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Abstract. We prove that the unit tangent sphere bundle of a Riemannian manifold is
semi-symmetric if and only if it is locally symmetric, i.e., the base manifold is either flat or it
is two-dimensional with constant sectional curvature 1.

1. Introduction. The basic idea of studying geometric properties of a Riemannian
manifold (M, ¢) via those of its unit tangent sphere bun@ié/ is well-known. In particular,
many interesting interactions are known between the curvature propertiesfofequipped
with its “natural” metricgg (the one induced by the Sasaki metric of the tangent bundle), and
the curvature properties @, g) itself. For explicit examples, see the survey [9] and the
references therein. Moreovedi, M also admits a contact metric structuée n, ¢, g), where
g is a metric homothetic tgg. A lot of interesting results on the unit tangent sphere bundle
have been obtained from the study of this structure ([1], [3], [7], [19]).

A case in point is the study of local symmetry in the context of the unit tangent sphere
bundle. On the one hand, the local symmetry of the base mariif6ld)) is reflected in the
properties of the metric and the contact metric structur@idi (see [7]), while on the other,
local symmetry forT1M itself puts strong restrictions on the base manifold. Indeed, using
contact geometry techniques, Blair [1] proved:

THEOREM 1.1. The unit tangent sphere bundle (T1M, g) of a Riemannian manifold
(M, g) islocally symmetric if and only if either (M, g) isflat or it islocally isometric to the
standard sphere S2(1).

Note that, sinceg; is homothetic togs, (T1M, gs) is locally symmetric if and only if
(TaM, g) is. An alternative proof which uses only curvature information is given in [10].

In this paper, we consider a natural generalization of the notion of local symmetry. A
semi-symmetric space is a Riemannian manifoldM, ¢) such that its curvature tens@rsat-
isfies the condition

(1.1) R(X,Y)-R=0

for all vector fieldsX andY on M, whereR(X, Y) acts as a derivation oR [21]. The name
“semi-symmetric” derives from the fact that at each pqine M, the curvature tensag,,
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of (M, g) is the same as that of a symmetric space (which may change with thegoint

So, locally symmetric spaces are obviously segrimetric, but the converse is not true,

as was proved by Takagi [22]. In all dimensions greater than one, there exist examples of
semi-symmetric spaces which are not locally symmetric (see [6] for a survey). Nevertheless,
semi-symmetry implies local symmetry in seaecases. It is an interesting problem, given

a class of Riemannian manifolds, to decide whether inside that class semi-symmetry implies
local symmetry or not (see for example [4], [13]).

In the framework of contact Riemannian geometry, conditions of semi-symmetry have
been investigated by several authors ([11], [17], [18], [23]). The second author and Per-
rone proved in [11] that the unit tangent sphere bundle of a Riemannian siMfé&semi-
symmetric if and only ifM is locally symmetric, i.e., it is either flat or it has constant curva-
ture 1. However, their approach uses special features of the curvature of a three-dimensional
contact metric manifold (see [12]) and as such cannot be simply generalized to higher di-
mensions. If the base manifold has dimension greater than two, a pure curvature-condition-
approach to the study of semi-symmetric unit tangent sphere bundles, starting from (1.1),
seems to be extremely hard.

In this paper, we take a different road. We start from the local structure of a semi-
symmetric space as described by Szabé [21] and we make use of results by the first author on
the local reducibility of unit tangent sphere bundles [5] to prove the following:

MAIN THEOREM. If the unit tangent sphere bundle (T1 M, gs) of a Riemannian man-
ifold (M, g) is semi-symmetric, then it is locally symmetric. Therefore, (T1M, gs) is semi-
symmetric if and only if either (M, ¢) isflat or it islocally isometric to S2(1).

The paper is organized in the following waln Section 2, we recall some basic facts
and results about unit tangent sphere bundhes semi-symmetric spaces. Then, we proceed
to the proof of the Main Theorem. In Section 3, we consider the case of a locally irreducible
unit tangent sphere bundle, while the locally reducible case is dealt with in Section 4. Finally,
we generalize our result to tangent sphere bundles with arbitrary radius.

This work was initiated while the first author was visiting the University of Lecce. He
wants to thank the people from the Geometry Section there for their kind hospitality during
his stay.

2. Preliminaries. We restrict the information on the tangent and unit tangent sphere
bundle of a Riemannian manifold to the minimum we need for this article. For a more elabo-
rate exposition and further details, we refer to [8] and [14].

