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A dessin d’enfant or dessin is a bicolored graph embedded into a Riemann surface.
Acyclic dessins can be described analytically by preimages of Shabat polynomials
and algebraically by their monodromy groups. We determine the Shabat polynomi-
als and monodromy groups of planar acyclic dessins that are uniquely determined
by their ramification types.

1. Introduction

Popularized by Grothendieck in his “Esquisse d’un programme”, the theory of
dessins reaches across and connects multiple disciplines, including graph theory,
topology, geometry, algebra and complex analysis. Our motivation for this paper is
rooted in one of the fundamental questions in the theory of dessins — that is, how to
distinguish classes of dessins by means of topological, algebraic or combinatorial
invariants. In this paper, we focus our attention on this question by studying dessins
which are also trees. Since such dessins by any measure might be considered among
the simplest, it is worthwhile to have a complete catalog of the Belyi maps and
monodromy groups to which they correspond.

Our main objective in this paper is to determine the Shabat polynomials (up
to isomorphism) and monodromy groups corresponding to every known planar
connected acyclic dessin uniquely determined by its ramification type, the complete
list of which was given in [Shabat and Zvonkin 1994]. We begin in Section 1 by
providing the main result of the paper, followed by definitions and notation needed
to describe the class of dessins with which we are concerned, as well as some
necessary background about Shabat polynomials and wreath products. Readers
already acquainted with these subjects may wish to read Section 1A and skip
Section 1B. In Section 2 we provide a unique (up to isomorphism) Shabat polynomial

MSC2010: primary 11G32, 14H57; secondary 20E22.
Keywords: dessins d’enfant, Shabat polynomials, monodromy groups, Belyi maps, trees, wreath

products.

791

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-5
http://dx.doi.org/10.2140/involve.2019.12.791


792 CAMERON, KEMP, MASLAK, MELAMED, MOY, PHAM AND WEI

for each ramification type corresponding to exactly one (planar) bicolored tree; in
Section 3 we provide the monodromy groups for each such ramification type. In
Section 4, we suggest future directions that may be taken from the results presented
here.

1A. Main results. Here, we state the main result of the paper in the following
theorem. The remainder of this section provides the background and preliminaries
for the rest of the paper. Theorem 1.1 lists the ramification types which correspond to
exactly one dessin which is a tree, along with the associated monodromy groups and
Shabat polynomials. Theorem 1.1 contains every such ramification type, as asserted
in [Shabat and Zvonkin 1994]. In Sections 2 and 3, we argue that Theorem 1.1 lists
the correct Shabat polynomials and monodromy groups.

Theorem 1.1. The following list includes all seven ramification types (degrees of
black vertices followed by degrees of white vertices) that produce exactly one dessin
which is a tree (see [Shabat and Zvonkin 1994]). Each ramification type given on
the list is followed by (a) the Shabat polynomial (unique up to isomorphism) and
(b) the monodromy group for the dessin.

(1) Œr I 1r �

(a) zr

(b) Cr

(2) Œ2r ; 1I 2r ; 1�

(a) 1
2
.1C cos..2r C 1/ arccos.z///

(b) D2.2rC1/, where Dm denotes the dihedral group of order m

(3) Œ2r I 2r�1; 12�

(a) 1
2
.1C cos.2r arccos.z///

(b) D2.2r/

(4) Œsr�1; t I r; 1.r�1/.s�1/C.t�1/� for r > 1, t > 0

(a) .1� z/t
�Pr�1

kD0

�
t
s

�
k

zk

k!

�s
(b)

8̂̂̂<̂
ˆ̂:

Cr oCs; s D t ;

Sn=d oCd ; s ¤ t; r even;
An=d oCd ; s ¤ t; r odd and t

d
is odd;

.An=d /
d ÌC2d ; s ¤ t; r odd, t

d
even;

where nD s.r � 1/C t , d D gcd.s; t/.

(5) Œr; t; 1rCt�2I 2rCt�1� , r; t > 1

(a) 4zr .1� z/t
�Pr�1

jD0

�
t�1Cj

t�1

�
zj
��Pt�1

jD0

�
r�1Cj

r�1

��
rCt�1

rCj

�
.�1/j zj

�
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(b)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

A2r�1 �C2; r D t; r odd;
S2r�1 �C2; r D t; r even;
ArCt�1 oC2; r 6D t; both odd;
R2; r 6D t; both even;
SrCt�1 oC2; r 6D t; else;

where Rm denotes the index-2 subgroup of Sn=m o Cm such that, for all
.�1; : : : ; �m;g/ 2Rm, the permutation �1�2 � � � �m is even.

(6) Œr2; 14r�3I 32r�1�

(a) �3
p

3 i Sr .z/.1�Sr .z//
�
Sr .z/�

1
2
.1� i

p
3/
�

(b)
�

A2r�1 oC3; r odd;
R3; r even

(7) Œ33; 15I 27�

(a) � 4
531441

.z� 1/z3.2z2C 3zC 9/3.8z4C 28z3C 126z2C 189zC 378/

(b) A7 oC2

1B. Background and preliminaries. We begin by providing a terse exploration of
the object known as a dessin. For more detailed and comprehensive literature on
the subject, see [Shabat and Zvonkin 1994; Wood 2006]. For the purposes of this
paper, we begin with the observation that dessins may be realized by meromorphic
functions known as Belyi maps. The arithmetic dynamics of these Belyi maps have
been studied in some cases [Anderson et al. 2018].

Definition 1.2. Let X be a compact Riemann surface. A Belyi map is a meromor-
phic function F WX ! P1.C/ that is unramified outside of f0; 1;1g. That is, all
critical values of F are contained in f0; 1;1g. Here we may consider P1.C/ as
just C[f1g.

