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Abstract. We introduce the notion of a relative log scheme with boundary: a morphism
of log schemes together with a (log schematically) dense open immersion of its source into a
third log scheme. The sheaf of relative log differentials naturally extends to this compactifi-
cation and there is a notion of smoothness for such data. We indicate how this weak sort of
compactification may be used to develop useful de Rham and crystalline cohomology theories
for semistable log schemes over the log point over a field which are not necessarily proper.

Introduction. Let X be a smooth variety over a fieldk. It is well known that for the
study of the cohomology ofX — or even for its very definition (e.g., crystalline [9], rigid [1]),
or the definition of nice coefficients for it (e.g., integrable connectionswith regular singular-
ities) — it is often indispensable to take into account also a boundaryD = X − X of X in a
smooth compactificationX ⊂ X of X. If D ⊂ X is a normal crossing divisor onX, the coho-
mology can conveniently be studied in the framework of logarithmic algebraic geometry. On
the other hand, log geometry proved also useful to define the cohomology of proper normal
crossing varietiesX overk which occur as a fibre of a semistable family, or more generally are
d-semistable ([6]), see [13], [8]. In the present paper we attempt to develop a concept in log
geometry particularly suitable to treat the mixed situation: given a non-properd-semistable
normal crossing varietyX/k, we want to explain how an open immersion ofX into a proper
k-schemeX can be used to investigate the cohomology ofX, the stress lying on the fact that
we avoid the assumption thatX bed-semistable and require a weaker condition instead.

Fix a base schemeW for all occuring schemes. LetT be a log scheme. The central
definition of this note is that of aT -log scheme with boundary: A morphism of log schemes
X→ T together with an open log schematically dense embedding of log schemesi : X→ X.
For brevity, we often denote it simply by(X,X). Morphisms ofT -log schemes with boundary
are defined in an obvious way. There are notions of exact and of boundary exact closed
immersions ofT -log schemes with boundary. The relative logarithmic de Rham complex
Ω•X/T onX extends canonically to a complexΩ•

(X,X)/T
onX. These definitions are justified

by a theory of smoothness forT -log schemes with boundary, well suited for cohomology
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purposes. Roughly, aT -log scheme with boundary(X,X) is said to be weakly smooth if it
satisfies a lifting property for morphisms from a nilpotent exact closed immersion ofT -log
schemes with boundary to(X,X). Weak smoothness implies thatΩ•

(X,X)/T
is locally free.

(X,X) is said to be smooth if it is weakly smooth and if for boundary exact closed immersions
(Y , Y ) → (V , V ) of T -log schemes with boundary, and morphisms(Y , Y ) → (X,X) of
T -log schemes with boundary, the projectionsX×T V → V lift log étale locally near the
image ofY in X×T V to strict and smooth morphisms of log schemes (see the text for the
definition of X×T V ). This definition is of course geared to its application to (crystalline)
cohomology. However, our main theorem gives a convenient criterion for smoothness in terms
of morphisms of monoids, very similar to Kato’s criterion for usual log smoothness. We
emphasize that even iff : X → T actually extends to a morphism of log schemesf :
X → T , our notion of smoothness is more general:(X,X) might be smooth as aT -log
scheme with boundary whilef is not a log smooth morphism in the usual sense (or even not
ideally smooth as defined by Ogus [10]). See for example the discussion at the beginning of
Section 3. In this regard, the theme of this paper is that (usual) log smoothness in an ‘interior’
X ⊂ X of a morphism of log schemesf : X → T should already ensure thatf has nice
cohomology. (A similar principle underlies the definition of rigid cohomology [1].) We hope
that our definitions are useful for a definition of log rigid cohomology, in the case of nontrivial
log structures on the base; in special cases they already turned out to be so, see [4].

Section 1 contains the basic definitions and presents several examples. The main section
is the second one which is devoted to smoothness. The main theorem is the smoothness cri-
terion 2.5. In Section 3 we discuss the example of semistablek-log schemes with boundary
(hereT is the log point over a field). These are smooth in the sense of Section 2 and we try
to demonstrate how they can be used as substitutes for compactifications by usual semistable
properk-log schemes. We indicate several applications to de Rham cohomology and crys-
talline cohomology.

1. T -log schemes with boundary.

1.1. We fix a base schemeW ; all schemes and morphisms of schemes are to be un-
derstood overW . All morphisms of schemes are quasi-separated. We also assume that all
morphisms of schemes are quasi-compact: the only reason for this additional assumption is
that it implies the existence of schematic images (=“closed images”) of morphisms: see [3]
I, 9.5. We say that an open immersioni : X → X is schematically dense ifX coincides
with the schematic image ofi. For the basic notions of log algebraic geometry we refer to
K. Kato [7]. Log structures are understood for the étale topology. By abuse of notation, for
a schemeX and a morphism of monoidsα : N → OX(X) (whereOX(X) is understood
multiplicatively), we will denote by(X, α) the log scheme with underlying schemeX whose
log structure is associated with the chartα. For a log scheme(X,NX) = (X,NX → OX)

we will often just writeX if it is clear from the context to which log structure onX we re-
fer, i.e., in those cases the log structure is dropped in our notation. Similarly for morphisms
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of log schemes. Anexactification of a closed immersion of fine log schemesY → X is a

factorizationY
i→ Z

f→ X with i an exact closed immersion andf log étale. Recall that
a morphism of log schemesf : (X,NX) → (Y,NY ) is said to bestrict if f ∗NY → NX

is an isomorphism. For a monoidN we denote byNgp the associated group. For a finitely
generated integral monoidQ we let

W [Q] = W ×Spec(Z) Spec(Z[Q])
and give it the canonical log structure for whichQ is a chart.

DEFINITION 1.2. (i) A morphism of log schemesf : (X,NX) → (Y,NY ) factors
over thelog schematic image (X,NX) of f which is defined as follows: The underlying
schemeX is the schematic image of the morphism of schemesX → Y underlyingf . Let

X
i→ X

f→ Y be the corresponding morphisms of schemes. The log structureNX is by
definition the image of the natural composite map of log structuresf

∗NY → i∗f ∗NY →
i∗NX onX. Herei∗ denotes the functorpush forward log structure.

(ii) A morphism of log schemesf : (X,NX) → (Y,NY ) is said to belog schemat-
ically dominant if (Y,NY ) coincides with the log schematic image off ; it is said to belog
schematically dense if in addition the underlying morphism of schemes is an open immersion.

A morphism of log schemesi : (X,NX) → (X,NX) is log schematically dense if and
only if the underlying morphism of schemes is a schematically dense open immersion and the
canonical morphism of log structuresNX → i∗NX is injective.

LEMMA 1.3. Let (X,NX) be a log scheme and i : X → X a schematically dense
open immersion of its underlying scheme into another scheme X. Denote by i∗,shNX the sheaf
theoretic push forward of the sheaf of monoids NX. There exists a unique map i∗,shNX →
(i∗NX)gp compatible with the natural maps i∗NX → i∗,shNX and i∗NX → (i∗NX)gp.

PROOF. First observe thatOX → i∗OX is injective, so henceforth we regardOX as a
subsheaf ofi∗OX. Also note(i∗OX)× = i∗(O×X). It follows that we can viewi∗NX as the
subsheaf ofi∗,shNX formed by those sections which map toOX under the mapα : i∗,shNX →
i∗OX which we get by functoriality of sheaf theoretic push forward. To prove the lemma it
is enough to show thati∗,shNX arises fromi∗NX by inverting those sectionsm for which
the restrictionsα(m)|X are invertible. But this is the case: Takem ∈ i∗,shNX. Sincei∗OX

arises fromOX by inverting those sections for which the restrictions toX are invertible, we
find f, g ∈ OX with g|X invertible and withα(m) = g−1f . We sawg = α(n) for some
n ∈ i∗NX. Now nm ∈ i∗NX and our claim and hence the lemma follows.

LEMMA 1.4. The log schematic image (X,NX) of a morphism of fine log schemes
f : (X,NX)→ (Y,NY ) is a fine log scheme.
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PROOF. The coherence ofNX follows from that ofNY . We haveNX ⊂ i∗NX ⊂
i∗,shNX, for the second inclusion see the proof of Lemma 1.3. Therefore the integrality of
NX implies that ofNX.

DEFINITION 1.5. A log scheme with boundary is a triple((X,NX), (X,NX), i) where
i : (X,NX) → (X,NX) is a log schematically dense morphism such thati∗NX = NX and
(i∗NX)gp = N gp

X
. Let (T ,NT ) be a log scheme. A(T ,NT )-log scheme with boundary is a

log scheme with boundary((X,NX), (X,NX), i) together with a morphism of log schemes
g : (X,NX)→ (T ,NT ).

We think ofX−X as a boundary ofX. We will often dropi, g and the log structures from
our notation and just speak of theT -log scheme with boundary(X,X). So in the following
definition which justifies the whole concept.

DEFINITION 1.6. The sheaf of relative differentials of aT -log scheme with boundary
(X,X) is defined as follows: Denote byτ the composite map

i∗,shg−1NT → i∗,shNX → (i∗NX)gp= N gp
X

where the second arrow is the one from Lemma 1.3. LetΩ1
X/W

be the sheaf of differentials

of the morphism of underlying schemesX→ W . ThenΩ1
(X,X)/T

is the quotient of

Ω1
X/W
⊕ (OX ⊗Z N gp

X
)

divided by theOX-submodule generated by local sections of the forms

(dα(a), 0)− (0, α(a)⊗ a) with a ∈ NX

(0, 1⊗ a) with a ∈ Im(τ ) .

We define the de Rham complexΩ•
(X,X)/T

by taking exterior powers and the differential as

usual.

