\bullet
 in Olve a journal of mathematics

Shabat polynomials and monodromy groups of trees uniquely determined by ramification type

Naiomi Cameron, Mary Kemp, Susan Maslak, Gabrielle Melamed, Richard A. Moy, Jonathan Pham and Austin Wei

Shabat polynomials and monodromy groups of trees uniquely determined by ramification type

Naiomi Cameron, Mary Kemp, Susan Maslak, Gabrielle Melamed, Richard A. Moy, Jonathan Pham and Austin Wei (Communicated by Vadim Ponomarenko)

Abstract

A dessin d'enfant or dessin is a bicolored graph embedded into a Riemann surface. Acyclic dessins can be described analytically by preimages of Shabat polynomials and algebraically by their monodromy groups. We determine the Shabat polynomials and monodromy groups of planar acyclic dessins that are uniquely determined by their ramification types.

1. Introduction

Popularized by Grothendieck in his "Esquisse d'un programme", the theory of dessins reaches across and connects multiple disciplines, including graph theory, topology, geometry, algebra and complex analysis. Our motivation for this paper is rooted in one of the fundamental questions in the theory of dessins - that is, how to distinguish classes of dessins by means of topological, algebraic or combinatorial invariants. In this paper, we focus our attention on this question by studying dessins which are also trees. Since such dessins by any measure might be considered among the simplest, it is worthwhile to have a complete catalog of the Belyi maps and monodromy groups to which they correspond.

Our main objective in this paper is to determine the Shabat polynomials (up to isomorphism) and monodromy groups corresponding to every known planar connected acyclic dessin uniquely determined by its ramification type, the complete list of which was given in [Shabat and Zvonkin 1994]. We begin in Section 1 by providing the main result of the paper, followed by definitions and notation needed to describe the class of dessins with which we are concerned, as well as some necessary background about Shabat polynomials and wreath products. Readers already acquainted with these subjects may wish to read Section 1A and skip Section 1B. In Section 2 we provide a unique (up to isomorphism) Shabat polynomial

[^0]for each ramification type corresponding to exactly one (planar) bicolored tree; in Section 3 we provide the monodromy groups for each such ramification type. In Section 4, we suggest future directions that may be taken from the results presented here.

1A. Main results. Here, we state the main result of the paper in the following theorem. The remainder of this section provides the background and preliminaries for the rest of the paper. Theorem 1.1 lists the ramification types which correspond to exactly one dessin which is a tree, along with the associated monodromy groups and Shabat polynomials. Theorem 1.1 contains every such ramification type, as asserted in [Shabat and Zvonkin 1994]. In Sections 2 and 3, we argue that Theorem 1.1 lists the correct Shabat polynomials and monodromy groups.

Theorem 1.1. The following list includes all seven ramification types (degrees of black vertices followed by degrees of white vertices) that produce exactly one dessin which is a tree (see [Shabat and Zvonkin 1994]). Each ramification type given on the list is followed by (a) the Shabat polynomial (unique up to isomorphism) and (b) the monodromy group for the dessin.
(1) $\left[r ; 1^{r}\right]$
(a) z^{r}
(b) C_{r}
(2) $\left[2^{r}, 1 ; 2^{r}, 1\right]$
(a) $\frac{1}{2}(1+\cos ((2 r+1) \arccos (z)))$
(b) $D_{2(2 r+1)}$, where D_{m} denotes the dihedral group of order m
(3) $\left[2^{r} ; 2^{r-1}, 1^{2}\right]$
(a) $\frac{1}{2}(1+\cos (2 r \arccos (z)))$
(b) $D_{2(2 r)}$
(4) $\left[s^{r-1}, t ; r, 1^{(r-1)(s-1)+(t-1)}\right]$ for $r>1, t>0$
(a) $(1-z)^{t}\left(\sum_{k=0}^{r-1}\left(\frac{t}{s}\right)_{k} \frac{z^{k}}{k!}\right)^{s}$
(b) $\begin{cases}C_{r} \prec C_{s}, & s=t, \\ S_{n / d} \backslash C_{d}, & s \neq t, r \text { even, } \\ A_{n / d} \prec C_{d}, & s \neq t, r \text { odd and } \frac{t}{d} \text { is odd, }, \\ \left(A_{n / d}\right)^{d} \rtimes C_{2 d}, & s \neq t, r \text { odd, } \frac{t}{d} \text { even, }\end{cases}$
where $n=s(r-1)+t, d=\operatorname{gcd}(s, t)$.
(5) $\left[r, t, 1^{r+t-2} ; 2^{r+t-1}\right], r, t>1$
(a) $4 z^{r}(1-z)^{t}\left(\sum_{j=0}^{r-1}\binom{t-1+j}{t-1} z^{j}\right)\left(\sum_{j=0}^{t-1}\binom{r-1+j}{r-1}\binom{r+t-1}{r+j}(-1)^{j} z^{j}\right)$
(b)

$$
\begin{cases}A_{2 r-1} \times C_{2}, & r=t, r \text { odd }, \\ S_{2 r-1} \times C_{2}, & r=t, \quad r \text { even }, \\ A_{r+t-1} \prec C_{2}, & r \neq t, \text { both odd, } \\ R_{2}, & r \neq t, \text { both even }, \\ S_{r+t-1} \prec C_{2}, & r \neq t, \text { else },\end{cases}
$$

where R_{m} denotes the index-2 subgroup of $S_{n / m}$ 亿 C_{m} such that, for all $\left(\tau_{1}, \ldots, \tau_{m}, g\right) \in R_{m}$, the permutation $\tau_{1} \tau_{2} \cdots \tau_{m}$ is even.
(6) $\left[r^{2}, 1^{4 r-3} ; 3^{2 r-1}\right]$
(a) $-3 \sqrt{3} i S_{r}(z)\left(1-S_{r}(z)\right)\left(S_{r}(z)-\frac{1}{2}(1-i \sqrt{3})\right)$
(b) $\begin{cases}A_{2 r-1} 乙 C_{3}, & r \text { odd, } \\ R_{3}, & r \text { even }\end{cases}$
(7) $\left[3^{3}, 1^{5} ; 2^{7}\right]$
(a) $-\frac{4}{531441}(z-1) z^{3}\left(2 z^{2}+3 z+9\right)^{3}\left(8 z^{4}+28 z^{3}+126 z^{2}+189 z+378\right)$
(b) $A_{7} \prec C_{2}$

1B. Background and preliminaries. We begin by providing a terse exploration of the object known as a dessin. For more detailed and comprehensive literature on the subject, see [Shabat and Zvonkin 1994; Wood 2006]. For the purposes of this paper, we begin with the observation that dessins may be realized by meromorphic functions known as Belyi maps. The arithmetic dynamics of these Belyi maps have been studied in some cases [Anderson et al. 2018].
Definition 1.2. Let X be a compact Riemann surface. A Belyi map is a meromorphic function $F: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ that is unramified outside of $\{0,1, \infty\}$. That is, all critical values of F are contained in $\{0,1, \infty\}$. Here we may consider $\mathbb{P}^{1}(\mathbb{C})$ as just $\mathbb{C} \cup\{\infty\}$.

Grothendieck's notion of a dessin d'enfant or dessin for short is a way to combinatorially characterize Belyi maps. If F is a Belyi map, then $F^{-1}([0,1])$, that is, the preimage of the interval $[0,1]$, has the structure of a bicolored connected graph embedded in X. The basic structure of the bicolored graph Δ_{F} associated with a Belyi map F is given when we identify $F^{-1}(0)$ as the set of black vertices, $F^{-1}(1)$ as the set of white vertices, $F^{-1}((0,1))$ as the set of edges and $F^{-1}\left(\mathbb{P}^{1}(\mathbb{C})-[0,1]\right)$ as the set of faces. Note that the degrees of the black and white vertices of Δ_{F} correspond to the multiplicities of the roots of F and $F-1$, respectively. Furthermore, the dessin Δ_{F} recovered from a Belyi map F is planar if and only if F is defined on $\mathbb{P}^{1}(\mathbb{C})$, while Δ_{F} is a tree if and only if F is a polynomial. Throughout this paper, we assume $X=\mathbb{P}^{1}(\mathbb{C})$.

