

(Here we notice that, sincEg(w) depends om, if « € D is fixed, then the number for
which Fg (w) € A1(i) holds for somes < «, depends also om. This observation leads to the
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conclusion thakj (w) is a function ofw € E.) Next, if h1(w), ... , h,(w) have been defined,
then let
hn+l(w)

—minl i) hy(w) = (i1, ..., i), and for eactw € D

- oot U e DB < a andFg() € Apsa(it, - i, ins0)} 0 |

By this process we get an infinite sequehgéw), hz(w), . ... Then, by putting

(13) {Fo(@)} = () Auln(@)) ,

n=1

whereA, (h, (w)) denotes the closure of the s&t(k,(w)), we define anff -valued strongly
measurable functiofig on E such thaf| Fo(w)|| = § for all w € E. Then, from the definition
of Fp(w), there exists a sequenge) in D, with «; | 0, such that

14 l“j;o | Fo; (@) — Fo(w)|| = 0.

This completes the proof.

Lemma 6 is a key lemma of the paper. As is observed in a simple example, it does not
hold if H is not finite-dimensional. The next lemma is Lemma 1 of [2], which is proved easily
by induction and hence we omit the proof.

LEMMA 7. LetThealinear operatoronLand f € L. Ifhy,gr € LforO <k <n
anddy € Lfor1 <k <nsatisfy f = ho+ goand T gx = dk+1 + gk+1, hi+1 = di+1 + hi
forO<k <n—1,then

n—1
(15) T"f=T"ho+ » T'dp-1+gs, and
i=0

n n n
(16) NTif=>"Thi+) g

i=0 i=0 i=0

We extend Baxter and Chacon’s truncation operation for complex numbers to vectors of
H as follows. Fory > 0, let
Sy)={xeHI[lxll =y},

and for(x, y) € S(y) x H, define
17 Cyx,y)=x+i-(y—x)

withi =maXs|0 <t <1 |x+1-(y—x)| <y} Itfollows easily thatC, is continuous
on S(y) x H, and hence iff andg are H-valued strongly measurable functions @nand
| f(w)| <y forw € £2, then theH -valued function

(18 Cy(fs 9)(w) = Cy (f(w), g(w))
becomes strongly measurable @n
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LEMMA 8. SupposeTisalinear contraction on L. Assume that there exists a constant
K > 1suchthatif f € L N Loo((£2, X, ); H), then |T" f(w)|| < K || flloo for almost all
we andforeveryn > 0. Let f € L, A€ Y and B8 > Obesuchthat 8 > | f(w)| for
w € A. Assume that R is an H-valued strongly measurable function on Aand N > 1isan
integer such that to each w € A there correspondsj, with 0 < j < N, for which

1 G
(19 R(w) = I gjo T' f(w)

holds. Then || R(w)|| > 3KB for w € A impliesthat there exist functionsds, ... ,dy, ginL
such that
() di(w)=0forwe 2\ Aand|di(w)+---+di(w)|| <28forwe A, 1<k <N,
(i) TNf=TNCpO, f)+ (dy+Tdy-1+ -+ TV 1)+,
(i) lgle < 1f = CpO. Pz,
(iv) Cg(f, R)(w) = f(w) +di(w) + -+ dy(w) for almost every v € A.
PROOF. Letho = Cg(0, f) andgo = f — ho. If h; andg; for 0 < i < k andd; for
1 < i < k have been defined ih, then using the function(w) on £2 defined by
sgnCg(f, R)(w) — ho(w)] forw e A,
a(w) = .
0 otherwise
where sgrx = x/||x|| if x € Hwithx # 0,and sgnc =0if x =0 € H, we set

(T gk (), a(w)) - a(w) If (T gi(w), a(w)) is positive,

Ur1(@) = {0 otherwise

where (., -) denotes the inner product @f (it is here that we use the fact that is a real
Hilbert space),

(20) hit1 = Cp(hg, hi + Uk41) ,
(21) drr1 = hee1 — he,
(22) Gk+1 =T gk — dr+1.

