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We give an existence proof for distribution solutions to a scalar reaction diffusion
equation, with the aim of illustrating both the differences and the common
ingredients of the nonstandard and standard approaches. In particular, our proof
shows how the operation of taking the standard part of a nonstandard real number
can replace several different compactness theorems, such as Ascoli’s theorem
and the Banach–Alaoglu theorem on weak∗-compactness of the unit ball in the
dual of a Banach space.

1. Introduction

1.1. Reaction diffusion equations. We consider the Cauchy problem for scalar
reaction diffusion equations of the form

∂u
∂t
= D

∂2u
∂x2 + f (u(x, t)), x ∈ R, t ≥ 0, (1a)

with prescribed initial condition

u(x, 0)= u0(x). (1b)

In the setting of reaction diffusion equations the function u(x, t) represents the
density at location x ∈ R and time t ≥ 0 of some substance which diffuses, and
simultaneously grows or decays due to chemical reaction, biological mutation, or
some other process. The term D∂2u/∂x2 in the PDE (1a) accounts for the change
in u due to diffusion, while the nonlinear term f (u) accounts for the reaction rates.
The prototypical example of such a reaction diffusion equation is the Fisher–KPP
equation, see [Kolmogorov et al. 1937; Fisher 1937], in which the reaction term is
given by f (u)= u− u2.
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The Cauchy problem for the reaction diffusion equation (1a) is to find a function
u : R × [0,∞) → R that satisfies the partial differential equation (1a) as well
as the initial condition (1b). This is a classical problem, and the existence of
such solutions is well known; see for example [Henry 1981; Pazy 1983]. As
various techniques for constructing solutions are known, including the use of finite
difference approximations to construct solutions (see [John 1982, Chapter 7.2]),
our main goal is not to give another existence proof. Instead, we were inspired
by several introductory texts on nonstandard analysis (notably, the undergraduate
calculus text [Keisler 1976a], the more advanced introduction to the hyperreals
[Goldblatt 1998], the “radically elementary approach” to probability in [Nelson
1987], as well as the blog post [Tao 2007]) and wanted to see what some standard
existence proofs would look like in the language of nonstandard analysis.

Keisler [1976a] presented a proof of Peano’s existence theorem for solutions to
ordinary differential equations

dx
dt
= f (t, x(t)), x(0)= x0, (2)

using nonstandard analysis. One possible standard proof of Peano’s theorem pro-
ceeds by constructing the numerical approximation to the solution by solving Euler’s
method for any small step size 1t > 0; i.e., one defines numbers xi,1t by setting
x0,1t = x0 and then inductively solving

xi+1,1t − xi,1t

1t
= f (i1t, xi,1t), i = 0, 1, 2, . . . . (3)

The function x1t : [0,∞) → R obtained by linearly interpolating between the
values x1t(i1t)= xi,1t is Euler’s numerical approximation to the solution of the
differential equation (2). The standard analysis proof of Peano’s existence theorem
then uses Ascoli’s compactness theorem to extract a sequence of step sizes 1tn→ 0
such that the approximate solutions x1tn (t) converge uniformly to some function
x̃ : [0,∞)→ R and concludes by showing that the limit x̃ is a solution to the
differential equation (2).

The nonstandard proof in [Keisler 1976a] follows the same outline, but one
notable feature of this proof is that instead of using Ascoli’s theorem, one “simply”
chooses the step size 1t to be a positive infinitesimal number. The approximate
solution then takes values in the hyperreals, and instead of applying a compactness
theorem (Ascoli’s in this case), one “takes the standard part” of the nonstandard
approximate solution. The proof is then completed by showing that the function
that is obtained actually satisfies the differential equation.

The standard and nonstandard proofs have some common ingredients. In both
proofs one must find suitable estimates for the approximate solutions xi,1t , where
the estimates should not depend on the step size 1t . Namely, the approximate
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solutions x1t should be uniformly bounded, and they should be uniformly Lipschitz
continuous, i.e., |x1t(t) − x1t(s)| ≤ L|t − s| for all t, s ∈ [0,∞), 1t > 0. In
the standard proof these estimates allow one to use Ascoli’s theorem; in the non-
standard proof they guarantee that the standard part of the approximating solution
with infinitesimally small 1t still defines a continuous function on the standard
reals.