Let (M, g) be a Riemannian manifold and : TM — M its tangent bundle. The
tangent space t@'M at a point(x,u), x € M, u € T, M, splits into the direct sum of
the vertical subspac®T M(, ) = Kermy ) and the horizontal subspaée? M, ., with
respect to the Levi Civita connection of M. If X is a vector field onM, we denote by
X" and XV respectively the horizontal and the vertical lift &fon 7M. The mapX — X"
(respectively X — X") is an isomorphism betweel M and HT M, ., (respectively T, M
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andV T M, .)). The Sasaki metrigs on T M is defined by
gs(A, B) = g(w«A, m.B) + g(KA, KB),

whereA, B are vector fields o M andK is the connection map corresponding to the Levi
Civita connection of\f. Sincer,(X") = X = K(X") andm,.(X?) = 0 = K(X"), this is
equivalent to

gs(X", YMy = gs(XV, YY) = g(X,Y), gs(X",¥Y") =0.

The tangent sphere bundie : 1M — M is the hypersurface df M defined by
M = {(x,u) € TM : g:(u,u) = 1}. A unit normal vector fieldv to 1M C T M is given
by Ny = u”. We denote again bys the metric induced o1 M by the Sasaki metric of
TM. We refer to [2, Chapter 9] for the description of the contact metric structuig Mf
Here, we only recall that the contact metric®fM is given byg = (1/4) gs. So, sincey is
homothetic tags, (T1M, g) is locally symmetric, respectively semi-symmetric, if and only if
(T1M, gs) has the same property.

From now on, we will always work with the Sasaki metgicon 71M. In general, the
vertical lift of a vector (field) is not tangent t§ M. For this reason, we define thengential
lift X" of X € T, M by

XEX)”) = (X - g(X7 u)u)v = }_(U s

where we putX = X — g(X, u)u for simplicity. Clearly, tangential lifts are tangent ToM
and the tangent space TaM is spanned by horizontal and tangential lifts of vector fields on
the base manifold. The metrig is then described explicitly by

gs(X',Y") = g(X, V) = g(X,¥) — g(X, u)g(Y, u)
gs(X',Y" =0,
gs(X", ¥") = g(X,Y)
at the poini(x, u) € T1M. The Levi Civita connectiol associated tg is given at the point
(x, u) by
VY = —g(Y, u) X",

B, 1
Vy Y = E(R(u,X)Y)",

2.1
@ VnY' = (Vx¥)' + %(R(u, X",

3 1
VY = (V) — S(R(X, Y)u),
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whereR(X, Y) = [Vy, Vy] — Vx.y; is the curvature tensor @ff. The curvature tensa of
(ThM, gs) is given by

RX', YNZ' = —¢(X,2)Y' + g(Y, 2)X",

D t t h v v h 1 h

R(X', YHZ" = (R(X,Y)Z) +Z([R(u,X),R(u,Y)]Z) ,
D h t t 1 v 7 h 1 h
R(X", YHZ :-E(R(Y, 7)X) —Z(R(u,Y)R(u,Z)X) ,
B 1 _ 1

R(x", yHz" = E(R(x, Z2)Y) — Z(R(X, R(u,Y)Z)u)'

1 h
+ 5((VXR)(M, Y)Z)",
2.2) RX", YMZ' = (R(X,Y)Z)

+ %(R(Y, R(u, Z)X)u — R(X, R(u, Z)Y)u)'

n %((VXR)(M, Z)Y — (VyR)(u, Z)X)" ,
R(X", Y"MZ" = R(X,)2)" + %(R(u, R(X, Yyu)Z)"

_ %(R(u, R(Y, Z)u)X — R(u, R(X, Z)u)Y)"

1
+ E((VZR)(X: Yyu)'.

Further on, we will need to know when the unit tangent sphere bundle is reducible. This
question was answered recently by the first author in [5]:

THEOREM 2.1. The unit tangent sphere bundle (T1M, gs) of a Riemannian mani-
fold (M", g), n > 2, is locally reducible if and only if the base manifold has a flat factor,
i.e., (M, g) iseither flat or it hasa local decomposition (M, ¢) ~ (M, ¢') x (R¥, ¢o), where
1<k <n— 2, goisthe standard Euclidean metric on R* and (M’, ¢’) has no flat factor.

Next, we recall some basic facts about semi-symmetric spacesM.et) be a smooth,
connected Riemannian manifold. As already mentioned in the Introduciiong) is semi-
symmetric if its curvature tensoRr satisfies the condition (1.1). The local structure of a semi-
symmetric space was described by Szabd in [21]. He proves:

THEOREM 2.2. For every semi-symmetric space, there exists a dense open subset U
such that around every point of U the manifold is locally isometric to the direct product
of symmetric spaces, two-dimensional manifolds, real cones, Kahlerian cones and spaces
foliated by Euclidean leaves of codimension two.