By (20) and (21)
di+1(®) = M+1(0) Up1(0)  With 0 < Ap1(0) < 1,
and hencd gx+1(w)|| < |IT gr ()] for w € £2. It follows from Property (I) and the hypothesis
1T < 1that
lgr+ille < NI Tgrlle < llgkllL -

Then, lettingg = gn, we obtainl|gll. = llgnlle < llgoll = II.f — Cp(O, f)llL, whence
(iii) follows. (ii) is a consequence of Lemma 7.

SinceUi4+1(w) = 00on2 \ A, 0 < k < N — 1, by definition, it follows from (20) and
(21) thatd, (w) =00n2 \ A, 1 <k < N. On the other hand, since

(23 hi —ho=di+d-1+---+d1 on2  (by(2D),
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it follows that ||d1(w) + - - - + di(@)|| < |hx(@)|| + l|ho(w)|| < 2B for € A. Thus (i)
follows.

To prove (iv), we use (23) and the fact thétw) = Cg(0, f)(w) = ho(w) for w € A; it
suffices to show that the following holds:

(24 Cg(f, R)(w) = hy(w) foralmostallw € A.
If (24) did not hold, then there would exigt € X', with E ¢ A andu(E) > 0, such that
(25 Cp(f, R)(w) #hn(w) forweE.
Then forw € E and 0< k < N — 1 we have, from the definition dfy (w), that
(26) di+1(w) = Upt1(w)  and  hg(w) # Cp(f, R)(w)
and that
(27) (gr+1(@), Cp(f, R)(w) — f(w)) < 0.

On the other hand, by hypothesis, there exjstgth 0 < j < N such that

J
(+DR@) =) T'f()
i=0

J
=hj(@) + Thj_1(@) + -+ T/ ho(@) + Y _ gi() ,
i=0
by Lemma 7. Thus, from (27) and the fact that @) — f (w)] = a(w) (# 0), we find that

J
(28) ((j + DR(@), a(@)) < <Z T'hj—i(w), a(w>>.
i=0
However,
(R(w), a(w)) = (R(w) — f(w), a(w)) + (f(w), a(w))
> 2KB — B = KB,
becausd R(w) — f(w)| > 2KB and| f(w)| < B < KB for w € E. Moreover,

J
<Z T'hj—i(w), a(w>> < (j+DKB,
i=0
becaus¢|T"hj,,- (w)|| < Kllhj—illo < KB. Hence, from (28), we deduce thgt+ D)Kp <
(j + 1) KB, a contradiction. This completes the proof.

LEMMA 9. Supposethesemigroup T = {7 (¢)} satisfies the additional hypothesis (x).

Then for every f € L,
1 o
‘—(/ T(t)fdt)(w) < 3K| f (o)
a\ Jo

(29 D- lim sup

a—0

for almost all w € 2.
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PROOFE Let F* be the nonnegative measurable functionsddefined by
(30) F*(w) = D-limsup

E(/‘“ T(t)fdt) (w)
a—0 ||¢¥ 0

It suffices to show that iff > 0 andF*(w) > 3Ky for almost allw € E, whereE € X and
0 < u(E) < oo, then| f(w)| = y foralmost allw € E.

Assume the contrary. Namely, there exist- 0 andE € X with 0 < u(E) < oo such
that

(3D F*(w) >3Ky and |f(w)| <y forwekE.

(@€ 2).

Here, using Property (II), we may assume without loss of generality that there exisfs
with

(32 XE(@) = lle(w)|| for w e 2.
For ana € D, let F, be the function in_ defined by

1 [« _
(33) Fo(w) = {C“V(f’ ;/0 T(f)fdt>(w) if weE,
0 otherwise

SinceF*(w) > 3Ky for w € E by (31), the family{F, | « € D} satisfies the hypothesis of
Lemma 6 with§ = 3K y. Thus there exists a functiafy € L such that

(34 [Fo(w)|l = 3Ky - xe(w) forwe 2,

and also such that to eaehe E there corresponds a sequeriag) in D, with «; | O, for
which