LEMMA 1.7. Let (X,X) be a T -log scheme with boundary.
(1) The restriction Ω1

(X,X)/T
|X naturally coincides with the usual sheaf of relative log-

arithmic differentials of g : (X,NX)→ (T ,NT ).
(2) Suppose g extends to a morphism of log schemes g : (X,NX)→ (T ,NT ). Let us

assume the following conditions:
(i) The underlying scheme of T is the spectrum of a field.
(ii) For any étale morphism V → X with V connected, the scheme V = V ×X X is

also connected.
Then Ω1

(X,X)/T
naturally coincides with the usual sheaf Ω1

X/T
of relative logarithmic differ-

entials of g .

PROOF. (1) is immediate. (2) and its proof were suggested by the referee. WriteT =
Spec(k). By base change, we may assume thatk is separably closed. It suffices to prove that
the morphismg−1NT → i∗,shg−1NT is an isomorphism. Letx be a geometric point ofX
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and letV be the strict Henselization ofX at x. PutV = V ×X X. Then, by the assumption
(i), we see that bothV andV are connected. Hence we have

( g−1NT )x = Γ (V , g−1NT ) = Γ (T ,NT )

(i∗,shg−1NT )x = Γ (V , g−1NT ) = Γ (T ,NT )

and the lemma follows.

One class of examples where the condition (i) + (ii) of Lemma 1.7 (2) holds true are the
semistableT -log schemes discussed in Section 3; but for them, the conclusionΩ1

(X,X)/T
=

Ω1
X/T

(if g extends tog) is immediate anyway. Undoubtly, ifg extends tog, the conclusion of

Lemma 1.7 (2) holds under much more general conditions than the stated condition (i) + (ii).
1.8 Examples. The following examples will be discussed later on.
(a) LetQ,P be finitely generated monoids and letρ : Q→ P gp be a morphism. Let

P ′ be the submonoid ofP gp generated byP and Im(ρ). Then

(W [P ],W [P ′ ])
is aT = W [Q]-log scheme with boundary.

(b1) Let Q = N with generatort ∈ Q. Let t1, . . . , tr be the standard generators of
N r . Let X = W [N r ], the affiner-space overW with the log structure defined by the divisor
V (t1 · · · · · tr ). By means oft �→ t1 · · · · · tr this is aT = W [Q]-log scheme. We compactify
X by

X = W ×Spec(Z) (×Spec(Z)(Proj(Z[t0, ti ])1≤i≤r)) = (P1
W)r

and take forNX the log structure defined by the normal crossing divisor

(X −X) ∪ (the closure ofV (t1 · . . . · tr ) ⊂ X in X) .

(b2) LetX andT be as in (b1). Another compactifiction ofX is projectiver-space, i.e.,
X
′ = Pr

W ; similarly we takeN
X′ as the log structure defined by the normal crossing divisor

(X
′ −X) ∪ (the closure ofV (t1 · · · · · tr ) ⊂ X in X

′
).

(c) Let k be a field,W = Spec(k) and let againQ = N with generatort ∈ Q.
The following type ofS = W [Q]-log scheme with boundary (which generalizes 1.8(b1)
if W = Spec(k) there) gives rise, by base changet �→ 0, to theT -log schemes with boundary
discussed in Section 3 below. LetX be a smoothW -scheme,X ⊂ X a dense open subscheme,
D = X−X. LetX→ S be a flat morphism, smooth away from the origin. LetX0 be the fibre
above the origin, letX0 be its schematic closure inX and suppose thatD ∪ X0 is a divisor
with normal crossings onX.

(d) Letk be a field and letT = (Spec(k), N
0→ k), the standard logarithmic point ([6]).

Let Y be a semistablek-log scheme in the sense of [8] 2.4.1 or [6]. That is,Y is a fineT -log
scheme(Y,NY ) satisfying the following conditions. Étale locally onY there exist integers
i ≥ 1 and chartsN i → NY (Y ) for NY such that

(i) if on the log schemeT we use the chartN → k, 1 �→ 0, the diagonal morphism

N
δ→ N i is a chart for the structure morphism of log schemesY → T , and
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(ii) the induced morphism of schemes

Y → Spec(k)×Spec(k[t ]) Spec(k[t1, . . . , ti ])

is smooth in the classical sense. LetX be the union of some irreducible components ofY and
let X be the open subscheme ofX which is the complement inY of the union of all irreducible
components not contained inX. ThenX inherits a structure ofT -log scheme, but it is not log
smooth overT . However, we can view(X,X) as aT -log scheme with boundary (forgetting
that the morphismX → T actually extends toX): as such it is what we will callsmooth
below.

1.9. A concrete example for 1.8(c) (see [4] for more details). Again letk be a field
and letS = W [N] with generatorq of N. Let Y be a semistablek-log scheme with set of
irreducible components{Yj }j∈R all of which we assume to be smooth. As in [7] p. 222/223
we define for everyj ∈ R an invertibleOY -moduleFj as follows: LetNY,j be the subsheaf
of the log structureNY of Y which is the preimage of Ker(OY → OYj ). This NY,j is a
principal homogeneous space overO×Y , and its associated invertibleOY -module isFj . Now
fix a subsetI ⊂ R with |I | = i and letL = R − I . SupposeM =⋂

j∈I Yj is nonempty. Let

VM = Spec(SymOM
(⊕(Fj )j∈I )) = ×M(Spec(SymOM

(Fj )))j∈I .

By its definition, the affine vector bundleVM overM comes with a natural coordinate cross,
a normal crossing divisor onVM . The intersection ofM with all irreducible components of
Y not containingM is a normal crossing divisorD on M. Let D′V ⊂ VM be its preimage
under the structure mapVM → M and letDV ⊂ VM be the union ofD′V with the natural
coordinate cross inVM . ThenDV is a normal crossing divisor onVM . Let NVM be the
corresponding log structure onVM . There exists a distinguished elementa ∈ Γ (VM,OM)

havingDV as its set of zeros and such that the assignmentq �→ a defines a morphism of log
schemesVM → S with the following property: The inducedS-log scheme(M,NVM |M) on
the zero sectionM → VM coincides with theS-log scheme(M,NY |M) induced byY . This
a ∈ Γ (VM,OM) = SymOM

(⊕(Fj )j∈I )(M) can be described as follows: Denote the image
of q ∈ NS(S) (hereNS is the log structure ofS) under the structure mapNS(S)→ NY (Y )→
NY |M(M) again byq. Locally onM it can be (non-uniquely) factored asq = t0

∏
j∈I vj

wherevj is a (local) generator ofFj |M andt0 maps to a (local) defining equationa0 ∈ OM of
the divisorD in M. Thena = a0.(

⊕
j∈I vj ) ∈ SymOM

(
⊕

j∈I Fj )(M) is the wanted element,
globally well defined. We can viewVM in a canonical way as a (schematically) dense open
subscheme of

PM = ×M(Proj(SymOM
(OM ⊕ Fj )))j∈I

by identifying a homogenous sections ∈ SymOM
(Fj ) of degreen with the degree zero

sections/1n
OM

of SymOM
(OM ⊕ Fj )[1−1

OM
]. We givePM the log structure defined by the

normal crossing divisor(PM − VM) ∪ DV , whereDV is the closure ofDV in PM . Then
(PM, VM) is aS-log scheme with boundary.
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1.10. Amorphism of T -log schemes with boundaryf : (X,X) → (X
′
,X′) is a mor-

phism of log schemes

f : (X,NX)→ (X
′
,N

X
′)

with X ⊂ f−1(X′) and restricting to a morphism ofT -log schemes(X,NX) → (X′,NX′).
We have a fully faithful functor from the category ofT -log schemes to the category ofT -log
schemes with boundary. Namely, takeY to (Y, Y ). Beware that(T , T ) is not a final object
in the category ofT -log schemes with boundary. We have obvious base change functors
for morphismsW ′ → W to our underlying base schemeW and everything we develop here
behaves well with respect to these base changes. We also havebase change functors for closed
immersions of log schemes T ′ → T as follows: if(X,X) is aT -log scheme with boundary,
let XT ′ = X×T T ′ be the fibre product in the category of log schemes. Define the log scheme
XT ′ as the log schematic image of the morphism of log schemesXT ′ → X. Then(XT ′ ,XT ′)
is aT ′-log scheme with boundary.

1.11. For the rest of this paper we always assume that the log schemeT is fine. All fibre
products of fine log schemes are taken in the category of fine log schemes, unless specified
otherwise. AT -log scheme with boundary(X,X) is said to befine if the log scheme(X,NX)

is fine.

LEMMA 1.12. In the category of fine T -log schemes with boundary, products exist.

PROOF. Given fineT -log schemes with boundary(X1,X1) and(X2,X2), set

(X1,X1)×T (X2,X2) = (X1×T X2,X1×T X2) .

HereX1×T X2 denotes the fibre product in the category of fineT -log schemes, andX1×T X2

is defined as the log schematic image ofX1 ×T X2 → X1 ×W X2. (SoX1×T X2 depends
also onX1 andX2, contrary to what the notation suggests. Note that by the construction [7]
2.7, the scheme underlyingX1 ×T X2 is a subscheme of the scheme theoretic fibre product,
hence is a subscheme of the scheme underlyingX1 ×W X2.) ThatX1×T X2 is fine follows
from Lemma 1.4.

