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Abstract. We introduce the notion of a relative log scheme with boundary: a morphism
of log schemes together with a (log schemeiti) dense open immersion of its source into a
third log scheme. The sheaf of relative log differentials naturally extends to this compactifi-
cation and there is a notion of smoothness for such data. We indicate how this weak sort of
compactification may be used to develop useful de Rham and crystalline conomology theories
for semistable log schemes over the log point over a field which are not necessarily proper.

Introduction. Let X be a smooth variety over a field It is well known that for the
study of the cohomology of — or even for its very definition (e.g., crystalline [9], rigid [1]),
or the definition of nice coefficients for it (e,gntegrable connectionsith regular singular-
ities) — it is often indispensable to take into account also a bounbasy X — X of X ina
smooth compactificatioX X of X. If D C X is a normal crossing divisor o¥, the coho-
mology can conveniently be studied in the framework of logarithmic algebraic geometry. On
the other hand, log geometry proved also useful to define the cohomology of proper normal
crossing varietieX overk which occur as a fibre of a semistalfimily, or more generally are
d-semistable ([6]), see [13], [8]. In the present paper we attempt to develop a concept in log
geometry particularly suitable to treat the mixed situation: given a non-prbpemistable
normal crossing variet¥ / k, we want to explain how an open immersionXinto a proper
k-schemeX can be used to investigate the cohomologykothe stress lying on the fact that
we avoid the assumption thatbed-semistable and require a weaker condition instead.

Fix a base schem#® for all occuring schemes. Lét be a log scheme. The central
definition of this note is that of &-log scheme with boundary: A morphism of log schemes
X — T together with an open log schematically dense embedding of log sclienes> X.
For brevity, we often denote it simply X, X). Morphisms off’ -log schemes with boundary
are defined in an obvious way. There are notions of exact and of boundary exact closed
immersions of7-log schemes with boundary. The relative logarithmic de Rham complex
£2% 7 on X extends canonically to a complex®- on X. These definitions are justified

(X,X)/T
by a theory of smoothness fai-log schemes with boundary, well suited for conomology
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purposes. Roughly, @-log scheme with boundargX, X) is said to be weakly smooth if it
satisfies a lifting property for morphisms from a nilpotent exact closed immersid@nlofy

schemes with boundary toX, X). Weak smoothness implies thﬂ’t(‘Y X)T is locally free.

(X, X) is said to be smooth if it is weakly smooth and if for boundary exact closed immersions
(Y,Y) — (V,V) of T-log schemes with boundary, and morphisisY) — (X, X) of
T-log schemes with boundary, the projectiokisc;V — V lift log étale locally near the
image ofY in Xx7V to strict and smooth morphisms of log schemes (see the text for the
definition of Xx7 V). This definition is of course geared to its application to (crystalline)
cohomology. However, our main theorem gives a convenient criterion for smoothness in terms
of morphisms of monoids, very similar to Kato’s criterion for usual log smoothness. We
emphasize that even if : X — T actually extends to a morphism of log schemges
X — T, our notion of smoothness is more gener@X, X) might be smooth as #&-log
scheme with boundary whilg is not a log smooth morphism in the usual sense (or even not
ideally smooth as defined by Ogus [10]). See for example the discussion at the beginning of
Section 3. In this regard, the theme of this paper is that (usual) log smoothness in an ‘interior’
X c X of a morphism of log schemeg : X — T should already ensure thathas nice
cohomology. (A similar principle underliebé definition of rigid cohomology [1].) We hope
that our definitions are useful for a definition of log rigid cohomology, in the case of nontrivial
log structures on the base; in special cases they already turned out to be so, see [4].

Section 1 contains the basic definitions andspres several examples. The main section
is the second one which is devoted to smoothness. The main theorem is the smoothness cri-
terion 2.5. In Section 3 we discuss the example of semistaldg schemes with boundary
(hereT is the log point over a field). These are smooth in the sense of Section 2 and we try
to demonstrate how they can be used as substitutes for compactifications by usual semistable
properk-log schemes. We indicate several apations to de Rham cohomology and crys-
talline cohomology.

1. T-logschemeswith boundary.

1.1. We fix a base scheni®; all schemes and morphisms of schemes are to be un-
derstood oveW. All morphisms of schemes are quasi-separated. We also assume that all
morphisms of schemes are quasi-compact: the only reason for this additional assumption is
that it implies the existence of schematic images (=“closed images”) of morphisms: see [3]
I, 9.5. We say that an open immersion X — X is schematically dense X coincides
with the schematic image @éf For the basic notions of log algebraic geometry we refer to
K. Kato [7]. Log structures are understood for the étale topology. By abuse of notation, for
a schemeX and a morphism of monoids : N — Ox(X) (whereOx(X) is understood
multiplicatively), we will denote by(X, «) the log scheme with underlying sche&evhose
log structure is associated with the chartFor a log scheméX, Ny) = (X, Nx — Ox)
we will often just write X if it is clear from the context to which log structure ghwe re-
fer, i.e., in those cases the log structure is dropped in our notation. Similarly for morphisms
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of log schemes. Amxactification of a closed immersion of fine log schemgs— X is a

factorizationY = Z £ X with i an exact closed immersion arfdlog étale. Recall that
a morphism of log schemeg : (X, Nx) — (¥, Ny) is said to bestrict if f*Ny — Ny

is an isomorphism. For a monoid we denote byV9P the associated group. For a finitely
generated integral monoid we let

WiQl =W XSpeez) SpecZ[Q])
and give it the canonical log structure for whi¢his a chart.

DEFINITION 1.2. (i) A morphism of log schemeg : (X, Nx) — (¥, Ny) factors
over thelog schematic image (X, N5) of f which is defined as follows: The underlying
schemeX is the schematic image of the morphism of schekies> Y underlying f. Let

X 5 X EA Y be the corresponding morphisms of schemes. The log strusfirés by
definition the image of the natural composite map of log structﬁfke/sfy — iy f*Ny —
iv+Nx on X. Herei, denotes the functquush forward log structure.

(i) A morphism of log schemeg : (X, Nx) — (¥, Ny) is said to bdog schemat-
ically dominant if (Y, Ny) coincides with the log schematic image ff it is said to belog
schematically dense if in addition the underlying morphism of schemes is an open immersion.

A morphism of log schemes: (X, Nx) — (X, Ny) is log schematically dense if and
only if the underlying morphism of schemes is a schematically dense open immersion and the
canonical morphism of log structurd$; — i.Nx is injective.

LEMMA 1.3. Let (X, Ny) bealog schemeandi : X — X a schematically dense
open immersion of its underlying schemeinto another scheme X. Denote by i+ shVx the sheaf
theoretic push forward of the sheaf of monoids A'y. There exists a unique map i, spNy —
(i:Nx)9P compatible with the natural maps i, Ny — i.spNx and i, Ny — (@.Nx)%.

PROOF  First observe thaby — i,Ox is injective, so henceforth we regaf¥; as a
subsheaf of,Ox. Also note(i,Ox)* = i,(O%). It follows that we can view,Nx as the
subsheaf of, sh\Vx formed by those sections which map®g- under the map : i, shNy —
i-Ox which we get by functoriality of sheaf theoretic push forward. To prove the lemma it
is enough to show that shNVy arises fromi. Ny by inverting those sectiona for which
the restrictionsx(m)|x are invertible. But this is the case: Takec i. spNx. SinceiOx
arises fromOy by inverting those sections for which the restrictionskt@are invertible, we
find f, g € Ox with g|x invertible and witha(m) = ¢g~1f. We sawg = a(n) for some
n € i,Ny. Nownm € i, Ny and our claim and hence the lemma follows.

LEMMA 1.4. The log schematic image (X, N5) of a morphism of fine log schemes
f:(X,Nx) — (¥, Ny) isafinelog scheme.
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PROOF  The coherence al5 follows from that of Ny. We haveNy C ixNx C
i sh\Vx, for the second inclusion see the proof of Lemma 1.3. Therefore the integrality of
Ny implies that ofV5.

DEFINITION 1.5. Alog schemewith boundaryis a triple((X, Nx), (X, N), i) where
i : (X,Nx) — (X, N5) is alog schematically dense morphism such Ay = Nx and
(isNx)9P = /\/%p. Let (T, N7) be a log scheme. AT, N7)-log scheme with boundary is a
log scheme with boundary(X, Nx), (X, N5), i) together with a morphism of log schemes
g: (X, Nx)— (T,N7).

We think of X — X as a boundary af. We will often dropi, ¢ and the log structures from
our notation and just speak of tfielog scheme with boundargX, X). So in the following
definition which justifies the whole concept.