Grothendieck’s notion of a dessin d’enfant or dessin for short is a way to combi-
natorially characterize Belyi maps. If F is a Belyi map, then F�1.Œ0; 1�/, that is,
the preimage of the interval Œ0; 1�, has the structure of a bicolored connected graph
embedded in X. The basic structure of the bicolored graph �F associated with a
Belyi map F is given when we identify F�1.0/ as the set of black vertices, F�1.1/

as the set of white vertices, F�1..0; 1// as the set of edges and F�1.P1.C/� Œ0; 1�/

as the set of faces. Note that the degrees of the black and white vertices of �F cor-
respond to the multiplicities of the roots of F and F �1, respectively. Furthermore,
the dessin �F recovered from a Belyi map F is planar if and only if F is defined
on P1.C/, while �F is a tree if and only if F is a polynomial. Throughout this
paper, we assume X D P1.C/.

These structure of �F can be captured by the notion of a dessin, the relatively
simple combinatorial characterization given by Grothendieck.
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Definition 1.3. A dessin d’enfant or dessin is a connected bicolored graph equipped
with a cyclic ordering of the edges (oriented counterclockwise) around each vertex.

Given a Belyi map F, it is not difficult to use the procedure described above
to visualize the dessin �F to which F corresponds. However, recovering a Belyi
map from a given dessin is a much more difficult proposition. Given a dessin �F ,
a corresponding Belyi map F can be determined (uniquely up to isomorphism
over C[f1g) by considering the degrees of the vertices of �F and the resulting
system of polynomial equations involving roots and poles of F. Various methods
of calculating Belyi maps may be found in [Couveignes 1994; Matiyasevich 1996;
Schneps 1994; Sijsling and Voight 2014].

Definition 1.4. A Shabat polynomial is a polynomial F W C! C whose critical
values are contained in f0; 1g.

That is, a Shabat polynomial is a Belyi map which has only one pole (which is at
infinity); hence, its corresponding dessin will be a tree. (Shabat polynomials can be
defined more broadly as in [Shabat and Zvonkin 1994] as generalized Chebyshev
polynomials which have at most two critical values. Without loss of generality, we
choose in this paper to identify the two critical values 0 and 1.)

Definition 1.5. We say that two Shabat polynomials F;G are isomorphic if there
exist ˛ 2 C� and ˇ 2 C such that F.z/DG.˛zCˇ/.

Assume we have a dessin which is a tree and we label the edges with the numbers
1; 2; : : : ; n. We can associate the dessin with a pair of permutations �0, �1 2 Sn,
where n is number of edges, such that the cycles of �0 correspond to the cyclic
ordering (read counterclockwise) of the edges around the black vertices and the
cycles of �1 correspond to the ordering (read counterclockwise) of the edges around
the white vertices. For example, see Figure 1, where we have a bicolored tree, whose
edges are labeled 1; 2; : : : ; 7 inducing a pair of permutations �0; �1 2 S7 associated
with the black and white vertices, respectively. In general, by �0 (respectively, �1),
we mean the product of the cycle permutations associated with the edges about all
of the black (respectively, white) vertices. The group that �0 and �1 generate is a
central focus of this paper.

Definition 1.6. The monodromy group of a dessin with n edges is h�0; �1; �1i, the
group generated by �0; �1; �1 2Sn, where �0; �1 are as described in the preceding
paragraph and �1 is such that �0�1�1 D 1.

We remark that since �1D .�0�1/
�1, we may remove it from the generating set

for the monodromy group, but we keep it in the definition to be consistent with the
wider literature on this subject, which goes well beyond the consideration of Shabat
polynomials. For the remainder of the paper, when we refer to the generators of the
monodromy group, we are talking about �0 and �1. When a dessin is connected,
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Figure 1. A dessin determined by the pair of permutations �0 D

.1; 3; 2/.4; 7; 5/ and �1 D .3; 4/.5; 6/ whose monodromy group
h�0; �1i is isomorphic to GL3.F2/, a transitive subgroup of S7.

its monodromy group will be a transitive subgroup of Sn, where n is the number of
edges in the dessin.

To every dessin, we may associate an invariant known as its ramification type.
The ramification type of a dessin with n edges is given by the three partitions of n

corresponding to the degrees of the black vertices, the degrees of the white vertices
and the degrees of the faces. In the case of a dessin having one face, the latter
partition is simply nD n. Since we focus exclusively on dessins with one face in
this paper, we will omit from the notation for ramification type the last partition
corresponding to the degrees of the faces.

Definition 1.7. The ramification type of a dessin with n edges (and exactly one
face) consists of the two partitions of n

Œb
ˇ1

1
b
ˇ2

2
� � � b

ˇk

k
Iw

˛1

1
w
˛2

2
� � �w

˛`

`
�

written in exponential notation, where b1, b2, : : : , bk are the distinct degrees of the
black vertices, w1, w2, : : : , w` are the distinct degrees of the white vertices, ˇi

is the number black vertices of degree bi and ˛i is the number white vertices of
degree wi .

Note that b
ˇ1

1
b
ˇ2

2
� � � b

ˇk

k
and w˛1

1
w
˛2

2
� � �w

˛`

`
are both partitions of n, where n

is the number of edges, and these two partitions correspond to the cycle type of �0

and �1, respectively.
While each dessin has a unique ramification type, one may ask how many distinct

dessins (or equivalently nonisomorphic Shabat polynomials) are associated with a
given ramification type. Our focus in this paper will be narrowed to ramification
types which admit unique dessins.

We sometimes use the concept of tree composition to decompose a dessin into
smaller dessins. Composition will also help us compute new Shabat polynomials
as it corresponds with the usual polynomial composition. It is an easy exercise in
calculus to show that the composition of two Shabat polynomials is again a Shabat
polynomial.
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Figure 2. Top, left: P, with two vertices marked square� and trian-
gle 4. Top, right: Q, with black vertices marked �, white vertices
marked 4. Bottom: The composition P ıQ of two dessins P, Q.