These structure of Δ_{F} can be captured by the notion of a dessin, the relatively simple combinatorial characterization given by Grothendieck.

Definition 1.3. A dessin d'enfant or dessin is a connected bicolored graph equipped with a cyclic ordering of the edges (oriented counterclockwise) around each vertex.

Given a Belyi map F, it is not difficult to use the procedure described above to visualize the dessin Δ_{F} to which F corresponds. However, recovering a Belyi map from a given dessin is a much more difficult proposition. Given a dessin Δ_{F}, a corresponding Belyi map F can be determined (uniquely up to isomorphism over $\mathbb{C} \cup\{\infty\}$) by considering the degrees of the vertices of Δ_{F} and the resulting system of polynomial equations involving roots and poles of F. Various methods of calculating Belyi maps may be found in [Couveignes 1994; Matiyasevich 1996; Schneps 1994; Sijsling and Voight 2014].

Definition 1.4. A Shabat polynomial is a polynomial $F: \mathbb{C} \rightarrow \mathbb{C}$ whose critical values are contained in $\{0,1\}$.

That is, a Shabat polynomial is a Belyi map which has only one pole (which is at infinity); hence, its corresponding dessin will be a tree. (Shabat polynomials can be defined more broadly as in [Shabat and Zvonkin 1994] as generalized Chebyshev polynomials which have at most two critical values. Without loss of generality, we choose in this paper to identify the two critical values 0 and 1.)

Definition 1.5. We say that two Shabat polynomials F, G are isomorphic if there exist $\alpha \in \mathbb{C}^{\times}$and $\beta \in \mathbb{C}$ such that $F(z)=G(\alpha z+\beta)$.

Assume we have a dessin which is a tree and we label the edges with the numbers $1,2, \ldots, n$. We can associate the dessin with a pair of permutations $\sigma_{0}, \sigma_{1} \in S_{n}$, where n is number of edges, such that the cycles of σ_{0} correspond to the cyclic ordering (read counterclockwise) of the edges around the black vertices and the cycles of σ_{1} correspond to the ordering (read counterclockwise) of the edges around the white vertices. For example, see Figure 1, where we have a bicolored tree, whose edges are labeled $1,2, \ldots, 7$ inducing a pair of permutations $\sigma_{0}, \sigma_{1} \in S_{7}$ associated with the black and white vertices, respectively. In general, by σ_{0} (respectively, σ_{1}), we mean the product of the cycle permutations associated with the edges about all of the black (respectively, white) vertices. The group that σ_{0} and σ_{1} generate is a central focus of this paper.

Definition 1.6. The monodromy group of a dessin with n edges is $\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$, the group generated by $\sigma_{0}, \sigma_{1}, \sigma_{\infty} \in S_{n}$, where σ_{0}, σ_{1} are as described in the preceding paragraph and σ_{∞} is such that $\sigma_{0} \sigma_{1} \sigma_{\infty}=1$.

We remark that since $\sigma_{\infty}=\left(\sigma_{0} \sigma_{1}\right)^{-1}$, we may remove it from the generating set for the monodromy group, but we keep it in the definition to be consistent with the wider literature on this subject, which goes well beyond the consideration of Shabat polynomials. For the remainder of the paper, when we refer to the generators of the monodromy group, we are talking about σ_{0} and σ_{1}. When a dessin is connected,

Figure 1. A dessin determined by the pair of permutations $\sigma_{0}=$ $(1,3,2)(4,7,5)$ and $\sigma_{1}=(3,4)(5,6)$ whose monodromy group $\left\langle\sigma_{0}, \sigma_{1}\right\rangle$ is isomorphic to $\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$, a transitive subgroup of S_{7}.
its monodromy group will be a transitive subgroup of S_{n}, where n is the number of edges in the dessin.

To every dessin, we may associate an invariant known as its ramification type. The ramification type of a dessin with n edges is given by the three partitions of n corresponding to the degrees of the black vertices, the degrees of the white vertices and the degrees of the faces. In the case of a dessin having one face, the latter partition is simply $n=n$. Since we focus exclusively on dessins with one face in this paper, we will omit from the notation for ramification type the last partition corresponding to the degrees of the faces.
Definition 1.7. The ramification type of a dessin with n edges (and exactly one face) consists of the two partitions of n

$$
\left[b_{1}^{\beta_{1}} b_{2}^{\beta_{2}} \cdots b_{k}^{\beta_{k}} ; w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \cdots w_{\ell}^{\alpha_{\ell}}\right]
$$

written in exponential notation, where $b_{1}, b_{2}, \ldots, b_{k}$ are the distinct degrees of the black vertices, $w_{1}, w_{2}, \ldots, w_{\ell}$ are the distinct degrees of the white vertices, β_{i} is the number black vertices of degree b_{i} and α_{i} is the number white vertices of degree w_{i}.

Note that $b_{1}^{\beta_{1}} b_{2}^{\beta_{2}} \cdots b_{k}^{\beta_{k}}$ and $w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \cdots w_{\ell}^{\alpha_{\ell}}$ are both partitions of n, where n is the number of edges, and these two partitions correspond to the cycle type of σ_{0} and σ_{1}, respectively.

While each dessin has a unique ramification type, one may ask how many distinct dessins (or equivalently nonisomorphic Shabat polynomials) are associated with a given ramification type. Our focus in this paper will be narrowed to ramification types which admit unique dessins.

We sometimes use the concept of tree composition to decompose a dessin into smaller dessins. Composition will also help us compute new Shabat polynomials as it corresponds with the usual polynomial composition. It is an easy exercise in calculus to show that the composition of two Shabat polynomials is again a Shabat polynomial.

Figure 2. Top, left: P, with two vertices marked square \square and triangle \triangle. Top, right: Q, with black vertices marked \square, white vertices marked \triangle. Bottom: The composition $P \circ Q$ of two dessins P, Q.

Many of the dessins that we study can be constructed by a composition process given by Adrianov and Zvonkin [1998]. Given two dessins, P and Q, we begin the composition $P \circ Q$ by first distinguishing two vertices of P - label them with a square and a triangle. The vertices of Q will be preimages of the square and triangle, so we mark every black vertex of Q with a square and similarly every white vertex of Q with a triangle. The process of composition is as follows:
(1) Replace each edge of Q with the union of the path from the square to the triangle in P along with every branch connected to that path.
(2) Adjoin to each square (resp., triangle) vertex of Q the union of every branch connected to the square (triangle) in P except for the one in the path to the triangle (square). Do this as many times as the degree of the vertex.
The resulting graph should resemble n copies of P arranged in the shape of Q, where n is the number of edges of Q. We demonstrate this process in Figure 2.
Remark 1.8. Let G_{P}, G_{Q} denote the respective monodromy groups of P and Q. According to a theorem of Adrianov and Zvonkin [1998], the monodromy group of $P \circ Q$ is a subgroup of G_{Q} 乙 G_{P}, where 乙 denotes the wreath product.

This process also gives a way to compute Shabat polynomials. If p, q are the respective Shabat polynomials of P, Q such that $p(0), p(1) \in\{0,1\}$ then the Shabat polynomial of $P \circ Q$ is $p \circ q$ (where \circ denotes the conventional composition
of functions, i.e., $(f \circ g)(x)=f(g(x)))$. Later on, when we compute Shabat polynomials of more complicated dessins, we will make extensive use of this fact.

We will often call upon the idea of the wreath product of groups to describe our monodromy groups. The composition process produces dessins whose monodromy groups are subgroups of wreath products. While there are numerous examples for which the containment is proper, often equality of the groups is achieved. As far as the present authors can tell, the exact conditions that ensure equality are not known.

Definition 1.9. Let d be a positive integer. Let $G \leq S_{d}$ and H be groups. Let K be the direct product of d copies of H. If $h=\left(h_{1}, \ldots, h_{d}\right) \in K$, then we define the action of $\sigma \in G$ on K by $\sigma \cdot h=\left(h_{\sigma(1)}, \ldots, h_{\sigma(d)}\right)$. The wreath product of H by G is the semidirect product $K \rtimes G$ with respect to the action above, and we denote this group by H < G.

In this paper, G is typically C_{d}, the cyclic group of order d.

