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We show how to find the closed-form solutions for antiderivatives of xneax sin bx
and xneax cos bx for all n ∈N0 and a, b ∈R with a2

+b2
6= 0 by using an idea of

Rogers, who suggested using the inverse of the matrix for the differential operator.
Additionally, we use the matrix to illustrate the method to find the particular solu-
tion for a nonhomogeneous linear differential equation with constant coefficients
and forcing terms involving xneax sin bx or xneax cos bx .

1. Matrix inversion

The concepts of basis and matrix for a linear transformation relative to bases are
fundamental in linear algebra. Rogers [1997] suggested an application of the inverse
of the matrix for the differential operator on C∞(R) relative to a given basis B to
obtain antiderivatives of functions in B. This idea was used with Chevbyshev’s
polynomials and some binomial identities to get a formula for integrating the power
of cosines [Meemark and Leela-apiradee 2011]. Also, the integrals of powers of
sine and tangent were obtained by Matlak et al. [2014]. This idea provides a useful
application of linear algebra to calculus.

Let n be a nonnegative integer and µ= a+ bi a nonzero complex number. In
this work, we apply the idea of Rogers with the complex approach to find the
antiderivatives of xneax sin bx and xneax cos bx for all n ∈ N0 and a, b ∈ R with
a2
+b2
6= 0. More precisely, xneµx

= xneax cos bx+ i xneax sin bx . The linearity of
the integral operator and comparing the real and imaginary parts yield the desired
integrals.

Consider the set of linearly independent functions

Bn = {eµx, xeµx, . . . , xneµx
}.
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Let V be the space with the basis Bn and D : V → V be the linear operator defined
by D( f ) = f ′ for all f ∈ V. Since V contains no nonzero constant function,
D : V → V is invertible. Note that for j ∈ {0, 1, 2, . . . , n}, we have

D(x j eµx)= µx j eµx
+ j x j−1eµx .

This yields the following theorem.

Theorem 1. The matrix for D relative to the basis Bn is

Dn = [D]Bn =


µ 1
µ 2
µ
.. .
. . . n

µ

 .

According to Rogers’ technique [1997], we shall use the inverse of Dn to find
the general formula for

∫
xneµx dx . From the above theorem, Dn is invertible and

D−1
n is the upper triangular matrix given by

D−1
n =


c0,0 c0,1 · · · c0,n

c1,1 · · · c1,n

. . .
...

cn,n

 .
Identifying

∫
xneµx dx with the value D−1

n (xneµx) ∈ V, we get∫
xneµx dx =

n∑
j=0

c j,nx j eµx ,

where the c j,n , j ∈ {0, 1, . . . , n}, satisfy the system of equations

µc0,n + c1,n = 0,

µc1,n + 2c2,n = 0,
...

µcn−1,n + ncn,n = 0,

µcn,n = 1,

because the product of Dn and D−1
n is the identity matrix. Clearly, cn,n = 1/µ. The

back-substitution yields

c j,n=cn−(n− j),n=

(
−n
µ

)(
−(n−1)

µ

)
· · ·

(
−( j−1)

µ

)(
1
µ

)
=

(
n!
j !

)(
(−1)n− j

µn− j+1

)
for all j ∈ {0, 1, . . . , n− 1}. Hence, we have shown:
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Theorem 2. For each j ∈ {0, 1, . . . , n}, we have

c j,n =

(
n!
j !

)(
(−1)n− j

µn− j+1

)
.

Note that the integration by parts provides the recursion∫
xneµx dx = 1

µ
xneµx

−
n
µ

∫
xn−1eµx dx .

It follows that the algorithm presented in Theorem 2, requiring only the last column
of D−1

n , is more efficient than integration by parts, which requires the computation
of the entire matrix D−1

n .

2. Applications

We use the result from Theorem 2 to find the closed-form of
∫

xneax sin bx dx and∫
xneax cos bx dx . Moreover, we also use the basis introduced in the above section

to find the particular solution for a nonhomogeneous linear differential equation
with constant coefficients and forcing terms involving xneax sin bx or xneax cos bx .

For real µ, the general form of
∫

xneµx dx derived in Theorem 2 is the final form.
Now, we assume that µ= a+ib with b 6= 0; the rectangular form of

∫
xneµx dx still

remains to be computed. First, we express
∫

xneµx dx = (pn(x)− iqn(x))eµx for
some polynomials pn(x) and qn(x) of degree n in R[x]. Let %=|µ| and ϕ= arg(µ).
Then we have

1
µ
=

1
%

e−iϕ and 1
µn− j+1 =

1
%n− j+1 e−iϕ(n− j+1)

;

hence

c j,n = (−1)n− j
(

n!
j !