Many of the dessins that we study can be constructed by a composition process
given by Adrianov and Zvonkin [1998]. Given two dessins, P and Q, we begin
the composition P ıQ by first distinguishing two vertices of P — label them with
a square and a triangle. The vertices of Q will be preimages of the square and
triangle, so we mark every black vertex of Q with a square and similarly every
white vertex of Q with a triangle. The process of composition is as follows:

(1) Replace each edge of Q with the union of the path from the square to the
triangle in P along with every branch connected to that path.

(2) Adjoin to each square (resp., triangle) vertex of Q the union of every branch
connected to the square (triangle) in P except for the one in the path to the
triangle (square). Do this as many times as the degree of the vertex.

The resulting graph should resemble n copies of P arranged in the shape of Q,
where n is the number of edges of Q. We demonstrate this process in Figure 2.

Remark 1.8. Let GP , GQ denote the respective monodromy groups of P and Q.
According to a theorem of Adrianov and Zvonkin [1998], the monodromy group of
P ıQ is a subgroup of GQ oGP , where o denotes the wreath product.

This process also gives a way to compute Shabat polynomials. If p; q are
the respective Shabat polynomials of P;Q such that p.0/;p.1/ 2 f0; 1g then the
Shabat polynomial of P ıQ is p ıq (where ı denotes the conventional composition
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of functions, i.e., .f ı g/.x/ D f .g.x//). Later on, when we compute Shabat
polynomials of more complicated dessins, we will make extensive use of this fact.

We will often call upon the idea of the wreath product of groups to describe our
monodromy groups. The composition process produces dessins whose monodromy
groups are subgroups of wreath products. While there are numerous examples for
which the containment is proper, often equality of the groups is achieved. As far as
the present authors can tell, the exact conditions that ensure equality are not known.

Definition 1.9. Let d be a positive integer. Let G � Sd and H be groups. Let K

be the direct product of d copies of H. If hD .h1; : : : ; hd / 2K, then we define the
action of � 2G on K by � � hD .h�.1/; : : : ; h�.d//. The wreath product of H by
G is the semidirect product K ÌG with respect to the action above, and we denote
this group by H oG.

In this paper, G is typically Cd , the cyclic group of order d .

2. Shabat polynomials for trees uniquely determined by ramification type

In this section, we summarize the list of Shabat polynomials (up to isomorphism)
corresponding to dessins which are trees and are uniquely determined by ramification
type. The complete list of ramification types for such dessins was given in [Shabat
and Zvonkin 1994]. For the Shabat polynomials corresponding to these ramification
types, we adopt the convention described in Definition 1.7.

Proposition 2.1. The ramification types Œr I 1r �, Œ2r ; 1I 2r ; 1�, Œ2r I 2r�1; 12� have
respective Shabat polynomials

zr ; 1
2
.1C cos..2r C 1/ arccos.z///; 1

2
.1C cos..2r/ arccos.z///;

all unique up to isomorphism.

This result is already well known in the literature and can be found on pages 3–4
of [Shabat and Zvonkin 1994]. See Figure 3.

Proposition 2.2 [Adrianov 2007]. Up to isomorphism, the unique Shabat polyno-
mial for the ramification type Œsr�1; t I r; 1.r�1/.s�1/C.t�1/� is

F.z/D .1� z/t
�r�1X

kD0

�
t

s

�
k

zk

k!

�s

;

where
.a/k D a.aC 1/.aC 2/ � � � .aC k � 1/

denotes the Pochhammer symbol.

The proof for this proposition can be found in [Adrianov 2007].
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- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

z! z8Im.z/

Re.z/

Figure 3. The dessin with ramification type Œ8I 18�.

Proposition 2.3. Let r > 1. Up to isomorphism, the Shabat polynomial for the tree
having ramification type

Œr; t; 1rCt�2
I 2rCt�1�

with a black vertex of degree r located at z D 0 and a black vertex of degree t

located at z D 1 is given by

F.z/D 4zr
�rCt�1

r

�
2F1.t � 1; r I r C 1I z/

�

�
1� .1� z/tzr

�rCt�1

t�1

�
2F1.1; r C t I r C 1I z/

�
;

where 2F1 is the hypergeometric function defined by

2F1.a; bI cI z/D

1X
nD0

.a/n.b/n

.c/n

zn

n!
:

!1.0 !0.5 0.5 1.0

!1.5

!1.0

!0.5

0.5

1.0

1.5

Im!z"

$

Im.z/

Re.z/

Figure 4. The dessin obtained by the Shabat polynomial given in
Proposition 2.2 when s D 6, r D 5, t D 3.
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0.2 0.4 0.6 0.8 1.0
Re�z�

�1.0

�0.5

0.5

1.0

Im�z� z � 4 �1� z� z

Figure 5. The dessin (path graph) obtained by the Shabat polyno-
mial ˇ.z/D 4z.1� z/.

0.5 1.0

- 0.4

- 0.2

0.2

0.4

Im.z/ z! z5.15z2� 35zC 21/

Re.z/

Figure 6. The tree obtained by the Shabat polynomial in
Proposition 2.2 where s D 1; r D 3; t D 5.

