\bullet
 involve a journal of mathematics

Associated primes of h-wheels
Corey Brooke, Molly Hoch, Sabrina Lato, Janet Striuli and Bryan Wang

Associated primes of h-wheels

Corey Brooke, Molly Hoch, Sabrina Lato, Janet Striuli and Bryan Wang (Communicated by Kenneth S. Berenhaut)

Abstract

We study the associated primes of the powers of the cover ideal of h-wheels. The main result generalizes a theorem of Kesting, Pozzi, and Striuli (2011).

Several pieces of information about an ideal I in a commutative noetherian ring R are enclosed in its primary decomposition: Given an ideal I we can write $I=\bigcap_{i=1}^{\ell} Q_{i}$, where the radical ideal of each ideal Q_{i} is given by a prime ideal P_{i} of the ring R. The prime ideals P_{i} for $i=1, \ldots, \ell$ are called associated primes of the ideal I. The finiteness conditions imposed by a noetherian ring not only allow the decomposition of an ideal into primary components, but also have stronger repercussions, as shown in the following statement proved by Brodmann [1979] in which the set $\operatorname{Ass}(R / I)$ denotes the set of all the associated primes of I :
. Let I be an ideal in a commutative noetherian ring; then the set

$$
\bigcup_{i=1}^{\infty} \operatorname{Ass}\left(R / I^{i}\right)
$$

is finite. Moreover, there exists an integer m such that for all $k \geq m$ the equality $\operatorname{Ass}\left(R / I^{m}\right)=\operatorname{Ass}\left(R / I^{k}\right)$ holds.

The positive integer m identified by Brodmann's theorem is called the index of stability for the associated primes of I, denoted by astab (I). Despite the simplicity of the statement, the value of $\operatorname{astab}(I)$ remains generally unknown.

Much work has been done recently for graded ideals in polynomial rings. While a large upper bound for $\operatorname{astab}(I)$ for monomial ideals was given in [Hoa 2006] in terms of properties of the ideal itself, a lot of recent work supports the conjecture that in a polynomial ring $\mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ the uniform $\operatorname{bound} \operatorname{astab}(I) \leq d$ for every graded ideal $I \subseteq \mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ holds; see for example [Herzog and Asloob Qureshi 2015, Theorem 4.1] for polymatroid ideals.

More cases for which the conjecture holds true come from ideals that arise from graphs. In this paper, a graph G is given by a set of vertices $V_{G}=\left\{x_{1}, \ldots, x_{d}\right\}$ and a set of edges E_{G}; elements of E_{G} are subsets of V_{G} of cardinality 2 . In particular,

[^0]if $\left\{x_{i}, x_{j}\right\}$ is an edge then we say that x_{i} and x_{j} are adjacent vertices. Given such a graph G, the edge ideal of G is an ideal of the polynomial ring $\mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ generated by the monomials $x_{i} x_{j}$ such that $\left\{x_{i}, x_{j}\right\} \in E_{G}$.

The conjecture is verified for edge ideals. It follows from [Simis et al. 1994, Theorem 5.9] that astab (I) is equal to 1 for edge ideals of bipartite graphs. In [Chen et al. 2002, Proposition 4.3], the authors show the conjecture, and in fact a stronger statement, holds for edge ideals of nonbipartite graphs.

The authors of [Francisco et al. 2011] look at cover ideals of graphs (in fact the paper deals with the more general notion of a hypergraph). We define the cover ideal later, but in Corollary 4.9 of the paper above, the authors prove that if J is the cover ideal of a simple graph then $\operatorname{astab}(J) \leq \chi(G)-1$, where $\chi(G)$ is the coloring number of the graph (which is bounded above by the number of vertices of a graph). Further, they fully characterize prime ideals that appear as associated primes of the second power of the cover ideal.

In line with this work, in [Kesting et al. 2011] the authors study which prime ideals appear as associated primes of the third power of the cover ideal. They prove that the wheel corresponds to an element of $\operatorname{Ass}\left(R / J^{3}\right)$.

In this paper we generalize the work of [Kesting et al. 2011]. Given an integer h, we define the h-wheel and prove the following:
0.1. Theorem. Let G be graph with vertex set $V_{G}=\left\{x_{1}, \ldots, x_{d}\right\}$ that is an h-wheel. Denote by $J_{G} \subseteq \mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ the cover ideal of G. Then the prime ideal $\left(x_{1}, \ldots, x_{d}\right)$ belongs to $\operatorname{Ass}\left(R / J^{n}\right)$ if and only if $n \geq h+2$.

As a corollary, for every integer $d \geq 6$ we deliver an ideal I_{d} in a polynomial ring with d variables such that $\operatorname{astab}\left(I_{d}\right) \geq d-3$.

1. Definitions

We now introduce the notation and give the definitions used in the paper.
1.1. Given a graph G with vertex set $V_{G}=\left\{x_{1}, \ldots, x_{d}\right\}$, we consider the polynomial ring $\mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$, which we often denote by $\mathrm{k}\left[V_{G}\right]$. If S is a subset of V_{G}, then the prime monomial ideal P_{S} is the ideal generated by the variables $x \in S$. If $S=V_{G}$, then we denote P_{S} by \mathfrak{m}_{G}, the maximal homogeneous ideal in $\mathrm{k}\left[V_{G}\right]$. It is worth noting that a prime monomial ideal is always generated by a subset of the variables. In this setting, given a monomial $\boldsymbol{m} \in \mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ we can write $\boldsymbol{m}=\prod_{i=1}^{d} x_{i}^{\alpha_{i}}$, where $\alpha_{i} \geq 0$. The support of \boldsymbol{m} is the set of variables $\left\{x_{i} \mid \alpha_{i}>0\right\}$ and it is denoted as $\operatorname{supp}(\boldsymbol{m})$. We denote by $\operatorname{ver}(\boldsymbol{m})$ the subset of V_{G} of vertices labeled by the variables appearing in $\operatorname{supp}(\boldsymbol{m})$.
1.2. Definition. Given a graph G with vertex set $V_{G}=\left\{x_{1}, \ldots, x_{d}\right\}$ and edge set E_{G}, a cover of G is a subset S of V_{G} such that each edge in E_{G} has a nonempty intersection with S.

The cover ideal $J_{G} \subset \mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ is the monomial ideal generated by monomials \boldsymbol{m} such that $\operatorname{ver}(\boldsymbol{m})$ is a cover of G.

The following definition is a particular case of the definition of associated prime given in [Eisenbud 1995, page 89].
1.3. Definition. Let I be a monomial ideal of the polynomial ring $\mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ and let $P=\left(x_{i_{1}}, \ldots, x_{i_{\ell}}\right)$ be a monomial prime ideal containing I. We say that P is an associated prime of I, and we write $P \in \operatorname{Ass}(R / I)$, if there exists a monomial $\boldsymbol{w} \in \mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ such that $\boldsymbol{w} \notin I, x_{i} \boldsymbol{w} \in I$ for $i=i_{1}, \ldots, i_{\ell}$, but $x_{i} \boldsymbol{w} \notin I$ for $i \neq i_{1}, \ldots, i_{\ell}$.

The monomial w is called a witness of P for the ideal I.
As shown in [Eisenbud 1995, Theorem 3.10], the associated primes of a monomial ideal I defined in the previous definition are exactly the prime ideals that are radical ideals in a minimal primary decomposition of I.