DEerINITION 1.6. The sheaf of relative differentials offalog scheme with boundary
(X, X) is defined as follows: Denote hythe composite map

bshg N7 = sV — (NP = NP

where the second arrow is the one from Lemma 1.3.!2%}‘” be the sheaf of differentials

1

of the morphism of underlying schem&s— W. ThenQ(Y 0T

is the quotient of
1 - p
Q3 © (Ox @2 NT)
divided by theO¢-submodule generated by local sections of the forms
(da(a),0) — (0,a(a) ®a) witha € N5
0,1®a) witha € Im(z).

We define the de Rham complﬂ('y)x)ﬁ
usual.

by taking exterior powers and the differential as

LEMMA 1.7. Let (X, X) bea T-log scheme with boundary.

(1) Therestriction £2 X1 /T| x haturally coincides with the usual sheaf of relative log-
arithmic differentials of g : (X, Nx) — (T, N7).

(2) Suppose g extends to a morphism of log schemes g : (X, Ny) — (T, N7). Let us
assume the following conditions:

(i) Theunderlying scheme of T is the spectrum of a field.

(i) For any étale morphism V. — X with V connected, the scheme V = V xx X is
also connected.
Then .Q(lY X)T naturally coincides with the usual sheaf .Q% T of relative logarithmic differ-
entialsof 7.

PrROOF (1) is immediate. (2) and its proof were suggested by the referee. Weite
Speck). By base change, we may assume that separably closed. It suffices to prove that
the morphismg N7 — i..shg~*N7 is an isomorphism. Let be a geometric point ok
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and letV be the strict Henselization of atx. PutV = V x% X. Then, by the assumption
(i), we see that botly andV are connected. Hence we have

(T W7y = I'(V, 57 W7) = (T, N7)
(ixshg *N7)e = T(V, g *N7) = (T, N1)
and the lemma follows.

One class of examples where the condition (i) + (ii) of Lemma 1.7 (2) holds true are the
semistabler’-log schemes discussed in Section 3; but for them, the concl@}g%ﬁ =
.Q%/T (if g extends t@) is immediate anyway. Undoubtly, §fextends tgj, the conclusion of
Lemma 1.7 (2) holds under much more geneaalditions than the stadecondition (i) + (ii).

1.8 Examples. The following examples will be discussed later on.

(a) LetQ, P be finitely generated monoids and jet 0 — P9 be a morphism. Let
P’ be the submonoid aP9% generated by’ and Im(p). Then

(W[P], W[P'])
isaT = W[Q]-log scheme with boundary.

(b1) LetQ = N with generator € Q. Letr,...,t be the standard generators of
N”. Let X = W[N"], the affiner-space oveW with the log structure defined by the divisor
Vg----- t). Bymeans of +—> 1 - ---- t. thisis aT = W[Q]-log scheme. We compactify
X by

X = W xspeez) (XSpecz) (ProiZlio, i) 1<i<r) = ()"
and take for\y; the log structure defined by the normal crossing divisor

(X = X)U (theclosureoV(t1-...- ) C XinX).

(b2) LetX andT be asin (b1). Another compactifiction &fis projectiver-space, i.e.,
X = Py similarly we takeN5; as the log structure defined by the normal crossing divisor
(X' — X) U (the closure oV (t1 - - - - - t) CXinX).

(c) Letk be a field,W = Speck) and let againQ = N with generatorr € Q.
The following type ofS = W[Q]-log scheme with boundary (which generalizes 1.8(b1)
if W = Speck) there) gives rise, by base change> 0, to theT-log schemes with boundary
discussed in Section 3 below. LEtbe a smoothV-schemeX C X a dense open subscheme,
D = X—X. LetX — S be aflat morphism, smooth away from the origin. Ketbe the fibre
above the origin, leK( be its schematic closure i and suppose thad U X is a divisor
with normal crossings oX .

(d) Letk be afield andlef = (Speck), N 2 k), the standard logarithmic point ([6]).
Let Y be a semistable-log scheme in the sense of [8] 2.4.1 or [6]. Thatlids a fineT-log
scheme(Y, Ny) satisfying the following conditions. Etale locally dnthere exist integers
i > 1and charttN! — Ay (Y) for Ay such that

(i) if on the log schemd& we use the chall — k,1 — O, the diagonal morphism

N 2% N is a chart for the structure morphism of log scherties- T, and
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(ii) the induced morphism of schemes
Y — Speck) X Speck) Speck(ts, ..., 5]

is smooth in the classical sense. D&be the union of some irreducible componenty atnd
let X be the open subschemeXfwhich is the complement il of the union of all irreducible
components not contained i ThenX inherits a structure of -log scheme, but it is not log
smooth ovelT. However, we can viewX, X) as aT-log scheme with boundary (forgetting
that the morphisnX — T actually extends t&): as such it is what we will calémooth
below.

1.9. A concrete example for 1.8(c) (see [4] for more details). Agairk le¢ a field
and letS = W[N] with generatoly of N. Let Y be a semistablé-log scheme with set of
irreducible componentd’;} jcx all of which we assume to be smooth. As in [7] p. 222/223
we define for every € R an invertibleOy-moduleF; as follows: Let\y, ; be the subsheaf
of the log structureNy of Y which is the preimage of KéOy — Oy;). This Ny, is a
principal homogeneous space o¢&f, and its associated invertibi@y-module isF;. Now
fix a subsefl ¢ Rwith |I| =i andletL = R — I. SupposeV = ﬂje, Y; is nonempty. Let

Vi = SpeeSymy,, (B(F))jer)) = xm(SpeeSymy,, (Fj)))jer -

By its definition, the affine vector bundlé, over M comes with a natural coordinate cross,
a normal crossing divisor oWy,. The intersection oM with all irreducible components of

Y not containingM is a normal crossing divisab on M. Let Di, C Vj be its preimage
under the structure mapy, — M and letDy C V), be the union ofD/V with the natural
coordinate cross iVy. Then Dy is a normal crossing divisor ofy;. Let Ay,, be the
corresponding log structure dny,. There exists a distinguished element I"(Vy;, Opy)
havingDy as its set of zeros and such that the assignment a defines a morphism of log
schemed/y; — S with the following property: The inducestlog scheme&M, Ny,,|u) on

the zero sectiod — V), coincides with theS-log scheme&M, Ny|M) induced byY. This

a € I'(Vy, On) = Symp,, (B(F;) jer)(M) can be described as follows: Denote the image
of ¢ € Ns(S) (hereNjs is the log structure af) under the structure mads (S) — Ny (Y) —
Ny|u (M) again byg. Locally onM it can be (non-uniguely) factored gs= 1 ]’[je, vj
wherev; is a (local) generator of ;| andrg maps to a (local) defining equatiap € Oy of

the divisorD in M. Thena = ao.(@je, vj) € Symp,, (@je, F;)(M) is the wanted element,
globally well defined. We can view), in a canonical way as a (schematically) dense open
subscheme of

Py = xy (ProjSymp,, (Om @ F)))) jer
by identifying a homogenous sectiane Symy,  (F;) of degreen with the degree zero
sections/l'gQM of Symp,, (Ou @ ]-",-)[15}4]. We give Py, the log structure defined by the

normal crossing divisotPy, — Vi) U Dy, whereDy is the closure ofDy in Py. Then
(Py, Vi) is aS-log scheme with boundary.
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1.10. Amorphism of T-log schemes with boundarg : (X, X) — (X, X) is a mor-

phism of log schemes

fi(X,Ny) - (Y/,N'y/)
with X ¢ f~1(X’) and restricting to a morphism @f-log schemes$X, Nx) — (X', Nx/).
We have a fully faithful functor from the category dflog schemes to the category Bflog
schemes with boundary. Namely, takeo (Y, Y). Beware tha{(T, T) is not a final object
in the category ofl'-log schemes with boundary. We have obvious base change functors
for morphismsW’ — W to our underlying base schenié and everything we develop here
behaves well with respect to these base changes. We alsbdmmehange functorsfor closed
immersions of log schemes T’ — T as follows: if (X, X) is aT-log scheme with boundary,
let X7 = X x7 T’ be the fibre product in the category of log schemes. Define the log scheme
X7 as the log schematic image of the morphism of log schexies> X. Then(X7/, X7/)
is aT’-log scheme with boundary.

1.11. Forthe rest of this paper we always assume that the log séhenfiee. All fibre
products of fine log schemes are taken in the category of fine log schemes, unless specified
otherwise. AT -log scheme with boundaiyX, X) is said to bdineif the log schem&X, Ny)
is fine.