Proof. Let Sr;t .z/ be the Shabat polynomial for the ramification type Œt;1r�1Ir;1t�1�.
By Proposition 2.2, with s D 1,

Sr;t .z/D .1� z/t
r�1X
jD0

�
t � 1C j

t � 1

�
zj :

Consider the map ˇ.z/D 4z.1�z/ with the dessin�ˇ (see Figure 5) and Sr;t .z/

with the dessin �S (see Figure 6). The composition ˇ.z/ ı Sr;t .z/ is a Shabat
polynomial that produces the dessin obtained by coloring the vertices of �S to
black and adding a white vertex of degree 2 inside every edge (in other words,
replacing every edge of �S with �ˇ). Note the number of edges in Sr;t .z/ is
r C t � 1. The composition produces the new dessin �F (see Figure 7) and Shabat
polynomial F.z/D ˇ.z/ıSr;t .z/ with ramification type Œr; t; 1rCt�2I 2rCt�1�, and
therefore F.z/ equals

4zr .1� z/t
�r�1X

jD0

� t�1Cj

t�1

�
zj

��t�1X
jD0

�r�1Cj

r�1

��rCt�1

rCj

�
.�1/j zj

�
;
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0.5 1.0
Re�z�

�0.4

�0.2

0.2

0.4

Im�z�z � �4 �z � 1�3 �15 z4 � 10 z3 � 6 z2 � 3 z � 1� ��15 z4 � 10 z3 � 6 z2 � 3 z � 1� �z � 1�3 � 1�

Figure 7. The tree obtained by the Shabat polynomial in
Proposition 2.3 with r D 5; t D 3.

which can be rewritten in terms of hypergeometric functions, as in the statement of
the present proposition. �

Proposition 2.4. The Shabat polynomial for the unique tree having ramification
type

Œr2; 14r�3
I 32r�1�

with two black vertices of degree r located at z D 0 and z D 1 is given by

F.z/D .T ıSr /.z/;

where
T .z/D�3i

p
3z.1� z/.zC �/; �D 1

2
.�1C i

p
3/;

and

Sr .z/D .1� z/r
r�1X
jD0

�
r � 1C j

r � 1

�
zj :

F.z/ is unique up to isomorphism.

Proof. First we will show that T .z/ WD �3i
p

3z.1� z/.zC �/ corresponds to a
3-star with a white center and black leaves at z D 0 and z D 1. Considering T .z/,
we see immediately three distinct roots of multiplicity 1 at z D 0, 1, 1

2
.1� i

p
3/

representing three black leaves in �F . Next we consider the derivative of T .z/,

T 0.z/D�3i
p

3.�C 2.1� �/z� 3z2/;

which has a single root of multiplicity 2 (note that the discriminant of T 0.z/ is
zero). Since the multiplicity of the black vertices is 1, we may assume that the
multiple root in T 0.s/ must refer to a root of multiplicity 3 in F.z/ � 1, repre-
senting the white vertex of degree 3. Therefore, T .z/ must be a 3-star with black
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0.5 1.0
Re�z�

�0.2

0.2

0.4

Im�z�z � 3 z4 �20 z3 � 70 z2 � 84 z � 35� �� �20 z3 � 70 z2 � 84 z � 35� z4 � 1� �2 � �20 z3 � 70 z2 � 84 z � 35� z4 � 3 � ��

Figure 8. An illustration of the tree derived from the Shabat poly-
nomial in Proposition 2.4 where r D 4.

leaves at z D 1 and z D 0. We can now use the idea of composition to replace
every edge of the tree having Shabat polynomial Sr .z/ WD Sr;r .z/, where Sr;t .z/

is the polynomial as defined in the proof of Proposition 2.3, with the 3-star by
computing the composition .T ı Sr /.z/. This will add a white vertex of degree
3 and an additional black leaf for every edge. Note that Sr .z/ corresponds to a
tree with 2r � 1 edges and 4r � 2 vertices. Therefore �F will have 2r � 1 white
vertices of degree 3 and 4r � 3 black leaves, in addition to the two black vertices
of degree r .

Note: An anonymous referee pointed out that we may go one step further here
by letting z0 WD i

p
3z� �2. A quick computation shows that Sr .z0/D Sr .1� z0/.

One can also show that Sr .z/ D 1 � Sr .1 � z/ using the following argument.
Observe that 0 is a root of order r of Sr .z/ and 1� Sr .1� z/. Further observe
that 1 is a root of order r of Sr .z/� 1 and 1� Sr .1� z/� 1. Thus we deduce
that Sr .z/D 1�Sr .1� z/ using the uniqueness of the Shabat polynomial from
Proposition 2.2. Hence, Sr .z0/D 1�Sr .z

0/. A few simple calculations yield the
equality T .Sr .z0//D T .Sr .z

0//, which implies T .Sr .z
0// 2QŒz�. �

Proposition 2.5. For the tree with ramification type Œ33; 15I 27�, a black vertex of
degree 3 at z D 0 and a black vertex of degree 1 at z D 1, the Shabat polynomial is

F.z/D� 4
531441

.z� 1/z3.2z2
C 3zC 9/3.8z4

C 28z3
C 126z2

C 189zC 378/:

Proof. We can write F.z/D .ˇ ıf /.z/, where

ˇ.z/D 4z.1� z/ and f .z/D� 1
729
.z� 1/.9C 3zC 2z2/3;

which is the Shabat polynomial for ramification type Œ32; 1I 3; 14� obtained by letting
r D 3, s D 3, t D 1 in Proposition 2.2. �
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�1.0 �0.5 0.5 1.0
Re�z�

�2

�1

1

2

Im�z�z �
4 �1� z� z3 �2 z2 � 3 z � 9�3 �8 z4 � 28 z3 � 126 z2 � 189 z � 378�

531441

Figure 9. An illustration of the tree described in Proposition 2.5.

3. Monodromy groups for trees uniquely determined by ramification type

In this section, we provide proofs for the monodromy groups associated with each
ramification type listed in Theorem 1.1. In all of our proofs, we proceed by choosing
a particular labeling of the edges of the dessin. Though the monodromy group does
not depend on the choice of labels, some choices better illustrate how �0 and �1

generate the monodromy group.

Proposition 3.1. The ramification types Œr I 1r �, Œ2r ; 1I 2r ; 1�, and Œ2r I 2r�1; 12�

have respective monodromy groups Cr , D2.2rC1/, and D2.2r/, where Dm denotes
the dihedral group of order m.