Let G be a connected graph with vertex set $\left\{x_{1}, \ldots, x_{d}\right\}$. The edge ideal and the cover ideal of G are dual to each other with respect to the Alexander duality; see for a proof [Bruns and Herzog 1993, Chapter 5] or consult [Van Tuyl 2013] for a quicker introduction to the subject. This fact implies that a prime ideal P is an associated prime of the cover ideal if and only if $P=\left(x_{i}, x_{j}\right)$, where $\left\{x_{i}, x_{j}\right\}$ is in E_{G}.

The following theorem extends the knowledge of associated primes to second powers of the cover ideal [Francisco et al. 2010, Corollary 3.4].
1.4. Let G be a connected graph, let S be a subset of the vertex set V_{G}, and let $R=\mathrm{k}\left[V_{G}\right]$. A prime ideal $P_{S} \subset \mathrm{k}\left[V_{G}\right]$ belongs to $\operatorname{Ass}\left(R / J_{G}^{2}\right)$ if and only if the induced subgraph generated by S is an odd cycle in G or S is an edge.

We concentrate our attention on a family of graphs called h-wheels, whose definition is given below. First we need the following notion:
1.5. Let G be a graph with vertex set V_{G}. Given a vertex $x \in V_{G}$ and a subset $S \subseteq V_{G}$ of vertices of G, we denote by $N_{S}(x)$ the subset of S consisting of adjacent vertices to x. If S is the set of all vertices in G then we use $N(x)$ to denote the set of all vertices adjacent to x.
1.6. Definition. A graph G with vertex set V_{G} is an h-wheel if V_{G} can be written as the union of two disjoint sets, the set of rim vertices R^{G} and the set of center vertices C^{G}, such that the following conditions hold:
(1) The subgraph induced by C^{G} is the complete graph on h vertices.
(2) The subgraph induced by R^{G} is an odd cycle.
(3) There exist $x_{1}, \ldots, x_{k} \in R^{G}$ with $k \geq 3$ such that $N_{R^{G}}(y)=\left\{x_{1}, \ldots, x_{k}\right\}$ for all $y \in C^{G}$.

Figure 1. A 3-wheel.
(4) For every $y \in C^{G}$, the vertex y belongs to at least two odd cycles in the subgraph induced by y and $N_{R^{G}}(y)$.

We call k the radial number for G. For each $i=1, \ldots, k-1$, set ℓ_{i} as the length of the path along the subgraph induced by R^{G} from x_{i} to x_{i+1}, and set ℓ_{k} as the length from x_{k} to x_{1}. The positive integers $\ell_{1}, \ldots, \ell_{k}$ are called the radial lengths.

In [Kesting et al. 2011], the authors studied the 1 -wheel, which we call a wheel for simplicity. Notice that given an h-wheel G and a vertex $y \in C^{G}$, the subgraph induced by y and R^{G} is a wheel.
1.7. Example. Figure 1 is a representation of a 3 -wheel G. We have

$$
\begin{aligned}
& C^{G}=\left\{y_{1}, y_{2}, y_{3}\right\}, \quad R^{G}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, \\
& N_{R^{G}}\left(y_{1}\right)=N_{R^{G}}\left(y_{2}\right)=N_{R^{G}}\left(y_{3}\right)=\left\{x_{1}, x_{2}, x_{3}\right\} .
\end{aligned}
$$

In the rest of the paper we rely on the following constructions.
1.8. Definition. Given a graph G and a vertex $x \in V_{G}$, the contraction of G via x is a new graph obtained from G by deleting x and connecting all the vertices in $N(x)$ to each other.
1.9. Definition. Given a graph G, let x_{1} and x_{2} be two adjacent vertices in G. A subdivision of G via the edge $\left\{x_{1}, x_{2}\right\}$ is a graph obtained from G by deleting the edge $\left\{x_{1}, x_{2}\right\}$, adding a new vertex y, and adding two new edges $\left\{x_{1}, y\right\}$ and $\left\{x_{2}, y\right\}$.

2. Preliminary lemmas

We now prove several lemmas that are used to prove our main result.
The first lemma describes necessary conditions for a monomial to be a witness for a power of the cover ideal of a graph G.
2.1. Lemma. Let G be a graph with vertex set V_{G}, and let J_{G} be the cover ideal of G in the ring $R=\mathrm{k}\left[V_{G}\right]$. Let $S \subseteq V_{G}$, and assume that $P_{S} \in \operatorname{Ass}\left(R / J_{G}^{n}\right)$. Let \boldsymbol{w} be a witness for P_{S}. Then x^{n} does not divide \boldsymbol{w} for any $x \in S$.

Proof. By the definition of witness, $\boldsymbol{w} \notin J_{G}^{n}$.
Suppose toward contradiction that there exists $x \in S$ such that x^{n} divides \boldsymbol{w}. Since the monomial $x \boldsymbol{w}$ is in J_{G}^{n}, there exist $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n} \in J_{G}$ such that $x \boldsymbol{w}=\boldsymbol{m}_{1} \cdots \boldsymbol{m}_{n}$. Moreover, since $x^{n} \mid \boldsymbol{w}$, by the pigeonhole principle we know that there exists an integer s such that $1 \leq s \leq n$ and x^{2} divides \boldsymbol{m}_{s}. Let $\boldsymbol{m}_{s}^{\prime}$ be the monomial \boldsymbol{m}_{s} / x. Since $\boldsymbol{m}_{s} \in J_{G}$, it follows that $\operatorname{ver}\left(\boldsymbol{m}_{s}\right)$ is a cover for G. Since $\operatorname{supp}\left(\boldsymbol{m}_{s}\right)=\operatorname{supp}\left(\boldsymbol{m}_{s}^{\prime}\right)$, we know $\operatorname{ver}\left(\boldsymbol{m}_{s^{\prime}}\right)$ is a cover for G, and it follows that $\boldsymbol{m}_{s}^{\prime} \in J_{G}$. In particular \boldsymbol{w} can be written as the product of the n monomials $\boldsymbol{m}_{1} \cdots \boldsymbol{m}_{s-1} \boldsymbol{m}_{s}^{\prime} \cdots \boldsymbol{m}_{n}$, which shows that $\boldsymbol{w} \in J_{G}^{n}$.

In the rest of the paper, if $\boldsymbol{m}=\prod_{i=1}^{d} x_{i}^{\alpha_{i}}$ is a monomial in the ring $\mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$, then $\operatorname{deg}_{\boldsymbol{m}} x_{i}=\alpha_{i}$, while the total degree of \boldsymbol{m} is given by $\sum_{i=1}^{d} \alpha_{i}$ and is denoted by tot $\operatorname{deg} \boldsymbol{m}$.