2. Shabat polynomials for trees uniquely determined by ramification type

In this section, we summarize the list of Shabat polynomials (up to isomorphism) corresponding to dessins which are trees and are uniquely determined by ramification type. The complete list of ramification types for such dessins was given in [Shabat and Zvonkin 1994]. For the Shabat polynomials corresponding to these ramification types, we adopt the convention described in Definition 1.7.

Proposition 2.1. The ramification types $\left[r ; 1^{r}\right]$, $\left[2^{r}, 1 ; 2^{r}, 1\right],\left[2^{r} ; 2^{r-1}, 1^{2}\right]$ have respective Shabat polynomials

$$
z^{r}, \quad \frac{1}{2}(1+\cos ((2 r+1) \arccos (z))), \quad \frac{1}{2}(1+\cos ((2 r) \arccos (z)))
$$

all unique up to isomorphism.
This result is already well known in the literature and can be found on pages 3-4 of [Shabat and Zvonkin 1994]. See Figure 3.

Proposition 2.2 [Adrianov 2007]. Up to isomorphism, the unique Shabat polynomial for the ramification type $\left[s^{r-1}, t ; r, 1^{(r-1)(s-1)+(t-1)}\right]$ is

$$
F(z)=(1-z)^{t}\left(\sum_{k=0}^{r-1}\left(\frac{t}{s}\right)_{k} \frac{z^{k}}{k!}\right)^{s}
$$

where

$$
(a)_{k}=a(a+1)(a+2) \cdots(a+k-1)
$$

denotes the Pochhammer symbol.
The proof for this proposition can be found in [Adrianov 2007].

Figure 3. The dessin with ramification type $\left[8 ; 1^{8}\right]$.
Proposition 2.3. Let $r>1$. Up to isomorphism, the Shabat polynomial for the tree having ramification type

$$
\left[r, t, 1^{r+t-2} ; 2^{r+t-1}\right]
$$

with a black vertex of degree r located at $z=0$ and a black vertex of degree t located at $z=1$ is given by

$$
\begin{aligned}
F(z)=4 z^{r}\binom{r+t-1}{r}_{2} F_{1}(t & -1, r ; r+1 ; z) \\
& \times\left(1-(1-z)^{t} z^{r}\binom{r+t-1}{t-1}{ }_{2} F_{1}(1, r+t ; r+1 ; z)\right),
\end{aligned}
$$

where ${ }_{2} F_{1}$ is the hypergeometric function defined by

$$
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} .
$$

Figure 4. The dessin obtained by the Shabat polynomial given in Proposition 2.2 when $s=6, r=5, t=3$.

Figure 5. The dessin (path graph) obtained by the Shabat polynomial $\beta(z)=4 z(1-z)$.

Figure 6. The tree obtained by the Shabat polynomial in Proposition 2.2 where $s=1, r=3, t=5$.

Proof. Let $S_{r, t}(z)$ be the Shabat polynomial for the ramification type $\left[t, 1^{r-1} ; r, 1^{t-1}\right]$. By Proposition 2.2, with $s=1$,

$$
S_{r, t}(z)=(1-z)^{t} \sum_{j=0}^{r-1}\binom{t-1+j}{t-1} z^{j}
$$

Consider the map $\beta(z)=4 z(1-z)$ with the dessin Δ_{β} (see Figure 5) and $S_{r, t}(z)$ with the dessin Δ_{S} (see Figure 6). The composition $\beta(z) \circ S_{r, t}(z)$ is a Shabat polynomial that produces the dessin obtained by coloring the vertices of Δ_{S} to black and adding a white vertex of degree 2 inside every edge (in other words, replacing every edge of Δ_{S} with Δ_{β}). Note the number of edges in $S_{r, t}(z)$ is $r+t-1$. The composition produces the new dessin Δ_{F} (see Figure 7) and Shabat polynomial $F(z)=\beta(z) \circ S_{r, t}(z)$ with ramification type $\left[r, t, 1^{r+t-2} ; 2^{r+t-1}\right]$, and therefore $F(z)$ equals

$$
4 z^{r}(1-z)^{t}\left(\sum_{j=0}^{r-1}\binom{t-1+j}{t-1} z^{j}\right)\left(\sum_{j=0}^{t-1}\binom{r-1+j}{r-1}\binom{r+t-1}{r+j}(-1)^{j} z^{j}\right)
$$

Figure 7. The tree obtained by the Shabat polynomial in Proposition 2.3 with $r=5, t=3$.
which can be rewritten in terms of hypergeometric functions, as in the statement of the present proposition.

Proposition 2.4. The Shabat polynomial for the unique tree having ramification type

$$
\left[r^{2}, 1^{4 r-3} ; 3^{2 r-1}\right]
$$

with two black vertices of degree r located at $z=0$ and $z=1$ is given by

$$
F(z)=\left(T \circ S_{r}\right)(z),
$$

where

$$
T(z)=-3 i \sqrt{3} z(1-z)(z+\rho), \quad \rho=\frac{1}{2}(-1+i \sqrt{3}),
$$

and

$$
S_{r}(z)=(1-z)^{r} \sum_{j=0}^{r-1}\binom{r-1+j}{r-1} z^{j}
$$

$F(z)$ is unique up to isomorphism.
Proof. First we will show that $T(z):=-3 i \sqrt{3} z(1-z)(z+\rho)$ corresponds to a 3 -star with a white center and black leaves at $z=0$ and $z=1$. Considering $T(z)$, we see immediately three distinct roots of multiplicity 1 at $z=0,1, \frac{1}{2}(1-i \sqrt{3})$ representing three black leaves in Δ_{F}. Next we consider the derivative of $T(z)$,

$$
T^{\prime}(z)=-3 i \sqrt{3}\left(\rho+2(1-\rho) z-3 z^{2}\right),
$$

which has a single root of multiplicity 2 (note that the discriminant of $T^{\prime}(z)$ is zero). Since the multiplicity of the black vertices is 1 , we may assume that the multiple root in $T^{\prime}(s)$ must refer to a root of multiplicity 3 in $F(z)-1$, representing the white vertex of degree 3 . Therefore, $T(z)$ must be a 3 -star with black

Figure 8. An illustration of the tree derived from the Shabat polynomial in Proposition 2.4 where $r=4$.
leaves at $z=1$ and $z=0$. We can now use the idea of composition to replace every edge of the tree having Shabat polynomial $S_{r}(z):=S_{r, r}(z)$, where $S_{r, t}(z)$ is the polynomial as defined in the proof of Proposition 2.3 , with the 3 -star by computing the composition $\left(T \circ S_{r}\right)(z)$. This will add a white vertex of degree 3 and an additional black leaf for every edge. Note that $S_{r}(z)$ corresponds to a tree with $2 r-1$ edges and $4 r-2$ vertices. Therefore Δ_{F} will have $2 r-1$ white vertices of degree 3 and $4 r-3$ black leaves, in addition to the two black vertices of degree r.

Note: An anonymous referee pointed out that we may go one step further here by letting $z^{\prime}:=i \sqrt{3} z-\rho^{2}$. A quick computation shows that $\overline{S_{r}\left(z^{\prime}\right)}=S_{r}\left(1-z^{\prime}\right)$. One can also show that $S_{r}(z)=1-S_{r}(1-z)$ using the following argument. Observe that 0 is a root of order r of $S_{r}(z)$ and $1-S_{r}(1-z)$. Further observe that 1 is a root of order r of $S_{r}(z)-1$ and $1-S_{r}(1-z)-1$. Thus we deduce that $S_{r}(z)=1-S_{r}(1-z)$ using the uniqueness of the Shabat polynomial from Proposition 2.2. Hence, $\overline{S_{r}\left(z^{\prime}\right)}=1-S_{r}\left(z^{\prime}\right)$. A few simple calculations yield the equality $\overline{T\left(S_{r}\left(z^{\prime}\right)\right)}=T\left(S_{r}\left(z^{\prime}\right)\right)$, which implies $T\left(S_{r}\left(z^{\prime}\right)\right) \in \mathbb{Q}[z]$.