LEMMA 1.12. Inthe category of fine T-log schemeswith boundary, products exist.

PROOF  Given fineT-log schemes with boundarX 1, X1) and(X», X»), set
(X1, X1) x7 (X2, X2) = (X1x7X2, X1 X7 X2).

HereX1 x 1 X» denotes the fibre product in the category of fidbg schemes, anli; x7 X2

is defined as the log schematic imageXaf x7 X» — X1 xw X2. (S0 X1x7X> depends
also onX1 and X, contrary to what the notation suggests. Note that by the construction [7]
2.7, the scheme underlying; xr X2 is a subscheme of the scheme theoretic fibre product,
hence is a subscheme of the scheme under¥fingcw X»2.) ThatX1x7X> is fine follows
from Lemma 1.4.

1.13. ltis to have fibre products why we did not require= f~1(X’) in the definition
of morphisms of7-log schemes with boundary. If the structural map from the underlying
scheme of the log schenfeto W is an isomorphism, one haX, X) = (X, X) xr (T, T).
However, we stress that in contrast to taking the base change with the idEntityT (cf.
1.10), the operation of taking the fibre product with fhdog scheme with boundaiy’, ') is
non-trivial in general. For example, léx = N with generatoy € Q, letT = W[Q] and let
U1, U> be the standard generatorshtd. Fori € Z letX; = W[N?], and letX; = W[Z®N],
the open subscheme af; whereU; is invertible. Define a structure @f-log scheme with
boundary or(X;, X;) by sending; — UUs. Then

(X, Xi) = (X, Xi) xr (T, T) if i>0
(Xi, Xi) & (Xi, X;) xr (T, T) if i <O0.
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Indeed, X; x 7T is the closure inW[Q @ N2] of the closed subschemié(g — U{Uz) of
W[Q ®Z @ N]. If i > 0 this is the subschemé(g — UiU>) of W[Q & N?] which maps
isomorphically toW [N2]. If i < Othis is the subschenie(qU; " — Uz) of W[Q &N 2] which
does not map isomorphically 8/ [N?].

1.14. Let(X, X) be a fineT-log scheme with boundary. ghart (Q — P9 > P) for
(X, X) overT isacharth : P — I'(X, Ny) for (X, N5), acharto : Q — I'(T, Ny) for
(T, N7) and a morphismp : 9 — P9 such that\% o p = 7 0 o, Wherer : I'(T, N7) —
r'X,Ny) —» rix, /\/%p) is the composite of the structural map with that from Lemma 1.3.

LEMMA 1.15. Etalelocally on X, chartsfor (X, X) exist.

PROOF (corrected version due to the referee). We may by [7] assumefhabtfy) has
achartg: G — I'(X, N5) and(T, N7) has a charg : Q — I'(T, N7). Letx € X and let
N5 ; be the stalk of\y; at the separable closureof x. Lety be the composite

Q%5 I'(T,N1) > T(X, NP - NP
Choose generatoig, . .., g, of Q and elements;, y; € Nyi (1 < i < m) such that
o(gqi) = x,'yl._l. Next, choose elements, b; € G andu;, v; € O;x (1 <i < m) satisfying
g(a;) = x;u; andg(b;) = y;v;: these elements exist becausis a chart. Now let
f : GgpEB Qgpeazm DZ" - ng}
be the morphism defined by

(h.q. kg, (D) = g% ()e%(g) [ Tuf T
i=1 i=1
and defineP by P = f*l(/\/y)f). Thenf|p : P — N5 x extends to a chart aroundby [7]
2.10. It remains to prove that the canonical inclus@n— G ¢ QP @ Z" & Z™,q >
(1, 4,0, 0) actually takes values i?9P. Write a giveng € Q asq =[]/, ¢;" with n; € N.
Then we have
m n; m n; n;
xi\ " xiwp v\ ST 4", 0,(0), (mi)i))
f(q)p=]_[(—) =1"[( -—) = :
i U ST 87,0, (n:)i, (0)))

Vi
i=1 1 i=1 yl 1

Pute = ([];a;",0, (0), (n;);) andB = ([]; b;", 0, (n;);, (0)). Then we haver, 8 € P and

i

f(gB) = f(w). Sogp isin P by the definition ofP and sog maps toP9.

2. Smoothness.

DEFINITION 2.1. (1) Amorphism of -log schemes with boundaty, Y) — (X, X)
is said to be doundary exact closed immersion if ¥ — X is an exact closed immersion and
if for every open neighbourhoad of Y in X, there exists an open neighbourhdaaf Y in
X with U schematically dense 1.

(2) Afirst order thickening of T-log schemes with boundary is a morphigi, L') —
(L, L) such thatL’ — T is an exact closed immersion defined by a square zero idegtin
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(3) A fine T-log scheme with boundargX, X) is said to beweakly smooth if X is
locally of finite presentation ové¥ and if the following condition holds: for every first order
thickeningy : (L', L") — (L, L) and for every morphism : (L', L') — (X, X) there is
étale locally on a morphisme : (L, L) — (X, X) such thafu = ¢ o 1.

(4) A T-log scheme with boundargX, X) is said to besmooth if it is weakly smooth
and satisfies the following property: For all morphists Y) — (X, X) and all boundary
exact closed immersion®’, Y) — (V, V) of fine T-log schemes with boundary, there exists
étale locally on X <7 V) an exactification

Y—>Z—> Xx7V)

of the diagonal embedding — (Xx7V) (a morphism of log schemes in the usual sense)
such that the projectiod — (Xx7V) — V is strict and log smooth.

Recall that by [7] 3.8, ‘strict and log smooth’ is equivalent to ‘strict and smooth on
underlying schemes’. A'-log schemeX is log smooth if and only if{ X, X)/T is weakly
smooth. Assume this is the case. Theh X)/T satisfies the smoothness condition with
respect to test object&, X) < (Y, Y) — (V, V) (i.e., forwhichV = V), becaus& =7V >
V is clearly log smooth. For generéV, V) (and log smooti'-log schemes() we have at
least Theorem 2.4 and Theorem 2.5 below (note that the hypotheses of Proposition 2.3 below
for (X, X)/ T areequivalent to log smoothness of/ T, by [7] 3.5 and as worked out in [6]).

PROPOSITION 2.2. Let (X, X) be a weakly smooth 7-log scheme with boundary and
let Tm — T beanexact closed immersion. Then (le, X1,) isaweakly smooth 77-1og scheme
with boundary.

PROOFE Let
Xry, Xr) & (@', L) > (L, L)

be a test object ovef;. By the weak smoothness ok, X)/T we gete : (L, L) — (X, X)
étale locally on such thatu = ¢ o 5. The restrictiore|, : L — X goes through 7, ; since
L is log schematically dense ih this implies that goes through{Xr,, Xr,) (the schematic
image is transitive, [3] I, 9.5.5).

PROPOSITION 2.3. Suppose W is locally noetherian. Let Q be a finitely generated
integral monoid, let S = W[ Q] andlet T — S bean exact closed immersion. Let (X, X) bea
T-log scheme with boundary. Supposethat étalelocally on X therearecharts Q — P9 > P
for (X, X) over T asin 1.14 such that the following conditions (i), (ii) are satisfied:

(i) Thekernel and the torsion part of the cokernel of Q9 — PP are finite groups of
ordersinvertibleon W.

(i) Let P’ bethesubmonoid of P9P generated by P andtheimageof 9 — P9 and let
W[ P]r betheschematic closureof W[P'] xsT = W[P']7 in W[P]. Thenx : X — W[P]r
is smooth on underlying schemes.

Then (X, X)/ T isweakly smooth.
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PrROOF.  (Note thatx in (ii) exists by the schematic density &f — X.) Let
X, X)L @, L)3 T L
be a test object ovef. Using (i), one can follow the arguments in [7] 3.4 to construct mor-
phisms(L, L) — (W[P], W[P']) of S-log schemes with boundary. Necessaiilynaps in
fact to W[ P']r. SinceL — L is log schematically densé, maps in fact tow[P]r. By (ii)

this morphism can be lifted further to a morphigm— X inducing (L, L) — (X, X) as
desired.

THEOREM 2.4. In the situation of Proposition 2.3, suppose in addition S = 7 and
T — S istheidentity. Then for every S-log scheme with boundary (V, V), the projection
XxsV 5 V islog smooth.