The following corollary is an immediate consequence of the previous lemma.
2.2. Corollary. Let G be a graph with vertex set V_{G} of cardinality larger than 2 . Let J_{G} be the cover ideal of G in the polynomial ring $\mathrm{k}\left[V_{G}\right]$. Assume that $\left\{x_{1}, x_{2}\right\}$ is an edge of G and assume that $\mathfrak{m}_{G} \in \operatorname{Ass}\left(R / J_{G}^{n}\right)$. If \boldsymbol{w} is a witness of \mathfrak{m}_{G}, then $x_{1}, x_{2} \in \operatorname{supp} \boldsymbol{w}$. Moreover, $\operatorname{deg}_{w} x_{1}+\operatorname{deg}_{w} x_{2} \geq n$.
Proof. Assume for the sake of contradiction that x_{2} does not divide w. Let $x \in$ $V_{G} \backslash\left\{x_{1}, x_{2}\right\}$. The monomial $x \boldsymbol{w}$ can be written as the product of n monomials $\boldsymbol{m}_{1} \cdots \boldsymbol{m}_{n}$ such that $\boldsymbol{m}_{i} \in J_{G}$ for all $i=1, \ldots, n$. By Lemma $2.1 \operatorname{deg}_{\boldsymbol{w}} x_{1} \leq n-1$, and therefore we can conclude that there exists an $i \in\{1, \ldots, n\}$ such that x_{1} does not divide \boldsymbol{m}_{i}. Since x_{2} does not divide \boldsymbol{w}, it follows that x_{2} does not divide \boldsymbol{m}_{i}. In particular, $\operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ cannot be a cover of G, as neither x_{1} nor x_{2} are in $\operatorname{supp}\left(\boldsymbol{m}_{i}\right)$, while $\left\{x_{1}, x_{2}\right\}$ forms an edge.

Notice that either x_{1} or x_{2} divides \boldsymbol{m}_{i}, as $\boldsymbol{m}_{i} \in J_{G}$ for all $i=1, \ldots, n$, verifying the final statement.

In the following K_{h} denotes the complete graph in h vertices. Notice that every cover of K_{h} contains at least $h-1$ vertices.
2.3. Lemma. Let G be a graph with vertex set V_{G}. Let J_{G} be the cover ideal in the polynomial ring $R=\mathrm{k}\left[V_{G}\right]$. If G contains the complete graph K_{h} as an induced subgraph but $G \neq K_{h}$, then $\mathfrak{m}_{G} \notin \operatorname{Ass}\left(R / J_{G}^{n}\right)$ for all integers n such that $n \leq h-1$.
Proof. Suppose G contains K_{h} as an induced subgraph. Without loss of generality we may label the vertices of K_{h} with the variables $\left\{x_{1}, \ldots, x_{h}\right\}$. Towards contradiction, assume that $\mathfrak{m}_{G} \in \operatorname{Ass}\left(R / J_{G}^{n}\right)$ with $n \leq h-1$, and let \boldsymbol{w} be a witness. For every monomial $\boldsymbol{c} \in J_{G}$, we have that $\boldsymbol{c} \in J_{K_{h}}$. This implies that at least
$h-1$ variables among x_{1}, \ldots, x_{h} belong to supp \boldsymbol{c}. Therefore, if $\boldsymbol{c} \in J_{G}^{n}$ then $\sum_{i=1}^{h} \operatorname{deg}_{c} x_{i} \geq n(h-1)=n h-n$.

However, we know from Lemma 2.1 that for each variable x_{i} the inequality $\operatorname{deg}_{w} x_{i} \leq n-1$ holds, so that $\sum_{i=1}^{h} \operatorname{deg}_{w} x_{i} \leq h(n-1)=h n-h$.

If $x \in V_{G}$ and $x \neq x_{i}$ for $i=1, \ldots, h$, then $x \boldsymbol{w} \in J_{G}^{n}$, as \boldsymbol{w} is a witness of \mathfrak{m}_{G}, which yields

$$
n(h-1) \leq \sum_{i=1}^{h} \operatorname{deg}_{x_{j} w} x_{i}=\sum_{i=1}^{h} \operatorname{deg}_{\boldsymbol{w}} x_{i} \leq h(n-1) .
$$

This gives us the desired contradiction $h \leq n$.
In the following lemma, under proper assumptions, we can be more specific about the degree formula presented in Corollary 2.2.
2.4. A monomial $\boldsymbol{n} \in \mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ is said square-free if for all $i=1, \ldots, d$ the monomial x_{i}^{2} does not divide \boldsymbol{n}. For a graph G with cover ideal J_{G}, given a monomial $\boldsymbol{m} \in J_{G}$, one can always find a square-free monomial $\boldsymbol{n} \in J_{G}$ such that \boldsymbol{n} divides \boldsymbol{m}. In particular for a product of n monomials $\boldsymbol{m}=\boldsymbol{m}_{1} \cdots \boldsymbol{m}_{n}$ such that $\boldsymbol{m}_{i} \in J_{G}$ for all $i=1, \ldots, n$ and $\operatorname{deg}_{\boldsymbol{m}} x_{j} \leq n-1$ for all $j=1, \ldots, d$, we may assume that each \boldsymbol{m}_{i} is square-free.
2.5. Lemma. Let G be a graph with vertex set V_{G} of cardinality bigger than 4. Let J_{G} be the cover ideal of G in the polynomial ring $\mathrm{k}\left[V_{G}\right]$. Assume that there are $x_{1}, x_{2}, x_{3}, x_{4} \in V_{G}$ such that $N\left(x_{2}\right)=\left\{x_{1}, x_{3}\right\}$ and $N\left(x_{3}\right)=\left\{x_{2}, x_{4}\right\}$. Assume further that, for a given positive integer $n, \mathfrak{m}_{G} \in \operatorname{Ass}\left(R / J_{G}^{n}\right)$ with witness \boldsymbol{w}. If $\operatorname{deg}_{w} x_{1}=n-1$, then $\operatorname{deg}_{w} x_{2}+\operatorname{deg}_{w} x_{3}=n$.
Proof. Since \boldsymbol{w} is a witness for the ideal J_{G}^{n}, we know that $\operatorname{deg}_{\boldsymbol{w}} x_{2}+\operatorname{deg}_{\boldsymbol{w}} x_{3} \geq n$ by the adjacency assumption and Corollary 2.2.

Since \boldsymbol{w} is a witness for \mathfrak{m}_{G}, we have $x_{2} \boldsymbol{w}=\boldsymbol{m}_{1} \cdots \boldsymbol{m}_{n}$, where $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n} \in J_{G}$. By Lemma 2.1, $\operatorname{deg}_{\boldsymbol{w}} x_{i} \leq n-1$, so we may assume that the monomial \boldsymbol{m}_{j} is square-free for all $j=1, \ldots, n$; see 2.4.

Suppose for contradiction that $\operatorname{deg}_{w} x_{2}+\operatorname{deg}_{w} x_{3} \geq n+1$, which implies that $\operatorname{deg}_{x_{2} w} x_{2}+\operatorname{deg}_{x_{2} w} x_{3} \geq n+2$.

By Corollary 2.2 , both x_{2}, and x_{3} are in supp \boldsymbol{w}. This implies that x_{3}^{2} divides $x_{2} \boldsymbol{w}$, as $\operatorname{deg}_{x_{2} w} x_{2} \leq n$, and therefore there exist two integers i_{1} and i_{2} such that x_{2} and x_{3} belong to supp $\boldsymbol{m}_{i_{1}}$ and $\operatorname{supp} \boldsymbol{m}_{i_{2}}$. If also x_{1} belongs to supp $\boldsymbol{m}_{i_{j}}$ for some $j=1,2$, then $\boldsymbol{m}_{i_{j}} / x_{2} \in J_{G}$, since $x_{1} x_{3}$ divides $\boldsymbol{m}_{i_{j}} / x_{2}$. Thus, in this case,

$$
\boldsymbol{w}=\frac{x_{2} \boldsymbol{m}}{x_{2}}=\boldsymbol{m}_{1} \cdots \frac{\boldsymbol{m}_{i_{j}}}{x_{2}} \cdots \boldsymbol{m}_{n} \in J_{G}^{n},
$$

a contradiction, since \boldsymbol{w} is a witness. Thus we may assume that x_{1} does not divide $\boldsymbol{m}_{i_{1}}$ and $\boldsymbol{m}_{i_{2}}$, which implies that $\operatorname{deg}_{\boldsymbol{w}} x_{1}<n-1$, contradicting the hypothesis.