(35) Hi(/a T([)fdt)(a)) > 3Ky fori=>1,
@i \Jo

and

(36) lim Fy, (0) = Fo(®)

hold. Leth be the function inL. defined by

|G (P () - fo) if weE,
S h(@) = {O otherwise

Sinceh(w) # 0forw € E and f(w) — C, (0, f)(w) = 0forw € E, by (31) and (34), it
follows from Property (V) that
If—Cy O, f)—=nhlL>If—CyO .
Take ane > 0 so that
(38 Se < |If = Cy(O, f) —hliL —IIf —Cp (O, Nl -
Then choose an integér 1 so that

Ay lleliz
; <e

(39
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Next choosé e Dwith0 < § < 1sothatO<t < (I + 1)8 implies

(40 I=TE)fllL <e, 1T -=T@)CyO, HilL <&,
and
(41) I —T@E)HhL <e¢.

Finally, letn > 0 be fixed arbitrarily. By (35) and (36) we can choose an integerl
and aseff1 € X, with E1 C E andu(E \ E1) < n, so that ifw € E1, then there exists an
integerk, with 1 < k < n, for which

1 k8/n
(42 m”( /O T(t) fdt)(a)) > 3Ky
and
43 1Cy (f, Fo)(w) — Cyy (f, Frs/n)(@)|| <n

hold. Thus, by (33) and the fact that< 3Ky, we deduce that

ké/n
c, (f, :—5 /0 T(t)fdt>(w) = C, (f. Fis/n) (@)

and that

ks/n

(44) <.

TTtlfdt)(aﬁ

C, (f. Fo)(@) — C, (f, :—8 /0

We then apply Lemma 2 and Cantor’s diagonal method to infer that there exists a strictly
increasing sequende (k)) of positive integers such that

. . 5 (a/8)n(k)!—1 i8
</o T(r)fdr)(w)=lemoon(k)! ;0 T(n(k)!>f(w)

for almost allw € £2 and for everye € D. Then, using (42) and (44), we can choose a
sufficiently large integeN > land asefl € X, with A C E1 C E andu(E \ A) < n, such
thatN/n is a positive integer and ib € A, then there exists an integerwith 1 < k < n, for
which

(k/n)N—1

n i§
(45) HW ; T(ﬁ)f(w) > 3Ky
and
" (k/n)N—1 is
(46) Cy (f, Fo)(w)—cy(f, o T<N>f)(w) <7

i=0
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hold. Denoting by (w) the smallest positive integérsatisfying (45) and (46), we then define
a functionr in L by

(k(w)/m)N—1

n i8 )
47 Rw) = { k()N ZO T(ﬁ)f(a)) if weA,

i=

0 otherwise
LetT =T(8/N). Thenforw € A, we have|R(w)|| > 3Ky, and further

1 k@
Thus by Lemma 8 there exist functiods . .. , dy, ¢gin L such that
() di(w)=0forwe £\ Aand| Zf.‘zld,-(w)n <2yforwe A, 1<k <N,
(i) TNf=TNCy(O, f)+ (dy +Tdy-1+---+TVN"1d1) + g,
(i) gl = IIf =€ (O, N,
(iv) C,(f,R) (@) = f(o)+ Y1, di(o) for almostallw € A.
Let

Then, since
N ' N
W< Z TN_ldi — Zdi>
i=1 i=1

N-1
1
= 2T Tt de) + TR ),
k=1

we apply (i) and (39) to obtain that

N N 2 N-1
w TN id; — i — e _
H <§: E:d) =N & It diedie
i=1 i=1 L k=1
2(N —1
< 20Dy el < e
Hence, by (ii), we have
N
(48) Hwawf—rﬂymf»—w(i}a+@ <e.
i=1 L

On the other hand, since

1L ik N
WaNf—1VC,0 fH =5 T(Ta)u —C, (0, 1)),
i=0
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it follows from (40) that
(49) IW@N f —TNC, (0, £)) = (f = C, (0, FIL < 2e.
Combining this with (48) yields

N
(50) H(f—C,,(O,f))—W(Zdi+g> < 3.
i=1 L
Next, let
G (R — f(@) ifweAd,
G hi(@) = {0 otherwise

By (37), (46), (47) and (31) we then deduce that
(52 A (@) —hi(@)|| <n- xa(w) +2y - xp\alw) for w e 2.