Proof. The first ramification type gives the r -star dessin with monodromy group
generated by an r -cycle and the identity permutation. It follows that the monodromy
group is the cyclic group Cr . The second and third ramification types yield the
path dessins with 2r C 1 and 2r edges respectively. We handle these two cases
simultaneously, since the argument is essentially the same. The dessins in Figure 10
are examples of path dessins.

In both cases, the generators of the groups �0 and �1 have order 2, and the
respective �1’s have order 2rC1 and 2r . Since in this case �1D .�0�1/

�1D�1�0,
we may view the monodromy group as h�0, �1i. We let n denote the order of �1;
note that n is either 2r C 1 or 2r depending on the ramification type. The relations
�2

0
D �r

1 D 1 and �0�1 D .�0�1/�0 D .�1�0/
�1�0 D .�1/

�1�0 hold. The
conclusion is that the monodromy groups of these dessins are isomorphic to the
dihedral groups of order 2n. �

1 2 3 1 2 3 4

Figure 10. The path dessins of 3 and 4 edges, respectively.
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Figure 11. An example of a dessin from Proposition 3.2, where
r D 4, s D 3, t D 4.

Proposition 3.2. Assume r > 1. The ramification type Œsr�1; t I r; 1.r�1/.s�1/C.t�1/�

has nD .r � 1/sC t edges and a unique tree with monodromy group G, with

G Š

8̂̂̂<̂
ˆ̂:

Cr oCs; s D t ;

Sn=d oCd ; s ¤ t , r even;
An=d oCd ; s ¤ t , r is odd and t

d
is odd;

.An=d /
d ÌC2d ; s ¤ t; r odd, t

d
even,

where d D gcd.s; t/.

Proof. The ramification type Œsr�1; t I r; 1.r�1/.s�1/C.t�1/� produces a tree of diam-
eter 4 with nD .r � 1/sC t edges in the nondegenerate cases. See Figure 11.

In general, �0 is the product of one t-cycle and .r�1/-many s-cycles and �1 is
an r -cycle. We label our edges so that we compute the permutations �0; �1; �1 as

�0 D .1; : : : ; t/.t C 1; : : : ; t C s/

� .t C sC 1; : : : ; t C 2s/ � � � .t C .r � 2/sC 1; : : : ; t C .r � 1/s/;

�1 D .1; t C 1; t C sC 1; t C 2sC 1; : : : ; t C .r � 2/sC 1/;

��1
1 D �0�1 D .1; 2; : : : ; n/:

(Note that we go left to right when computing permutation products.)

Case 1: s D t D)G D Cr oCs . Assume s D t . Then our dessin is the composition
of an s-star with an r -star, which means G is a subgroup of Cr oCt by Remark 1.8.
Define �i WD ��i

0
�1�

i
0
. Referring to the above where we already computed �0

and �1, we see
�0 D .1; t C 1; 2t C 1; : : : ; .r � 1/t C 1/D �1;

�1 D .2; t C 2; 2t C 2; : : : ; .r � 1/t C 2/;
:::

�t�1 D .t; 2t; 3t; : : : ; r t/:
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Each �i is an r -cycle and generates Cr . Since the �i’s partition f1; 2; : : : ; r tg,
they must commute with each other and we see that together they generate C t

r .
Also, �0 is a product of t-cycles satisfying ��1

0
�i�0 D �iC1, where the subscripts

are reduced modulo t . These relations are sufficient to recognize that G contains
h�0; �1; �2; : : : ; �t�1i Š Cr oCt .

Case 2: s ¤ t , gcd.s; t/ D 1 D) G D An for r; t odd and G D Sn otherwise.
Assume that gcd.s; t/D 1, with s or t > 1. It is known that a permutation group con-
taining .1; 2; 3/ and .1; 2; : : : ; n/ contains An; see Lemma A.1. Our goal is to show
that An �G � Sn and then use a parity argument to determine which containment
is improper. Given that �0�1D .1; 2; : : : ; n/ 2G, we proceed to show .1; 2; 3/ 2G.

Assume t D 1 and s > 1. We claim � WD .��1
0
��1

1
�0/.�1�1�

�1
1 / D .1; 2; 3/.

Since t D 1, we know �0 is a product of .r � 1/ s-cycles, while �1, ��1
1

remain
r -cycles. We see that

�D .��1
0 ��1

1 �0/.�1�1�
�1
1 /

D .1; .r � 2/sC 3; : : : ; 2sC 3; sC 3; 3/.2; 3; sC 3; 2sC 3; : : : ; .r � 2/sC 3/:

One may verify that �.1/D 2, �.2/D 3, �.3/D 1 and, for k > 3, �.k/D k. It
follows that An �G.

If t D 2, we have � s
0
D .1; 2/ 2G. Since G contains the transposition .1; 2/ and

the cycle .1; 2; : : : ; n/, we have Sn �G.
Now suppose t � 3, we first set k to be the smallest positive integer such

that k satisfies k � 0 (mod s) and k � �1 (mod t). The existence of such
a number is guaranteed by the Chinese remainder theorem. We claim � WD

.��1
1
�k

0
�1/�

k
0
.��1

1
��2k

0
�1/D .1; 2; 3/. Notice that

.��1
1 �k

0 �1/�
k
0 .�
�1
1 ��2k

0 �1/D .tC1; t; : : : ; 3; 2/.1; t; : : : ; 3; 2/.tC1; 2; 3; : : : ; t/2:

One may verify that �.1/D 2, �.2/D 3, �.3/D 1 and �.k/D k for k > 3. Thus
�D .1; 2; 3/ 2G and therefore An �G.