There appear to be two main differences between the standard and nonstandard
proofs. The first, very obviously, is that the nonstandard setting allows one to speak
rigorously of infinitely small numbers, and thereby avoid the need to consider limits
of sequences. The second difference is that the process of “taking the standard
part” of a hyperreal number acts as a replacement for one compactness theorem or
another: in the nonstandard proof of Peano’s theorem one avoids Ascoli’s theorem
by taking standard parts. This too is probably well known in some circles (Terry
Tao [2007] made the point in a blog post), but is not as obviously stated in the
nonstandard analysis texts we have seen.

In this paper we intend to further illustrate this point by proving an existence
theorem for weak or distributional solutions of certain partial differential equations
that is analogous to the proof of Peano’s theorem sketched above (see Section 2.1
below for a very short summary of the theory of distributions). Thus, to “solve” the
reaction diffusion equation (1a) we choose space and time steps1x > 0 and1t > 0,
and discretize the PDE by replacing the second derivative with a second difference
quotient and the time derivative with a forward difference quotient, resulting in a
finite difference equation,

u(x, t+1t)−u(x, t)
1t

= D
u(x+1x, t)−2u(x, t)+u(x−1x, t)

(1x)2
+ f (u(x, t)). (4)

This kind of discretization is very common in numerical analysis;1 see [LeVeque
2007; Press et al. 2007]. For given initial data (but no boundary data) one can use
this difference equation to inductively compute the values of u(x, t) for all (x, t)
in a triangular grid (see Figure 1).

Given a solution U (x, t) of the difference equation (4), one can define a general-
ized function, or distribution,

〈U, ϕ〉 def
=

∑
t

∑
x

U (x, t) ϕ(x, t)1x1t. (5)

1As one of the reviewers pointed out, we have chosen the simplest among the many other difference
schemes that approximate the reaction diffusion equation (1a). For many other schemes the arguments
in this paper could probably be adapted, although for implicit schemes one would have to arbitrarily
select boundary values and observe that these will only have an infinitesimal effect on the solution in
bounded regions of the form |x |, |t | ≤ R for any standard R ∈ R. We leave it to the interested reader
to pursue these questions.
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In a standard existence proof of weak solutions to the equation one would now use
a compactness theorem to extract a sequence (1xi ,1ti )→ (0, 0) for which the
corresponding distributions Ui converge in the sense of distributions, and then show
that the limiting distribution satisfies the PDE (1a). The compactness theorem that
is required in this proof is the Banach-Alaoglu theorem about weak∗-compactness
in duals of Banach spaces (in our case, L∞(R2), which is the Banach space dual
of L1(R2)).

The nonstandard proof, which we give in this paper, avoids the compactness
theorem (or notions of Lebesgue integration required to define L∞) by letting 1x
and 1t be infinitesimal positive hyperreals, and by taking the standard part of
the expression on the right in (5). In both the standard and nonstandard settings
this approach works for the linear heat equation, that is, in the case where the
reaction term f (u) is absent (i.e., f (u) ≡ 0). The nonlinear case is a bit more
complicated because there is no adequate definition of f (u) when u is a distribution
rather than a pointwise-defined function. In both the standard and nonstandard
proofs we overcome this by proving that the approximating functions are Hölder
continuous, so that f (u(x, t)) can be defined. In the standard proof this again
allows one to use Arzelà–Ascoli and extract a convergent subsequence. However,
since the domain R2 is not compact, Arzelà–Ascoli cannot be applied directly, and
the standard proof therefore requires one to apply the compactness theorem on an
increasing sequence of compact subsets Ki ⊂ R2, after which Cantor’s diagonal
trick must be invoked to get a sequence of functions that converges uniformly on
every compact subset of R2. As we show below, these issues do not come up in
the nonstandard proof.

1.2. Comments on nonstandard analysis. In nonstandard analysis one exploits
the existence of an ordered field ∗R called the hyperreal numbers, which contains
the standard real numbers R, but also contains infinitesimally small numbers, i.e.,
numbers x ∈ ∗R with x 6= 0 that violate the Archimedean axiom by satisfying
n|x | < 1 for all standard integers n ∈ N. When two hyperreals x, y ∈ ∗R differ
by an infinitesimal, one writes x ≈ y. For each hyperreal number x ∈ ∗R there
is a unique standard real number St(x), called the standard part of x , such that
x ≈ St(x). Beyond this simple description of the hyperreals we will not even try to
give an exposition of nonstandard analysis in this paper and instead refer the reader
to the many texts that have been written on the subject; see, e.g., a very incomplete
list: [Keisler 1976a; 1976b; Goldblatt 1998; Nelson 1987; Albeverio et al. 1986;
Tao 2007].