Szabd arrives at this result via the study of the nullity distribution for the curvature.
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DEefFINITION 2.3. Thenullity vector space of the curvature tensor at a poiptof a
Riemannian manifoldM, g) is given by

Eop ={X e T,M | R(X,Y)Z =0forallY, Z € T,M}.

Theindex of nullity at p is the number(p) = dim Eg,. Theindex of non-nullity at p is the
numberu(p) = dimM — v(p).

The different irreducible factors in thedal decomposition theorem above correspond to

different possible values for(p) andu(p):

e Wwe obtain symmetric spaces fofp) = 0 andu(p) > 2;

e Wwe obtain real cones far(p) = 1 andu(p) > 2;

e Wwe obtain Kahlerian cones for(p) = 2 andu(p) > 2;

e Wwe obtain spaces foliated by Euclidean leaves of codimension twd for=n — 2

andu(p) = 2.

More details about these factors will be given when needed further on or they can be found in
[21] and [6].

3. Semi-symmetric unit tangent sphere bundles. the irreducible case. From
Theorem 1.1, we know that a Riemannian manif@ld, g) which is either flat or locally
isometric to the standard sphesé(1) has a locally symmetric unit tangent sphere bun-
dle (T1M, gs). In particular,71M is semi-symmetric. In the rest of this paper, we prove
the converse.

The case of a two-dimensional base sp@de ¢g) was settled by the second author and
Perrone in [11]. They proved:

THEOREM 3.1. Let (M, g) be a two-dimensional Riemannian manifold. Its unit tan-
gent sphere bundle (T1 M, g) is semi-symmetric if and only if the surface (M, g) isflat or has
Gaussian curvature 1.

As we already remarked, the same conclusion holds if we efjuip with the Sasaki
metric gs. In the sequel, we therefore assume that the dimensionh isfat least three.

In this section, we suppose théf M, gs) is locally irreducible. By Szabd's classifi-
cation theorem aboveé; M must be locally isometric to a symmetric space, to a real or a
Kahlerian cone or to a space foliated by Euclidean leaves of codimension two. We exclude
these possibilities one by one.

Symmetric spaces If (TaM, gs) is locally symmetric, the base manifold must be flat ac-
cording to Theorem 1.1. But the(@1M, gs) is locally reducible, contrary to the assumption.

Kahlerian cones Since Kéhlerian cones are even-dimensional (see [6])7aM is
odd-dimensional, this possibility cannot occur.

Real cones We start with a more detailed description of the semi-symmetric real cones
(see again [6]). These are locally isetric to the maximal Riemannian coné- over a real
space form(M?(c), g.) of constant curvature, for somec # 1. In particular, letu(r) be
the unique solution of the differential equatidp/ dr = —u? with initial condition 1.(0) =
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wo > 0, thatis,u(r) = (t + (1/mo)) L. PutRy = {x € R | x > —1/uo}. On the product
manifoldR . x M?(c), we define the Riemannian metric

gc = dt @dt + pu(t) m3ge.

wherer is the natural coordinate dR,. andx : Ry x M4(c) — M9 (c) is the projection on
the second factor. The resulting Riemannian space is the maximal Riemannian cone denoted
by Mc(M?(c), po).
If we defineT := 9/t to be the unit vector field tangent B, on Mc(M4(c), o),
thenT spans the nullity distributioiry of the curvature tensaR¢. For tangent vector¥, Y
andZ orthogonal tal', we have

(3.1 Re(X,V)Z = pi*(c = D(9c(Y, )X — gc(X, 2)Y).

Now, suppose thafy M, gs) is locally isometric taVc (M2 ~2(c), o) for someug > 0
and some # 1. At a point(x, u) € T1M, denote byl the unique unit vector (up to sign)
in the nullity distributionEo. We can writeT asT = T} + TJ. Since dimM > 3, we can
find a non-zero tangent vectar € 7, M orthogonal to botl¥; andu. Using the curvature
formulas (2.2), we have

0=RX', T)X' = R(X", THX" + R(X", T/ X'

(3.2) _
= —|X’T! + R(X', TH X",

SinceR (X', TZ")X’ is horizontal, it follows from (3.2) thaf{ = 0 andT must be horizontal.
In particular,T is orthogonal taXx’ andY’ for arbitrary vectors iffy M. From (3.1) and (2.2),
we find

n2c —DUXPPY" — g(X,V)X") = RY', X)X = |X[?Y' — g(X, V)X’

and hence.?(c — 1) = 1. As this holds at any pointr, u) € T1M, ;1 must be a constant
function, which clearly cannot happen. Therefa®,M, gs) cannot be locally isometric to a
semi-symmetric real cone.