The careful analysis of the degrees of the witnesses allows us to draw useful conclusions about when \mathfrak{m}_{G} is an associated prime after contracting a vertex.
2.6. Lemma. Let G be a graph with vertex set V_{G}. Let J_{G} be the cover ideal of G in the polynomial ring $R=\mathrm{k}\left[V_{G}\right]$. Assume $x_{1}, y_{1}, y_{2}, x_{2} \in V_{G}$ such that $N\left(y_{1}\right)=\left\{x_{1}, x_{2}\right\}$ and $N\left(y_{2}\right)=\left\{y_{1}, x_{2}\right\}$. Assume that $\mathfrak{m}_{G} \in \operatorname{Ass}\left(R / J_{G}^{n}\right)$ for some integer n and that there exists a witness \boldsymbol{w} such that $\operatorname{deg}_{\boldsymbol{w}} x_{1}=n-1$. Obtain G^{\prime} by contracting y_{1} and y_{2}. Then $\mathfrak{m}_{G^{\prime}}$ belongs to $\operatorname{Ass}\left(\mathrm{k}\left[V_{G^{\prime}}\right] / J_{G^{\prime}}^{n}\right)$.

Proof. Set $a_{1}=\operatorname{deg}_{w} y_{1}$ and let $a_{2}=\operatorname{deg}_{\boldsymbol{w}} y_{2}$. We prove that the monomial $\boldsymbol{w}^{\prime}=$ $\boldsymbol{w} /\left(y_{1}^{a_{1}} y_{2}^{a_{2}}\right)$ is a witness for the ideal $\mathfrak{m}_{G^{\prime}}$, and thus $\mathfrak{m}_{G^{\prime}}$ is an element of $\operatorname{Ass}\left(R / J_{G^{\prime}}^{k}\right)$.

First, we show by contradiction that $\boldsymbol{w}^{\prime} \notin J_{G^{\prime}}^{n}$; toward this end, suppose that $\boldsymbol{w}^{\prime}=\boldsymbol{m}_{1} \cdots \boldsymbol{m}_{n}$ such that $\boldsymbol{m}_{i} \in J_{G^{\prime}}$. For every $x \in V_{G^{\prime}} \subset V_{G}$, we have $\operatorname{deg}_{\boldsymbol{w}^{\prime}} x=$ $\operatorname{deg}_{w} x \leq n-1$, where the inequality is the content of Lemma 2.1. Therefore, by 2.4, we may assume that, for each $x \in V_{G^{\prime}}, x^{2}$ does not divide \boldsymbol{m}_{j} for $j=1, \ldots, n$. For $1 \leq i \leq n$, define the monomial \boldsymbol{n}_{i} as

$$
\boldsymbol{n}_{i}= \begin{cases}\boldsymbol{m}_{i} & \text { if } x_{1}, x_{2} \in \operatorname{supp} \boldsymbol{m}_{i} \\ y_{1} \boldsymbol{m}_{i} & \text { if } x_{1} \notin \operatorname{supp} \boldsymbol{m}_{i} \\ y_{2} \boldsymbol{m}_{i} & \text { if } x_{2} \notin \operatorname{supp} \boldsymbol{m}_{i}\end{cases}
$$

Since $\boldsymbol{m}_{i} \in J_{G^{\prime}}$ and $\left\{x_{1}, x_{2}\right\}$ is an edge of the graph G^{\prime}, each \boldsymbol{m}_{i} is divisible by at least one of x_{1} or x_{2}, so that our construction of \boldsymbol{n}_{i} is well-defined. Moreover, for the same reason, for each i such that $1 \leq i \leq n$, if $y_{1} \in \operatorname{supp} \boldsymbol{n}_{i}$ or $y_{2} \in \operatorname{supp} \boldsymbol{n}_{i}$ then $\boldsymbol{n}_{i} \in J_{G}$.

Denote by $\boldsymbol{w}^{\prime \prime}$ the product $\boldsymbol{n}_{1} \cdots \boldsymbol{n}_{n}$ and set $b_{i}=\operatorname{deg}_{\boldsymbol{w}^{\prime \prime}} y_{i}$ for $i=1,2$. There are $n-b_{1}-b_{2}$ monomials among the \boldsymbol{n}_{i} such that $y_{1}, y_{2} \notin \operatorname{supp} \boldsymbol{n}_{i}$ and therefore there are $n-b_{1}-b_{2}$ monomials among the \boldsymbol{n}_{i} such that $\operatorname{ver}\left(\boldsymbol{n}_{i}\right)$ are not covers of G as $\left\{y_{1}, y_{2}\right\}$ is an edge in G. We may assume, by renaming the \boldsymbol{n}_{i}, that

$$
\begin{cases}\boldsymbol{n}_{i} \notin J_{G}, & i=1, \ldots, n-b_{1}-b_{2}, \\ \boldsymbol{n}_{i} \in J_{G}, & i=n-b_{1}-b_{2}+1, \ldots, n\end{cases}
$$

Since $\operatorname{deg}_{m_{i}} x \leq 1$ for every $x \in V_{G^{\prime}}$, we have $\operatorname{deg}_{w^{\prime \prime}} y_{j}=n-\operatorname{deg}_{w^{\prime \prime}} x_{j}$ for $j=1,2$. In particular,

$$
b_{j}=\operatorname{deg}_{w^{\prime \prime}} y_{j}=n-\operatorname{deg}_{w^{\prime \prime}} x_{j}=n-\operatorname{deg}_{\boldsymbol{w}} x_{j} \leq \operatorname{deg}_{w} y_{j}=a_{i}
$$

where the inequality follows from Corollary 2.2 , the fact that \boldsymbol{w} is a witness for \mathfrak{m}_{G} in $\operatorname{Ass}\left(R / J_{G}^{n}\right)$, and the assumption that $\left\{x_{j}, y_{j}\right\}$ is an edge of G for $j=1,2$. As $\operatorname{deg}_{\boldsymbol{w}^{\prime \prime}} x=\operatorname{deg}_{\boldsymbol{w}} x$ for all $x \in V_{G^{\prime}}$, we know $\boldsymbol{w}^{\prime \prime}$ divides \boldsymbol{w} and $\boldsymbol{w}=y_{1}^{a_{1}-b_{1}} y_{2}^{a_{2}-b_{2}} \boldsymbol{w}^{\prime \prime}$.

Notice that for each $i=1, \ldots, n-b_{1}-b_{2}$, and for each $j=1,2$, the monomial $y_{j} \boldsymbol{n}_{i}$ is in J_{G}. Since $a_{1}+a_{2}=n$ by Lemma 2.5, $y_{1}^{a_{1}-b_{1}} y_{2}^{a_{2}-b_{2}} \boldsymbol{n}_{1} \cdots \boldsymbol{n}_{n-b_{1}-b_{2}} \in$ $J_{G}^{n-b_{1}-b_{2}}$, so that $\boldsymbol{w}=y_{1}^{a_{1}} y_{2}^{a_{2}} \boldsymbol{w}^{\prime \prime}=y_{1}^{a_{1}-b_{1}} y_{2}^{a_{2}-b_{2}} \boldsymbol{n}_{1} \cdots \boldsymbol{n}_{k} \in J_{G}^{n}$, a contradiction to our assumption about \boldsymbol{w} being a witness. Thus, we conclude that \boldsymbol{w}^{\prime} could not have been in $J_{G^{\prime}}^{n}$ to begin with, completing the first section of the proof.