There are a few different approaches to using the hyperreals. Keisler [1976a]
gave an axiomatic description of the hyperreals and their relation with the standard
reals. In this approach, functions that are defined for standard reals automatically
extend to the hyperreals, according to the transfer principle. A different approach
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that also begins with an axiomatic description of the hyperreals can be found in
Nelson’s “radically elementary” treatment of probability theory [1987].

Our point of view in this paper is that of internal set theory as explained in
[Goldblatt 1998] (see also the “instructor’s guide” [Keisler 1976b] to his calculus
text). Goldblatt explains the construction of the hyperreals using nonprincipal
ultrafilters (which can be thought of as analogous to the construction of real numbers
as equivalence classes of Cauchy sequences of rational numbers). He then extends
this construction and defines internal sets, internal functions, etc.

2. Distribution solutions

2.1. The definition of distributions. We recall the definition of a “generalized
function,” i.e., of a distribution, which can be found in many textbooks on real
analysis, such as [Folland 1999].

A real-valued function f on R2 is traditionally defined by specifying its values
f (x, y) at each point (x, y) ∈ R2. In the theory of distributions a generalized
function f is defined by specifying its weighted averages

〈 f, ϕ〉 =
∫

R2
f (x, y) ϕ(x, y) dx dy (6)

for all so-called “test functions” ϕ. A test function is any function ϕ : R2
→ R

that is infinitely often differentiable, and which vanishes outside a sufficiently large
ball BR = {(x, y) ∈ R2

: x2
+ y2 < R} whose radius R is allowed to depend on the

particular test function. The set of all test functions, which is denoted by C∞c (R
2),

or sometimes by D(R2), is an infinite-dimensional vector space. By definition, a
distribution is any linear functional T : C∞c (R

2)→ R. The most common notation
for the value of a distribution T applied to a test function ϕ is 〈T, ϕ〉. For instance,
if f : R2

→ R is a continuous function, then (6) defines f as a distribution. The
canonical example of a distribution that does not correspond to a function f is the
Dirac delta function, which is defined by

〈δ, ϕ〉
def
= ϕ(0, 0).

The full definition of a distribution T includes the requirement that the value 〈T, ϕ〉
depend continuously on the test function ϕ. To state this continuity condition
precisely one must introduce a notion of convergence in the space of test functions
C∞c (R

2). We refer the reader to [Folland 1999] for the details, and merely observe
that a sufficient condition for a linear functional ϕ 7→ 〈T, ϕ〉 to be a distribution is
that there exist a constant C such that

|〈T, ϕ〉| ≤ C
∫∫

R2
|ϕ(x, y)| dx dy (7)
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holds for all test functions ϕ. Alternatively, if a constant C exists such that

|〈T, ϕ〉| ≤ C sup
(x,y)∈R2

|ϕ(x, y)| (8)

holds for all ϕ ∈ C∞c (R
2), then T also satisfies the definition of a distribution. The

conditions (7) and (8) are not equivalent: either one of these implies that T is a
distribution.

2.2. Distributions defined by nonstandard functions on a grid. Let dx, dy be two
positive infinitesimal hyperreal numbers, and let N, M be two positive hyperintegers
such that N dx and M dy are unlimited. Consider the rectangular grid

G = {(k dx, l dy) ∈ ∗R2
| k, l ∈ ∗N, |k| ≤ N , |l| ≤ M}. (9)

From the point of view of nonstandard analysis and internal set theory, G is a
hyperfinite set, and for any internal function f : G→ ∗R there is an (x, y) ∈ G for
which f (x, y) is maximal.

Lemma 2.2.1. If g : R2
→ R is a continuous function with compact support, then∫

R2
g(x, y) dx dy ≈

∑
(x,y)∈G

g(x, y) dx dy.

Recall that x ≈ y means that x − y is infinitesimal.

Proof. The statement of the lemma is very close to the nonstandard definition of
the Riemann integral of a continuous function, the only difference being that we
are integrating over the unbounded domain R2 rather than a compact rectangle
[−`, `] × [−`, `] ⊂ R2. Since the function g has compact support, there is a real
` > 0 such that g(x, y)= 0 outside the square [−`, `]× [−`, `]. By definition we
then have ∫

R2
g(x, y) dx dy =

∫ `

−`

∫ `

−`

g(x, y) dx dy.