For every triple s; t such that gcd.s; t/D 1 and s or t > 1, we have shown that
An � G. Since we also have G � Sn, by index considerations G is either the
symmetric or alternating group of appropriate order. Otherwise if r or t is even, �0,
being the product of a t -cycle and .r�1/ s-cycles, is an odd permutation (note s must
be odd if t is even), so GŠSn. Since both �0 and �1 are even permutations when r

and t are odd, we deduce that G�An and thus the double inclusion gives us GŠAn.

Case 3: In this final case, we assume gcd.s; t/D d > 1. This tree is the composition
P ıQ, where P is the d -star and Q is the dessin corresponding to the passport��

s

d

�r�1

;
t

d
I r; 1.r�1/.s=d�1/C.t=d�1/

�
:
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Hence, the monodromy group G is a subgroup of the wreath product GQ o Cd ,
where GQ is the monodromy group for Q.

Consider the partition of f1; : : : ; ng into the d sets

f1; d C 1; : : : ; n� d C 1g; f2; d C 2; : : : ; n� d C 2g; : : : ; fd; 2d; : : : ; ng;

each of size n
d

, and denote them by P1; : : : ;Pd respectively. Recall that �0 is the
disjoint product of a t-cycle and .r � 1/ s-cycles, and moreover every element in
f1; 2; : : : ; ng is moved by exactly one of these cycles under the canonical group
action. Because d divides both s and t , we know � WD �d

0
is the disjoint product

of d t
d

-cycles and d.r � 1/ s
d

-cycles. Moreover, each disjoint cycle of � permutes
elements in exactly one of the Pi while fixing the rest. Similarly, because d

divides n, we know �d
1 is the disjoint product of d n

d
-cycles, and each disjoint

cycle of �d
1 likewise permutes elements in exactly one of the Pi . Note that �1

permutes only the elements of P1.
Let k be the smallest positive integer such that k satisfies k� 0

�
mod s

d

�
and k�

�1
�
mod t

d

�
. One may verify that � WD��1

1
�k�1�

k��1
1
��2k�1D .1; dC1; 2dC1/.

(Note that in the case where t D d , we let � WD .��1��1
1
�/.�d

1�1�
�d
1 / and proceed

with the same argument.)
We can conclude that the subgroup

N D h�; ��d
1 ��d

1; �
�2d
1 ��2d

1 ; : : : ; �
�.n�d/
1 ��n�d

1 ; �1i

is isomorphic to Sn=d when r is even and isomorphic to An=d when r is odd
(see Lemma A.4). Furthermore, we observe that N , ��1

1 N�1, ��2
1 N�2

1, : : : ,
��dC1
1 N�d�1

1 are all isomorphic to Sn=d or An=d (depending on whether r is even
or odd) and ��iC1

1 N� iC1
1 permutes elements of Pi . Hence

H WD hN; ��1
1 N�1; �

�2
1 N�2

1; : : : ; �
�dC1
1 N�d�1

1 i Š

�
.Sn=d /

d if r even,
.An=d /

d if r odd.

One can check that ��1
0

H�0DH and ��1
1

H�1DH. Hence, H GG. Observe that
�1 2H. Therefore, H�1 generates the quotient group GnH. When r is even, the
smallest power of �1 in H is d , when r is odd and n

d
is odd, the smallest power

of �1 in H is d , and when r is odd and n
d

is even, the smallest power of �1 in H

is actually 2d . (Note that when r is odd, the parities of t
d

and n
d

are the same.) In
order to show that G is isomorphic to a semidirect product, we will use the splitting
lemma. In our case, if we can find an element of H�1 of order d or 2d (depending
on the case), we have shown G is a semidirect product.

First we consider the case where r is even. In this case, observe that

.d; 2d; 3d; : : : ; n/�1.1; 2; 3; 4; : : : ; n/

D .1; 2; : : : ; d/.d C 1; d C 2; : : : ; 2d/ � � � .n� d C 1; n� d C 2; : : : ; n/:
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Figure 12. P and Q on the left; P ıQ on the right.

Hence, there is an element of order d in GnH and G Š .Sn=d /
d Ì Cd by the

splitting lemma for semidirect products, and in fact GŠSn=d oCd . This also shows
that H�1 contains an element of order d in the case where r and n

d
are odd since

the cycle .d; 2d; 3d; : : : ; n/ is an element of An in this case. Therefore, when n
d

and r are odd, G Š .An=d /
d ÌCd and in fact G ŠAn=d oCd .

Now we consider the case where r is odd and n
d

is even. Observe that

.2d; 3d; : : : ; n/�1.1; 2; 3; : : : ; n/

D .1; 2; 3; : : : ; 2d/.2d C 1; 2d C 2; : : : ; 3d/ � � � .n� d C 1; n� d C 2; : : : ; n/:

Hence, there is an element of order 2d in GnH and thus G Š .An=d /
d ÌC2d . �

Proposition 3.3. Let r; t > 1. The ramification type Œr; t; 1rCt�2I 2rCt�1� produces
a unique tree with monodromy group G, where

G Š

8̂̂̂̂
<̂̂
ˆ̂̂̂:

A2r�1 �C2; r D t; r odd;
S2r�1 �C2; r D t; r even;
ArCt�1 oC2; r 6D t; both odd;
R2; r 6D t; both even;
SrCt�1 oC2; r 6D t; else;

where R2 denotes the index-2 subgroup of SrCt�1 oC2 such that �1�2 is an even
permutation for all .�1; �2;g/ 2R2.

Proof. First, we note that this dessin is the composition P ıQ, where P is the
2-star and Q is the dessin of Proposition 3.2 with s D 1. See Figure 12.