1.13. It is to have fibre products why we did not requireX = f−1(X′) in the definition
of morphisms ofT -log schemes with boundary. If the structural map from the underlying
scheme of the log schemeT to W is an isomorphism, one has(X,X) ∼= (X,X) ×T (T , T ).
However, we stress that in contrast to taking the base change with the identityT → T (cf.
1.10), the operation of taking the fibre product with theT -log scheme with boundary(T , T ) is
non-trivial in general. For example, letQ = N with generatorq ∈ Q, let T = W [Q] and let
U1, U2 be the standard generators ofN2. Fori ∈ Z let Xi = W [N2], and letXi = W [Z⊕N],
the open subscheme ofXi whereU1 is invertible. Define a structure ofT -log scheme with
boundary on(Xi,Xi) by sendingq �→ Ui

1U2. Then

(Xi,Xi) ∼= (Xi,Xi)×T (T , T ) if i ≥ 0

(Xi,Xi) 
∼= (Xi,Xi)×T (T , T ) if i < 0 .
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Indeed,Xi×T T is the closure inW [Q ⊕ N2] of the closed subschemeV (q − Ui
1U2) of

W [Q ⊕ Z ⊕ N]. If i ≥ 0 this is the subschemeV (q − Ui
1U2) of W [Q ⊕ N2] which maps

isomorphically toW [N2]. If i < 0 this is the subschemeV (qU−i
1 −U2) of W [Q⊕N 2]which

does not map isomorphically toW [N2].
1.14. Let(X,X) be a fineT -log scheme with boundary. Achart (Q→ P gp ⊃ P) for

(X,X) overT is a chartλ : P → Γ (X,NX) for (X,NX), a chartσ : Q → Γ (T ,NT ) for
(T ,NT ) and a morphismρ : Q → P gp such thatλgp ◦ ρ = τ ◦ σ , whereτ : Γ (T ,NT )→
Γ (X,NX)→ Γ (X,N gp

X
) is the composite of the structural map with that from Lemma 1.3.

LEMMA 1.15. Étale locally on X, charts for (X,X) exist.

PROOF(corrected version due to the referee). We may by [7] assume that(X,NX) has
a chartg : G→ Γ (X,NX) and(T ,NT ) has a chartσ : Q→ Γ (T ,NT ). Let x ∈ X and let
NX,x be the stalk ofNX at the separable closurex of x. Let ϕ be the composite

Q
σ→ Γ (T ,NT )

τ→ Γ (X,N gp
X

)→ N gp
X,x

.

Choose generatorsq1, . . . , qm of Q and elementsxi, yi ∈ NX,x (1 ≤ i ≤ m) such that

ϕ(qi) = xiy
−1
i . Next, choose elementsai, bi ∈ G andui, vi ∈ O×

X,x
(1 ≤ i ≤ m) satisfying

g(ai) = xiui andg(bi) = yivi : these elements exist becauseg is a chart. Now let

f : Ggp⊕Qgp⊕ Zm ⊕ Zm→ N gp
X,x

be the morphism defined by

(h, q, (ki)
m
i=1, (li)

m
i=1) �→ ggp(h)ϕgp(q)

m∏
i=1

u
ki

i

m∏
i=1

v
li
i ,

and defineP by P = f−1(NX,x). Thenf |P : P → NX,x extends to a chart aroundx by [7]
2.10. It remains to prove that the canonical inclusionQ → Ggp⊕ Qgp⊕ Zm ⊕ Zm, q �→
(1, q, 0, 0) actually takes values inP gp. Write a givenq ∈ Q asq = ∏m

i=1 q
ni

i with ni ∈ N.
Then we have

f (q)p =
m∏

i=1

(
xi

yi

)ni

=
m∏

i=1

(
xiui

yivi

· vi

ui

)ni

= f ((
∏

i a
ni

i , 0, (0), (ni)i ))

f ((
∏

i b
ni

i , 0, (ni)i, (0)))
.

Putα = (
∏

i a
ni

i , 0, (0), (ni)i ) andβ = (
∏

i b
ni

i , 0, (ni)i, (0)). Then we haveα, β ∈ P and
f (qβ) = f (α). Soqβ is in P by the definition ofP and soq maps toP gp.

2. Smoothness.

DEFINITION 2.1. (1) A morphism ofT -log schemes with boundary(Y , Y )→ (X,X)

is said to be aboundary exact closed immersion if Y → X is an exact closed immersion and
if for every open neighbourhoodU of Y in X, there exists an open neighbourhoodU of Y in
X with U schematically dense inU .

(2) A first order thickening of T -log schemes with boundary is a morphism(L
′
, L′)→

(L,L) such thatL
′ → L is an exact closed immersion defined by a square zero ideal inOL.
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(3) A fine T -log scheme with boundary(X,X) is said to beweakly smooth if X is
locally of finite presentation overW and if the following condition holds: for every first order
thickeningη : (L′, L′) → (L,L) and for every morphismµ : (L′, L′) → (X,X) there is
étale locally onL a morphismε : (L,L)→ (X,X) such thatµ = ε ◦ η.

(4) A T -log scheme with boundary(X,X) is said to besmooth if it is weakly smooth
and satisfies the following property: For all morphisms(Y , Y ) → (X,X) and all boundary
exact closed immersions(Y , Y )→ (V , V ) of fineT -log schemes with boundary, there exists
étale locally on(X×T V ) an exactification

Y → Z→ (X×T V )

of the diagonal embeddingY → (X×T V ) (a morphism of log schemes in the usual sense)
such that the projectionZ→ (X×T V )→ V is strict and log smooth.

Recall that by [7] 3.8, ‘strict and log smooth’ is equivalent to ‘strict and smooth on
underlying schemes’. AT -log schemeX is log smooth if and only if(X,X)/T is weakly
smooth. Assume this is the case. Then(X,X)/T satisfies the smoothness condition with

respect to test objects(X,X)←(Y , Y )→ (V , V ) (i.e., for whichV = V ), becauseX×T V
p→

V is clearly log smooth. For general(V , V ) (and log smoothT -log schemesX) we have at
least Theorem 2.4 and Theorem 2.5 below (note that the hypotheses of Proposition 2.3 below
for (X,X)/T areequivalent to log smoothness ofX/T , by [7] 3.5 and as worked out in [6]).

PROPOSITION 2.2. Let (X,X) be a weakly smooth T -log scheme with boundary and
let T1→ T be an exact closed immersion. Then (XT1,XT1) is a weakly smooth T1-log scheme
with boundary.

PROOF. Let

(XT1,XT1)
µ← (L

′
, L′) η→ (L,L)

be a test object overT1. By the weak smoothness of(X,X)/T we getε : (L,L) → (X,X)

étale locally onL such thatµ = ε ◦ η. The restrictionε|L : L→ X goes throughXT1; since
L is log schematically dense inL this implies thatε goes through(XT1,XT1) (the schematic
image is transitive, [3] I, 9.5.5).

PROPOSITION 2.3. Suppose W is locally noetherian. Let Q be a finitely generated
integral monoid, let S = W [Q] and let T → S be an exact closed immersion. Let (X,X) be a
T -log scheme with boundary. Suppose that étale locally on X there are charts Q→ P gp ⊃ P

for (X,X) over T as in 1.14 such that the following conditions (i), (ii) are satisfied:
(i) The kernel and the torsion part of the cokernel of Qgp→ P gp are finite groups of

orders invertible on W .
(ii) Let P ′ be the submonoid of P gp generated by P and the image of Q→ P gp and let

W [P ]T be the schematic closure of W [P ′]×S T = W [P ′]T in W [P ]. Then λ : X→ W [P ]T
is smooth on underlying schemes.
Then (X,X)/T is weakly smooth.
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PROOF. (Note thatλ in (ii) exists by the schematic density ofX→ X.) Let

(X,X)
µ← (L

′
, L′) η→ (L,L)

be a test object overT . Using (i), one can follow the arguments in [7] 3.4 to construct mor-
phisms(L,L) → (W [P ],W [P ′ ]) of S-log schemes with boundary. NecessarilyL maps in
fact toW [P ′]T . SinceL→ L is log schematically dense,L maps in fact toW [P ]T . By (ii)
this morphism can be lifted further to a morphismL → X inducing (L,L) → (X,X) as
desired.

THEOREM 2.4. In the situation of Proposition 2.3, suppose in addition S = T and
T → S is the identity. Then for every S-log scheme with boundary (V , V ), the projection

X×SV
p→ V is log smooth.

PROOF. We may assume that(X,X) overT has a chart as described in Proposition 2.3
and that(V , V ) overT has a chartQ→ F gp, F → NV (V ). Our assumptions imply that

X ×W V → W [P ] ×W V

is smooth on underlying schemes. It is also strict, hence log smooth. Perform the base change
with the closed immersion of log schemes

W [P ]×SV → W [P ] ×W V

to get the log smooth morphism

X×SV → W [P ]×SV

(by our construction of fibre products,W [P ]×SV is the log schematic closure ofW [P ′]×SV ).
Its composite with the projection

W [P ]×SV
β→ V

is p, hence it is enough to show thatβ is log smooth. Nowβ arises by the base change
V → W [F ] from the projection

W [P ]×SW [F ] γ→ W [F ]
so that it is enough to show thatγ is log smooth. LetF ′ be the submonoid ofF gp generated
by F and the image ofQ→ F gp. Let (P ′ ⊕Q F ′)int be the push out ofP ′ ← Q→ F ′ in the
category of integral monoids, i.e.,(P ′ ⊕Q F ′)int = Im(P ′ ⊕Q F ′ → (P ′ ⊕Q F ′)gp) where
P ′ ⊕Q F ′ is the push out in the category of monoids. (IfQ is generated by a single element
then actually(P ′ ⊕Q F ′)int = P ′ ⊕Q F ′ by [7] 4.1.) Define the finitely generated integral
monoid

R = Im(P ⊕ F → (P ′ ⊕Q F ′)int) .