Next, we show that for $x \in V_{G^{\prime}}$, we have $x \boldsymbol{w}^{\prime} \in J_{G^{\prime}}^{n}$. But $x \boldsymbol{w} \in J_{G}^{n}$, and in particular $x \boldsymbol{w}=\boldsymbol{m}_{1} \cdots \boldsymbol{m}_{n}$, where $\boldsymbol{m}_{i} \in J_{G}$ for $1 \leq i \leq n$. Since $a_{1}+a_{2}=n$ by Lemma 2.5, and since each \boldsymbol{m}_{i} must be divisible by at least one of y_{1} or y_{2} (since $\left\{y_{1}, y_{2}\right\} \in E_{G}$), it must be the case that each \boldsymbol{m}_{i} contains precisely one of y_{1} or y_{2}. This implies that $y_{1} \in \operatorname{supp} \boldsymbol{m}_{i}$ if and only if $x_{2} \in \operatorname{supp} \boldsymbol{m}_{i}$, and $y_{2} \in \operatorname{supp} \boldsymbol{m}_{i}$ if and only if $x_{1} \in \operatorname{supp} \boldsymbol{m}_{i}$, $\operatorname{since} \operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ is a cover for G. Thus either x_{1} or x_{2} belong to $\operatorname{supp}\left(\boldsymbol{m}_{i}\right)$ for every $i=1, \ldots, n$. For this reason the monomials defined as

$$
\boldsymbol{m}_{i}^{\prime}= \begin{cases}\boldsymbol{m}_{i} / y_{1} & \text { if } y_{1} \in \operatorname{supp} \boldsymbol{m}_{i}, \\ \boldsymbol{m}_{i} / y_{2} & \text { if } y_{2} \in \operatorname{supp} \boldsymbol{m}_{i}\end{cases}
$$

have the property that $\operatorname{ver}\left(\boldsymbol{m}_{i}^{\prime}\right)$ is a cover for G^{\prime} for all $i=1, \ldots, n$. Therefore we have $x \boldsymbol{w}^{\prime}=\boldsymbol{m}_{1}^{\prime} \cdots \boldsymbol{m}_{n}^{\prime} \in J_{G^{\prime}}^{n}$, as desired.

The following lemma gives instances for which a variable appears with maximal degree in a witness.
2.7. Lemma. Let G be a graph with vertex set V_{G}. Let J_{G} be the cover ideal for G in the polynomial ring $R=k\left[V_{G}\right]$. Assume that there exists a positive integer n such that $\mathfrak{m}_{G} \in \operatorname{Ass}\left(R / J_{G}^{n}\right)$ with witness \boldsymbol{w}. Suppose G contains a proper induced subgraph K that is a complete graph in $n+1$ vertices with one edge $\left\{y_{1}, y_{2}\right\}$ removed. Then $\operatorname{deg}_{\boldsymbol{w}}\left(y_{1}\right)=n-1$.

Proof. Label the vertices in V_{K} as $y_{1}, y_{2}, \ldots, y_{n+1}$. By Lemma 2.1, we know $\operatorname{deg}_{w}\left(y_{1}\right) \leq n-1$, so it remains to show that $\operatorname{deg}_{w}\left(y_{1}\right) \geq n-1$. Suppose for the sake of contradiction that $\operatorname{deg}_{\boldsymbol{w}}\left(y_{1}\right)<n-1$, and let x be a vertex of G but not a vertex of the proper subgraph H. Since $x \boldsymbol{w} \in J_{G}^{n}$, we can write $x \boldsymbol{w}=\boldsymbol{m}_{1} \cdots \boldsymbol{m}_{n}$, with $\boldsymbol{m}_{i} \in J_{G}$. This implies that for each $i=1, \ldots, n, \operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ is a cover of G and therefore a cover for K.

Since $\operatorname{deg}_{\boldsymbol{w}}\left(y_{1}\right)<n-1$, suppose without loss of generality that $y_{1} \nmid \boldsymbol{m}_{n-1}$ and $y_{1} \nmid \boldsymbol{m}_{n}$. Then $y_{j} \in \operatorname{supp}\left(\boldsymbol{m}_{i}\right)$ for $3 \leq j \leq n+1$ and $i=n-1, n$ since $\left\{y_{1}, y_{j}\right\}$ is an edge of H and therefore G. In particular $y_{3} \cdots y_{n+1} \mid \boldsymbol{m}_{n-1}$ and $y_{3} \cdots y_{n+1} \mid \boldsymbol{m}_{n}$. Again by Lemma 2.1, we know that $\operatorname{deg}_{w}\left(y_{j}\right) \leq n-1$, so y_{j} can divide at most $n-3$ of the monomials $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{n-2}$ for $3 \leq j \leq n+1$. Thus,

$$
\sum_{j=3}^{n+1} \sum_{i=1}^{n-2} \operatorname{deg}_{m_{i}}\left(y_{j}\right) \leq \sum_{j=3}^{n+1}(n-3)=n^{2}-4 n+3 .
$$

On the other hand, each \boldsymbol{m}_{i} must cover H and so contains at least all but one of y_{3}, \ldots, y_{n+1}, whence

$$
\sum_{i=1}^{n-2} \sum_{j=3}^{n+1} \operatorname{deg}_{\boldsymbol{m}_{i}}\left(y_{j}\right) \geq \sum_{i=1}^{n-2}(n-2)=n^{2}-4 n+4,
$$

which is obviously a contradiction. Thus we conclude that $\operatorname{deg}_{w}\left(y_{1}\right)=n-1$, as desired.

In the rest of the paper, given a finite set S, we denote by $|S|$ its cardinality.
2.8. Lemma. Let G be an h-wheel with rim R^{G} and center C^{G}. Let k be its radial number and $\ell_{1}, \ldots, \ell_{k}$ its radial lengths. If W is a vertex cover for G that contains all the vertices in C^{G}, then

$$
|W| \geq \frac{1}{2}(|G|-h+1)+h .
$$

If W is a vertex cover for G missing one vertex from C^{G}, then

$$
|W| \geq k+h-1+\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(\ell_{k}-1\right)\right\rfloor .
$$

Moreover,

$$
k+h-1+\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(\ell_{k}-1\right)\right\rfloor \geq \frac{1}{2}(|G|-h+1)+h
$$

Proof. Assume that W contains C^{G}. The vertex set $W \cap R^{G}$ has to be a vertex cover for R^{G}. Since R^{G} is an odd hole, the cardinality of $W \cap R^{G}$ has to be at least

$$
\frac{1}{2}\left(\left|R^{G}\right|+1\right)=\frac{1}{2}(|G|-h+1) .
$$

Therefore the cardinality of W is at least

$$
\frac{1}{2}(|G|-h+1)+h .
$$

Assume now that W does not contain all the center vertices. If G were a 1 -wheel, we know from [Kesting et al. 2011, Lemma 2.1] that the cover not containing the center would have cardinality of at least

$$
k+\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(\ell_{k}-1\right)\right\rfloor,
$$

which is also the number of vertices that W needs to have to cover the subgraph induced by the 1 -wheel with the center not in W. The cover W needs to contain further the other $h-1$ centers, so that the following inequality holds:

$$
|W| \geq k+h-1+\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(\ell_{k}-1\right)\right\rfloor .
$$