Foliated spaces Next, suppose thatly M, gs) is locally isometric to a space foliated
by Euclidean leaves of codimension two. In particular, its index of nullity equals 2 and
its index of non-nullity equals two.

Fix a point(x,u) € T1M and letA = X + Xg be a tangent vector belonging to the
nullity distribution. Take a non-zero vectre T, M orthogonal to botlk andX1. Then

0= R(A, Y)Y = |Y>’X| + R(Xh, YY",

Since the second term on the right-hand side is horizontal, we concludg/that0. Hence,
the nullity distribution is contained in the horizontal distribution. In particular, the index of
non-nullity is at least — 1, the dimension of the vertical distribution @aM. If n > 3, this
gives a contradiction.

Suppose now that = 3. Fix a pointx € M and consider an orthonormal basis
{u = e1,X = e2,Y = e3} of oM. Then,{u", X", Y" X', Y'} is an orthonormal basis
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of T(x,,yT1M. From the above, we know that the nullity distribution coincides with the hor-
izontal distribution, i.e.u”, X", Y* € Eq( ). We can now show thak = 0. Taking into
account the symmetries &, it is enough to show thaR1212 = R1213 = R1223 = R1313 =
R1323 = R2323 = 0, whereR;ju = g(R(e;, ej)ex, e/). Sinceu" € Ej, it follows from the
curvature formulas (2.2) that
3
0=4Rw" X)X = — > RizyjRizjeer”.
jk=1
Hence, R121jR12jx = O for all k. In particular, fork = 1 we getR%nj = 0 and so,
Rip1; = Ofor all j, that is,R1212 = Ri213 = 0. In the same way, we obtaiRiz13 = 0
from R, Y)Y = 0. Next, sinceX”, Y € Eg, we also have

RX", YHY' = R(Y", X")X' =0,
from which we getR1323 = 0 andR1203 = 0, respectively. Finally, fronkR (X", Y") X' = 0,

it follows that alsoR2323 = 0. Therefore(M, g) is flat andT1 M is locally reducible, contrary
to the assumption.

4. Semi-symmetric unit tangent sphere bundles: the reducible case. In this sec-
tion, we assume that the unit tangent sphere bufitié/, gs) of a Riemannian manifold
(M", g), n > 3, is semi-symmetric and locally reducible. According to Theorem 2.1, there
existk > 1 and, unlesgM, g) is flat, a Riemannian manifoltM’, ¢’) without flat factor,
such that(M, g) is locally isometric to the product manifold?’, ¢') x (R¥, go). In order
to prove the Main Theorem, we must show th#t, ¢) is flat. So, we suppose it is not, i.e.,
(M, g) ~ (M’, ¢') x (RF, go) with dim M’ > 2 and we derive a contradiction.

In [5], the decomposition ofT1 M, gs) is given quite explicitly. Sincé/ is a local prod-
uct, a pointx in M corresponds to a paix’, vg) € M’ x R* and the tangent spad@gM splits
into the direct sum o' M’ andTvoRk. Consider o1 M the following two distributions:

le = ker Tl (x,u) @ H(x,u)(Tx’M,) , ZZ = H(x,u)(TvoRk) .

Then, T(;..,TAM = L1 & L. In particular, if we denote by, respectively, vector fields
tangent toM’, respectively tdR¥, and byA a generic vector field tangent 3, then the dis-
tribution L1 is spanned by vector fields of the fori andX”, while Ly is spanned by vector
fields of the formU”. From the expression (2.1) for the Levi Civita connectio®fM, gs),
it follows easily thatL; andL are two complementary, mutually orthogonal, totally geodesic
and totally parallel distributions. Therefore, the foliatiofsand £» determined b)il and
Lo, respectively, consist of the leaves of a local Riemannian pradyck My ~ T1M. Ex-
plicitly, the leaves ofC; are the inverse images under the natural projectiaf the leaves
(M’ x {v},v € R¥} of the product foliation o/, while the leaves of» are horizontal lifts
of the leaveq{x’} x R¥, x’ € M’} of this product foliation. (Note also that the leaves/of
are flat.) We refer to [5] for more details.