Proposition 2.5. For the tree with ramification type $\left[3^{3}, 1^{5} ; 2^{7}\right]$, a black vertex of degree 3 at $z=0$ and a black vertex of degree 1 at $z=1$, the Shabat polynomial is

$$
F(z)=-\frac{4}{531441}(z-1) z^{3}\left(2 z^{2}+3 z+9\right)^{3}\left(8 z^{4}+28 z^{3}+126 z^{2}+189 z+378\right)
$$

Proof. We can write $F(z)=(\beta \circ f)(z)$, where

$$
\beta(z)=4 z(1-z) \quad \text { and } \quad f(z)=-\frac{1}{729}(z-1)\left(9+3 z+2 z^{2}\right)^{3}
$$

which is the Shabat polynomial for ramification type $\left[3^{2}, 1 ; 3,1^{4}\right]$ obtained by letting $r=3, s=3, t=1$ in Proposition 2.2.

Figure 9. An illustration of the tree described in Proposition 2.5.

3. Monodromy groups for trees uniquely determined by ramification type

In this section, we provide proofs for the monodromy groups associated with each ramification type listed in Theorem 1.1. In all of our proofs, we proceed by choosing a particular labeling of the edges of the dessin. Though the monodromy group does not depend on the choice of labels, some choices better illustrate how σ_{0} and σ_{1} generate the monodromy group.
Proposition 3.1. The ramification types $\left[r ; 1^{r}\right],\left[2^{r}, 1 ; 2^{r}, 1\right]$, and $\left[2^{r} ; 2^{r-1}, 1^{2}\right]$ have respective monodromy groups $C_{r}, D_{2(2 r+1)}$, and $D_{2(2 r)}$, where D_{m} denotes the dihedral group of order m.

Proof. The first ramification type gives the r-star dessin with monodromy group generated by an r-cycle and the identity permutation. It follows that the monodromy group is the cyclic group C_{r}. The second and third ramification types yield the path dessins with $2 r+1$ and $2 r$ edges respectively. We handle these two cases simultaneously, since the argument is essentially the same. The dessins in Figure 10 are examples of path dessins.

In both cases, the generators of the groups σ_{0} and σ_{1} have order 2, and the respective σ_{∞} 's have order $2 r+1$ and $2 r$. Since in this case $\sigma_{\infty}=\left(\sigma_{0} \sigma_{1}\right)^{-1}=\sigma_{1} \sigma_{0}$, we may view the monodromy group as $\left\langle\sigma_{0}, \sigma_{\infty}\right\rangle$. We let n denote the order of σ_{∞}; note that n is either $2 r+1$ or $2 r$ depending on the ramification type. The relations $\sigma_{0}^{2}=\sigma_{\infty}^{r}=1$ and $\sigma_{0} \sigma_{\infty}=\left(\sigma_{0} \sigma_{1}\right) \sigma_{0}=\left(\sigma_{1} \sigma_{0}\right)^{-1} \sigma_{0}=\left(\sigma_{\infty}\right)^{-1} \sigma_{0}$ hold. The conclusion is that the monodromy groups of these dessins are isomorphic to the dihedral groups of order $2 n$.

Figure 10. The path dessins of 3 and 4 edges, respectively.

Figure 11. An example of a dessin from Proposition 3.2, where $r=4, s=3, t=4$.

Proposition 3.2. Assume $r>1$. The ramification type $\left[s^{r-1}, t ; r, 1^{(r-1)(s-1)+(t-1)}\right]$ has $n=(r-1) s+t$ edges and a unique tree with monodromy group G, with

$$
G \cong \begin{cases}C_{r} \prec C_{s}, & s=t, \\ S_{n / d} \prec C_{d}, & s \neq t, r \text { even } \\ A_{n / d} \prec C_{d}, & s \neq t, r \text { is odd and } \frac{t}{d} \text { is odd } \\ \left(A_{n / d}\right)^{d} \rtimes C_{2 d}, & s \neq t, r \text { odd }, \frac{t}{d} \text { even }\end{cases}
$$

where $d=\operatorname{gcd}(s, t)$.
Proof. The ramification type $\left[s^{r-1}, t ; r, 1^{(r-1)(s-1)+(t-1)}\right]$ produces a tree of diameter 4 with $n=(r-1) s+t$ edges in the nondegenerate cases. See Figure 11.

In general, σ_{0} is the product of one t-cycle and $(r-1)$-many s-cycles and σ_{1} is an r-cycle. We label our edges so that we compute the permutations $\sigma_{0}, \sigma_{1}, \sigma_{\infty}$ as

$$
\begin{aligned}
\sigma_{0}= & (1, \ldots, t)(t+1, \ldots, t+s) \\
& \cdot(t+s+1, \ldots, t+2 s) \cdots(t+(r-2) s+1, \ldots, t+(r-1) s) \\
\sigma_{1}= & (1, t+1, t+s+1, t+2 s+1, \ldots, t+(r-2) s+1) \\
\sigma_{\infty}^{-1}= & \sigma_{0} \sigma_{1}=(1,2, \ldots, n)
\end{aligned}
$$

(Note that we go left to right when computing permutation products.)
Case 1: $s=t \Longrightarrow G=C_{r}$ 亿 C_{s}. Assume $s=t$. Then our dessin is the composition of an s-star with an r-star, which means G is a subgroup of $C_{r} 乙 C_{t}$ by Remark 1.8. Define $\tau_{i}:=\sigma_{0}^{-i} \sigma_{1} \sigma_{0}^{i}$. Referring to the above where we already computed σ_{0} and σ_{1}, we see

$$
\begin{aligned}
\tau_{0} & =(1, t+1,2 t+1, \ldots,(r-1) t+1)=\sigma_{1} \\
\tau_{1} & =(2, t+2,2 t+2, \ldots,(r-1) t+2) \\
& \vdots \\
\tau_{t-1} & =(t, 2 t, 3 t, \ldots, r t)
\end{aligned}
$$

Each τ_{i} is an r-cycle and generates C_{r}. Since the τ_{i} 's partition $\{1,2, \ldots, r t\}$, they must commute with each other and we see that together they generate C_{r}^{t}. Also, σ_{0} is a product of t-cycles satisfying $\sigma_{0}^{-1} \tau_{i} \sigma_{0}=\tau_{i+1}$, where the subscripts are reduced modulo t. These relations are sufficient to recognize that G contains $\left\langle\sigma_{0}, \tau_{1}, \tau_{2}, \ldots, \tau_{t-1}\right\rangle \cong C_{r}\left\langle C_{t}\right.$.
Case 2: $s \neq t, \operatorname{gcd}(s, t)=1 \Longrightarrow G=A_{n}$ for r, t odd and $G=S_{n}$ otherwise. Assume that $\operatorname{gcd}(s, t)=1$, with s or $t>1$. It is known that a permutation group containing $(1,2,3)$ and $(1,2, \ldots, n)$ contains A_{n}; see Lemma A.1. Our goal is to show that $A_{n} \leq G \leq S_{n}$ and then use a parity argument to determine which containment is improper. Given that $\sigma_{0} \sigma_{1}=(1,2, \ldots, n) \in G$, we proceed to show $(1,2,3) \in G$.

Assume $t=1$ and $s>1$. We claim $\rho:=\left(\sigma_{0}^{-1} \sigma_{1}^{-1} \sigma_{0}\right)\left(\sigma_{\infty} \sigma_{1} \sigma_{\infty}^{-1}\right)=(1,2,3)$. Since $t=1$, we know σ_{0} is a product of $(r-1) s$-cycles, while $\sigma_{1}, \sigma_{1}^{-1}$ remain r-cycles. We see that

$$
\begin{aligned}
\rho & =\left(\sigma_{0}^{-1} \sigma_{1}^{-1} \sigma_{0}\right)\left(\sigma_{\infty} \sigma_{1} \sigma_{\infty}^{-1}\right) \\
& =(1,(r-2) s+3, \ldots, 2 s+3, s+3,3)(2,3, s+3,2 s+3, \ldots,(r-2) s+3)
\end{aligned}
$$

One may verify that $\rho(1)=2, \rho(2)=3, \rho(3)=1$ and, for $k>3, \rho(k)=k$. It follows that $A_{n} \leq G$.

If $t=2$, we have $\sigma_{0}^{s}=(1,2) \in G$. Since G contains the transposition $(1,2)$ and the cycle $(1,2, \ldots, n)$, we have $S_{n} \leq G$.