Choose hyperintegers L , L ′ ∈ ∗N for which

L dx ≤ ` < (L + 1) dx and L ′ dy ≤ ` < (L ′+ 1) dy.

Then the nonstandard definition of the Riemann integral implies∫ `

−`

∫ `

−`

g(x, y) dx dy ≈
L∑

k=−L

L ′∑
l=−L ′

g(k dx, l dy) dx dy.

Finally, if (x, y) ∈ G then g(x, y)= 0 unless |x | ≤ ` and |y| ≤ `, so that
L∑

k=−L

L ′∑
l=−L ′

g(k dx, l dy) dx dy =
∑

(x,y)∈G

g(x, y) dx dy. �
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Lemma 2.2.2. Suppose that f : G→ ∗R is a hyperreal-valued function which is
bounded, in the sense that there exists a limited C > 0 such that | f (x, y)| ≤ C for
all (x, y) ∈ G. Then the expression

〈Tf , ϕ〉
def
= St

( ∑
(x,y)∈G

f (x, y) ϕ(x, y) dx dy
)

(10)

defines a distribution on R2.
If the function f is the nonstandard extension of a (standard) continuous function

f : R2
→ R, then the distribution Tf coincides with the distribution defined by (6).

Proof. We first verify that the distribution is well-defined. Since | f (x, y)| ≤ C for
all (x, y) we have∣∣∣∣ ∑
(x,y)∈G

f (x, y) ϕ(x, y) dx dy
∣∣∣∣≤ C

∑
(x,y)∈G

|ϕ(x, y)| dx dy ≈ C
∫

R2
|ϕ(x, y)| dx dy.

Hence the sum in the definition (10) of 〈Tf , ϕ〉 is a limited hyperreal, whose standard
part is a well-defined real number which satisfies

|〈Tf , ϕ〉| ≤ C
∫

R2
|ϕ(x, y)| dx dy.

Therefore Tf is a well-defined distribution.
Let 〈 f, ϕ〉 be defined as in (6). Fix ϕ. We then have∫

R2
f (x, y)ϕ(x, y) dx dy ≈

∑
(x,y)∈G

f (x, y)ϕ(x, y) dx dy,

which implies that the distribution defined in (6) coincides with Tf . �

3. The Cauchy problem for the heat equation

In this section we recall the definition of distribution solutions to the Cauchy problem
for the heat equation and show how, by solving the finite difference approximation
to the heat equation on a hyperfinite grid, one can construct a distribution solution
to the Cauchy problem.

3.1. Formulation in terms of distributions. We consider the Cauchy problem for
the linear heat equation ut = uxx with bounded and continuous initial data u(x, 0)=
u0(x). Without losing generality we may assume that the diffusion coefficient D
is 1, e.g., by nondimensionalizing space and time and introducing τ = Dt as the
new time variable.
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Definition 3.1.1. A distribution u on R2 is a solution to the heat equation ut = uxx

with initial data u0 if u satisfies

ut − uxx = u0(x) δ(t), x ∈ R, t ∈ R, (11)

in the sense of distributions, and if u = 0 for t ≤ 0.

Equality in the sense of distributions in (11) means that both sides of the equation
are to be interpreted as distributions, and that they should yield the same result
when evaluated on any test function ϕ ∈ C∞c (�). To explain this in more detail,
recall that δ is Dirac’s delta function, so that the action of the right-hand side in
(11) on a test function is

〈u0(x) δ(t), ϕ〉
def
=

∫
R

u0(x) ϕ(x, 0) dx .

The definition of distributional derivative [Folland 1999, Chapter 9] says that the
action of the left-hand side in (11) is given by

〈ut − uxx , ϕ〉 = 〈u,−ϕt −ϕxx 〉.

If the distribution u is given by a function u :R2
→R which vanishes for t < 0 and is

continuous for t ≥ 0 (so that it has a simple jump discontinuity at t = 0) then we get

〈ut − uxx , ϕ〉 =

∫
R

∫
∞

0
u(x, t){−ϕt −ϕxx} dt dx .

A piecewise continuous function u therefore satisfies (11) in the sense of distributions
if ∫

R

u0(x)ϕ(x, 0) dt +
∫

R

∫
∞

0
u(x, t){ϕt +ϕxx} dt dx = 0 (12)

for all test functions ϕ ∈ C∞c (R
2). This is one form of the classical definition of

a weak solution to the Cauchy problem.