PROOF We may assume thak, X) overT has a chart as described in Proposition 2.3
and that(V, V) overT has acharQ — F%, F — N;(V). Our assumptions imply that

X xwV —> W[P]lxwV

is smooth on underlying schemes. It is also strict, hence log smooth. Perform the base change
with the closed immersion of log schemes

WI[PIXsV — W[P] xw V
to get the log smooth morphism
XxsV — W[PIxsV
(by our construction of fibre product®[ P1x sV is the log schematic closure Bf[ P']x s V).
Its composite with the projection
wiPIxsV £V
iip, hence it is enough to show thAtis log smooth. Nowgs arises by the base change
V — W[F] from the projection
WIPIXsW[F] 5> W[F]

so that it is enough to show thatis log smooth. Let’ be the submonoid of 9P generated
by F and the image 0© — F9. Let (P’ @¢ F")" be the push out o’ < Q — F’inthe
category of integral monoids, i.&.P" @ F)"t — Im(pP’ @ F' — (P' ®¢ F')%) where
P’ @ F'is the push out in the category of monoids. @lfis generated by a single element
then actually(P’ &, F/yint — p’ @ F’ by [7] 4.1.) Define the finitely generated integral
monoid

R=IM(P&F — (P &g F)™).
Theny can be identified with the natural mag[R] — W/[F]. That this is log smooth
follows from [7] 3.4 once we know that

a:F® — R® = (PP g,ep FP)
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has kernel and torsion part of the cokernel finitely generated of orders invertitié dut
this follows from the corresponding facts for. Q9 — P9 because we have isomorphisms
Ker(b) = Ker(a) and Coketh) = Cokel(a).

THEOREM 2.5. Inthe situation of Proposition 2.3, (X, X)/ T is smooth.

PrROOF It remains to verify the second condition in the definition of smoothness. Let
(Y,Y) — (X, X)and(Y,Y) — (V, V) be test objects. We may assume thia$ connected.
Remove all irreducible components Bfnot meeting IndY) so that we may assume that each
open neighbourhood of @) in V is schematically dense. After étale localization we may
assume thatX, X) has a char? — I'(X, ng) as in Proposition 2.3. Viewing our test
objects as objects ovérwe can form the fibre product of finglog schemes with boundary
(W[P1xsV, W[P'] xs V). Etale locally onW[P]x sV we find an exactification

Y5 7% wipixsvV
of the diagonal embedding — W[P]xsV. We may assume that is connected. After

further étale localization o we may also assume thit= p o j : Z — V is strict, where
p: (W[P]xsV) — V is the projection: this follows from the fact that fore Y the stalks

of the log structured/; andg*\y; at the separable closureidfy) coincide, becausg — Z
andY — V are exact closed immersions. By Theorem 2.4s log smooth. Thug is also
log smooth, hence is smooth on underlying schemes. Let

Z° = Z X qyipiesyy WIP 1 x5 V),
an open subscheme Bfcontaining In{Y). Consider the restrictiofi® : Z° — V of §. Since
it is smooth on underlying schemes, it nsagchematically dominantly to an open neigh-
bourhood of IngY) in V (here a morphism of schemé&$ — ) is said to be schematically
dominant if its schematic image coincides with). It follows that 3° maps schematically
dominantly also toV because of our assumption #hand the fact thaty,Y) — (V, V)
is boundary exact. Thugis a classically smooth morphism from the connected sch&me
to another schem® such that its restriction to the open subschefflenaps schematically
dominantly toV. This implies thatZ® is schematically dense ii, because (schematically)
dominant classically smooth morphisms from a connected scheme induce bijections between
the respective sets of irreducible components. It follows jHattors as

7 % (WIP1r%r V) 5 WIPTXSV

first as a morphism of underlying schemes because its restriction to the open schematically
dense subschen#?® factors through

WIP'Ir x7 V =W[P x5 V;

but then also as a morphism of log schemes, becaisstrict. The morphisng is log étale
because the composifewith the closed embeddingis log étale. Let

Z =7 Xayp5,7) Xx1V).
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From the assumption (ii) in Proposition 2.3 we deduce thatV — W[P]r x7V is log
smooth and strict, hencé — Z is log smooth and strict, hence smooth on underlying
schemes. Together with the smoothnesg itffollows thatZ — V is smooth on underlying
schemes. Furthermo — X x 7V is log étale becausgis log étale. Finallyy — Z is an
exact closed immersion becauge— Z is strict andY — Z is an exact closed immersion.
The theorem is proven.

The interest in smoothness as we defined it lies in the following proposition, which en-
ables us to develop nice lkomology theories fof'-log schemes with boundary.

PROPOSITION 2.6. Let (Y,Y) — (X, X;) be boundary exact closed immersionsinto
smooth 7'-log schemes with boundary (i = 1, 2). Then there exist étalelocally on (X1x7X?2)
factorizations

Y.Y) > (Z,Z) - (X1x1X2, X1 X1 X2)

of the diagonal embedding such that ¢ is a boundary exact closed immersion, the map Z —
X1x7X> islog éale, and the projections p; : Z — X; are drict and log smooth, hence
smooth on underlying schemes.

PROOF By the definition of smoothness we find étale locally exactifications L, 2)
7 — 7,' — Y]_;TYZ

such that the projections; — X; are strict and log smooth. Let
_, _
Z=2; X X1x7X2) Z2
and letY — Z — Z be an exactification of — Z . After perhaps étale localization Gh
as in the proof of Theorem 2.5 we may assume that the projectieasZ; are strict. Hence

the projectiong; : Z — X; are strict and log smooth. This implies that
Z = py H(X1) N pyH(X2)

is log schematically dense in. Indeed, it suffices to prove the log schematic density af
pl_l(Xl) and Ofpl_l(Xl) in Z. Both assertions follow from the general fact that for a strict
and log smooth (and in particular classically smooth) morphism of log schemés— S
and a log schematically dense open immersior> S, alsoh~1(S’) with its pull back log
structure fromS’ is log schematically dense ih: this is easy to prove since the question is
local for the étale topology and we therefore may assumehtlsaa relative affine space. The
classical smoothness of (say) and the boundary exactness(@f, Y) — (X1, X1) imply
that (Y, Y) — (Z, Z) is boundary exact (for each connected compo€ntf Z the map
710(2/) — mo(X1) between sets of irreducible components inducegbjs injective). We
are done.

2.7 Examples. We make the exactificatidn— X x7V in Theorem 2.5 explicit in
some examples, underlining the delicacy of the base change argument in Theorem 2.5. In
the following, for free variable#/1, ..., V1,... we denote byW|[Uj, ..., Vli, ...]the log
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scheme
WING---©Z®---]
with generatord/s, ... for N @ --- and generator®s, ... forZ® ---. For f € Z[Uq, ...,
Vli, ...] we denote byWw|[Usq, ..., Vli, ...1/f the exact closed subscheme defined‘by
(8) LetQ = N with generatoly. Let X = W[Uf, U] ¢ X = W[U1, Us]. Define
X — S by sendingy — U{le, thus(X, X) is a smooths-log scheme with boundary. The
self fibre product of5-log schemes with boundary is

(X1, X1) =X, X)xs(X, X)
=(W[Us, Uz, V1, Val/(VilU2—VoU1), WIUF, Uz, ViE, Vol /(U U2 — Vi V).

Note that the projectiong; : X1 — X are not flat (the fibres above the respective origins are

two dimensional), although they are log smooth. We construct the desired log étale &ap
X1 according to the procedure in [7], 4.10. Emtd> Z% by sending: — (n, —n, —n, n)
and letH be the image of the canonical mdi## — (Z4/Z). ThenX; = W[H]. Leth :
(Z%/Z) — Z2 be the map which sends the class(®f, n2, n3, n4) to (n1 + n3, n2 + na),
and letk = h~1(N?). ThenZ = W[K] works. More explicitly: We have an isomorphism
K = N2 @ Z by sending the class 1, n2, n3, n4) to (n1 + n3, no + na, n1 + n2). Then

Z = W[S1, S2, S5 1

andg is given byUi — 8183, Uz — S$283, V1 > S1, Vo > S>.

Now consider the base change with= W[gl/¢ — S defined by sending — O.
Forj = 1,2 let X1; = X1 xy Xt where in the fibre product we use ttieth projec-
tion as the structure map for the first factor. D&t 1 = X7 xrXr. Then we findX1 1 =
W[U1, V1, V21/(VaU1), X1.2 = W[Ux, Uz, V11/(V1U>), thus containing( 71 = W[Uz, V1]
as aproper subscheme.