Let GQDh.1; 2; : : : ; r/; .r; rC1; : : : ; rC t�1/i be the monodromy group of Q.
By Proposition 3.2, we know that

GQ Š

�
ArCt�1; r; t both odd;
SrCt�1; otherwise:

The dessin with ramification type Œr; t; 1rCt�2I 22r�1� is the composition of P

and Q, and so its monodromy group G satisfies G �GQ oC2 by Remark 1.8. We
consider G in two cases: r D t and r 6D t .
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Case 1: r 6D t . In the first case, we have r 6D t . We label our edges in such a way that

�0 D .1; 2; : : : ; r/.r ; r C 1; : : : ; r C t � 1/;

�1 D .1; 1/.2; 2/ � � � .r C t � 1; r C t � 1/:

Note that �0 is the disjoint product of an r -cycle with a t-cycle; call these cycles
�1 and �2 respectively. Consider the embedding � WG! SrCt�1 oC2 given by

�0 7! .�1; �2; 0/;

�1 7! .id; id; 1/:

Note that ��1
1
�0�1 is mapped to .�2; �1; 0/. Apply Lemma A.5 to nD r C t � 1

(assume n� 5 for now), �1; �2 2 SrCt�1. We have GQ D h�1; �2i �An as noted
above. Lemma A.5 implies

ArCt�1 oC2 � �.G/� SrCt�1 oC2:

When r; t are odd, both �1 and �2 are even permutations, and we see that �.G/Š
ArCt�1 oC2. When r and t have different parity, we know h�1; �2i Š SrCt�1, so
�.G/Š SrCt�1 oC2. When r; t are both even, for any .�1; �2;g/ 2 �.G/, �1 and
�2 will share the same parity. Since we can take �1 D �1, an odd permutation, we
see that �.G/ is properly contained in between ArCt�1 oC2 and SrCt�1 oC2. It is
in fact the group R2 described earlier after Theorem 1.1. In the finite number of
cases where r C t � 1< 5, one can verify the result by hand.

Case 2: r D t . In the second case, we consider r D t . We can label our dessin in
such a way that

�0 D .1; 2; : : : ; r/.1; 2; : : : ; r/;

�1 D .1; r C 1/.2; r C 2/ � � � .r � 1; 2r � 1/.r; r/.r C 1; 1/ � � � .2r � 1; r � 1/:

Observe that

�
.2r�1/
1 D .1; 1/ � � � .2r � 1; 2r � 1/;

�1 D �1�0�
�1
1 D .r; r C 1; : : : ; 2r � 1/.r ; r C 1; : : : ; 2r � 1/;

�2 D �
.2r�1/
1 �1 D .1; r C 1/.1; r C 1/

� .2; r C 2/.2; r C 2/ � � � .r � 1; 2r � 1/.r � 1; 2r � 1/.r/.r/;

and GQ D h�
.2r�1/
1 ; �1; �2i is a subgroup of S2r�1 �Z2. Furthermore,

�3 D �2�1�0�
�1
1 ��1

2 D .1; 2; : : : ; r/.1; 2; : : : ; r/:

By Proposition 3.2, we see that h�1; �3i is S2r�1 if r even and A2r�1 if r odd, and
thus we have our result. �
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Figure 13. Top, left: P, with vertices marked. Top, right: Q, with
vertices marked. Bottom: An example of the composition for r D 3.

Proposition 3.4. The ramification type Œr2; 14r�3I 32r�1� produces a unique tree
with monodromy group G, where

G Š

�
A2r�1 oC3; r odd;
R3; r even;

where R3 denotes the index-2 subgroup of S2r�1 oC3 such that �1�2�3 is an even
permutation for all .�1; �2; �3;g/ 2R3.

Proof. The procedure here is similar to the proof of the previous proposition. We
observe that this dessin is the composition P ıQ, where P is the 3-star with
ramification type Œ13I 3� and Q is the dessin from Proposition 3.2 where s D 1,
r D t . See Figure 13.

We can label the dessin so that

�0 D .1; 2; : : : ; r/.r ; r C 1; : : : ; 2r � 1/;

�1 D .1; 1; O1/.2; 2; O2/ � � � .2r � 1; 2r � 1; 12r � 1/:

Note that �0 is the product of two r -cycles (call them �1 and �2 respectively)
and that �1 is the product of .2r � 1/ 3-cycles. Consider the embedding � WG!
S2r�1 oC3 defined by

�0 7! .�1; �2; id; 0/;

�1 7! .id; id; id; 1/:

Under this homomorphism, successive conjugations of �0 by �1 are mapped to
.id; �1; �2; 0/ and .�2; id; �1; 0/. Applying Lemma A.5 to �1; �2, and �.G/, we
have A2r�1 oC3 � �.G/. When r is odd, both �1 and �2 are even permutations,
so A2r�1 oC3 � �.G/, giving a double inclusion. When r is even, we consider the
quotient group

.S2r�1 oC3/=.A2r�1 oC3/Š C2 �C2 �C2:
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Observe that when r is even, �.G/�R3 and .�1; �2; id; 0/ is equal to .1; 1; 0/ in
the quotient group �.G/=A2r�1 oC3. We similarly have .0; 1; 1/ and .1; 0; 1/ in
the quotient group. Hence, we see that �.G/ is an index-2 subgroup of S2r�1 oC3

and thus �.G/�R3. �
Proposition 3.5. The ramification type Œ33; 15I 27� produces a unique tree with
monodromy group G ŠA7 oC2.

Proof. This is a sporadic case that may be verified by hand. �

4. Future directions

The reader will notice that there are some obvious pathways left open by this paper.
In Theorem 1.1 each entry refers to a tree uniquely determined by ramification type.
For each entry there exists a Shabat polynomial with rational coefficients. However,
we were not able to find a closed form expression for the coefficients of the rational
Shabat polynomial given for the tree with ramification type Œr2; 14r�3I 32r�1�.