We now need to show that this value is greater than $\frac{1}{2}(|G|-h+1)+h$. Denote by C a subgraph of G isomorphic to a 1 -wheel. We know that

$$
k+\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(\ell_{k}-1\right)\right\rfloor \geq \frac{1}{2}|C|+1,
$$

as shown in [Kesting et al. 2011]. This implies

$$
k+\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(\ell_{k}-1\right)\right\rfloor \geq \frac{1}{2}(|G|-h+1)+1
$$

as $|G|-h+1$ is the cardinality of a subgraph of G isomorphic to a 1 -wheel. It follows that

$$
k+h-1+\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(\ell_{k}-1\right)\right\rfloor \geq \frac{1}{2}(|G|-h+1)+h .
$$

3. Main theorems

We first prove that if G is an h-wheel then \mathfrak{m}_{G} appears as an associated prime of low powers of the cover ideal.
3.1. Theorem. Let G be an h-wheel, and let J_{G} be the cover ideal of G in the ring $R=\mathrm{k}\left[V_{G}\right]$. Then $\mathfrak{m}_{G} \notin \operatorname{Ass}\left(R / J_{G}^{n}\right)$ if $n \leq h+1$.

Proof. Let y_{1}, \ldots, y_{h} label the vertices in C^{G}, let $x_{1}, x_{2}, \ldots, x_{k}$ label the radial vertices, and let ℓ_{i} be the radial lengths for $i=1, \ldots, k$. Denote by $x_{i j}$, for $j=1, \ldots, \ell_{i}-1$, the vertices between x_{i} and x_{i+1} if $i<k$ and the vertices between x_{k} and x_{1} if $i=k$.

Because the centers and one radial vertex form a complete graph in $h+1$ vertices, Lemma 2.3 implies that $G \notin \operatorname{Ass}\left(R / J^{n}\right)$ for every integer n such that $n \leq h$.

We next show that $G \notin \operatorname{Ass}\left(R / J_{G}^{h+1}\right)$, and to do so we consider two cases.
Case 1: Assume that there are two radial vertices, say x_{t} and x_{t+1}, such that $\left\{x_{t}, x_{t+1}\right\}$ is an edge. In this case we can conclude that $G \notin \operatorname{Ass}\left(R / J^{h+1}\right)$ by a direct application of Lemma 2.3 since x_{t}, x_{t+1}, and the centers of the h-wheel G form a complete ($h+2$)-graph.
Case 2: Assume that G is an h-wheel with no two radial vertices adjacent. We know by the definition of an h-wheel that there exist an x_{t} and an x_{t+1} such that the path from x_{t} to x_{t+1} is odd. By relabeling the vertices of G we may assume that $t=1$. Suppose for a contradiction that there exists a witness \boldsymbol{w} for the maximal ideal \mathfrak{m}_{G} to be in $\operatorname{Ass}\left(R / J^{h+1}\right)$. Using Lemma 2.7 with K being the induced subgraph by C^{G}, and the vertices x_{1}, x_{2}, we can conclude that the $\operatorname{deg}_{\boldsymbol{w}} x_{1}=h$. Thus from Lemma 2.5, we have that $\operatorname{deg}_{w} x_{11}+\operatorname{deg}_{w} x_{12}=h+1$. Further, by an application of Lemma 2.6, we can contract x_{11} and x_{12} to form a new graph G^{\prime} such that $\mathfrak{m}_{G^{\prime}} \in \operatorname{Ass}\left(\mathrm{k}\left[V_{G^{\prime}}\right] / J_{G^{\prime}}^{h+1}\right)$. Because the path from x_{1} to x_{2} along the subgraph induced by R^{G} is odd, we can perform this operation until x_{1} is adjacent to x_{2} and conclude the proof by an application of Case 1.
3.2. Theorem. Let G be an h-wheel and let J_{G} be the cover ideal of G in the ring $R=\mathrm{k}\left[V_{G}\right]$. Then $\mathfrak{m}_{G} \in \operatorname{Ass}\left(R / J_{G}^{h+2}\right)$.

Proof. Label with y_{1}, \ldots, y_{h} the vertices in C^{G}, and with x_{1}, \ldots, x_{k} the radial vertices, where k is the radial number. Let ℓ_{i} denote the radial lengths for $i=$ $1, \ldots, k$. Label by $x_{i j}$, for $j=1, \ldots, \ell_{i}-1$, the vertices between x_{i} and x_{i+1} if
$i<k$ and the vertices between x_{k} and x_{1} if $i=k$. The subgraph R^{G} is an odd cycle. We set d to be the size of R^{G}. Notice that $\ell_{1}+\cdots+\ell_{k}=d$.

We prove that \mathfrak{m}_{G} is in $\operatorname{Ass}\left(R / J_{G}^{h+2}\right)$ by providing a witness. Let \boldsymbol{w} be the monomial

$$
\boldsymbol{w}=\left(\prod_{i=1, \ldots, h} y_{i}^{h+1}\right)\left(\prod_{i=1, \ldots, k} x_{i}^{h+1}\right)\left(\prod_{\substack{i=1, \ldots, k \\ j=1, \ldots, \ell_{i}-1}} x_{i j}^{a}\right)
$$

where $a=1$ if j is odd, and $a=h+1$ if j is even.
To show that \boldsymbol{w} is the desired monomial, we first prove that

$$
\operatorname{tot} \operatorname{deg}(\boldsymbol{w})=h k+h(h+1)+n+h\left(\left\lfloor\frac{1}{2}\left(l_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(l_{k}-1\right)\right\rfloor\right)
$$

In computing the $\operatorname{deg}(\boldsymbol{w})$, the contribution from the variables y_{m} and x_{i}, for $m=1, \ldots, h$ and $i=1, \ldots, k$, is given by $(h+1) h+(h+1) k$. For $i=1, \ldots, k-1$, between x_{i} and x_{i+1}, there are $\ell_{i}-1$ vertices, and there are $\ell_{k}-1$ vertices between x_{k} and x_{1}. Given an integer s, there are $\left\lfloor\frac{1}{2} s\right\rfloor$ even integers and $\left\lceil\frac{1}{2} s\right\rceil$ odd integers between 1 and s. Therefore, in computing tot $\operatorname{deg}(\boldsymbol{w})$, the contributions from the variables $x_{i j}$ are given by

$$
(h+1)\left(\left\lfloor\frac{1}{2}\left(l_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(l_{k}-1\right)\right\rfloor\right)+\left\lceil\frac{1}{2}\left(l_{1}-1\right)\right\rceil+\cdots+\left\lceil\frac{1}{2}\left(l_{k}-1\right)\right\rceil .
$$

The total degree of the monomial \boldsymbol{w} is therefore equal to

$$
\begin{aligned}
\operatorname{tot} \operatorname{deg}(\boldsymbol{w}) & =(h+1) k+(h+1) h+\sum_{i=1}^{k}\left\lceil\frac{1}{2}\left(\ell_{i}-1\right)\right\rceil+(h+1) \sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor \\
& =(h+1) h+(h+1) k+h \sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor+\sum_{i=1}^{k}\left(\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor+\left\lceil\frac{1}{2}\left(\ell_{i}-1\right)\right\rceil\right) \\
& =h k+h(h+1)+k+\sum_{i=1}^{k}\left(\ell_{i}-1\right)+h \sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor \\
& =h k+h(h+1)+\sum_{i=1}^{k} \ell_{i}+h \sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor \\
& =h k+h(h+1)+d+h \sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor
\end{aligned}
$$