Thenγ can be identified with the natural mapW [R] → W [F ]. That this is log smooth
follows from [7] 3.4 once we know that

a : F gp→ Rgp= (P gp⊕Qgp F gp)
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has kernel and torsion part of the cokernel finitely generated of orders invertible onW . But
this follows from the corresponding facts forb : Qgp→ P gp because we have isomorphisms
Ker(b) ∼= Ker(a) and Coker(b) ∼= Coker(a).

THEOREM 2.5. In the situation of Proposition 2.3, (X,X)/T is smooth.

PROOF. It remains to verify the second condition in the definition of smoothness. Let
(Y , Y )→ (X,X) and(Y , Y )→ (V , V ) be test objects. We may assume thatY is connected.
Remove all irreducible components ofV not meeting Im(Y ) so that we may assume that each
open neighbourhood of Im(Y ) in V is schematically dense. After étale localization we may
assume that(X,X) has a chartP → Γ (X,N gp

X
) as in Proposition 2.3. Viewing our test

objects as objects overS we can form the fibre product of fineS-log schemes with boundary
(W [P ]×SV ,W [P ′] ×S V ). Étale locally onW [P ]×SV we find an exactification

Y
i→ Z̃

g̃→ W [P ]×SV

of the diagonal embeddingY → W [P ]×SV . We may assume that̃Z is connected. After
further étale localization oñZ we may also assume thatq̃ = p̃ ◦ g̃ : Z̃ → V is strict, where
p̃ : (W [P ]×SV ) → V is the projection: this follows from the fact that fory ∈ Y the stalks

of the log structuresNZ̃ andq̃∗NV at the separable closure ofi(y) coincide, becauseY
i→ Z̃

andY → V are exact closed immersions. By Theorem 2.4,p̃ is log smooth. Thus̃q is also
log smooth, hence is smooth on underlying schemes. Let

Z̃0 = Z̃ ×(W [P ]×SV ) (W [P ′] ×S V ) ,

an open subscheme ofZ̃ containing Im(Y ). Consider the restrictioñq0 : Z̃0→ V of q̃. Since
it is smooth on underlying schemes, it maps schematically dominantly to an open neigh-
bourhood of Im(Y ) in V (here a morphism of schemesX → Y is said to be schematically
dominant if its schematic image coincides withY). It follows that q̃0 maps schematically
dominantly also toV because of our assumption onV and the fact that(Y , Y ) → (V , V )

is boundary exact. Thus̃q is a classically smooth morphism from the connected schemeZ̃

to another schemeV such that its restriction to the open subschemeZ̃0 maps schematically
dominantly toV . This implies thatZ̃0 is schematically dense iñZ, because (schematically)
dominant classically smooth morphisms from a connected scheme induce bijections between
the respective sets of irreducible components. It follows thatg̃ factors as

Z̃
g→ (W [P ]T×T V )

k→ W [P ]×SV :
first as a morphism of underlying schemes because its restriction to the open schematically
dense subschemẽZ0 factors through

W [P ′]T ×T V = W [P ′] ×S V ;
but then also as a morphism of log schemes, becausek is strict. The morphismg is log étale
because the compositeg̃ with the closed embeddingk is log étale. Let

Z = Z̃ ×(W [P ]T×T V ) (X×T V ) .
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From the assumption (ii) in Proposition 2.3 we deduce thatX×T V → W [P ]T×T V is log
smooth and strict, henceZ → Z̃ is log smooth and strict, hence smooth on underlying
schemes. Together with the smoothness ofq̃ it follows thatZ → V is smooth on underlying
schemes. FurthermoreZ → X×T V is log étale becauseg is log étale. Finally,Y → Z is an
exact closed immersion becauseZ → Z̃ is strict andY → Z̃ is an exact closed immersion.
The theorem is proven.

The interest in smoothness as we defined it lies in the following proposition, which en-
ables us to develop nice cohomology theories forT -log schemes with boundary.

PROPOSITION 2.6. Let (Y , Y )→ (Xi,Xi) be boundary exact closed immersions into
smooth T -log schemes with boundary (i = 1, 2). Then there exist étale locally on (X1×T X2)

factorizations

(Y , Y )
ι→ (Z,Z)→ (X1×T X2,X1 ×T X2)

of the diagonal embedding such that ι is a boundary exact closed immersion, the map Z →
X1×T X2 is log étale, and the projections pi : Z → Xi are strict and log smooth, hence
smooth on underlying schemes.

PROOF. By the definition of smoothness we find étale locally exactifications (i = 1, 2)

Y → Zi → X1×T X2

such that the projectionsZi → Xi are strict and log smooth. Let

Z
′ = Z1 ×(X1×T X2)

Z2

and letY → Z → Z
′
be an exactification ofY → Z

′
. After perhaps étale localization onZ

as in the proof of Theorem 2.5 we may assume that the projectionsZ→ Zi are strict. Hence
the projectionspi : Z→ Xi are strict and log smooth. This implies that

Z = p−1
1 (X1) ∩ p−1

2 (X2)

is log schematically dense inZ. Indeed, it suffices to prove the log schematic density ofZ in
p−1

1 (X1) and ofp−1
1 (X1) in Z. Both assertions follow from the general fact that for a strict

and log smooth (and in particular classically smooth) morphism of log schemesh : L → S

and a log schematically dense open immersionS′ → S, alsoh−1(S′) with its pull back log
structure fromS′ is log schematically dense inL: this is easy to prove since the question is
local for the étale topology and we therefore may assume thath is a relative affine space. The
classical smoothness of (say)p1 and the boundary exactness of(Y , Y ) → (X1,X1) imply
that (Y , Y ) → (Z,Z) is boundary exact (for each connected componentZ

′
of Z the map

π0(Z
′
) → π0(X1) between sets of irreducible components induced byp1 is injective). We

are done.

2.7 Examples. We make the exactificationZ → X×T V in Theorem 2.5 explicit in
some examples, underlining the delicacy of the base change argument in Theorem 2.5. In
the following, for free variablesU1, . . . , V1, . . . we denote byW [U1, . . . , V

±
1 , . . . ] the log
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scheme
W [N⊕ · · · ⊕ Z⊕ · · · ]

with generatorsU1, . . . for N ⊕ · · · and generatorsV1, . . . for Z ⊕ · · · . Forf ∈ Z[U1, . . . ,

V±1 , . . . ] we denote byW [U1, . . . , V
±
1 , . . . ]/f the exact closed subscheme defined byf .

(a) LetQ = N with generatorq. Let X = W [U±1 , U2] ⊂ X = W [U1, U2]. Define
X→ S by sendingq �→ U−1

1 U2, thus(X,X) is a smoothS-log scheme with boundary. The
self fibre product ofS-log schemes with boundary is

(X1,X1)=(X,X)×S(X,X)

=(W [U1, U2, V1, V2]/(V1U2−V2U1),W [U±1 , U2, V
±
1 , V2]/(U−1

1 U2 − V−1
1 V2)) .

Note that the projectionsqj : X1→ X are not flat (the fibres above the respective origins are

two dimensional), although they are log smooth. We construct the desired log étale mapZ
g→

X1 according to the procedure in [7], 4.10. EmbedZ→ Z4 by sendingn �→ (n,−n,−n, n)

and letH be the image of the canonical mapN4 → (Z4/Z). ThenX1 = W [H ]. Let h :
(Z4/Z) → Z2 be the map which sends the class of(n1, n2, n3, n4) to (n1 + n3, n2 + n4),
and letK = h−1(N2). ThenZ = W [K] works. More explicitly: We have an isomorphism
K ∼= N2⊕ Z by sending the class of(n1, n2, n3, n4) to (n1+ n3, n2+ n4, n1 + n2). Then

Z = W [S1, S2, S
±
3 ]

andg is given byU1 �→ S1S3, U2 �→ S2S3, V1 �→ S1, V2 �→ S2 .
Now consider the base change withT = W [q]/q → S defined by sendingq �→ 0.

For j = 1, 2 let X1,j = X1 ×X XT where in the fibre product we use thej -th projec-
tion as the structure map for the first factor. LetXT,1 = XT×T XT . Then we findX1,1 =
W [U1, V1, V2]/(V2U1), X1,2 = W [U1, U2, V1]/(V1U2), thus containingXT,1 = W [U1, V1]
as aproper subscheme.

(b) LetS,X,X be as in (a), but this time defineX→ S by sendingq �→ U1U2. Again
(X,X) is smooth. We use the embeddingZ → Z4 which sendsn �→ (n, n,−n,−n), to
defineH = Im(N4 → (Z4/Z)). Let h : (Z4/Z) → Z2 be the map which sends the class
of (n1, n2, n3, n4) to (n1 + n3, n2 + n4), and letK = h−1(N2). We have an isomorphism
K ∼= N2⊕ Z by sending the class of(n1, n2, n3, n4) to (n1+ n3, n2+ n4, n1− n2). We thus
find

X1 = W [H ] = W [U1, U2, V1, V2]/(U1U2− V1V2) ,

Z = W [S1, S2, S
±
3 ] and g : Z → X1 is given byU1 �→ S1S3, U2 �→ S2S

−1
3 , V1 �→

S1, V2 �→ S2. Note that in this case the projectionsqj : X1→ X are flat. Now consider the
base change withT = W [q]/q → S defined by sendingq �→ 0. Then, in contrast to (a), we
find X1,1 = X1,2 = XT,1 (with X1,1,X1,2,XT,1 as in (a)).

(c) Using the criterion 2.5 one checks that the log schemes with boundary mentioned
in 1.8(b)–(d) 1.9 are smooth. In fact, the example (a) just discussed is a special case of 1.8 (b)
or 1.9. Example (b) (or rather its base change withT = W [q]/q → S as above) is a special
case of 1.8(d).
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LEMMA 2.8. Ω1
(X,X)/T

is locally free of finite rank if (X,X) is weakly smooth over T .