(b) LetS, X, X be as in (a), but this time defide — S by sending; — U,U>. Again
(X, X) is smooth. We use the embeddidg— Z* which sends: — (n,n, —n, —n), to
defineH = Im(N* — (Z%/2)). Leth : (Z*/Z) — Z2 be the map which sends the class
of (n1, n2, n3, na) 10 (n1 + n3, n2 + ng), and letk = h~1(N?). We have an isomorphism
K = N2 @ Z by sending the class 6f1, n2, n3, n4) to (n1 + n3, n2 + na, n1 — n2). We thus
find

X1=W[H] = W[Uy, Uz, V1, V21/(U1U2 — V1V2)

Z = W[S1, S, S51andg : Z — X1 is given byUs +> S$183, Uz +> Sp83%, Vi >
S1, V2 > So. Note that in this case the projectiops: X1 — X are flat. Now consider the
base change witl = W[q]/q — S defined by sending — 0. Then, in contrast to (a), we
find Yl,l = 71,2 = YT)]_ (with Yl,l: Yl’z, YT,l asin (a)).
(c) Using the criterion 2.5 one checks that the log schemes with boundary mentioned
in 1.8(b)—(d) 1.9 are smooth. In fact, the example (a) just discussed is a special case of 1.8 (b)
or 1.9. Example (b) (or rather its base change Wite= W[g]/q — S as above) is a special
case of 1.8(d).
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LEMMA 2.8. 9(17 X)/T islocally free of finiterank if (X, X) isweakly smooth over T.
PrROOE The same as in the classical case.

3. Semistable log schemes with boundary. In this sectiork is a field,Q = N with
generatoy andT = (Speck), O —0> k).
3.1 Definitions.
3.1. Astandard semistable T-log schemewith boundary is aT'-log scheme with bound-
ary isomorphic to:
+

_ : K[, ..t b5
X. %) = <Spe<k[t1,...,t,2]> ,Spe(< (11 1l 12]))
(t1, ..., t;) (t1, ..., 1)

for some integers k i1 < i such that

P=N2—- Nz(X), L1t forl<i<ip
Q:N—>ng=Zi2, g a,..., 1, rig41, .. Fip)
with somer; € Zfori; +1 < j < iz is a chart in the sense of 1.14. samistable 7-log
scheme with boundary is a T-log scheme with boundargy’, Y) such that étale locally off
there exist morphism&’, ¥) — (X, X) to standard semistabfe-log schemes with boundary
such tha’ — X is strict and log smooth, anid = Y x+ X. Note thaty is then a semistable
k-log scheme in the usual sense defined in 1.8(d).

A normal crossing variety over k is ak-scheme which étale locally admits smooth mor-
phisms to the underlying schemes of semistableg schemes.

Following [6] we say that a log structurgy on a normal crossing variety overk is
of embedding type if étale locally onY the log schemey, N5 is isomorphic to a semistable
k-log scheme. (The point is that we do not requirgl@bal structure map of log schemes
Y, Ny) - T.)

3.2. Letusdiscuss fora moment the standard semisiadg schemes with boundary
(X, X). If in the above definitiom; > 0 for all j, thenf : X — T actually extends to a (non
log smooth in general) usual morphism of log scherfiesX — T. If evenr; = 0 for all
j then £ is nothing but a semistablelog scheme with an additional horizontal divisor not
interfering with the structure map of log structures; in particular it is log smooth. If at least
r; € {0, 1} for all j the morphismyf is ideally smooth in the sense of Ogus [10]. Examples
with r; = 1 for all j are those in 1.8(d).

The concept of semistable-log schemes with boundary helps us to also understand the
cases with local numbers ¢ {0, 1}: Any (Y, Y) semistablel’-log scheme with boundary is
smooth, by Theorem 2.5, and as we will see below this implies analogs of classical results for
their cohomology. Examples of semistalldog schemes with boundary with local numbers
r; possibly not in{0, 1} are those in 1.9 or those from 3.5 below. Or think of a flat family
of varieties over Spék[g]) with smooth general fibre and whose reduced subscheme of the
special fibre is a normal crossing variety, but where some components of the special fibre
may have multiplicites> 1: then unions of irreducible components of this special fibre



COMPACTIFICATIONS OF LOG MORPHISMS 93

with multiplicity = 1 are semistabl&-log schemes with boundary. One more big class of
examples with local numbers possibly not in{0, 1} is obtained by the following lemma,
which follows from computations with local coordinates:

LEMMA 3.3. LetY — Y bean embedding of k-schemes which étale locally looks like
the underlying embedding of k-schemes of a semistable T'-log scheme with boundary (i.e.,
for each geometric point y of Y there is a semistable 7-log scheme with boundary which on
underlying schemeslookslike Y — Y around y). Suppose Ny isalog structure of embedding
type on Y such that (Y, Nyly) is a semistable k-log scheme (for an appropriate structure
morphismto 7). Then ((Y, N5), Y) isa semistable T'-log scheme with boundary.

3.4. Fumiharu Kato in [6] has worked out precise criteria for these two properties of
normal crossing varieties ovier— to admit a log structure of embedding type, resp. to admit
a log structure of semistable type. Now suppose we are given a semigtidijeschemey’.
An “optimal” compactification would be a dense open embedding into a proper semistable
k-log scheme in the classical sense, or at least into an ideally smooth groggscheme;
however, advocating the main idea of this paper, a dense open embé&dding into a log
schemeY such that(Y, Y) is a proper semistabl&-log scheme with boundary is also very
useful, and this might be easier to find, or (more importantly) be naturally at hand in particular
situations.

3.2 De Rham cohomology. Here we assume @hae 0. LetZ be a smootlk-scheme
and letV be a normal crossing divisor an. Suppose there exists a flat morphigm (Z —
V) — Speck[q]), smooth abovg # 0 and with semistable fibr& above the origiy = 0.
Let X be the closure oK in Z and suppose also thatu V is a normal crossing divisor on
Z. EndowZ with the log structure defined by U V and endow all subschemes Bfwith
the induced log structure (we will suppress mentioning of this log structure in our notation).
Then(X, X) is a semistabld -log scheme with boundary. Lédd = X NV = X — X and
letX = (UJ;~;-, X:; be the decomposition into irreducible components in a fixed ordering and
suppose that eackj; is classically smooth. LeR} ; be the relative logarithmic de Rham
complex.

PROPOSITION 3.5. Therestriction map

RI(X, 20 ) = RTX.2%7)

is an isomorphism.

PROOF We use a technique of Steenbrink [13] to reduce to a standard faaR1 be
the de Rham complex ovéon Z with logarithmic poles alongUV . Note that dlogf*(q)) €
I'(Z—-V, 2}) extends uniquely to a global sectiére I'(Z, 2}). Let2} |, be the de Rham

complex onZ with logarithmic poles only along’; thuss25 |, is asubcomplex of 2. Define
the vertical weight filtration o25, by

P2y, =Im(2}® 25, — 25).
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Forj > 1 let X be the disjoint sum of alh;c; X; wherel runs through the subsets of
{1,...,a} with j elements. Let; : X’ — X be the canonical map and I@t}'?j be the de

Rham complex o’ with logarithmic poles alona'/nr]fl(D). Then we have isomorphisms
of complexes

() res:Gr2; =1;.2%1-jl,

characterized as follows: Let, ..., x; be local coordinates o such thaty; for1 < i <
a < d is alocal coordinate foK;. If

o =a Adlog(xi,) A--- Adloglx;;) € Pj$25
with iy < --- <i; < a, then res sends the class®fo the class of. Now let
APY — Q§+q+1/PqQZp+q+l’ Pjqu _ P2q+j+195+q+l/PqQ§+q+l.
Using the differentialgl’ : AP — APtL9 o > dw andd” : AP — APIHL o
6 A w we get a filtered double complex®®. We claim that
P
‘QZ ® 07

@ e op) A
is exact. Indeed, it is enough to show that for@llall j > 2 the sequences

ANO N0 N0
0— A0S Art 25

G2t X el X e aelt ..
0— Po.Qprl/jy..QZp*l A9 Grl.(2§ ~ Gr1[22p+l N
are exact, whergy = Ker(Oz — O). This follows from(x) and the exactness of

0— Py J%.20 — rl,*.le — 7,'2)*.(2;2 — e

The claim follows. It implies that the maps

e 0y
&xw = (.(2”1250 ’; i AP C AP, o (“DPO A
’ <) N\
V4 X

define a quasi-isomorphism('Y xyr A*®, hence a spectral sequence

—rq+r __ =va . v .
E{7 T = HIX, Gr ") = HIX, Q% ).