Hence, ifn > 0 is taken to be sufficiently small, then, sing€E \ A) < n, it follows from
Property (lll) that

(53 Ih —hille <nllelle + 2y llee\alle <e,

whereep\a(w) = e(w) if w € E\ A, and=0if w ¢ E \ A. We also deduce by (iv), (i) and
(51) that
W(dr+--+dy) —h=Whi—h=Wh1—h)+ Wh—nh,
IN-1
<E&.

and by (41),
i
Wh —h — T\ —=)h—nh
I hsmg (N> ,

Thus||W(d1 + ---+dn) — hllL < 2e, and consequently we get
(59 If—Cy@, f)—h—WgllL < 5e.

But this is impossible, because

If=CyO. f)—h=Wglle = I f =Cy O, /) —hlL — Wyl
= If =Cy(©, f) —hllL —llgliL > 5 (by (iii) and (38)),

and hence the proof is complete.
83. Proof of Theorem 1. Let f € L. Since the set
1 o
M = {g eL ‘ D- Iim0 (—/ T(t)gdt) (w) = g(w) for almost allw € Q}
o—> o Jo

is dense irL. by Lemma 5 together with Lemma 3, we can choose a sequgpref functions
in M such thatlim_« || f — fzllz = 0 and also such that

(55) D- lim E(/a T(t)f,,dt) (w) = fu(w) foralmostallw € 2
0

a—0
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for eachn > 1. Here, by Lemma 2, we may assume that

(56) lim f,(w) = f(w) foralmostallw € §2.
n—oo

Then, since

1 ¢ 1 ¢ 1 /¢
—/ rofde—f= —/ T®)(f — fo)dt + (—/ T (1) fudt — fn) + (=1
@ Jo 0 @ Jo

o

we have
D-limsup E(/a T(t)fdt)(a)) — f(a))H
a—0 || 0
. 1 ¢
< D-lim S(l),lp E(/o T@)(f — fn)dt)(w) H + | fa(@) — f(@)l

< 4K| fu(w) — f(w)| foralmostallw € £2,
by Lemma 9. Hence, by (56), we find
D-limsup

1 o
—(/ T(t)fdt) @) - f(@) H —0
a—0 o 0

for almost allw € £2, and this completes the proof.

84. Proof of Theorem 2. Let f~ be anH-valued strongly measurable function on
£2~. Assume thaif ~ (¢, -) € L for almost allr > 0. Then, since there exists a sequefitg)
of H-valued stongly measurable simple functionss®ri such that for everw™ = (f, w) €
o~

(57) I £ (@ < 1 i@l forn>1,
(58) If, @) = f (@) <2)f (@) forn>1, and
(59) nli—>mOO ”fn"’(w"’) - fN(wN)” = Os

it follows from Lemma 3 that for almost afl > 0O, lim, . | f~(¢,-) — f,7(t, )l = 0, and
thus

If~@ )l = n|i_>moo If, (&)L -
Since the functions — | f,7(z, -)||. are Lebesgue measurable on the inteffabo), which
can be seen from Lemma 3 together with a standard approximation argument, it follows that

the functiory — || f~ (¢, -)||L is Lebesgue measurable on the intef@abo), and thus we can
define

o
(60 1/ N~ = /0 Ty
Let L™ be the set of allf ™~ such that| f || 2~ < oo, and put

If 7~ = 11" lle~ (<o00) for f~eL™.