)
(sn− j+1− i tn− j+1),

where
sm =

1
%m cos mϕ and tm =

1
%m sin mϕ for m ∈ N.

Since ∫
xneµx dx =

n∑
j=0

c j,k x j eµx
= (pn(x)− iqn(x))eµx ,

by comparing the real and imaginary parts, we have

pn(x)=
n∑

j=0

(−1)n− j
(

n!
j !

)
sn− j+1x j and qn(x)=

n∑
j=0

(−1)n− j
(

n!
j !

)
tn− j+1x j .

Moreover,∫
xneµx dx = (pn(x)−iqn(x))eµx

= (pn(x)−iqn(x))[eax(cos bx+i sin bx)]

= eax
[pn(x) cos bx+qn(x) sin bx]−ieax

[qn(x) cos bx−pn(x) sin bx]
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and ∫
xneµx dx =

∫
xneax cos bx dx + i

∫
xneax sin bx dx .

In conclusion, we obtain the antiderivatives of xneax sin bx and xneax cos bx .

Theorem 3. For n ∈ N∪ {0} and a, b ∈ R with a2
+ b2
6= 0,∫

xneax sin bx dx =−eax
[qn(x) cos bx − pn(x) sin bx] +C,∫

xneax cos bx dx = eax
[pn(x) cos bx + qn(x) sin bx] +C,

where pn(x) and qn(x) are polynomials of degree n computed above.

Finally, we remark that to apply the idea of Rogers [1997] and obtain the same
results, one may use the basis

Cn = {eax sin bx, eax cos bx, xeax sin bx, xeax cos bx,

x2eax sin bx, x2eax cos bx, . . . , xneax sin bx, xneax cos bx}

instead of Bn introduced above. But then the matrix for the differential operator
relative to Cn has the block matrix form

D =


A I2

A 2I2

A
. . .
. . . nI2

A

 ,
where

A =
[

a −b
b a

]
and I2 is the 2×2 identity matrix, and the computation for the matrix D−1 is tedious.
The use of the complex approach and the basis Bn reduce the complexity of the
computation. Moreover, our approach can be used to find the particular solution
for a nonhomogeneous linear differential equation with constant coefficients and
forcing terms involving xneax sin bx or xneax cos bx as follows.

Recall from Theorem 1 that the matrix for the differential operator relative to
the basis Bn is

Dn =


µ 1
µ 2
µ
.. .
. . . n

µ

 .
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It is immediate from the linearity of the differential operator that it suffices to find
the particular solution of the equation

ak y(k)+ · · ·+ a0 y = xneµx
= (xneax cos bx)+ i(xneax sin bx),

denoted by yp. Note that [xneµx
]Dn = (0, . . . , 0, 1)T. Let L = ak Dk

+ · · · + a0 I .
We shall find a solution of L[yp]Dn = (0, . . . , 0, 1)T. Then we get that y1 = Re yp

and y2 = Im yp are the particular solutions for the equations ak y(k)+ · · ·+ a0 y =
xneax cos bx and ak y(k)+ · · ·+ a0 y = xneax sin bx , respectively.

Example. Consider the equations y′′− 3y′+ 2y = xex sin x and y′′− 3y′+ 2y =
xex cos x . As per the set-up above,

µ= 1+ i, L =
[
µ2
− 3µ+ 2 2µ− 3

0 µ2
− 3µ+ 2

]
,

and so the solution [yp]D1 of L[yp]D1 = (0, . . . , 0, 1)T is(
−

2µ− 3
(µ2− 3µ+ 2)2

,
1

µ2− 3µ+ 2

)T

.

Then

yp =−
2µ− 3

(µ2− 3µ+ 2)2
eµx
+

1
µ2− 3µ+ 2

xeµx .

Hence, the particular solution of the first equation is

y1 = Im yp = ex((
−1− 1

2 x
)

sin x −
( 1

2 −
1
2 x
)

cos x
)
,

and the particular solution of the second equation is

y2 = Re yp = ex((
−1− 1

2 x
)

cos x +
(1

2 −
1
2 x
)

sin x
)
.
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