3.2. The finite difference equation. To construct a distribution solution to (11) we
introduce a grid with spacing dx and dt , and replace the differential equation by
the simplest finite difference scheme that appears in numerical analysis. If u is the
solution to the differential equation, then we write U for the approximating solution
to the finite difference equation, using the following common notation for finite
differences:

D+x U (x, t)=
U (x + dx, t)−U (x, t)

dx
,

D−x U (x, t)=
U (x, t)−U (x − dx, t)

dx

D+t U (x, t)=
U (x, t + dt)−U (x, t)

dt
.
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See for example, [LeVeque 2007, Chapter 1]. With this notation

D2
xU (x, t) def

= D+x D−x U (x, t)=
U (x + dx, t)− 2U (x, t)+U (x − dx, t)

(dx)2
.

The operators D+x , D−x , and D+t all commute. A finite difference equation corre-
sponding to the heat equation ut = uxx is then D+t U = D2

xU , i.e.,

U (x, t + dt)−U (x, t)
dt

=
U (x + dx, t)− 2U (x, t)+U (x − dx, t)

(dx)2
. (13)

We can solve this algebraic equation for U (x, t + dt), resulting in

U (x, t + dt)= αU (x − dx, t)+ (1− 2α)U (x, t)+αU (x + dx, t), (14)

where
α

def
=

dt
(dx)2

.

3.3. The approximate solution. Let N ∈ ∗N be an unlimited hyperfinite integer,
and assume that dx and dt are positive infinitesimals. Assume moreover that N is
so large that both N dt and N dx are unlimited hyperreals. We then consider the
hyperfinite grid

GC = {(m dx, n dt) | m, n ∈ ∗N, |m| + n ≤ N }.

See Figure 1. The initial function u0 : R→ R extends to an internal function
u0 :

∗R→ ∗R. By assumption there is a C ∈ R such that |u0(x)| ≤ C for all x ∈ R,
so this also holds for all x ∈ ∗R.

We define U : GC →
∗R by requiring:

• U (x, 0) = u0(x) for all x with (x, 0) ∈ GC , i.e., for all x = k dx with k ∈
{−N , . . . ,+N }.

• U satisfies (4) or, equivalently, (14) at all (x, t) = (m dx, n dt) ∈ GC with
|m| + n < N.

Theorem 3.3.1. Let U : GC →
∗R be the hyperreal solution of the finite difference

scheme (13) with initial values U (x, 0)= u0(x), and suppose that α ≤ 1
2 . Then the

expression

〈u, ϕ〉 def
= St

(∑
U (x, t)ϕ(x, t) dx dt

)
, ϕ ∈ C∞c (R

2), (15)

defines a distribution on R2 that satisfies (11).

To show that this expression does indeed define a distribution we must show that
the U (x, t) are bounded by a standard real number. This follows from a discrete
version of the maximum principle, which we will again use in Section 4, so we state
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Figure 1. The triangular grid GC ; if U (x, t) is known at all grid
points at the bottom of the triangle, then the finite difference equa-
tion (13) uniquely determines U (x, t) at all other grid points.

it in slightly greater generality than needed in this section. The lemma explains why
we need the condition α = dt/(dx)2 ≤ 1

2 and is well known in numerical analysis
as a necessary condition for stability of the finite difference scheme.

Lemma 3.3.2 (Gronwall-type estimate). Let W : GC→
∗R satisfy W (x, t)≥ 0 for

all (x, t) ∈ GC , and suppose that for some nonnegative m ∈ R one has

W (x, t+dt)≤ αW (x+dx, t)+ (1−2α)W (x, t)+αW (x−dx, t)+dt mW (x, t)

at all (x, t) ∈ GC . For each t = n dt with 0≤ n ≤ N consider2

w(t) def
= max

x
W (x, t).

If 0≤ α ≤ 1
2 then

w(t)≤ emtw(0).

Proof. (Compare [John 1982, §7.2, Lemma I].) The assumption on α implies that
α ≥ 0 and 1− 2α ≥ 0. Hence for all x with (x, t + dt) ∈ GC we have

W (x, t+dt)= αW (x+dx, t)+(1−2α)W (x, t)+αW (x−dx, t)+dt mW (x, t)

≤ (α+(1−2α)+α+m dt)w(t)

= (1+m dt)w(t).