As for another direction of further inquiry, we note that the present paper focuses
exclusively on (planar) trees uniquely determined by ramification type. However,
we know that there exists an exhaustive list of ramification types that produce
exactly two distinct trees, and perhaps there are other such lists for ramification
types that produce larger numbers of trees [Shabat and Zvonkin 1994]. At the very
least, it would be interesting to see the complete list of monodromy groups for
ramification types that produce two trees in comparison with the completion of
Theorem 1.1. Finally, it would also be of interest to see similar results for classes
of dessins having at least one cycle or for dessins with genus greater than 1.

Appendix

In this section we prove a few technical results used in the paper. We learned of the
following results (Lemmas A.1, A.2, A.3, A.4) and their proofs from Keith Conrad.
Recall that we multiply permutations left to right.

Lemma A.1. For n � 5, the subgroup generated by .1; 2; 3/ and .1; 2; : : : ; n/
contains An.

We prove this lemma through a sequence of lemmas.

Lemma A.2. For n� 5, every element of An is a product of 3-cycles.

Proof. The set of 3-cycles is a conjugacy class that is a subset of An. Therefore, the
subgroup generated by the set of 3-cycles is a normal subgroup of An. Since An

is simple for n � 5, we conclude that the set of 3-cycles generates An and every
element of An is a product of 3-cycles. �
Lemma A.3. For n� 5, the group An is generated by elements of the form .1; 2; k/.
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Proof. First observe that An is generated by 3-cycles of the form .1; i; j /. This is
easily seen by observing that for any 3-cycle .a; b; c/ not containing 1, we have
.a; b; c/D .1; b; c/.1; a; b/. By Lemma A.2 we see that An is generated by 3-cycles
of the form .1; i; j /.

Now we consider the 3-cycles of the form .1; 2; k/. Since .1; 2; k/�1D .1; k; 2/,
any 3-cycle with 1 and 2 is generated by 3-cycles of the form .1; 2; k/. For a 3-cycle
.1; i; j / not containing 2, we have .1; i; j / D .1; 2; j /.1; 2; i/.1; 2; j /.1; 2; j /.
Hence, every element of An is generated by elements of the form .1; 2; k/. �

Lemma A.4. For n� 5, the consecutive 3-cycles .i; iC1; iC2/ with 1� i � n�2

generate An.

Proof. This can be shown to be true for A5 by computation. We proceed to prove
this for n> 5 by induction.

Assume this is true for An. Consider AnC1. By induction, we know that cycles
of the form .i; iC1; iC2/ generate the elements .1; 2; k/ for 3� k � n. Therefore,
by Lemma A.3, we need only show that we can generate .1; 2; nC 1/ in order
to show that cycles of the form .i; i C 1; i C 2/ generate AnC1. Observe that
.1; 2; nC 1/ D .1; 2; n/.1; 2; n� 1/.n� 1; n; nC 1/.1; 2; n/.1; 2; n� 1/ and thus
we have proven our result. �

Now we proceed with the proof of Lemma A.1

Proof of Lemma A.1. Let � D .1; 2; : : : ; n/. Observe that

��k.1; 2; 3/�k
D .�k.1/; �k.2/; �k.3//D .kC 1; kC 2; kC 3/

if 0�k�n�3. Thus by Lemma A.4, .1; 2; 3/ and .1; 2; : : : ; n/ generate a subgroup
that contains An. �

Lemma A.5. Suppose that �0; �1 2 Sn with h�0; �1i �An with n� 5.

(1) If j�0j 6D j�1j, then � D h.�0; �1/; .�1; �0/i must contain An �An.

(2) � D h.�0; �1; id/; .id; �0; �1/; .�1; id; �0/i must contain An �An �An.

Proof. Suppose that id ¤ � 2 An. Observe that h��1�� W � 2 Ani is a normal
subgroup of An. If n� 5, then An is simple and therefore, An D h�

�1�� W � 2Ani.
First, we consider statement (1). Suppose that .�; id/ 2 �. We want to show that

An�hidi is a subgroup of �. There is a homomorphism proj WSn�Sn!Sn, which is
a projection from the first component. Since An � h�0; �1i, we have proj.�/�An.
Therefore, for all � 2 An there exists � 0 2 Sn such that .�; � 0/ 2 �. Conjugating
.�; id/ by all .�; � 0/ shows that An � hidi � �. Note that the same argument can be
used to show hidi �An � � via projection in the other component. Statement (1)
then follows as long as � ¤ id exists. Furthermore, the argument to establish
statement (2) would proceed in an identical fashion, presuming �¤ id exists.
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To establish existence of � in the case of statement (1), we claim that there exists
an element of the form .�; id/2� , where � 6D id. Without loss of generality, assume
j�0j> j�1j, and then consider .�0; �1/

j�1j; .�1; �0/
j�1j, in which case we may let

�D �
j�1j

0
.

Now we prove such an element exists in the case of statement (2) for n> 2. If
j�0j¤ j�1j, then the proof is analogous to the argument for statement (1). Otherwise
j�0j D j�1j D r and we want to find some element � 2An such that j�j−r . One
can show that such a � exists by proving that, for n> 2, there must be some prime q

not dividing j�0j D r . One can show q exists by using the fact that

n<
X
p�n

p prime

p for n> 2:

Using all three generators of �, one can produce the element .�k1

0
; �; �

k2

1
/ 2A3

n,
where k1; k2 2Z. By raising this element to the r -th power, we produce the element
.id; �r ; id/ 2 � and let �D �r. �

Corollary A.6. Let H be a simple group. Suppose �0; �1 2 Sn with h�0; �1i �H.

(1) If j�0j 6D j�1j, then � D h.�0; �1/; .�1; �0/i must contain H �H.

(2) � D h.�0; �1; id/; .id; �0; �1/; .�1; id; �0/i must contain H �H �H.

Remark A.7. In [Adrianov et al. 1997], Adrianov, Kochetkov, and Suvorov classify
all the possible primitive, and thus simple, monodromy groups of plane trees.
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