PROOF. The same as in the classical case.

3. Semistable log schemes with boundary. In this sectionk is a field,Q = N with

generatorq andT = (Spec(k),Q
0→ k).

3.1 Definitions.
3.1. Astandard semistable T -log scheme with boundary is aT -log scheme with bound-

ary isomorphic to:

(X,X) =
(

Spec

(
k[t1, . . . , ti2]
(t1, . . . , ti1)

)
, Spec

(
k[t1, . . . , ti1, t±i1+1, . . . , t

±
i2
]

(t1, . . . , ti1)

))
for some integers 1≤ i1 ≤ i2 such that

P = N i2 → NX(X) , 1i �→ ti for 1≤ i ≤ i2

Q = N→ P gp = Z i2 , q �→ (11, . . . , 1i1, ri1+1, . . . , ri2)

with somerj ∈ Z for i1 + 1 ≤ j ≤ i2 is a chart in the sense of 1.14. Asemistable T -log
scheme with boundary is aT -log scheme with boundary(Y , Y ) such that étale locally onY
there exist morphisms(Y , Y )→ (X,X) to standard semistableT -log schemes with boundary
such thatY → X is strict and log smooth, andY = Y ×X X. Note thatY is then a semistable
k-log scheme in the usual sense defined in 1.8(d).

A normal crossing variety over k is ak-scheme which étale locally admits smooth mor-
phisms to the underlying schemes of semistablek-log schemes.

Following [6] we say that a log structureNY on a normal crossing varietyY over k is
of embedding type if étale locally onY the log scheme(Y ,NY ) is isomorphic to a semistable
k-log scheme. (The point is that we do not require aglobal structure map of log schemes
(Y ,NY )→ T .)

3.2. Let us discuss for a moment the standard semistableT -log schemes with boundary
(X,X). If in the above definitionrj ≥ 0 for all j , thenf : X→ T actually extends to a (non
log smooth in general) usual morphism of log schemesf : X → T . If evenrj = 0 for all
j thenf is nothing but a semistablek-log scheme with an additional horizontal divisor not
interfering with the structure map of log structures; in particular it is log smooth. If at least
rj ∈ {0, 1} for all j the morphismf is ideally smooth in the sense of Ogus [10]. Examples
with rj = 1 for all j are those in 1.8(d).

The concept of semistableT -log schemes with boundary helps us to also understand the
cases with local numbersrj /∈ {0, 1}: Any (Y , Y ) semistableT -log scheme with boundary is
smooth, by Theorem 2.5, and as we will see below this implies analogs of classical results for
their cohomology. Examples of semistableT -log schemes with boundary with local numbers
rj possibly not in{0, 1} are those in 1.9 or those from 3.5 below. Or think of a flat family
of varieties over Spec(k[q]) with smooth general fibre and whose reduced subscheme of the
special fibre is a normal crossing variety, but where some components of the special fibre
may have multiplicities> 1: then unions of irreducible components of this special fibre
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with multiplicity = 1 are semistableT -log schemes with boundary. One more big class of
examples with local numbersrj possibly not in{0, 1} is obtained by the following lemma,
which follows from computations with local coordinates:

LEMMA 3.3. Let Y → Y be an embedding of k-schemes which étale locally looks like
the underlying embedding of k-schemes of a semistable T -log scheme with boundary (i.e.,
for each geometric point y of Y there is a semistable T -log scheme with boundary which on
underlying schemes looks like Y → Y around y). Suppose NY is a log structure of embedding
type on Y such that (Y,NY |Y ) is a semistable k-log scheme ( for an appropriate structure
morphism to T ). Then ((Y ,NY ), Y ) is a semistable T -log scheme with boundary.

3.4. Fumiharu Kato in [6] has worked out precise criteria for these two properties of
normal crossing varieties overk — to admit a log structure of embedding type, resp. to admit
a log structure of semistable type. Now suppose we are given a semistableT -log schemeY .
An “optimal” compactification would be a dense open embedding into a proper semistable
k-log scheme in the classical sense, or at least into an ideally smooth properk-log scheme;
however, advocating the main idea of this paper, a dense open embeddingY → Y into a log
schemeY such that(Y , Y ) is a proper semistableT -log scheme with boundary is also very
useful, and this might be easier to find, or (more importantly) be naturally at hand in particular
situations.

3.2 De Rham cohomology. Here we assume char(k) = 0. LetZ be a smoothk-scheme
and letV be a normal crossing divisor onZ. Suppose there exists a flat morphismf : (Z −
V )→ Spec(k[q]), smooth aboveq 
= 0 and with semistable fibreX above the originq = 0.
Let X be the closure ofX in Z and suppose also thatX ∪ V is a normal crossing divisor on
Z. EndowZ with the log structure defined byX ∪ V and endow all subschemes ofZ with
the induced log structure (we will suppress mentioning of this log structure in our notation).
Then(X,X) is a semistableT -log scheme with boundary. LetD = X ∩ V = X − X and
let X =⋃

1≤i≤a Xi be the decomposition into irreducible components in a fixed ordering and

suppose that eachXi is classically smooth. LetΩ•X/T be the relative logarithmic de Rham
complex.

PROPOSITION 3.5. The restriction map

RΓ (X,Ω•
(X,X)/T

)→ RΓ (X,Ω•X/T )

is an isomorphism.

PROOF. We use a technique of Steenbrink [13] to reduce to a standard fact. LetΩ•Z be
the de Rham complex overk onZ with logarithmic poles alongX∪V . Note that dlog(f ∗(q)) ∈
Γ (Z−V,Ω1

Z) extends uniquely to a global sectionθ ∈ Γ (Z,Ω1
Z). LetΩ•Z,V be the de Rham

complex onZ with logarithmic poles only alongV ; thusΩ•Z,V is asubcomplex of Ω•Z. Define
the vertical weight filtration onΩ•Z by

PjΩ
i
Z = Im(Ω

j
Z ⊗Ω

i−j
Z,V → Ωi

Z) .
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For j ≥ 1 let X
j

be the disjoint sum of all∩i∈I Xi whereI runs through the subsets of

{1, . . . , a} with j elements. Letτj : Xj → X be the canonical map and letΩ•
X

j be the de

Rham complex onX
j

with logarithmic poles alongX
j∩τ−1

j (D). Then we have isomorphisms
of complexes

(∗) res: GrjΩ•Z ∼= τj,∗Ω•
X

j [−j ] ,
characterized as follows: Letx1, . . . , xd be local coordinates onZ such thatxi for 1 ≤ i ≤
a ≤ d is a local coordinate forXi . If

ω = α ∧ dlog(xi1) ∧ · · · ∧ dlog(xij ) ∈ PjΩ
•
Z

with i1 < · · · < ij < a, then res sends the class ofω to the class ofα. Now let

Apq = Ω
p+q+1
Z /PqΩ

p+q+1
Z , PjA

pq = P2q+j+1Ω
p+q+1
Z /PqΩ

p+q+1
Z .

Using the differentialsd ′ : Apq → Ap+1,q, ω �→ dω andd ′′ : Apq → Ap,q+1, ω �→
θ ∧ ω we get a filtered double complexA••. We claim that

0→ Ω
p

Z ⊗OX

(Ω
p−1
Z ⊗OX) ∧ θ

∧θ→ Ap0 ∧θ→ Ap1 ∧θ→ · · ·

is exact. Indeed, it is enough to show that for allp, all j ≥ 2 the sequences

Grj−1Ω
p−1
Z

∧θ→ GrjΩ
p
Z

∧θ→ Grj+1Ω
p+1
Z

∧θ→ · · ·

0→ P0Ω
p−1
Z /JX.Ω

p−1
Z

∧θ→ Gr1Ω
p
Z

∧θ→ Gr1Ω
p+1
Z

∧θ→ · · ·
are exact, whereJX = Ker(OZ → OX). This follows from(∗) and the exactness of

0→ P0Ω
p
Z/JX.Ω

p
Z → τ1,∗Ωp

X
1 → τ2,∗Ωp

X
2 → · · · .

The claim follows. It implies that the maps

Ω
p

(X,X)/T
= Ω

p
Z ⊗OX

(Ω
p−1
Z ⊗OX) ∧ θ

→ Ap0 ⊂ Ap, ω �→ (−1)pθ ∧ ω

define a quasi-isomorphismΩ•
(X,X)/T

→ A•, hence a spectral sequence

E
−r,q+r

1 = Hq(X, GrrA
•) �⇒ Hq(X,Ω•

(X,X)/T
) .

Now we can of course repeat all this onZ − V instead ofZ, and restriction fromZ to
Z − V gives a canonical morphism between the respective spectral sequences. That this is
an isomorphism can be checked on the initial terms, and using the isomorphism(∗) this boils
down to proving that the restriction maps

Hp(X
j
,Ω•

X
j )→ Hp(Xj ,Ω•

X
j )

are isomorphisms where we setXj = X
j ∩ τ−1

j (X). But this is well known. The proof is
finished.
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3.6. Now assumeX is proper. Similar to the classical Hodge theory, the Hodge filtra-
tion on

Hp(X,Ω•
(X,X)/T

) = Hp(X,Ω•X/T )

obtained by stupidly filteringΩ•
(X,X)/T

should be meaningful. Another application of Propo-

sition 3.5 might be a Poincaré duality theorem. Suppose the underlying scheme ofX is of
pure dimensiond. Let ID = Ker(OX → OD) and define the de Rham cohomology with
compact support of(X,X)/T as

RΓ (X,ID ⊗Ω•
(X,X)/T

) .

It is a natural question to ask if this is dual toRΓ (X,Ω•
(X,X)/T

) = RΓ (X,Ω•X/T ). The key

would be as usual the construction of a trace mapHd(X,ID ⊗Ωd

(X,X)/T
)→ k.