Now suppose $t \geq 3$, we first set k to be the smallest positive integer such that k satisfies $k \equiv 0(\bmod s)$ and $k \equiv-1(\bmod t)$. The existence of such a number is guaranteed by the Chinese remainder theorem. We claim $\rho:=$ $\left(\sigma_{1}^{-1} \sigma_{0}^{k} \sigma_{1}\right) \sigma_{0}^{k}\left(\sigma_{1}^{-1} \sigma_{0}^{-2 k} \sigma_{1}\right)=(1,2,3)$. Notice that
$\left(\sigma_{1}^{-1} \sigma_{0}^{k} \sigma_{1}\right) \sigma_{0}^{k}\left(\sigma_{1}^{-1} \sigma_{0}^{-2 k} \sigma_{1}\right)=(t+1, t, \ldots, 3,2)(1, t, \ldots, 3,2)(t+1,2,3, \ldots, t)^{2}$.
One may verify that $\rho(1)=2, \rho(2)=3, \rho(3)=1$ and $\rho(k)=k$ for $k>3$. Thus $\rho=(1,2,3) \in G$ and therefore $A_{n} \subseteq G$.

For every triple s, t such that $\operatorname{gcd}(s, t)=1$ and s or $t>1$, we have shown that $A_{n} \subseteq G$. Since we also have $G \leq S_{n}$, by index considerations G is either the symmetric or alternating group of appropriate order. Otherwise if r or t is even, σ_{0}, being the product of a t-cycle and $(r-1) s$-cycles, is an odd permutation (note s must be odd if t is even), so $G \cong S_{n}$. Since both σ_{0} and σ_{1} are even permutations when r and t are odd, we deduce that $G \leq A_{n}$ and thus the double inclusion gives us $G \cong A_{n}$.
Case 3: In this final case, we assume $\operatorname{gcd}(s, t)=d>1$. This tree is the composition $P \circ Q$, where P is the d-star and Q is the dessin corresponding to the passport

$$
\left[\left(\frac{s}{d}\right)^{r-1}, \frac{t}{d} ; r, 1^{(r-1)(s / d-1)+(t / d-1)}\right]
$$

Hence, the monodromy group G is a subgroup of the wreath product G_{Q} 乙 C_{d}, where G_{Q} is the monodromy group for Q.

Consider the partition of $\{1, \ldots, n\}$ into the d sets

$$
\{1, d+1, \ldots, n-d+1\}, \quad\{2, d+2, \ldots, n-d+2\}, \quad \ldots, \quad\{d, 2 d, \ldots, n\}
$$

each of size $\frac{n}{d}$, and denote them by P_{1}, \ldots, P_{d} respectively. Recall that σ_{0} is the disjoint product of a t-cycle and $(r-1) s$-cycles, and moreover every element in $\{1,2, \ldots, n\}$ is moved by exactly one of these cycles under the canonical group action. Because d divides both s and t, we know $\tau:=\sigma_{0}^{d}$ is the disjoint product of $d \frac{t}{d}$-cycles and $d(r-1) \frac{s}{d}$-cycles. Moreover, each disjoint cycle of τ permutes elements in exactly one of the P_{i} while fixing the rest. Similarly, because d divides n, we know σ_{∞}^{d} is the disjoint product of $d \frac{n}{d}$-cycles, and each disjoint cycle of σ_{∞}^{d} likewise permutes elements in exactly one of the P_{i}. Note that σ_{1} permutes only the elements of P_{1}.

Let k be the smallest positive integer such that k satisfies $k \equiv 0\left(\bmod \frac{s}{d}\right)$ and $k \equiv$ $-1\left(\bmod \frac{t}{d}\right)$. One may verify that $\rho:=\sigma_{1}^{-1} \tau^{k} \sigma_{1} \tau^{k} \sigma_{1}^{-1} \tau^{-2 k} \sigma_{1}=(1, d+1,2 d+1)$. (Note that in the case where $t=d$, we let $\rho:=\left(\tau^{-1} \sigma_{1}^{-1} \tau\right)\left(\sigma_{\infty}^{d} \sigma_{1} \sigma_{\infty}^{-d}\right)$ and proceed with the same argument.)

We can conclude that the subgroup

$$
N=\left\langle\rho, \sigma_{\infty}^{-d} \rho \sigma_{\infty}^{d}, \sigma_{\infty}^{-2 d} \rho \sigma_{\infty}^{2 d}, \ldots, \sigma_{\infty}^{-(n-d)} \rho \sigma_{\infty}^{n-d}, \sigma_{1}\right\rangle
$$

is isomorphic to $S_{n / d}$ when r is even and isomorphic to $A_{n / d}$ when r is odd (see Lemma A.4). Furthermore, we observe that $N, \sigma_{\infty}^{-1} N \sigma_{\infty}, \sigma_{\infty}^{-2} N \sigma_{\infty}^{2}, \ldots$, $\sigma_{\infty}^{-d+1} N \sigma_{\infty}^{d-1}$ are all isomorphic to $S_{n / d}$ or $A_{n / d}$ (depending on whether r is even or odd) and $\sigma_{\infty}^{-i+1} N \sigma_{\infty}^{i+1}$ permutes elements of P_{i}. Hence

$$
H:=\left\langle N, \sigma_{\infty}^{-1} N \sigma_{\infty}, \sigma_{\infty}^{-2} N \sigma_{\infty}^{2}, \ldots, \sigma_{\infty}^{-d+1} N \sigma_{\infty}^{d-1}\right\rangle \cong \begin{cases}\left(S_{n / d}\right)^{d} & \text { if } r \text { even } \\ \left(A_{n / d}\right)^{d} & \text { if } r \text { odd }\end{cases}
$$

One can check that $\sigma_{0}^{-1} H \sigma_{0}=H$ and $\sigma_{1}^{-1} H \sigma_{1}=H$. Hence, $H \triangleleft G$. Observe that $\sigma_{1} \in H$. Therefore, $H \sigma_{\infty}$ generates the quotient group $G \backslash H$. When r is even, the smallest power of σ_{∞} in H is d, when r is odd and $\frac{n}{d}$ is odd, the smallest power of σ_{∞} in H is d, and when r is odd and $\frac{n}{d}$ is even, the smallest power of σ_{∞} in H is actually $2 d$. (Note that when r is odd, the parities of $\frac{t}{d}$ and $\frac{n}{d}$ are the same.) In order to show that G is isomorphic to a semidirect product, we will use the splitting lemma. In our case, if we can find an element of $H \sigma_{\infty}$ of order d or $2 d$ (depending on the case), we have shown G is a semidirect product.

First we consider the case where r is even. In this case, observe that

$$
\begin{aligned}
& (d, 2 d, 3 d, \ldots, n)^{-1}(1,2,3,4, \ldots, n) \\
& \quad=(1,2, \ldots, d)(d+1, d+2, \ldots, 2 d) \cdots(n-d+1, n-d+2, \ldots, n)
\end{aligned}
$$

Figure 12. P and Q on the left; $P \circ Q$ on the right.
Hence, there is an element of order d in $G \backslash H$ and $G \cong\left(S_{n / d}\right)^{d} \rtimes C_{d}$ by the splitting lemma for semidirect products, and in fact $G \cong S_{n / d}$ 久 C_{d}. This also shows that $H \sigma_{\infty}$ contains an element of order d in the case where r and $\frac{n}{d}$ are odd since the cycle $(d, 2 d, 3 d, \ldots, n)$ is an element of A_{n} in this case. Therefore, when $\frac{n}{d}$ and r are odd, $G \cong\left(A_{n / d}\right)^{d} \rtimes C_{d}$ and in fact $G \cong A_{n / d} \prec C_{d}$.