Now we can of course repeat all this gh— V instead ofZ, and restriction fromZ to

Z — V gives a canonical morphism between the ez$pe spectral sequences. That this is
an isomorphism can be checked on the initial terms, and using the isomorghitihis boils
down to proving that the restriction maps

HY (X', 22)) — HV(X], 22))

are isomorphisms where we sgf = X' n rlfl(X). But this is well known. The proof is
finished. '
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3.6. Now assumg is proper. Similar to the classical Hodge theory, the Hodge filtra-
tion on

HP(X, ‘Q(X X)/T

should be meaningful. Another application of Propo-

)= HP(X, 2%,7)
obtained by stupidly fllterlng2(°X X)T ¢
sition 3.5 might be a Poincaré duality them. Suppose the underlying schemeXofs of
pure dimension!. LetZp = Ker(Oy — Op) and define the de Rham cohomology with
compact support ofX, X)/T as

RIX,Ip ® .Q('X 1)
It is a natural question to ask if this is dual Rd™ (X, .Q('X X)/T) RI(X, 2% /T) The key
would be as usual the construction of a trace I‘FHQX Ip® 2L ) = k.

X, X))T
3.7. Another application of semistablelog schemes Wlth boundary is the possibil-

ity to define the notion ofegular singularities of a given integrable log connection on a
semistablel -log schemeX, provided we have an embeddifg— X such that(X, X) is a
proper semistabl&-log scheme with boundary.

3.8. Here is an application of the construction in 1.9 to the de Rham cohomology of
certain semistable-log schemes (a simplified variant of the application given in [4]; in fact,
the present paper formalizes and generalizes a key construction from [4]). In 1.9 assume that
chark) = 0 and thatM is the intersection oéll irreducible components df. Recall that
we constructed a morphism of log schem@g — S = (Speck[q]), 1 — ¢g). Fork-valued
pointsae — S (with pull back log structure) levV? = Vi x5 . Using theS-log scheme
with boundary(Py, Vi) one can show that the derived category objeeis(Vy,, £27. /a)

(with Q'g/a the relative logarithmic de Rham complexpif£ 0 this is the classical one) are
canonically isomorphic for varying. Namely, the canonical restriction maps

RT Py, 205y, vyyys) =~ RTVih 20a )

are isomorphisms for adt.

3.3 Crystalline cohomology. Lef be a scheme such theX; is killed by a non-zero
integer,I C Oy a quasi-coherent ideal with DP-structyreon it, and letZ be a fine log
structure onS. Let (S, £) be an exact closed log subschem&$f£) defined by a sub-DP-
ideal ofI and letf : (X, N)) — (S, £) be alog smooth and integral morphism of log schemes.
An important reason why log crystalline cohomology &t A) over(S, L) works well is that
locally onX there exist smooth and integral, hence flat morphigmsX, V') — (S, £) with
f=fx G.0) (8, £). This implies that the crystalline complex &f/S (with respect to any
embeddlng system) is flat ovérs, see [5] 2.22, and on this property many fundamental
theorems rely.

Now let W be a discrete valuation mnof mixed characteristi0, p) with maximal ideal
generated by. Forn € Nlet W, = W/(p"), k = Wy andKg = Quot W), and letT,, be
the exact closed log subschemeSoE W[ Q] defined by the idealp”, ¢) (abusing previous
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notation we now take SpéW) as the base schen¥é of 1.1). ThusT = T1. We will often
view T-log schemes with boundary &s-log schemes with boundary fare N.

LEMMA 3.9. Let (Y,Y)/T bea semistable T-log scheme with boundary. Then there
exist étale locally on Y smooth 7;,-log schemes with boundary (Y ,,, ¥;,) such that (Y, Y) =
(Y, Y,)x1,T, the closed immersion (Y,Y) — (Y, Y,) is boundary exact, and such that

.(2(1? /T isflat over Or, and commutes with base changes 7,,, — 7, for m < n.

PROOF We may suppose that there is a strict and log smooth morphism
+

_ _ : K[f1, ... ti t5 . E
h!(Y,Y)—)(X,X):(Spe M),Spec( (11 10 Y +1 tz]>>

(tl7 "'atil) (tl7 "'atil)

for some integers k i1 < i» such thatP = N2 is a chart for(X, X) sending 1 +— ¢ for
1 <i <ipand such that the structure map is given by

0=N—PP=72 g (11,.... Ly rig11. ... 7ip)

with somer; € Zforip + 1 < j < i Wellift (X, X) to
+

v Wult1, ..., W[tl,...,t-,t.i oot
(X,,,X,J:(Spe M),Sp&( n il i >>

(tls ~°~1til) (tlv ...,til)

using the same formulas for the log structure maps. Local liftings wf (X,,, X,,) result
from the classical theory, since ‘strict and log smooth’ is equivalent to ‘smooth on underlying
schemes'.

LEMMA 3.10. Letn e Nandlet (Y, Y) — (X;, X;) beboundary exact closed immer-
sions into smooth T;,-log schemes with boundary (i = 1, 2). Then there exist étale locally on
(X1x1, X?2) factorizations of the diagonal embedding

Y.Y) > (Z,Z) - (X1x1,X2, X1 X1, X2)

with : a boundary exact closed immersion, themap Z — X1x7, X2 log étale, the projections
pi © Z — X; drict and log smooth, and with the following property: Let D1, (resp. D;)
denote the DP envel opes of (the underlying scheme morphismof) Y — Z (resp. of Y — X;),

and let ¢; : D12 — D; bethe canonical projections. Then there exist u;1, . .. , Uim; € 05,
for i = 1andi = 2 such that du;1, ..., du;,, forma basis of “Q%/Y and such that the

assignments Ul.[;‘] > ul[f] (k € N) induce isomorphisms
g7 0p (Ui, ... Uim;) = Op,,
where on the left hand side we mean the DP envel ope of the free polynomial ring.
3.11. Lemma 3.10 follows from Proposition 2.6, and the same proofs give variants of
Proposition 2.6 and Lemma 3.10 for more than two embeddifig$) — (X;, X;) (and
hence with products with more than two factors). As in [7] one shows that the DP envelopes

of (Y, Y) in chosen exactifications of these products (e.g., the DP envélgpén Lemma
3.10) are independent of the chosen exactifications. For a given semigtddiescheme
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with boundary(Y, ¥) we now define its crystalline cohomology relativefipby the standard
method (cf. [5] 2.18): Choose an open coverihg- | J;z; U and for eachU, U = Y N U)
a lift (U,, U,) as in Lemma 3.9. Taking products we get a simplidiglog scheme with
boundary(U, U?) which is an embedding system fer, Y) over 7,,. Let D, be the DP
envelope of(Y, Y) in (U,',, Uy), i.e., the simplicial scheme formed by the DP envelopes of
local exactifications ofY, Y) — (U, U?) as in Lemma 3.10. Then we set

RIeys(Y.Y)/Ty) = RC (D % (07 ® Op).
That this definition is independent of the chosen embedding follows from Lemma 3.10 and
the DP Poincaré lemma.

LEMMA 3.12. (a) For m < n we have
RIeys((Y.Y)/Tn) = RIcys(Y,Y)/T,) ®';V” W .
(b) IfY isproper over k, the cohomology of

RIim RIcrys((Y, Y)/ Ty)

n
(resp. of RIcys((Y, Y)/Ty)) isfinitely generated over W (resp. over W,,).
PROOF Justasin [5] 2.22 one deduces from Lemmata 3.9 and 3.1@21&;/&{} VL ®
Ope is aW,-flat sheaf complex o, and this implies (a). I¥ is proper ovet it follows

thatR Ierys((Y, Y)/T1) = R (Y, ‘Q(.? Y)/Tl) has finite dimensional cohomology ovesince
eachﬂ-(’7 7T is coherent. Together with (a) we conclude as in the classical case.
) 1

3.13. Ogus [11] and Shiho [12] have defined logarithmic convergent cohomology in
great generality and “in crystalline spirit”. Here we content ourselves with the following
definition. LetE be a fineT-log scheme. Lefy be the formal log schem&pf(W), 1 +—

0). Choose an exact closed immersiBn— G into a log smooth formafs,-log scheme

G topologically of finite type ove. Associated toG is a Ko-rigid spaceGg, together

with a specialization mapp to the special fibre af. The preimage sp-(E) =]E|[¢ of the
embedded, the tube ofE, is an admissible open subspacesqf,. The logarithmic de Rham
complex.Q(';/Toc on G gives rise, tensored witQ, to a sheaf compleﬂg;l(o/TmKo on G,

and we set

RIcod E/Too) = RI(E[G. 25, /7 ¢,

an object in the derived category &f-vector spaces. If there are embeddidgs> G as
above only locally or£, one works with embedding systems.