3.7. Another application of semistableT -log schemes with boundary is the possibil-
ity to define the notion ofregular singularities of a given integrable log connection on a
semistableT -log schemeX, provided we have an embeddingX → X such that(X,X) is a
proper semistableT -log scheme with boundary.

3.8. Here is an application of the construction in 1.9 to the de Rham cohomology of
certain semistablek-log schemes (a simplified variant of the application given in [4]; in fact,
the present paper formalizes and generalizes a key construction from [4]). In 1.9 assume that
char(k) = 0 and thatM is the intersection ofall irreducible components ofY . Recall that
we constructed a morphism of log schemesVM → S = (Spec(k[q]), 1 �→ q). Fork-valued
pointsα → S (with pull back log structure) letV α

M = VM ×S α. Using theS-log scheme
with boundary(PM, VM) one can show that the derived category objectsRΓ (V α

M,Ω•
V α

M/α
)

(with Ω•
V α

M/α
the relative logarithmic de Rham complex; ifα 
= 0 this is the classical one) are

canonically isomorphic for varyingα. Namely, the canonical restriction maps

RΓ (PM,Ω•(PM,VM)/S)→ RΓ (V α
M,Ω•V α

M/α)

are isomorphisms for allα.
3.3 Crystalline cohomology. Let̃S be a scheme such thatO

S̃
is killed by a non-zero

integer,I ⊂ OS̃ a quasi-coherent ideal with DP-structureγ on it, and letL̃ be a fine log

structure onS̃. Let (S,L) be an exact closed log subscheme of(S̃, L̃) defined by a sub-DP-
ideal ofI and letf : (X,N )→ (S,L) be a log smooth and integral morphism of log schemes.
An important reason why log crystalline cohomology of(X,N ) over(S̃, L̃) works well is that
locally onX there exist smooth and integral, hence flat morphismsf̃ : (X̃, Ñ )→ (S̃, L̃) with
f = f̃ ×

(S̃,L̃)
(S,L). This implies that the crystalline complex ofX/S̃ (with respect to any

embedding system) is flat overOS̃ , see [5] 2.22, and on this property many fundamental
theorems rely.

Now letW be a discrete valuation ring of mixed characteristic(0, p) with maximal ideal
generated byp. For n ∈ N let Wn = W/(pn), k = W1 andK0 = Quot(W), and letTn be
the exact closed log subscheme ofS = W [Q] defined by the ideal(pn, q) (abusing previous
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notation we now take Spec(W) as the base schemeW of 1.1). ThusT = T1. We will often
view T -log schemes with boundary asTn-log schemes with boundary forn ∈ N.

LEMMA 3.9. Let (Y , Y )/T be a semistable T -log scheme with boundary. Then there
exist étale locally on Y smooth Tn-log schemes with boundary (Y n, Yn) such that (Y , Y ) =
(Y n, Yn)×TnT , the closed immersion (Y , Y ) → (Yn, Yn) is boundary exact, and such that
Ω1

(Yn,Yn)/Tn
is flat over OTn and commutes with base changes Tm→ Tn for m ≤ n.

PROOF. We may suppose that there is a strict and log smooth morphism

h : (Y , Y )→ (X,X) =
(

Spec

(
k[t1, . . . , ti2]
(t1, . . . , ti1)

)
, Spec

(
k[t1, . . . , ti1, t±i1+1, . . . , t

±
i2
]

(t1, . . . , ti1)

))
for some integers 1≤ i1 ≤ i2 such thatP = N i2 is a chart for(X,X) sending 1i �→ ti for
1 ≤ i ≤ i2 and such that the structure map is given by

Q = N→ P gp = Z i2 , q �→ (11, . . . , 1i1, ri1+1, . . . , ri2)

with somerj ∈ Z for i1+ 1 ≤ j ≤ i2. We lift (X,X) to

(Xn,Xn) =
(

Spec

(
Wn[t1, . . . , ti2]
(t1, . . . , ti1)

)
, Spec

(
Wn[t1, . . . , ti1, t±i1+1, . . . , t

±
i2
]

(t1, . . . , ti1)

))

using the same formulas for the log structure maps. Local liftings ofh to (Xn,Xn) result
from the classical theory, since ‘strict and log smooth’ is equivalent to ‘smooth on underlying
schemes’.

LEMMA 3.10. Let n ∈ N and let (Y , Y )→ (Xi,Xi) be boundary exact closed immer-
sions into smooth Tn-log schemes with boundary (i = 1, 2). Then there exist étale locally on
(X1×TnX2) factorizations of the diagonal embedding

(Y , Y )
ι→ (Z,Z)→ (X1×TnX2,X1 ×Tn X2)

with ι a boundary exact closed immersion, the map Z→ X1×TnX2 log étale, the projections
pi : Z → Xi strict and log smooth, and with the following property: Let D12 (resp. Di )
denote the DPenvelopes of (the underlying scheme morphism of ) Y → Z (resp. of Y → Xi),

and let qi : D12→ Di be the canonical projections. Then there exist ui1, . . . , uimi ∈ OD12

for i = 1 and i = 2 such that dui1, . . . , duimi form a basis of Ω1
Z/Xi

and such that the

assignments U
[k]
ij �→ u

[k]
ij (k ∈ N) induce isomorphisms

q−1
i ODi

〈Ui1, . . . , Uimi 〉 ∼= OD12

where on the left hand side we mean the DP envelope of the free polynomial ring.

3.11. Lemma 3.10 follows from Proposition 2.6, and the same proofs give variants of
Proposition 2.6 and Lemma 3.10 for more than two embeddings(Y , Y ) → (Xi,Xi) (and
hence with products with more than two factors). As in [7] one shows that the DP envelopes
of (Y , Y ) in chosen exactifications of these products (e.g., the DP envelopeD12 in Lemma
3.10) are independent of the chosen exactifications. For a given semistableT -log scheme
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with boundary(Y , Y ) we now define its crystalline cohomology relative toTn by the standard
method (cf. [5] 2.18): Choose an open coveringY =⋃

U∈U U and for each(U,U = Y ∩U)

a lift (Un,Un) as in Lemma 3.9. Taking products we get a simplicialTn-log scheme with
boundary(U

•
n, U

•
n ) which is an embedding system for(Y , Y ) over Tn. Let D

•
n be the DP

envelope of(Y , Y ) in (U
•
n, U

•
n ), i.e., the simplicial scheme formed by the DP envelopes of

local exactifications of(Y , Y )→ (U
•
n, U

•
n ) as in Lemma 3.10. Then we set

RΓcrys((Y , Y )/Tn) = RΓ (D
•
n,Ω

•
(Un,Un)/Tn

⊗O
D
•
n
) .

That this definition is independent of the chosen embedding follows from Lemma 3.10 and
the DP Poincaré lemma.

LEMMA 3.12. (a) For m ≤ n we have

RΓcrys((Y , Y )/Tm) ∼= RΓcrys((Y , Y )/Tn)⊗L
Wn

Wm .

(b) If Y is proper over k, the cohomology of

R lim←
n

RΓcrys((Y , Y )/Tn)

(resp. of RΓcrys((Y , Y )/Tn)) is finitely generated over W (resp. over Wn).

PROOF. Just as in [5] 2.22 one deduces from Lemmata 3.9 and 3.10 thatΩ•
(Un,Un)/Tn

⊗
O

D
•
n

is aWn-flat sheaf complex onD
•
n and this implies (a). IfY is proper overk it follows

thatRΓcrys((Y , Y )/T1) = RΓ (Y ,Ω•
(Y ,Y )/T1

) has finite dimensional cohomology overk since

eachΩj

(Y,Y )/T1
is coherent. Together with (a) we conclude as in the classical case.

3.13. Ogus [11] and Shiho [12] have defined logarithmic convergent cohomology in
great generality and “in crystalline spirit”. Here we content ourselves with the following
definition. LetE be a fineT -log scheme. LetT∞ be the formal log scheme(Spf(W), 1 �→
0). Choose an exact closed immersionE → G into a log smooth formalT∞-log scheme
G topologically of finite type overW . Associated toG is a K0-rigid spaceGK0 together
with a specialization mapsp to the special fibre ofG. The preimage sp−1(E) =]E[G of the
embeddedE, the tube ofE, is an admissible open subspace ofGK0. The logarithmic de Rham
complexΩ•G/T∞ on G gives rise, tensored withQ, to a sheaf complexΩ•GK0/T∞,K0

on GK0

and we set

RΓconv(E/T∞) = RΓ (]E[G,Ω•GK0/T∞,K0
) ,

an object in the derived category ofK0-vector spaces. If there are embeddingsE → G as
above only locally onE, one works with embedding systems.

Now let Y be a semistablek-log scheme with smooth irreducible components and let
M be the intersection of some of its irreducible components. EndowM with the structure of
T -log scheme induced fromY . Note thatM is not log smooth overT (unlessY has only a
single irreducible component) and its usual log crystalline cohomology is pathological; it does
not provide a canonical integral lattice in the log convergent cohomology ofM, as we will
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now construct one by another method. In 1.9 we constructed aS1-log scheme with boundary
(PM, VM) whereS1 is the exact closed log subscheme ofS defined by the ideal(p). Perform
the base change with the exact closed subschemeT of S1 defined by the ideal(q) to get
(P 0

M,V 0
M) = (PM ×S1 T , VM ×S1 T ). This is a semistableT -log scheme with boundary as

defined above.

THEOREM 3.14. There exists a canonical isomorphism

R lim←
n

RΓcrys((P
0
M,V 0

M)/Tn)⊗W K0 ∼= RΓconv(M/T∞) .