To prove that \boldsymbol{w} does not belong to J_{G}^{h+2}, we first show that

$$
\begin{equation*}
\text { tot } \operatorname{deg}(\boldsymbol{w})<2\left(\frac{1}{2}(|G|-h+1)+h\right)+h\left(k+h-1+\sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor\right) \tag{3.2.1}
\end{equation*}
$$

Supposing this inequality is not satisfied, we have

$$
\begin{aligned}
2\left(\frac{1}{2}(|G|-h+1)+h\right)+h k+h^{2}-h+h & \sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor \\
& \leq h k+h^{2}+h+d+h \sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{i}-1\right)\right\rfloor
\end{aligned}
$$

which implies

$$
h+d \geq 2\left(\frac{1}{2}(|G|-h+1)+h\right)-h,
$$

or $h+d \geq|G|+1$. But $|G|=\left|C^{G}\right|+h=d+h$. Thus

$$
d+h \geq d+h+1
$$

which is impossible. Thus the inequality holds.
Now we show that this inequality implies $\boldsymbol{w} \notin J_{G}^{h+2}$. Assume otherwise. Then we can write $\boldsymbol{w}=\boldsymbol{h} \boldsymbol{m}_{1} \cdots \boldsymbol{m}_{h+2}$ such that for each $i=1, \ldots, h+2$ not only the monomial $\boldsymbol{m}_{i} \in J_{G}$ but also $\operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ is a minimal cover for G. The total degree of each \boldsymbol{m}_{i} is equal to $\left|\operatorname{ver}\left(\boldsymbol{m}_{i}\right)\right|$. Therefore, by Lemma 2.8, we have

$$
\text { tot } \operatorname{deg}\left(\boldsymbol{m}_{i}\right) \geq \frac{1}{2}(|C|-h+1)+h
$$

if $\operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ is a cover containing the vertices of C^{G}, or

$$
\text { tot } \operatorname{deg}\left(\boldsymbol{m}_{i}\right) \geq k+h-1+\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(\ell_{k}-1\right)\right\rfloor
$$

if $\operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ is a cover that does not contain all vertices of C^{G}.
Notice that $\sum_{i=1}^{h} \operatorname{deg}_{\boldsymbol{w}} y_{i}=h(h+1)$. If $\operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ is a cover that contains all the vertices of C^{G} for each $i=1, \ldots, h-2$ then $\sum_{i=1}^{h} \operatorname{deg}_{w} y_{i} \geq h(h+2)$, which is a contradiction. In particular, there are least h monomials among the monomials \boldsymbol{m}_{i} that correspond to covers not containing all vertices in C^{G}. An application of Lemma 2.8 , yields the inequality

$$
\begin{aligned}
\operatorname{tot} \operatorname{deg}(\boldsymbol{w}) & =\operatorname{tot} \operatorname{deg}(\boldsymbol{h})+\operatorname{tot} \operatorname{deg}\left(\boldsymbol{m}_{1}\right)+\cdots+\operatorname{tot} \operatorname{deg}\left(\boldsymbol{m}_{h+2}\right) \\
& \geq 2\left(\frac{1}{2}(|C|-h+1)+h\right)+h\left(k+h-1+\left\lfloor\frac{1}{2}\left(l_{1}-1\right)\right\rfloor+\cdots+\left\lfloor\frac{1}{2}\left(l_{k}-1\right)\right\rfloor\right) .
\end{aligned}
$$

This contradicts inequality (3.2.1) and shows that $\boldsymbol{w} \notin J_{G}^{h+2}$.
To finish the proof, we need to show that for every vertex $x \in V_{G}$ the monomial $x \boldsymbol{w}$ is in J_{G}^{h+2}.

For every $i=1, \ldots, h$, let C_{i} be the induced subgraph isomorphic to the 1-wheel with center in y_{i}. In [Kesting et al. 2011, Theorem 2.2], the authors prove that

$$
\begin{equation*}
\boldsymbol{w}_{i}=y_{i}^{2} \prod_{i=1, \ldots, k} x_{i}^{2} \prod_{j \text { odd }} x_{i j} \prod_{j \text { even }} x_{i j}^{2} \tag{3.2.2}
\end{equation*}
$$

is a witness for $\mathfrak{m}_{C_{i}} \in \operatorname{Ass}\left(\mathrm{k}\left[V_{C_{i}}\right] / J_{C_{i}}^{3}\right)$. Pick a vertex $x \in V_{G}$. Without loss of generality we may assume that $x \in V_{C_{1}}$. Then $x \boldsymbol{w}_{1} \in J_{C_{1}}^{3}$, so $y_{2}^{3} \cdots y_{h}^{3} x \boldsymbol{w}_{1} \in J_{G}^{3}$.

Define $\boldsymbol{m}=\prod_{i=1, \ldots, k} x_{i}^{2} \prod_{j \text { odd }} x_{i j} \prod_{j \text { even }} x_{i j}^{2}$ and notice that

$$
\boldsymbol{w}=\frac{y_{1}^{h-1} y_{2}^{h+1} \cdots y_{h}^{h+1} \boldsymbol{w}_{1} \cdot \boldsymbol{m}^{h-1}}{\prod_{i, j} x_{i}^{h-1} x_{i j}^{h-1}} .
$$

Define

$$
\boldsymbol{m}_{i}=\frac{y_{1} \cdots y_{i-1} y_{i+1} \cdots y_{h} \cdot \boldsymbol{m}}{\prod_{i, j} x_{i} x_{i j}}
$$

for each $i=2, \ldots, h$. It is easy to see that $\operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ is a cover for G for every $i=2, \ldots, h$. The following equality shows that $x \boldsymbol{w} \in J_{G}^{h+2}$:

$$
x \boldsymbol{w}=\left(y_{2}^{3} \cdots y_{h}^{3} x \boldsymbol{w}_{1}\right) \boldsymbol{m}_{2} \cdots \boldsymbol{m}_{h}
$$

Finally we prove that if G is an h-wheel then \mathfrak{m}_{G} is an associated prime in high powers of the cover ideal.
3.3. Theorem. Let G be an h-wheel and let J_{G} be the cover ideal of G in the ring $R=\mathrm{k}\left[V_{G}\right]$. Then $\mathfrak{m}_{G} \in \operatorname{Ass}\left(R / J_{G}^{n}\right)$ for all $n \geq h+2$.
Proof. Fix an integer $n \geq h+2$ and let t satisfy $n=h+2+t$. Let S be the cover of G that has all the vertices in C^{G} and every other vertex in R^{G}. In particular $|S|=h+\frac{1}{2}\left(\left|R^{G}\right|+1\right)$.