Now we consider the case where r is odd and $\frac{n}{d}$ is even. Observe that

$$
\begin{aligned}
& (2 d, 3 d, \ldots, n)^{-1}(1,2,3, \ldots, n) \\
& \quad=(1,2,3, \ldots, 2 d)(2 d+1,2 d+2, \ldots, 3 d) \cdots(n-d+1, n-d+2, \ldots, n) .
\end{aligned}
$$

Hence, there is an element of order $2 d$ in $G \backslash H$ and thus $G \cong\left(A_{n / d}\right)^{d} \rtimes C_{2 d}$.
Proposition 3.3. Let $r, t>1$. The ramification type $\left[r, t, 1^{r+t-2} ; 2^{r+t-1}\right]$ produces a unique tree with monodromy group G, where

$$
G \cong \begin{cases}A_{2 r-1} \times C_{2}, & r=t, r \text { odd }, \\ S_{2 r-1} \times C_{2}, & r=t, r \text { even }, \\ A_{r+t-1} \prec C_{2}, & r \neq t, \text { both odd }, \\ R_{2}, & r \neq t, \text { both even }, \\ S_{r+t-1} \prec C_{2}, & r \neq t, \text { else },\end{cases}
$$

where R_{2} denotes the index-2 subgroup of S_{r+t-1} C C_{2} such that $\tau_{1} \tau_{2}$ is an even permutation for all $\left(\tau_{1}, \tau_{2}, g\right) \in R_{2}$.
Proof. First, we note that this dessin is the composition $P \circ Q$, where P is the 2 -star and Q is the dessin of Proposition 3.2 with $s=1$. See Figure 12.

Let $G_{Q}=\langle(1,2, \ldots, r),(r, r+1, \ldots, r+t-1)\rangle$ be the monodromy group of Q. By Proposition 3.2, we know that

$$
G_{Q} \cong \begin{cases}A_{r+t-1}, & r, t \text { both odd } \\ S_{r+t-1}, & \text { otherwise }\end{cases}
$$

The dessin with ramification type $\left[r, t, 1^{r+t-2} ; 2^{2 r-1}\right]$ is the composition of P and Q, and so its monodromy group G satisfies $G \leq G_{Q}$? C_{2} by Remark 1.8. We consider G in two cases: $r=t$ and $r \neq t$.

Case 1: $r \neq t$. In the first case, we have $r \neq t$. We label our edges in such a way that

$$
\begin{aligned}
\sigma_{0} & =(1,2, \ldots, r)(\bar{r}, \overline{r+1}, \ldots, \overline{r+t-1}), \\
\sigma_{1} & =(1, \overline{1})(2, \overline{2}) \cdots(r+t-1, \overline{r+t-1}) .
\end{aligned}
$$

Note that σ_{0} is the disjoint product of an r-cycle with a t-cycle; call these cycles π_{1} and π_{2} respectively. Consider the embedding $\phi: G \rightarrow S_{r+t-1}$ C C_{2} given by

$$
\begin{aligned}
\sigma_{0} & \mapsto\left(\pi_{1}, \pi_{2}, 0\right), \\
\sigma_{1} & \mapsto(\mathrm{id}, \mathrm{id}, 1) .
\end{aligned}
$$

Note that $\sigma_{1}^{-1} \sigma_{0} \sigma_{1}$ is mapped to $\left(\pi_{2}, \pi_{1}, 0\right)$. Apply Lemma A. 5 to $n=r+t-1$ (assume $n \geq 5$ for now), $\pi_{1}, \pi_{2} \in S_{r+t-1}$. We have $G_{Q}=\left\langle\pi_{1}, \pi_{2}\right\rangle \geq A_{n}$ as noted above. Lemma A. 5 implies

$$
A_{r+t-1} \prec C_{2} \leq \phi(G) \leq S_{r+t-1} \prec C_{2} .
$$

When r, t are odd, both π_{1} and π_{2} are even permutations, and we see that $\phi(G) \cong$ $\left.A_{r+t-1}\right\} C_{2}$. When r and t have different parity, we know $\left\langle\pi_{1}, \pi_{2}\right\rangle \cong S_{r+t-1}$, so $\phi(G) \cong S_{r+t-1}\left\langle C_{2}\right.$. When r, t are both even, for any $\left(\rho_{1}, \rho_{2}, g\right) \in \phi(G), \rho_{1}$ and ρ_{2} will share the same parity. Since we can take $\rho_{1}=\pi_{1}$, an odd permutation, we see that $\phi(G)$ is properly contained in between A_{r+t-1} 乙 C_{2} and S_{r+t-1} 乙 C_{2}. It is in fact the group R_{2} described earlier after Theorem 1.1. In the finite number of cases where $r+t-1<5$, one can verify the result by hand.
Case 2: $r=t$. In the second case, we consider $r=t$. We can label our dessin in such a way that

$$
\begin{aligned}
& \sigma_{0}=(1,2, \ldots, r)(\overline{1}, \overline{2}, \ldots, \bar{r}), \\
& \sigma_{1}=(1, \overline{r+1})(2, \overline{r+2}) \cdots(r-1, \overline{2 r-1})(r, \bar{r})(r+1, \overline{1}) \cdots(2 r-1, \overline{r-1}) .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\sigma_{\infty}^{(2 r-1)}= & (1, \overline{1}) \cdots(2 r-1, \overline{2 r-1}), \\
\tau_{1}=\sigma_{1} \sigma_{0} \sigma_{1}^{-1}= & (r, r+1, \ldots, 2 r-1)(\bar{r}, \overline{r+1}, \ldots, \overline{2 r-1}), \\
\tau_{2}=\sigma_{\infty}^{(2 r-1)} \sigma_{1}= & (\overline{1}, \overline{r+1})(1, r+1) \\
& \cdot(\overline{2}, \overline{r+2})(2, r+2) \cdots(\overline{r-1}, \overline{2 r-1})(r-1,2 r-1)(r)(\bar{r}),
\end{aligned}
$$

and $G_{Q}=\left\langle\sigma_{\infty}^{(2 r-1)}, \tau_{1}, \tau_{2}\right\rangle$ is a subgroup of $S_{2 r-1} \times \mathbb{Z}_{2}$. Furthermore,

$$
\tau_{3}=\tau_{2} \sigma_{1} \sigma_{0} \sigma_{1}^{-1} \tau_{2}^{-1}=(1,2, \ldots, r)(\overline{1}, \overline{2}, \ldots, \bar{r}) .
$$

By Proposition 3.2, we see that $\left\langle\tau_{1}, \tau_{3}\right\rangle$ is $S_{2 r-1}$ if r even and $A_{2 r-1}$ if r odd, and thus we have our result.

Figure 13．Top，left：P ，with vertices marked．Top，right：Q ，with vertices marked．Bottom：An example of the composition for $r=3$ ．

Proposition 3．4．The ramification type $\left[r^{2}, 1^{4 r-3} ; 3^{2 r-1}\right]$ produces a unique tree with monodromy group G ，where

$$
G \cong \begin{cases}A_{2 r-1} \backslash C_{3}, & r \text { odd }, \\ R_{3}, & r \text { even },\end{cases}
$$

where R_{3} denotes the index－2 subgroup of $S_{2 r-1}$ 乙 C_{3} such that $\tau_{1} \tau_{2} \tau_{3}$ is an even permutation for all $\left(\tau_{1}, \tau_{2}, \tau_{3}, g\right) \in R_{3}$ ．

Proof．The procedure here is similar to the proof of the previous proposition．We observe that this dessin is the composition $P \circ Q$ ，where P is the 3 －star with ramification type $\left[1^{3} ; 3\right]$ and Q is the dessin from Proposition 3.2 where $s=1$ ， $r=t$ ．See Figure 13.