In particular, if M is proper, each RjΓconv(M/T∞) is finite dimensional.

PROOF. Step 1: The map is

R lim←
n

RΓcrys((P
0
M,V 0

M)/Tn)⊗W K0→ R lim←
n

RΓcrys((V
0
M,V 0

M)/Tn)⊗W K0

= R lim←
n

RΓcrys(V
0
M/Tn)⊗W K0

(i)∼= RΓconv(V
0
M/T∞)→ RΓconv(M/T∞)

where the left hand side in(i) is the usual log crystalline cohomology ofV 0
M/Tn and the

isomorphism(i) holds by log smoothness ofV 0
M/T . That this map is an ismorphism can be

checked locally.
Step 2: We may therefore assume that there exists a smooth (in the classical sense)

affine connected Spec(W)-schemeM̃ = Spec(B̃) lifting M and that the invertible sheaves
Fj |M on M are trivial (notation from 1.9); letvj be a generator ofFj |M . Furthermore we
may assume that the divisorD on M (the intersection ofM with all irreducible components
of Y not containingM) lifts to a (relative Spec(W)) normal crosssings divisor̃D onM̃. Let

ṼM = Spec(B̃[xj ]j∈I ) ,

P̃M = ×M̃(Proj(B̃[yj , xj ]j∈I ) .

Identifying the free variablexj with a lift of vj we view ṼM as a lift of VM ; identifying
moreover the free variableyj with a lift of 1OM

we view P̃M as a lift of PM ; identify-
ing a homogenous elements ∈ B̃[xj ]j∈I of degreen with the degree zero elements/yn

j of

B̃[y±j , xj ] we viewṼM as an open subscheme ofP̃M. As in 1.9 we factor the distinguished
elementa ∈ SymOM

(⊕(Fj )j∈I )(M) asa = a0.(
⊕

j∈I vj ) with defining equationa0 ∈ OM

of the divisorD in M. Lift a0 to a defining equatioña0 ∈ B̃ of D̃ in M̃. This ã0 also de-
fines a normal crossing divisor̃DṼ on ṼM. Setã = ã0

∏
j∈I xj ∈ B̃[xj ]j∈I and consider

the following normal crossing divisor oñPM: the union ofP̃M − ṼM with the closure (in
P̃M) of the zero set of̃a (in ṼM). It defines a log structure oñPM. Define a morphism
ṼM → S by sendingq �→ ã. We have constructed a lift of theS1-log scheme with bound-
ary (PM, VM) to aS-log scheme with boundary(P̃M, ṼM). Moreover, if we denote bỹT∞
the exact closed log subscheme ofS defined by the ideal(q), then theT̃∞-log scheme with
boundary(P̃0

M, Ṽ0
M) = (P̃M×S T̃∞, ṼM×S T̃∞) is a lift of theT -log scheme with boundary

(P 0
M,V 0

M).
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Step 3: Denote byP0
M (resp.V0

M, resp. M, resp. DV ) the p-adic completions

of P̃0
M (resp. of Ṽ0

M, resp. ofM̃, resp. ofD̃Ṽ ). Denote byP0
M,n

(resp.V0
M,n

, resp.
Mn, resp. DV ,n) the reduction modulopn. Let Ω•P0

M/T∞
be thep-adic completion of

the de Rham complex of thẽT∞-log scheme with boundary(P̃0
M, Ṽ0

M). Its reduction
Ω•P0

M/T∞
⊗ (Z/pn) modulopn is the de Rham complexΩ•P0

M,n/Tn
of theTn-log scheme with

boundary(P0
M,n

, Ṽ0
M,n

). Observe that the differentials onΩ•P0
M/T∞

pass to differentials on

Ω•P0
M/T∞

⊗OP0
M

OM where we use the zero sectionM→ P0
M. Let Ω•P0

M/T∞
⊗ Q be the

complex on the rigid spaceP0
M,K0

obtained by tensoring withK0 the sections ofΩ•P0
M/T∞

over open affine pieces ofP0
M. Similarly defineΩ•P0

M/T∞
⊗OP0M

OM ⊗ Q. By definition

we have
RΓconv(M/T∞) = RΓ (]M[PM,Ω•P0

M/T∞
⊗ Q) ,

R lim←
n

RΓcrys((P
0
M,V 0

M)/Tn)⊗W K0 = R lim←
n

RΓ (P0
M,n,Ω

•
P0
M,n

/Tn
)⊗W K0 .

In view of

RΓ (]M[PM,Ω•P0
M/T∞

⊗OP0M
OM ⊗ Q)

= R lim←
n

RΓ (P0
M,n,Ω

•
P0
M,n

/Tn
⊗OP0

M,n

OMn
)⊗W K0

it is therefore enough to show that the maps

fn : RΓ (P0
M,n,Ω

•
P0
M,n

/Tn
)→ RΓ (P0

M,n,Ω
•
P0
M,n

/Tn
⊗OP0

M,n

OMn
) ,

g : RΓ (]M[PM,Ω•P0
M/T∞

⊗ Q)→ RΓ (]M[PM,Ω•P0
M/T∞

⊗OP0
M

OM ⊗ Q)

are isomorphisms.
Step 4: LetDV ,n =

⋃
l∈L Dn,l be the decomposition ofDV ,n into irreducible compo-

nents. LetE ′n be the closed subscheme ofV0
M,n

defined by
∏

j∈I xj ∈ Γ (V0
M,n

,OV0
M,n

) and

let En be the closure ofE ′n in P0
M,n

. LetEn =⋃
j∈I En,j be its decomposition into irreducible

components. For a pairP = (PI , PL) of subsetsPI ⊂ I andPL ⊂ L let

GP =
( ⋂

j∈PI

En,j

)
∩

( ⋂
l∈PL

Dn,l

)
,

so we drop reference ton in our notation, for convenience. Also for convenience we denote
the sheaf complexΩ•P0

M,n
/Tn

on P0
M,n

simply by Ω•. For two pairsP,P ′ as above with

PI ∪ PL 
= ∅, with PI ⊂ P ′I andPL = P ′L consider the canonical map

wP,P ′ : Ω• ⊗OGP
→ Ω• ⊗OGP ′

of sheaf complexes onP0
M,n

. We claim that the mapRΓ (P0
M,n

, wP,P ′) induced bywP,P ′

in cohomology is an isomorphism. For this we may of course even assumeP ′I = PI ∪ {j0}
for somej0 ∈ I , j0 /∈ PI . In theOGP ′ -moduleΩ1 ⊗ OGP ′ we fix a complementN of the
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submodule generated by (the class of) dlog(xj0) ∈ Γ (P0
M,n

,Ω1⊗OGP ′ ) as follows. We use
the identification

(Ω1
M̃(log(D̃))⊗OGP ′ )⊕

(⊕
j∈I OGP ′ .dlog(xj )

)
OGP ′ .dlog(ã)

= Ω1⊗OGP ′

(with Ω1
M̃(log(D̃)) the differential module of(M̃, (log str. def. byD̃))→ (Spec(W), triv.)).

If PL 
= ∅ we may assume that we can factor ourã0 ∈ B̃ from above as̃a0 = ã′0h with
h ∈ B̃ whose zero set inM̃ = Spec(B̃) reduces modulopn to an irreducible component of⋃

l∈PL
Dl,n. We may assume that theOM̃-submodule ofΩ1

M̃(log(D̃)) generated by dlog(h)

admits a complementN ′. Then we get the isomorphism

(N ′ ⊗OGP ′ )⊕
( ⊕

j∈I
OGP ′ .dlog(xj )

)
∼= Ω1⊗OGP ′

(use dlog(ã) = dlog(h)+ dlog(ã/h)). If there existsj ′ ∈ PI we get the isomorphism

(Ω1
M̃(log(D̃))⊗OGP ′ )⊕

( ⊕
j∈I−{j ′}

OGP ′ .dlog(xj )

)
∼= Ω1⊗OGP ′

(use dlog(ã) = dlog(xj ′)+ dlog(ã/xj ′)). In both cases, dropping thej0-summand in the left
hand side we getN as desired. We see that theOGP ′ -subalgebraN• of Ω• ⊗OGP ′ generated
by N is stable for the differentiald, and that we have

Ω• ⊗OGP ′ = N• ⊗Wn C•

as complexes, whereC• is the complexC0 = Wn, C1 = Wn.dlog(xj0) (here dlog(xj0) is noth-
ing but a symbol),Cm = 0 for m 
= 0, 1, and zero differential. LetR = Proj(Wn[yj0, xj0]).
We have a canonical mapGP → R. Let D• be theOR-subalgebra ofΩ• ⊗OGP

generated
by dlog(xj0) ∈ Γ (P0

M,n
,Ω1⊗OGP

). It is stable for the differentiald, and we find

Ω• ⊗OGP
= N• ⊗Wn D•

as complexes, whereN• is mapped toΩ• ⊗OGP
via the natural map (and section ofwP,P ′)

Ω• ⊗OGP ′ → Ω• ⊗OGP

induced by the structure mapEn,j0 →Mn. This map also induces a mapC• → D•, and it is
enough to show that the latter induces isomorphisms in cohomology. But

Hm(P0
M,n,D

•) ∼= Hm(P1
Wn

,Ω•
P1

Wn

(log{0,∞})) ,

which is Wn if 0 ≤ m ≤ 1 and zero otherwise, because of the degeneration of the Hodge
spectral sequence ([7] 4.12) andΩ1

P1(log{0,∞}) ∼= OP1. SoC• andD• have the same coho-
mology.