Consider the monomial $\tilde{\boldsymbol{w}}=(\boldsymbol{m})^{t} \boldsymbol{w}$, where \boldsymbol{w} is the witness constructed in the proof of Theorem 3.2 and \boldsymbol{m} is the squarefree monomial such that $\operatorname{ver}(\boldsymbol{m})=S$. In particular, tot $\operatorname{deg} \boldsymbol{m}=h+\frac{1}{2}\left(\left|R^{G}\right|+1\right)=h+\frac{1}{2}(|G|-h+1)$. Using the inequality (3.2.1) we obtain
tot $\operatorname{deg}(\tilde{\boldsymbol{w}})$

$$
\begin{aligned}
& <t\left(\frac{1}{2}(|G|-h+1)+h\right)+2\left(\frac{1}{2}(|G|-h+1)+h\right)+h\left(k+h-1+\sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor\right) \\
& =(n-h)\left(\frac{1}{2}(|G|-h+1)+h\right)+h\left(k+h-1+\sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor\right) .
\end{aligned}
$$

We claim that $\tilde{\boldsymbol{w}}$ is a witness for $\mathfrak{m}_{G} \in \operatorname{Ass}\left(\mathrm{k}\left[V_{G}\right] /\left(J_{G}^{n}\right)\right)$. If, toward contradiction, $\tilde{\boldsymbol{w}} \in J_{G}^{n}$, then we can write $\tilde{\boldsymbol{w}}=\boldsymbol{h} \boldsymbol{m}_{1} \cdots \boldsymbol{m}_{n}$ such that, for each $i=1, \ldots, n$, not only the monomial $\boldsymbol{m}_{i} \in J_{G}$ but also $\operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ is a minimal cover for G. As $\sum_{i=1}^{h} \operatorname{deg}_{\tilde{\boldsymbol{w}}} y_{i}=t h+h(h+1)=(n-1) h$, there are at least h covers among $\operatorname{ver}\left(\boldsymbol{m}_{i}\right)$ that do not contain all of C^{G}. This implies

$$
\begin{aligned}
\operatorname{tot} \operatorname{deg}(\tilde{\boldsymbol{w}}) & =\operatorname{tot} \operatorname{deg}(\boldsymbol{h})+\operatorname{tot} \operatorname{deg}\left(\boldsymbol{m}_{1}\right)+\cdots+\operatorname{tot} \operatorname{deg}\left(\boldsymbol{m}_{n}\right) \\
& \geq(n-h)\left(\frac{1}{2}(|G|-h+1)+h\right)+h\left(k+h-1+\sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(\ell_{1}-1\right)\right\rfloor\right),
\end{aligned}
$$

contradicting the inequality above. To finish, let $x \in V_{G}$. Then $x \tilde{\boldsymbol{w}}=(\boldsymbol{m})^{t} x \boldsymbol{w} \in$ J_{G}^{t+h+2}, since $x \boldsymbol{w} \in J_{G}^{h+2}$, as we showed in the proof of Theorem 3.2, and $\boldsymbol{m} \in J_{G}$ by assumption.

We conclude the paper with the following:
3.4. Corollary. For every integer d there exists an ideal $I_{d} \subset \mathrm{k}\left[x_{1}, \ldots, x_{d}\right]$ such that $\operatorname{astab}\left(I_{d}\right)=d-3$.

Proof. Consider the h-wheel with $h=d-5$ such that the graph induced on R^{G} is a 5 -cycle. Theorems 3.2 and 3.3 show that $\operatorname{astab}\left(I_{d}\right)=d-5+2=d-3$.

Acknowledgements

We would like to acknowledge the support of the NSF grant number 1358454 and thank the referee for the useful comments that improved the exposition of the paper.

References

[Brodmann 1979] M. Brodmann, "Asymptotic stability of Ass($\left.M / I^{n} M\right)$ ", Proc. Amer. Math. Soc. 74:1 (1979), 16-18. MR Zbl
[Bruns and Herzog 1993] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1993. MR Zbl
[Chen et al. 2002] J. Chen, S. Morey, and A. Sung, "The stable set of associated primes of the ideal of a graph", Rocky Mountain J. Math. 32:1 (2002), 71-89. MR Zbl
[Eisenbud 1995] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer, 1995. MR Zbl
[Francisco et al. 2010] C. A. Francisco, H. T. Hà, and A. Van Tuyl, "Associated primes of monomial ideals and odd holes in graphs", J. Algebraic Combin. 32:2 (2010), 287-301. MR Zbl
[Francisco et al. 2011] C. A. Francisco, H. T. Hà, and A. Van Tuyl, "Colorings of hypergraphs, perfect graphs, and associated primes of powers of monomial ideals", J. Algebra 331 (2011), 224-242. MR Zbl
[Herzog and Asloob Qureshi 2015] J. Herzog and A. Asloob Qureshi, "Persistence and stability properties of powers of ideals", J. Pure Appl. Algebra 219:3 (2015), 530-542. MR Zbl
[Hoa 2006] L. T. Hoa, "Stability of associated primes of monomial ideals", Vietnam J. Math. 34:4 (2006), 473-487. MR Zbl
[Kesting et al. 2011] K. Kesting, J. Pozzi, and J. Striuli, "On the associated primes of the third order of the cover ideal", Involve 4:3 (2011), 263-270. MR Zbl
[Simis et al. 1994] A. Simis, W. V. Vasconcelos, and R. H. Villarreal, "On the ideal theory of graphs", J. Algebra 167:2 (1994), 389-416. MR Zbl
[Van Tuyl 2013] A. Van Tuyl, "A beginner's guide to edge and cover ideals", pp. 63-94 in Monomial ideals, computations and applications, edited by A. M. Bigatti et al., Lecture Notes in Math. 2083, Springer, 2013. MR Zbl

cbrooke@uoregon.edu	St. Olaf College, Northfield, MN, United States
Current address:	University of Oregon, Eugene, OR, United States
mhoch@wellesley.edu	Wellesley College, Wellesley, MA, United States
smlato@uwaterloo.ca	Carthage University, Kenosha, WI, United States
Current address:	University of Waterloo, Waterloo, ON, Canada
jstriuli@fairfield.edu	Department of Mathematics, Fairfield University, Fairfield, CT, United States
bryan.wang@berkeley.edu	University of California, Berkeley, CA, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Emory University, USA
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Arizona State University,USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 3

Darboux calculus 361
Marco Aldi and Alexander McCleary
A countable space with an uncountable fundamental group 381Jeremy Brazas and Luis Matos
Toeplitz subshifts with trivial centralizers and positive entropy 395
Kostya Medynets and James P. Talisse
Associated primes of h-wheels 411Corey Brooke, Molly Hoch, Sabrina Lato, Janet Striuliand Bryan Wang
An elliptic curve analogue to the Fermat numbers 427
Skye Binegar, Randy Dominick, Meagan Kenney, Jeremy Rouse and Alex Walsh
Nilpotent orbits for Borel subgroups of $\mathrm{SO}_{5}(k)$ 451
Madeleine Burkhart and David Vella
Homophonic quotients of linguistic free groups: German, Korean, and 463
Turkish
Herbert Gangl, Gizem Karaali and Woohyung Lee
Effective moments of Dirichlet L-functions in Galois orbits 475
Rizwanur Khan, Ruoyun Lei and Djordje Milićević
On the preservation of properties by piecewise affine maps of locally 491 compact groupsSerina Camungol, Matthew Morison, Skylar Nicol andRoss Stokke
Bin decompositions 503
Daniel Gotshall, Pamela E. Harris, Dawn Nelson, Maria
D. Vega and Cameron Voigt
Rigidity of Ulam sets and sequences 521
Joshua Hinman, Borys Kuca, Alexander Schlesinger and Arseniy Sheydvasser

[^0]: MSC2010: primary 13F55, 05C25; secondary 05C38, 05E99.
 Keywords: graph, polynomial ring, cover ideal, associated primes.