It is easily checked thatL™, || - ||.~) is a Banach space satisfying Properties () to (V)
replaced L, || - [|) with (L™, [ - [[~)-
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Let T be a bounded linear operator dnlf ™ is a strongly measurable simple function
in L~ of the form

n
fT@) =) xe @) xi,
i=1
wherex; € H andE;” (¢ X7) has the formE;” = B; x E; for some Lebesgue measurable
subsetB; of [0, c0) andE; € X, then define

(T™ )t 0) =(Tf (¢, ) (w) for (t,w) € 27 .
It follows thatT™ f~ isin L™, and that

1T~ f "N~ =/0 ITf~ @, )ledt < IITII/0 IF= @ Hliede = IT N iz~

ThusT™ can be uniquely extended to a bounded linear operatdranNe will use the same
symbol 7™ to denote the extended operator. By applying Lemmas 1 and 2 tq both ||1)

and (L™, | - |l.~) and using an approximation argument, we see without difficulty that if
f~ € L™, then there exists a representatfif€” f ~) (¢, w) of the element’™ f~ € L™ such
that for almost every > 0,

(61) (T™ ), w) = (Tf(t,)(w) foralmostallw € £2.

Let S be another bounded linear operatorfonBy using (61), we deduce immediately
that(TS)~ = TS~ onL™. Thus, ifT™ = {T(@®)~ |t > 0} denotes the family of linear
contractions on.™ induced from the semigroup = {7 ()|t > 0} on L by the above

method, the@™ becomes a semigroup dn”, and an approximation argument implies that
(62) tlino 1T~ f" = fl~=0

for f~ € L™. Thatis, T~ is a(Cp)-semigroup of linear contractions dri".
Fort € [0,00)andf~ e L™, let

J. [0 if0<u<t,
(A f >(u»w)—{f~(u—t,w) ifu>r.

Clearly, A = {A@)|t > 0} is a (Cp)-semigroup of linear isometries oh™ such that

AMT ()~ =T(s)“A@) onL™ forall ¢, s > 0. Define
(63 Vi) =AWT @)~ (=>0).

It then follows thatvV = {V (¢) |+ > 0} becomes &Cp)-semigroup of linear contractions on
L™,
Let 4 be the function appearing in Theorem 2. Then define
L™y ={f"/hlf~eL™} and |f~/hliL~m=1f"l~.
Obviously, (L™ (h), || - lIL~@)) is a Banach space satisfying Properties (1) to (IV) replaced
(L, || - llz) with (L™ (h), || - lI~@)), and the mapping : L~ — L~ (h) defined by

of T =f"/h
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is an invertible linear isometry with the property that, for every fanjfy’ |« € D} C L™,
D-limy—o f, exists a.e. o2~ if and only if D-limq_.o ¢ f,,” exists a.e. om2™".

LetU = {U(r) |t > 0} be a(Cp)-semigroup of linear contractions dn” (k) defined by
(64) U@t) =9V(@)e™t fort>0.
Thenforf~/h e L™ (h) N Loo((£27, X7, u™); H) we have

N 1 . 1 - . 1 ~ ~
U (f/h) = %V(t)f = EA(I)T(t) = ET(I) A@) [,
and without loss of generality we may assume that

ILf™ )l < 1 f7/ hlloch(u, ®)

forall (u, w) € 27. Hence we see that

(@) foreveryuwithO<u <t, U@®)(f~/h))(u,w) =0forw e 2, and

(b) for almost every: with u > ¢ (with respect to the Lebesgue measure),

UMD/ ), o)l = h(ul,w) T @ f @ —t, ) ()
<KIf7/hlso

for almost allw € £2, by (61) and (ii) of Theorem 2.

Therefore we can apply Theorem 1 to the semigridup {U (¢) | t > 0} to infer that

(65) D- lim E /a V@) f~dt = f~ ae.onf2”

a—0a Jo
foreachf™ e L™.
To complete the proof, fi¥ € L andb > 0. Define a functiory™ in L™ by

flw)y f0<u<b,

f (“""):{o if u>b.

It follows that

VO f) U, ) = (AOT O ) (u, w)

[T Fuelt,b+1),
o if ue[0,00)\[t,b+1).
In particular, if 0<t < b/2 <u < b, then

(66) VO, o) =T [f)w) forwes2,
so that for any, with 0 < « < b/2, and any, with b/2 < u < b, we find

1(/'1 V(t)f“dt)(u,w): }</a T(t)fdt)(w) forwe 2.
a \ Jo @ \Jo

Hence, by (65),
D- lim 3(/ T(t)fdt)(a)) = f(w)
a—0«o 0

for almost allw € £2. This completes the proof.
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