Taking the maximum over x we see that w(t + dt)≤ (1+m dt)w(t)≤ em dtw(t).
By induction we then have for t = n dt that w(t)≤ (em dt)nw(0)= emtw(0). �

2For any given t=n1t there are infinitely many hyperreal numbers W (x, t), so the standard analyst
may be surprised to see “max” instead of “sup” in the definition of w(t). However, in the internal-set-
theory interpretation, the set of numbers {W (x, t) : (x, t) ∈ GC } = {W (m1x, n1t) : |m| ≤ N − n} is
a hyperfinite internal set of real numbers, indexed by m ∈ {0,±1,±2, . . . ,±(N − n)}. Therefore one
of the numbers W (m1x, n1t) is the largest, so that the maximum is a well-defined hyperreal number.
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3.4. Proof of Theorem 3.3.1. The relation (14) which defines U (x, t) implies that
W (x, t) def

= |U (x, t)| satisfies

W (x, t + dt)= |αU (x − dx, t)+ (1− 2α)U (x, t)+αU (x + dx, t)|

≤ αW (x − dx, t)+ (1− 2α)W (x, t)+αW (x + dx, t),

where we have used α ≥ 0 and 1− 2α ≥ 0.
Since the initial condition is bounded by |U (x, 0)| = |u0(x)| ≤ M, the Gronwall-

type Lemma 3.3.2 implies that |U (x, t)| ≤ M for all (x, t) ∈ GC . According to
Lemma 2.2.2 this implies that the expression (15) does define a distribution u on R2.

We want to prove that u satisfies the heat equation in the sense of distributions;
i.e., we want to show for any test function ϕ that

〈ut − uxx , ϕ〉 = 〈u0(x) δ(t), ϕ〉 =
∫

R

u0(x) ϕ(x, 0) dx .

First, we see from the definition of distributional derivative that

〈ut − uxx , ϕ〉 = −〈u, ϕt +ϕxx 〉.

We then have from the definition of u that

−〈u, ϕt +ϕxx 〉 ≈
∑

(x,t)∈GC

−U (x, t)(ϕt(x, t)+ϕxx(x, t)) dx dt def
= T .

Using Taylor’s formula we replace the partial derivatives of the test function with its
corresponding finite differences; i.e., we write ϕt(x, t)= D+t ϕ(x, t)+ εt(x, t) and
ϕxx(x, t) = D2

xϕ(x, t)+ εxx(x, t), where εt , εxx : GC →
∗R are the infinitesimal

error terms in the Taylor expansion. Substituting these gives us

T =
∑
GC

−U (x, t)(D+t ϕ(x, t)+ D2
xϕ(x, t)+ εt + εxx) dx dt.

We can split this sum into three parts, T = T1+ T2+ T3, with

T1 =
∑
GC

−U (x, t)D+t ϕ(x, t) dx dt,

T2 =
∑
GC

−U (x, t)D2
xϕ(x, t) dx dt,

T3 =
∑
GC

−U (x, t)(εt + εxx) dx dt.

We will first handle the error term, T3. Since the test function ϕ has compact support,
there exists a real ` > 0 such that ϕ = 0 outside the rectangle �= [−`, `]×[−`, `].
The errors in the Taylor expansion therefore also vanish outside of � so that we
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can write T3 as

T3 =
∑
�∩GC

−U (x, t)(εt + εxx) dx dt.

The key to estimating this sum is that we can estimate all the errors εt(x, t) and
εxx(x, t) by one fixed infinitesimal ε > 0 that does not depend on (x, t). Indeed,
the grid GC is a hyperfinite internal set, and therefore any internal function such
as |εt | : GC →

∗R attains its largest value at one of the (x, t) ∈ GC , say at (x1, t1).
Then |εt(x, t)| ≤ |εt(x1, t1)| for all (x, t) ∈ GC . Similarly, there is an (x2, t2) ∈ GC

that maximizes |εxx(x, t)|. Now define

ε1 = |εt(x1, t1)|, ε2 = |εxx(x2, t2)|.