Step 5: We now show thatfn is an isomorphism. LetFI = ⋃
j∈I En,j , let FL =⋃

l∈L Dn,l = DV ,n andFI,L = FI ∩ FL. All the following tensor products are taken over
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OP0
M,n

. We will show that in

Ω• = Ω• ⊗OP0
M,n

α−→ Ω• ⊗OFI

β−→ Ω• ⊗OG(I,∅) = Ω• ⊗OMn

bothα andβ induce isomorphisms in cohomology. The exact sequences

0−→ OP0
M,n
−→ OFJ

⊕OFL
−→ OFI,L

−→ 0

0−→ OFI
−→ OFI

⊕OFI,L
−→ OFI,L

−→ 0

show that, to prove thatα induces cohomology isomorphisms, it is enough to prove that
Ω• ⊗ OFL

→ Ω• ⊗ OFI,L
induces cohomology isomorphisms. To see this, it is enough to

show that bothΩ• ⊗OFL

γ→ Ω• ⊗OFL∩G(I,∅) andΩ• ⊗OFI,L

δ→ Ω• ⊗OFL∩G(I,∅) induce
cohomology isomorphisms. Consider the exact sequence

0−→ OFL
−→

⊕
l∈L

OG(∅,{l}) −→
⊕
L′⊂L

|L′|=2

OG(∅,L′) −→ · · · −→ OG(∅,L)
−→ 0 .(∗)

Comparison of the exact sequences(∗)⊗Ω• and(∗)⊗OFL∩G(I,∅) ⊗Ω• shows that to prove
thatγ induces cohomology isomorphisms, it is enough to show this forΩ•⊗OG(∅,L′) → Ω•⊗
OG(I,L′) for all ∅ 
= L′ ⊂ L; but this has been done in Step 2. Comparison of(∗)⊗OFI,L

⊗Ω•
and(∗)⊗OFL∩G(I,∅) ⊗Ω• shows that to prove thatδ induces cohomology isomorphisms, it

is enough to show this forΩ• ⊗OFI∩G(∅,L′)
εG→ Ω• ⊗OG(I,L′) for all ∅ 
= L′ ⊂ L. Consider

the exact sequence

0−→ OFI
−→

⊕
j∈I

OG({j},∅) −→
⊕
I ′⊂I|I ′|=2

OG(I ′,∅) −→ · · · −→ OG(I,∅) −→ 0 .(∗∗)

The exact sequence(∗∗)⊗OFI∩G(∅,L′)⊗Ω• shows that to prove thatεG induces cohomology
isomorphisms, it is enough to show this forΩ•⊗OG(I ′,L′) → Ω•⊗OG(I,L′) for all ∅ 
= I ′ ⊂ I ;
but this has been done in Step 2. The exact sequence(∗∗) ⊗Ω• shows that to prove thatβ
induces cohomology isomorphisms, it is enough to show this forΩ•⊗OG(I ′,∅) → Ω•⊗OG(I,∅)
for all ∅ 
= I ′ ⊂ I ; but this has been done in Step 2. The proof thatfn is an isomorphism is
complete.

The proof thatg is an isomorphism is essentially the same: While Step 4 above boiled
down toHm(P1

Wn
,Ω•

P1
Wn

(log{0,∞})) = Wn if 0 ≤ m ≤ 1, and= 0 for otherm, one now uses

Hm(D0
K0

,Ω•
D0

K0

(log{0})) = K0 if 0 ≤ m ≤ 1, and= 0 for otherm (hereD0
K0

is the open unit

disk overK0). The formal reasoning from Step 5 is then the same. The theorem is proven.
3.15. Also unionsH of irreducible components ofY are not log smooth overT (unless

H = Y ) and their usual log crystalline cohomology is not useful. However, ifH♥ denotes
the complement inH of the intersection ofH with the closure ofY −H in Y , then(H,H♥)
is a semistableT -log scheme with boundary. There is natural map

h : RΓconv(H/T ) −→ R lim←
n

RΓcrys((H,H♥)/Tn)⊗W K0 ,
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constructed as follows. We say aT∞-log scheme is strictly semistable if all its irreducible
components are smoothW -schemes and if étale locally it is the central fibre of a morphism
Spec(W [t1, . . . , tn])→ Spec(W [t]), t �→ t1 · · · tm (somen ≥ m ≥ 1), with the log struc-
tures defined by the vanishing locus oft resp. oft1 · · · tm. We find an étale coverY = {Yi}i∈I
of Y and for eachi ∈ I a semistableT∞-log schemeYi together with an isomorphism
Yi ⊗W k ∼= Yi . Taking suitable blowing ups in the products of theseYi (a standard pro-
cedure, compare for example [8]) we get an embedding system forY overT∞ where a typical
local pieceYJ = ∏

Y (Yi)i∈J of Y is exactly embedded asYJ → YJ with YJ a semistable
T∞-log scheme and such there is a closed subschemeHJ of YJ , the union of some of its
irreducible components, such thatH ×Y YJ = HJ ×YJ

Y . Now YJ is log smooth over
T∞, hence itsp-adic completionŶJ may be used to computeRΓconv(H ×Y YJ /T ). On
the other hand, letH♥J ⊂ HJ be the open subscheme which is the complemet inYJ of all

irreducible components ofYJ which are not fully contained inHJ . Then (HJ ,H♥J ) is a
smoothT∞-log scheme with boundary, hence itsp-adic completion may be used to compute
R lim←

n
RΓcrys((H ×Y YJ ,H♥ ×Y YJ )/Tn)⊗W K0. By the proof of [2] Proposition 1.9 there

is a natural map from the structure sheaf of the tube]H ×Y YJ [ŶJ
to the structure sheaf of

thep-adically completed DP envelope, tensored withQ, of H ×Y YJ in HJ . It induces a map
between our de Rham complexes in question, hence we geth. By the same local argument
which showed the isomorphy of the mapg in the proof of Theorem 3.14 we see thath is an
isomorphism; the work on local lifts ofP 0

M there is replaced by work on local lifts ofY here.
In particular, ifH is proper, eachRjΓconv(H/T∞) is finite dimensional.

3.16. Supposek is perfect. Then there is a canonical Frobenius endomorphism on the
log schemeTn (cf. [5] 3.1): The canonical lift of thep-power map onk to an endomorphism
of Wn, together with the endomorphism of the log structure which on the standard chartN is
multiplication withp. We can also define a Frobenius endomorphism onRΓcrys((Y , Y )/Tn)

for a semistableT -log scheme with boundary(Y , Y ), because we can define a Frobenius
endomorphism on the embedding system used in 3.11, compatible with that onTn. Namely,
on a standardTn-log scheme with boundary(Xn,Xn) as occurs in the proof of Lemma 3.9
we act on the underlying scheme by the Frobenius onWn and byti �→ t

p
i (all i), and on

the log structure we act by the unique compatible map which on our standard chartN i2 is
multiplication withp. Then we lift these endomorphisms further (using the lifting property
of classical smoothness) to Frobenius lifts of ourY -covering and hence to the embedding
system.

3.17. We finish with perspectives on possible further developments.
(1) Mokrane [9] defines the crystalline cohomology of a classically smoothk-scheme

U as the log crystalline cohomology with poles inD of a smooth compactificationX of U

with D = X−U a normal crossing divisor. This is a cohomology theory with the usual good
properties (finitely generated, Poincaré duality, mixed ifk is finite). He shows that under
assumptions on resolutions of singularities, this cohomology theory indeed only depends on
U . We suggest a similar approach to define thecrystalline cohomology of a semistablek-log
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schemeU : Compactify it (if possible) into a proper semistableT -log scheme with boundary
(X,U) and take the crystalline cohomology of(X,U).

Similarly, classical rigid cohomology as defined by Berthelot [1] works with compacti-
fications. Also here, to define log versions it might be useful to work with log schemes with
boundary to avoid hypotheses on existence of compactifications by genuine log morphisms.

(2) We restricted our treatment of crystalline cohomology to that of semistableT -log
schemes with boundary(Y , Y ) relative toTn. For deformations ofT = T1 other thenTn

— for example,(Spec(Wn), 1 �→ p) — we have at present no suitable analogs of Lemma
3.9. However, such analogs also seem to lack inidealized log geometry: for an ideally log
smoothT -log scheme (like the union of some irreducible components of a semistablek-log
scheme in the usual sense), there seems to be in general no lift to a flat and ideally log smooth
(Spec(Wn), 1 �→ p)-log scheme. Some more foundational concepts need to be found.

Let us nevertheless propose some tentative definitions of crystalline cohomology for
more general fine log schemesT and more generalT -log schemes with boundary (without
claiming any results). Suppose thatp is nilpotent inOW and let(I, δ) be a quasicoherent DP
ideal inOW . All DP structures on ideals inOW -algebras are required to be compatible with
δ. Let T0 be a closed subscheme ofT and letγ be a DP structure on the ideal ofT0 in T .
Let (X,X) be aT -log scheme with boundary, and letX0 be the closure inX of its locally
closed subschemeX ×T T0. We sayγ extends to(X,X) if there is a DP structureα on the
ideal of X0 in X, such that the structure mapX → T is a DP morphism (ifα exists, it is
unique, becauseOX → i∗OX is injective). Then we say(X,X) is aγ -T -log scheme with
boundary. For aγ -T -log scheme(X,X) we can define the crystalline site and the crystalline
cohomology of(X,X) overT as in the case of usual log schemes.

Example. LetT 0 ⊂ T be a closed immersion. SupposeT is the DP envelope ofT 0 in
T andT0 ⊂ T is the closed subscheme defined by its DP ideal; we haveT0 = T 0 if δ extends
to T . Now if (X,X) is a T -log scheme with boundary, we obtain aγ -T -log scheme with
boundary(X,X) by taking asX the DP envelope of the schematic closure of the subscheme
X ×T T 0 of X.
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