Now let Y be a semistablé-log scheme with smooth irreducible components and let
M be the intersection of some of its irreducible components. Endowith the structure of
T-log scheme induced frorfi. Note thatM is not log smooth ovel’ (unlessY has only a
single irreducible comgnent) and its usual log crystallineltomology is pathological; it does
not provide a canonical integral lattidn the log convergent cohomology #f, as we will
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now construct one by another method. In 1.9 we constructadi@g scheme with boundary
(Py, Vi) wheresSi is the exact closed log subschemeSafefined by the idealp). Perform
the base change with the exact closed subschEmé S; defined by the idealg) to get
(PY, VO) = (Py xs, T, Vi xs, T). This is a semistabl&-log scheme with boundary as
defined above.

THEOREM 3.14. There exists a canonical isomorphism
RIIM R Ferys((Pyy, Vip)/ T) @w Ko = RTcomd M/ Too) -

n
In particular, if M isproper, each R/ I'con(M/ To) isfinite dimensional.
PROOF Sep 1: Themapis
RIM RIerys((Pyy, Vi)/ To) ®w Ko — RIiM RIarys((Vyy, Vi)/ To) ®w Ko

n n
. @)
= RIiM RTorys(Vyy/Tw) @w Ko = RIconlVyy/ Too) = RIcondM/ Toc)
n

where the left hand side i) is the usual log crystalline cohomology U‘l]‘@,/Tn and the
isomorphism(i) holds by log smoothness MA%/T. That this map is an ismorphism can be
checked locally.

Sep 2: We may therefore assume that there exists a smooth (in the classical sense)
affine connected SpeW)—schemeA;l = Spec(]?) lifting M and that the invertible sheaves
Fjilm on M are trivial (notation from 1.9); let; be a generator af;|,,. Furthermore we
may assume that the divisér on M (the intersection o/ with all irreducible components
of ¥ not containing)) lifts to a (relative Sped¥)) normal crosssings divisdP on M. Let

Vi = Spe€Blx;ljer),
P = x i (Proj(Bly;, xjljer) -
Identifying the free variable; with a lift of v; we view V, as a lift of Vyy; identifying

moreover the free variable; with a lift of 1»,, we view P as a lift of Py; identify-
ing a homogenous elemente E[xj]je, of degreen with the degree zero elemefyty;.’ of

Bly;, x;] we viewV, as an open subschemeRf,. As in 1.9 we factor the distinguished
elementa € Symy, (©(F;)jer)(M) asa = ao.(@je[ v;) with defining equatiorip € Oy
of the divisorD in M. Lift ag to a defining equationg € B of D in M. Thisag also de-
fines a normal crossing divisd;; on V. Setd = ao[];c;x; € Blx,ljer and consider
the following normal crossing divisor oR4: the union ofP — V4 with the closure (in
P ) of the zero set ofi (in V). It defines a log structure oR . Define a morphism
Vm — S by sending — a. We have constructed a lift of th&-log scheme with bound-
ary (Py, Vi) to aS-log scheme with boundar§®(, Vo). Moreover, if we denote b§z,
the exact closed log subschemesoflefined by the idealg), then theZ,-log scheme with
boundary P . V},) = (Pa x s oo, Vau x s Too) is alift of the T-log scheme with boundary
(PY, V9.
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~Step 3: Den~ote byP?Vl (re~sp.V9W resp. M, resp. Dy) the p-adic completions
of P, (resp. of V], resp. of M, resp. of D;;). Denote byPS,  (resp.VS, . resp.

M,, resp. Dy ,) the reduction modulg”. Let .(27')0 T, be the p-adic completion of
M o0

the de Rham complex of th&,-log scheme with boundaryP,.V},). Its reduction

°, ® (Z/p") modulop” is the de Rham complez? of theT,,-log scheme with
PM/TOC PM,H/T"

0 0 ; ; .
boundary(PM’n, VM_"). Observe that the differentials (mP%/Toc
Q.

pass to differentials on
i 0 .
PO /T ®O7’9\A Om where we use the zero sectignt — P .. Let ‘QPRA/TOO ® Q be the

complex on the rigid spaCE?Vl Ko obtained by tensoring witly the sections 01527;0 /T,
: 0/ To
over open affine pieces 679\/1- Similarly defineQ;Do I ®0_, Opm ® Q. By definition
M1 T M
we have

RItondM/Tso) = RIC(IM[p,,, ;D%A/Toc ®Q),
R |i[_“ RFcrys((P/Bla V&)/T@ ®w Ko = R“{_" RF(PR/M, 7'39\/1 T ) ®w Ko.
n 7 nlin
In view of
RIC(M[p,,, Q;%/Too ®O7,9V1 Om®Q)

= RImRI(PY, , 0 ® Om.) ®w Ko
" P Pl Tn 0P8, M;) W

it is therefore enough to show that the maps

CRI(PY, . 28 RT (P, . 823
Ju: RE P D0 7,) = REPRy 0 D0 7 @050 Oat)

9 REUMIpy 2ho i ®Q) > RE(MIpy, o 7 ®0 OM®Q)

are isomorphisms.
Sep 4: LetDy,, = |UJ,c; D be the decomposition dPy, , into irreducible compo-
nents. Lett, be the closed subschemeldff, | defined by[ ;e %) € rol,, - Ow )and

M.n
let&, be the closure of;, in P?Vl q- Let&n = ¢, €, j be its decomposition into irreducible

components. For a pait = (PI: Pr) of subsets?; ¢ I andP; C L let

Gp = ( ﬂ (E'n,.j) N ( ﬂ Dn,l),

JjeP; le Py,
so we drop reference toin our notation, for convenience. Also for convenience we denote
the sheaf complex2? on 7)?\4 , Simply by 22°. For two pairsP, P’ as above with

P! T
P; U Py # ¢, with P; C P; andP, = P; consider the canonical map
wp p: 2°® OgP - 2°® ng/

of sheaf complexes oﬁ?w .- We claim that the map?F(P?M . Wp,pr) induced bywp pr
in cohomology is an isomorphism. For this we may of course even as®ime P; U { jo}
for somejo € I, jo ¢ Pr. In theOgP,-moduIeQl ® Og,, we fix a complementv of the



100 E. GROSSE-KLONNE
submodule generated by (the class of) digg) < F(P?\/Ln, 2l® Og,,) as follows. We use

the identification

(@ (0g(D)) ® 0g,,) & (D¢, Oy, dlogx)))
0Og,, -dlog(@)

1
=0 ®(’)gP,

(with 22}, (log(D)) the differential module ofM, (log str. def. byD)) — (SpecW), triv.)).

If P, # ¢ we may assume that we can factor agre B from above asig = agh with

h € B whose zero set itM = SpeB) reduces modulg” to an irreducible component of
Usep, Di.n- We may assume that tiee¢,- -submodule of(z/l\;l(log(ﬁ)) generated by dlag)
admits a complemenY’. Then we get the isomorphism

(N'® Og,) @ (EB ng,.dlog(xj)) =0e'®0g,

jel

(use dloga) = dlog(h) + dlog(a/ h)). If there existsj’ € P; we get the isomorphism

(2}, (I0g(D)) ® Og,,) ® ( &y OgP,-d|Og(x,/)> = 2'®0g,
Jel={j"}
(use dloga) = dlog(x ;) + dlog(a/x;)). In both cases, dropping thg-summand in the left
hand side we geV as desired. We see that thg;, -subalgebrav® of £2* ® Og,, generated
by N is stable for the differential, and that we have

2° ®ng, =N°* Qw, c*

as complexes, whel@*® is the complexc® = W, ! = W,,.dlog(x ;) (here dlogx j,) is noth-
ing but a symbol)C™ = 0 form # 0, 1, and zero differential. L&R = Proj(W,[yj,, xjo1)-
We have a canonical ma@r — R. Let D* be theOr-subalgebra of2®* @ Og, generated
by dlog(x;,) € F(PR/L”, 21® Og,). Itis stable for the differential, and we find

2°® Og, = N* ®w, D*
as complexes, whe®*® is mapped ta2* ® Og, via the natural map (and sectionwp, p)
2°®0g, > 2°®0g,

induced by the structure mdj, ;, — M,. This map also induces a m&py — D*, and itis
enough to show that the latter induces isomorphisms in cohomology. But

H™(PY,,,, D*) = H" (P}, , 27 (10g(0, oo}

which isW,, if 0 < m < 1 and zero otherwise, because of the degeneration of the Hodge
spectral sequence ([7] 4.12) amil(log{o, 00}) = Op1. SoC* andD* have the same coho-
mology.