We can label the dessin so that

$$
\begin{aligned}
& \sigma_{0}=(1,2, \ldots, r)(\bar{r}, \overline{r+1}, \ldots, \overline{2 r-1}), \\
& \sigma_{1}=(1, \overline{1}, \hat{1})(2, \overline{2}, \hat{2}) \cdots(2 r-1, \overline{2 r-1}, \widehat{2 r-1}) .
\end{aligned}
$$

Note that σ_{0} is the product of two r－cycles（call them π_{1} and π_{2} respectively） and that σ_{1} is the product of $(2 r-1) 3$－cycles．Consider the embedding $\phi: G \rightarrow$ $S_{2 r-1}$ 亿 C_{3} defined by

$$
\begin{aligned}
\sigma_{0} & \mapsto\left(\pi_{1}, \pi_{2}, \mathrm{id}, 0\right), \\
\sigma_{1} & \mapsto(\mathrm{id}, \mathrm{id}, \mathrm{id}, 1) .
\end{aligned}
$$

Under this homomorphism，successive conjugations of σ_{0} by σ_{1} are mapped to （id，$\left.\pi_{1}, \pi_{2}, 0\right)$ and（ π_{2}, id，$\pi_{1}, 0$ ）．Applying Lemma A． 5 to π_{1}, π_{2} ，and $\phi(G)$ ，we have $A_{2 r-1}$ 乙 $C_{3} \leq \phi(G)$ ．When r is odd，both π_{1} and π_{2} are even permutations， so $A_{2 r-1}$ 亿 $C_{3} \geq \phi(G)$ ，giving a double inclusion．When r is even，we consider the quotient group

$$
\left.\left(S_{2 r-1} \backslash C_{3}\right) /\left(A_{2 r-1}\right\} C_{3}\right) \cong C_{2} \times C_{2} \times C_{2} .
$$

Observe that when r is even，$\phi(G) \leq R_{3}$ and $\left(\pi_{1}, \pi_{2}\right.$, id， 0$)$ is equal to $(1,1,0)$ in the quotient group $\phi(G) / A_{2 r-1}$ 乙 C_{3} ．We similarly have $(0,1,1)$ and $(1,0,1)$ in the quotient group．Hence，we see that $\phi(G)$ is an index－2 subgroup of $S_{2 r-1}$ 乙 C_{3} and thus $\phi(G) \geq R_{3}$ ．
Proposition 3．5．The ramification type $\left[3^{3}, 1^{5} ; 2^{7}\right]$ produces a unique tree with monodromy group $G \cong A_{7}$ 亿 C_{2} ．
Proof．This is a sporadic case that may be verified by hand．

4．Future directions

The reader will notice that there are some obvious pathways left open by this paper． In Theorem 1.1 each entry refers to a tree uniquely determined by ramification type． For each entry there exists a Shabat polynomial with rational coefficients．However， we were not able to find a closed form expression for the coefficients of the rational Shabat polynomial given for the tree with ramification type $\left[r^{2}, 1^{4 r-3} ; 3^{2 r-1}\right]$ ．

As for another direction of further inquiry，we note that the present paper focuses exclusively on（planar）trees uniquely determined by ramification type．However， we know that there exists an exhaustive list of ramification types that produce exactly two distinct trees，and perhaps there are other such lists for ramification types that produce larger numbers of trees［Shabat and Zvonkin 1994］．At the very least，it would be interesting to see the complete list of monodromy groups for ramification types that produce two trees in comparison with the completion of Theorem 1．1．Finally，it would also be of interest to see similar results for classes of dessins having at least one cycle or for dessins with genus greater than 1.

Appendix

In this section we prove a few technical results used in the paper．We learned of the following results（Lemmas A．1，A．2，A．3，A．4）and their proofs from Keith Conrad． Recall that we multiply permutations left to right．
Lemma A．1．For $n \geq 5$ ，the subgroup generated by $(1,2,3)$ and $(1,2, \ldots, n)$ contains A_{n} ．

We prove this lemma through a sequence of lemmas．
Lemma A．2．For $n \geq 5$ ，every element of A_{n} is a product of 3 －cycles．
Proof．The set of 3－cycles is a conjugacy class that is a subset of A_{n} ．Therefore，the subgroup generated by the set of 3 －cycles is a normal subgroup of A_{n} ．Since A_{n} is simple for $n \geq 5$ ，we conclude that the set of 3 －cycles generates A_{n} and every element of A_{n} is a product of 3－cycles．
Lemma A．3．For $n \geq 5$ ，the group A_{n} is generated by elements of the form $(1,2, k)$ ．

Proof. First observe that A_{n} is generated by 3-cycles of the form $(1, i, j)$. This is easily seen by observing that for any 3-cycle (a, b, c) not containing 1 , we have $(a, b, c)=(1, b, c)(1, a, b)$. By Lemma A. 2 we see that A_{n} is generated by 3-cycles of the form $(1, i, j)$.

Now we consider the 3 -cycles of the form $(1,2, k)$. Since $(1,2, k)^{-1}=(1, k, 2)$, any 3 -cycle with 1 and 2 is generated by 3 -cycles of the form $(1,2, k)$. For a 3 -cycle $(1, i, j)$ not containing 2 , we have $(1, i, j)=(1,2, j)(1,2, i)(1,2, j)(1,2, j)$. Hence, every element of A_{n} is generated by elements of the form $(1,2, k)$.

Lemma A.4. For $n \geq 5$, the consecutive 3 -cycles $(i, i+1, i+2)$ with $1 \leq i \leq n-2$ generate A_{n}.

Proof. This can be shown to be true for A_{5} by computation. We proceed to prove this for $n>5$ by induction.

Assume this is true for A_{n}. Consider A_{n+1}. By induction, we know that cycles of the form $(i, i+1, i+2)$ generate the elements $(1,2, k)$ for $3 \leq k \leq n$. Therefore, by Lemma A.3, we need only show that we can generate $(1,2, n+1)$ in order to show that cycles of the form $(i, i+1, i+2)$ generate A_{n+1}. Observe that $(1,2, n+1)=(1,2, n)(1,2, n-1)(n-1, n, n+1)(1,2, n)(1,2, n-1)$ and thus we have proven our result.

Now we proceed with the proof of Lemma A. 1
Proof of Lemma A.1. Let $\sigma=(1,2, \ldots, n)$. Observe that

$$
\sigma^{-k}(1,2,3) \sigma^{k}=\left(\sigma^{k}(1), \sigma^{k}(2), \sigma^{k}(3)\right)=(k+1, k+2, k+3)
$$

if $0 \leq k \leq n-3$. Thus by Lemma A.4, $(1,2,3)$ and $(1,2, \ldots, n)$ generate a subgroup that contains A_{n}.

Lemma A.5. Suppose that $\pi_{0}, \pi_{1} \in S_{n}$ with $\left\langle\pi_{0}, \pi_{1}\right\rangle \geq A_{n}$ with $n \geq 5$.
(1) If $\left|\pi_{0}\right| \neq\left|\pi_{1}\right|$, then $\Gamma=\left\langle\left(\pi_{0}, \pi_{1}\right),\left(\pi_{1}, \pi_{0}\right)\right\rangle$ must contain $A_{n} \times A_{n}$.
(2) $\Gamma=\left\langle\left(\pi_{0}, \pi_{1}, \mathrm{id}\right),\left(\mathrm{id}, \pi_{0}, \pi_{1}\right),\left(\pi_{1}, \mathrm{id}, \pi_{0}\right)\right\rangle$ must contain $A_{n} \times A_{n} \times A_{n}$.

Proof. Suppose that id $\neq \rho \in A_{n}$. Observe that $\left\langle\tau^{-1} \rho \tau: \tau \in A_{n}\right\rangle$ is a normal subgroup of A_{n}. If $n \geq 5$, then A_{n} is simple and therefore, $A_{n}=\left\langle\tau^{-1} \rho \tau: \tau \in A_{n}\right\rangle$.

First, we consider statement (1). Suppose that $(\rho, i d) \in \Gamma$. We want to show that $A_{n} \times\langle\mathrm{id}\rangle$ is a subgroup of Γ. There is a homomorphism proj: $S_{n} \times S_{n} \rightarrow S_{n}$, which is a projection from the first component. Since $A_{n} \leq\left\langle\pi_{0}, \pi_{1}\right\rangle$, we have $\operatorname{proj}(\Gamma) \geq A_{n}$. Therefore, for all $\tau \in A_{n}$ there exists $\tau^{\prime} \in S_{n}$ such that $\left(\tau, \tau^{\prime}\right) \in \Gamma$. Conjugating (ρ, id) by all $\left(\tau, \tau^{\prime}\right)$ shows that $A_{n} \times\langle\mathrm{id}\rangle \leq \Gamma$. Note that the same argument can be used to show $\langle\mathrm{id}\rangle \times A_{n} \leq \Gamma$ via projection in the other component. Statement (1) then follows as long as $\rho \neq \mathrm{id}$ exists. Furthermore, the argument to establish statement (2) would proceed in an identical fashion, presuming $\rho \neq \mathrm{id}$ exists.