From these comments, it follows that we can idenfify with 7 =1(M’ x {0}), and we
can considefy M’ as a submanifold od;. Clearly, the orthogonal space TaM’ in M; is
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spanned by vertical vectofs’, whereU is a vector field orR¥. For such vector fields, we
have by (2.1):

ViU = —g(U,u)X' =0,
_ 1
VU = (VxU)' + E(R(u’, nHxX)" =0

for all X tangent toM’ because of the product structure dh Hence,T1M’ is actually a
totally geodesic submanifold d#f;. Moreover, the metric induced dh M’ coincides with
the Sasaki metrigg.

Now, if ThM ~ M1 x M> is semi-symmetric, the same property holds for the fadtor
and hence also fdf; M’ as totally geodesic submanifold ofami-symmetric space. Note that
T1M’ cannot be reducible since by assumptioft, ¢') has no flat factor. Sa,T1M’, gg) is
locally irreducible and semi-symmetramd according to the results of Section( ', ¢') is
locally isometric to the unit two-sphet¥?(1). We complete the proof of the Main Theorem
by proving the following:

PROPOSITION 4.1. The unit tangent sphere bundle of the Riemannian manifold M =
$2(1) x R¥, with k > 1, is not semi-symmetric.

PROOF. Take an arbitrary point = (x’,v9) € M = $%(1) x R* and a unit vector
u = cosfui + sinfur € Ty M, whereus andus are unit vectors tangent t6%(1) at x’
and toR* at vg, respectively. Let; € T,/S%(1) be a unit vector orthogonal te;. Using
the special form of the curvature tensor th~ $%(1) x R¥ and the formulas (2.2) for the
curvature tensoR of T1M, a routine calculation gives

(R(ul, u) - R, v)vl = Rl ul) R, vi)vh — R(R@®, u)ult, vi)v)

— R, R, u)v)v] — R, v) R, ul)v]

cogh -
= R(u?,u’l)uq
Sinfo - Sinfo -
- R(u?,v?)vtl— > R(u'{,vi)v?
sifg ,  sirfl 3sirfo
= — uj — uy = — uy
2 4 4
3sirf o )
=-— (w1 — g(u, u)u)
3sirf o

= 2 (SiP 0 ug — sinf cosh uz)? .

Clearly, if sind # 0 # cosb, this is non-zero. Hencéy (52(1) x R¥) is not semi-symmetric
whenk > 1. O

5. Tangent sphere bundles with arbitrary radius. The main theorem can be easily
generalized to tangent sphere bundlgs/ with radiusr different from 1. These are the
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submanifolds off M given by T,M = {(x,u) € TM : gc(u,u) = r?}. If we equipT, M
with the metric induced by the Sasaki metricBbi (and also denoted hy), then we obtain
a Riemannian manifold which was studied, e.g., in [15] and [16]. The geometric properties
of (T, M, gs) may change with the radius. Its Levi Civita connection and Riemann curvature
tensor have been calculated in [15]. One obtains expressions as (2.1) and (2.2) above, up to
an occasional factor/%2.

As proved in [5], Theorem 2.1 is actually valid for tangent sphere buridied, gs) of
any radius-. Further, it is easy to show that Theorem 1.1 by Blair has the following analogue:

THEOREM 5.1. Thetangent sphere bundle (7, M, gs), r > 0, of a Riemannian mani-
fold (M, g¢) islocally symmetric if and only if either (M, g¢) isflat or it islocally isometric to
the two-dimensional sphere $2(r) of radiusr.

With these ingredients, we can now proceed as in the case of the unit tangent sphere
bundleTy M to show:

MAIN THEOREM (general version). If the tangent sphere bundle (7, M, gs), r > 0, of
a Riemannian manifold (M, g) is semi-symmetric, then it is locally symmetric. Therefore,
(T, M, gs) is semi-symmetric if and only if either (M, g) is flat or it is locally isometric
to S2(r).

REMARK. Of course, one can equipM with a Riemannian metric different from the
Sasaki metric. One such metric appearing in the literature is the Cheeger-Gromollgoetric
given explicitly at the pointx, u) € TM by

goo(X", YMy = g(X,Y), gce(X",¥Y") =0,

geo(X', YY) =

1
15,2 (9(X,Y) + g(X,u)g(Y, u)),

wherer? = g, (u, u) (see, e.g., [20]). The metric induced on the tangent sphere bundles by
this metric onT' M does not lead to new geometric phenomena, however, 6Mge, gce) is
isometric to(7,., 52 M, gs). The isometry is given explicitly by : .M — T, M :

(x,u) — (x,u/~/1+r2). In particular, it follows

1+r2

THEOREM 5.2. The tangent sphere bundle (7 M, gcg) is semi-symmetric only if it is
locally symmetric, i.e., if and only if the base manifold (M, g) is flat or locally isometric

t0 S2(r/~/1 + r?).
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