Sep 5: We now show thatf, is an isomorphism. Lef; = Uje,é’,,,j, let 71, =
Uier Dni = Dy, andFp . = F; N Fr. All the following tensor products are taken over
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Opo . We will show thatin

@ =200 5200552 00g,, =2° 80,
botha andg induce isomorphisms in cohomology. The exact sequences

00— OP?\A — Or, ®0f, — Of,, — 0
0— 0, — Ox @ O]:I,L - O]:I,L —0

show that, to prove that induces cohomology isomorphisms, it is enough to prove that
2°® O0F, — £2°® Of,, induces cohomology isomorphisms. To see this, it is enough to

show that both2* ® O f, Lo OF.nGy aNd2°® OF, 220 OF.nG. 4 induce
cohomology isomorphisms. Consider the exact sequence

) 0—0x — @ngm - @ OGyy — > OGgr — 0.

leL L'cL
IL'|=2

Comparison of the exact sequen¢es® 2° and(x) ® OFnG g @ $2° shows that to prove
thaty induces cohomology isomorphisms, it is enough to show thimogw) - 2°®
Og,, ., forally # L' C L; butthis has been done in Step 2. Comparisoap® O, , ® 2°
and(x) ® O, ng, 4 @ §2° shows that to prove thatinduces cohomology isomorphisms, it

is enough to show this faR2°® ® O]—‘Imgw) " L ow Og(lu) forall@ # L’ C L. Consider
the exact sequence

(%) 0— Of, — @Og«jm — @ Ogu/,w) — . — Og(,‘m — 0.

jel I'cl
|I'=2

The exact sequencex) ® Of,mg(m,) ® £2* shows that to prove thag; induces cohomology
isomorphisms, it is enough to show this mf@Og(l,’L,) — Q'®OQU,L,) forallgd £1' C I;

but this has been done in Step 2. The exact sequengex 2° shows that to prove that
induces cohomology isomorphisms, itis enough to show thiQI'@(’)gu,m — £2°®0g,, ,

forall @ £ I’ C I; but this has been done in Step 2. The proof thais an isomorphism is
complete.

The proof thaty is an isomorphism is essentially the same: While Step 4 above boiled
down toH'"(Pln, .{2;1 (log{0, o0})) = W, if 0 <m < 1, and= 0 for othern, one now uses
Wi

H™ (DY, !25% (log{0})) = Koif 0 < m < 1, and= 0 for otherm (hereD% is the open unit

disk overKp). Ql'he formal reasoning from Step 5 is then the same. The theorem is proven.
3.15. Also uniong? of irreducible components af are not log smooth ovef (unless

H = Y) and their usual log crystalline cohomology is not useful. HoweveH f denotes

the complement i of the intersection o with the closure o — H in Y, then(H, H®)

is a semistabl@-log scheme with boundary. There is natural map

h: RIcondH/T) —> RIim RIerys((H, HY)/ T,) ®@w Ko,
n
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constructed as follows. We sayTa.-log scheme is strictly semistable if all its irreducible
components are smootii-schemes and if étale locally it is the central fibre of a morphism
SpecWl(t1, ..., t,]) — SpecW([t]), t+> t1---t, (SOomen > m > 1), with the log struc-
tures defined by the vanishing locustatsp. oft; - - - 1,,,. We find an étale covef = {Y;};c;
of Y and for eachi € I a semistablel-log scheme); together with an isomorphism
YV, ®w k = Y;. Taking suitable blowing ups in the products of thése(a standard pro-
cedure, compare for example [8]) we get an embedding systemduer T, where a typical
local pieceY; = [[y(Yi)ies Of Y is exactly embedded a5 — ); with ; a semistable
T~-log scheme and such there is a closed subschémef )y, the union of some of its
irreducible components, such that xy Y; = H; xy, Y. Now ), is log smooth over
T, hence itsp-adic completion)7] may be used to computRIcon(H xy Y;/T). On
the other hand, Iel‘lqj9 C Hj be the open subscheme which is the complema@t;irof all
irreducible components @f; which are not fully contained ift{;. Then (H,, HQJ)) is a
smoothT.-log scheme with boundary, hence jtsadic completion may be used to compute
R Iim; RIGrys((H xy Yy, H® xy Y;)/T,) ®w Ko. By the proof of [2] Proposition 1.9 there
is a natural map from the structure sheaf of the tuliexy Y; [p, to the structure sheaf of
the p-adically completed DP envelope, tensored v@tof H xy Y; in H ;. Itinduces a map
between our de Rham complexes in question, hence wk.dgRy the same local argument
which showed the isomorphy of the mapn the proof of Theorem 3.14 we see thiais an
isomorphism; the work on local lifts o?ﬁod there is replaced by work on local lifts &f here.
In particular, if H is proper, eactR’ I'conv(H / To) is finite dimensional.

3.16. Suppose is perfect. Then there is a canonical Frobenius endomorphism on the
log schemd, (cf. [5] 3.1): The canonical lift of the-power map ork to an endomorphism
of W,,, together with the endomorphism of the log structure which on the standard\-isart
multiplication with p. We can also define a Frobenius endomorphisnRﬁb}yS((?, Y)/T,)
for a semistablel'-log scheme with boundargy’, Y), because we can define a Frobenius
endomorphism on the embedding system used in 3.11, compatible with tiat dlamely,
on a standard;,-log scheme with boundargX,,, X,,) as occurs in the proof of Lemma 3.9
we act on the underlying scheme by the Frobeniusdgnand byt; +— tf’ (all i), and on
the log structure we act by the unique compatible map which on our standard\¢hast
multiplication with p. Then we lift these endomorphisms further (using the lifting property
of classical smoothness) to Frobenius lifts of dltcovering and hence to the embedding
system.

3.17. We finish with perspectives on possible further developments.

(1) Mokrane [9] defines the crystalline cohomology of a classically smbatheme
U as the log crystalline cohomology with polesinof a smooth compactificatio’ of U
with D = X — U a normal crossing divisor. This is a cohomology theory with the usual good
properties (finitely generated, Poincaré duality, mixed i finite). He shows that under
assumptions on resolutions of singularities, this cohomology theory indeed only depends on
U. We suggest a similar approach to define¢hestalline cohomology of a semistalidog
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schemea/: Compactify it (if possible) into a proper semistalildog scheme with boundary
(X, U) and take the crystalline cohomology@f, U).

Similarly, classical rigid conomology as fiteed by Berthelot [1] works with compacti-
fications. Also here, to define log versions it might be useful to work with log schemes with
boundary to avoid hypotheses on existence of compactifications by genuine log morphisms.

(2) We restricted our treatment of crystalline cohomology to that of semistatbg
schemes with boundar§t’, Y) relative to7,,. For deformations off = T other thenT;,

— for example,(SpecW,)), 1 — p) — we have at present no suitable analogs of Lemma
3.9. However, such analogs also seem to lackl@alized log geometry: for an ideally log
smoothT -log scheme (like the union of some irreducible components of a semidtdbde
scheme in the usual sense), there seems to gerieral no lift to a flat and ideally log smooth
(Spe¢W,), 1 — p)-log scheme. Some more foundational concepts need to be found.

Let us nevertheless propose some tentative definitions of crystalline cohomology for
more general fine log schem&sand more general-log schemes with boundary (without
claiming any results). Suppose thats nilpotent inOw and let(/, §) be a quasicoherent DP
ideal inOw. All DP structures on ideals i@y -algebras are required to be compatible with
8. Let Ty be a closed subscheme Bfand lety be a DP structure on the ideal &§ in T.

Let (X, X) be aT-log scheme with boundary, and &y be the closure irX of its locally
closed subschemg x 7 To. We sayy extends ta(X, X) if there is a DP structure on the
ideal of Xo in X, such that the structure map — T is a DP morphism (ifx exists, it is
unique, becaus€®y — i,Oy Iis injective). Then we sayX, X) is ay-T-log scheme with
boundary. For &-T-log scheme&X, X) we can define the crystalline site and the crystalline
cohomology of(X, X) overT as in the case of usual log schemes.

Example. Letl'y C T be a closed immersion. SuppdBes the DP envelope df ; in
T andTp C T is the closed subscheme defined by its DP ideal; we ffigve T if § extends
to 7. Now if (X, X) is aT-log scheme with boundary, we obtainyar-log scheme with
boundary(X, X) by taking asX the DP envelope of the schematic closure of the subscheme
X xg Tyof X.
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