To establish existence of ρ in the case of statement (1), we claim that there exists an element of the form $(\rho, \mathrm{id}) \in \Gamma$, where $\rho \neq \mathrm{id}$. Without loss of generality, assume $\left|\pi_{0}\right|>\left|\pi_{1}\right|$, and then consider $\left(\pi_{0}, \pi_{1}\right)^{\left|\pi_{1}\right|},\left(\pi_{1}, \pi_{0}\right)^{\left|\pi_{1}\right|}$, in which case we may let $\rho=\pi_{0}^{\left|\pi_{1}\right|}$.

Now we prove such an element exists in the case of statement (2) for $n>2$. If $\left|\pi_{0}\right| \neq\left|\pi_{1}\right|$, then the proof is analogous to the argument for statement (1). Otherwise $\left|\pi_{0}\right|=\left|\pi_{1}\right|=r$ and we want to find some element $\pi \in A_{n}$ such that $|\pi| \nmid r$. One can show that such a π exists by proving that, for $n>2$, there must be some prime q not dividing $\left|\pi_{0}\right|=r$. One can show q exists by using the fact that

$$
n<\sum_{\substack{p \leq n \\ p \text { prime }}} p \text { for } n>2 .
$$

Using all three generators of Γ, one can produce the element $\left(\pi_{0}^{k_{1}}, \pi, \pi_{1}^{k_{2}}\right) \in A_{n}^{3}$, where $k_{1}, k_{2} \in \mathbb{Z}$. By raising this element to the r-th power, we produce the element (id, $\left.\pi^{r}, \mathrm{id}\right) \in \Gamma$ and let $\rho=\pi^{r}$.

Corollary A.6. Let H be a simple group. Suppose $\pi_{0}, \pi_{1} \in S_{n}$ with $\left\langle\pi_{0}, \pi_{1}\right\rangle \geq H$.
(1) If $\left|\pi_{0}\right| \neq\left|\pi_{1}\right|$, then $\Gamma=\left\langle\left(\pi_{0}, \pi_{1}\right),\left(\pi_{1}, \pi_{0}\right)\right\rangle$ must contain $H \times H$.
(2) $\Gamma=\left\langle\left(\pi_{0}, \pi_{1}, \mathrm{id}\right),\left(\mathrm{id}, \pi_{0}, \pi_{1}\right),\left(\pi_{1}, \mathrm{id}, \pi_{0}\right)\right\rangle$ must contain $H \times H \times H$.

Remark A.7. In [Adrianov et al. 1997], Adrianov, Kochetkov, and Suvorov classify all the possible primitive, and thus simple, monodromy groups of plane trees.

Acknowledgements

We thank the Willamette University Mathematics Consortium REU for providing a beautiful working environment, as well as the generous support of NSF Grant \#1460982. We also wish to thank Edray Goins and an anonymous referee for helpful input on the content of this paper.

References

[Adrianov 2007] N. M. Adrianov, "On the generalized Chebyshev polynomials corresponding to plane trees of diameter 4", Fundam. Prikl. Mat. 13:6 (2007), 19-33. In Russian; translated in J. Math. Sci. (NY) 158:1 (2009), 11-21. MR Zbl
[Adrianov and Zvonkin 1998] N. Adrianov and A. Zvonkin, "Composition of plane trees", Acta Appl. Math. 52:1-3 (1998), 239-245. MR Zbl
[Adrianov et al. 1997] N. M. Adrianov, Y. Y. Kochetkov, and A. D. Suvorov, "Plane trees with special primitive edge rotation groups", Fundam. Prikl. Mat. 3:4 (1997), 1085-1092. In Russian. MR Zbl
[Anderson et al. 2018] J. Anderson, I. I. Bouw, O. Ejder, N. Girgin, V. Karemaker, and M. Manes, "Dynamical Belyi maps", pp. 57-82 in Women in numbers Europe, II (Leiden, Netherlands, 2016), edited by I. I. Bouw et al., Assoc. Women Math. Ser. 11, Springer, 2018. MR Zbl
[Couveignes 1994] J.-M. Couveignes, "Calcul et rationalité de fonctions de Belyi en genre 0", Ann. Inst. Fourier (Grenoble) 44:1 (1994), 1-38. MR Zbl
[Matiyasevich 1996] Y. V. Matiyasevich, "Computer evaluation of generalized Chebyshev polynomials", Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1996:6 (1996), 59-61. In Russian; translated in Moscow Univ. Math. Bull. 51:6 (1996), 39-40. MR Zbl
[Schneps 1994] L. Schneps (editor), The Grothendieck theory of dessins d'enfants (Luminy, France, 1993), London Math. Soc. Lecture Note Series 200, Cambridge Univ. Press, 1994. MR Zbl
[Shabat and Zvonkin 1994] G. Shabat and A. Zvonkin, "Plane trees and algebraic numbers", pp. 233-275 in Jerusalem combinatorics '93, edited by H. Barcelo and G. Kalai, Contemp. Math. 178, Amer. Math. Soc., Providence, RI, 1994. MR Zbl
[Sijsling and Voight 2014] J. Sijsling and J. Voight, "On computing Belyi maps", pp. 73-131 in Numéro consacré au trimestre "Méthodes arithmétiques et applications", automne 2013, Publ. Math. Besançon Algèbre Théorie Nr. 2014/1, Presses Univ. Franche-Comté, Besançon, 2014. MR Zbl
[Wood 2006] M. M. Wood, "Belyi-extending maps and the Galois action on dessins d'enfants", Publ. Res. Inst. Math. Sci. 42:3 (2006), 721-737. MR Zbl

Received: 2018-05-02 Revised: 2018-11-03 Accepted: 2018-11-15
ncameron@lclark.edu
maroldkemp@gmail.com
susan.m.maslak@gmail.com
gmelamed@hawaii.edu
rmoy@leeuniversity.edu
jonatdp1@uci.edu
abw22014@mymail.pomona.edu

Lewis \& Clark College, Portland, OR, United States
Occidental College, Los Angeles, CA, United States
Ave Maria University, Ave Maria, FL, United States
University of Hawaii at Manoa, Honolulu, HI, United States
Lee University, Cleveland, TN, United States
University of California, Irvine, CA, United States
Pomona College, Claremont, CA, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Emory University, USA
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Arizona State University,USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 5

Orbigraphs: a graph-theoretic analog to Riemannian orbifolds 721Kathleen Daly, Colin Gavin, Gabriel Montes de Oca, DianaOchoa, Elizabeth Stanhope and Sam Stewart
Sparse neural codes and convexity 737
R. Amzi Jeffs, Mohamed Omar, Natchanon Suaysom, Aleina Wachtel and Nora Youngs
The number of rational points of hyperelliptic curves over subsets of finite fields 755Kristina Nelson, József Solymosi, Foster Tom and Ching Wong
Space-efficient knot mosaics for prime knots with mosaic number 6 767
Aaron Heap and Douglas KnowlesShabat polynomials and monodromy groups of trees uniquely determined by791ramification type
Naiomi Cameron, Mary Kemp, Susan Maslak, GabrielleMelamed, Richard A. Moy, Jonathan Pham and Austin Wei
On some edge Folkman numbers, small and large 813
Jenny M. Kaufmann, Henry J. Wickus and StanisŁaw P. RADZISZOWSKI
Weighted persistent homology 823
Gregory Bell, Austin Lawson, Joshua Martin, James Rudzinski and Clifford Smyth
Leibniz algebras with low-dimensional maximal Lie quotients 839
William J. Cook, John Hall, Vicky W. Klima and Carter Murray
Spectra of Kohn Laplacians on spheres 855
John Ahn, Mohit Bansil, Garrett Brown, Emilee Cardin and Yunus E. ZeytuncuPairwise compatibility graphs: complete characterization for wheels871Matthew Beaudouin-Lafon, Serena Chen, Nathaniel Karst,Denise Sakai Troxell and Xudong Zheng
The financial value of knowing the distribution of stock prices in discrete market 883modelsAyelet Amiran, Fabrice Baudoin, Skylyn Brock, BerendCoster, Ryan Craver, Ugonna Ezeaka, Phanuel Mariano andMary Wishart

[^0]: MSC2010: primary 11G32, 14H57; secondary 20E22.
 Keywords: dessins d'enfant, Shabat polynomials, monodromy groups, Belyi maps, trees, wreath products.