Then both ε1 and ε2 are positive infinitesimals for which

|εt(x, t)| ≤ ε1, |εxx(x, t)| ≤ ε2

hold at all grid points (x, t) ∈ GC .
If we let ε=max{ε1, ε2}, then |T3| ≤

∑
GC∩�

2U (x, t) ε dx dt . By the construc-
tion of U, we have |U (x, t)| ≤ M for all (x, t) ∈ GC , so we get

|T3| ≤
∑

GC∩�

2Mε dx dt ≤ 2Mε dx dt
`

2 dx
`

dt
= M`2ε,

which is infinitesimal, so T3 is infinitesimal.
From the definition we have T1 =

∑
GC
−U (x, t)(ϕ(x, t + dt)− ϕ(x, t)) dx .

Using the compact support of ϕ, we can then rewrite this sum as

T1 =−

K∑
k=−K

L+1∑
l=0

U (k dx, l dt){ϕ(k dx, (l + 1) dt)−ϕ(k dx, l dt)} dx,

where K dx ≈ ` and L dt ≈ `.
Applying summation by parts to this sum we then get

T1=

K∑
k=−K

{
U (k dx, 0) ϕ(k dx, 0)+

L∑
l=0

ϕ(k dx, (l+1) dt) D+t U (k dx, l dt) dt
}

dx .

Next, for T2, we can split the sum into two parts.

T2 =

L∑
l=0

K+1∑
k=−K−1

−U (k dx, l dt)D+x ϕ(k dx, l dt) dt dx

+

L∑
l=0

K+1∑
k=−K−1

U (k dx, l dt)D−x ϕ(k dx, l dt) dt dx . (16)
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Applying summation by parts again to both sums we get

T2 =−

L∑
l=0

K∑
k=−K

ϕ(k dx, l dt) D2
xU (k dx, l dt) dx dt.

Putting the terms T1, T2, T3 all together, we have, because T3 ≈ 0,

T1+T2+T3≈ T1+T2

=

K∑
k=−K

U (k dx,0)ϕ(k dx,0)dx

+

K∑
k=−K

L∑
l=0

ϕ(k dx, l dt)

×(D+t U (k dx, l dt)−D2
xU (k dx, l dt))dx dt. (17)

Since U satisfies the difference equation D+t U=D2
xU at all grid points this reduces to

T = T1+T2+T3≈

K∑
k=−K

U (k dx, 0) ϕ(k dx, 0) dx ≈
K∑

k=−K

u0(k dx) ϕ(k dx, 0) dx .

Taking the standard part we get the distribution

St(T )=St
( K∑

k=−K

u0(k dx)ϕ(k dx,0)dx
)
=

∫ `

−`

u0(x)ϕ(x,0)dx=〈u0(x)δ(t),ϕ〉.

This completes the proof that 〈ut −uxx , ϕ〉 = 〈u0(x)δ(t), ϕ〉 for all test functions ϕ,
and thus that u is a distributional solution of (11).

3.5. Comments on the proof. In our construction of solutions to the linear heat
equation we completely avoided estimating derivatives of the approximate solu-
tion U. The only estimate we used was that the approximate solution U (x, t) has
the same upper bound as the given initial function u0.

We assumed that the initial function u0 is continuous. The one place in the proof
where we needed this assumption was at the end, when we used the fact that for
continuous functions f : R→ R one has∑

|k|≤K

f (k dx) dx ≈
∫ `

−`

f (x) dx

and applied this to the function f (x)= u0(x) ϕ(x, 0).

4. The Cauchy problem for a reaction diffusion equation

We consider the reaction diffusion equation

∂u
∂t
=
∂2u
∂x2 + f (u(x, t)), x ∈ R, t > 0, (1a)
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with initial condition (1b). It is known that one cannot expect solutions to exist for
all times t > 0 without imposing some growth conditions on the nonlinearity f (u).
We will assume that f is a Lipschitz continuous function;3 i.e., for some positive
real K1 one has

for all u, v ∈ R, | f (u)− f (v)| ≤ K1|u− v|. (18)

This implies that f (u) grows at most linearly in u:

for all u ∈ R, | f (u)| ≤ K0+ K1|u|, (19)

where K0
def
= | f (0)|.

In contrast to the linear heat equation, (1a) contains the nonlinear term f (u),
which is meaningless if u is an arbitrary distribution. One can follow the same
procedure as in the previous section; i.e., one can replace the differential equation by
a finite difference scheme on the hyperfinite grid GC and construct an approximating
solution U : GC →

∗R. After establishing suitable bounds one can then show that
by taking standard parts as in Lemma 2.2.2, both U (x, t) and f (U (x, t)) define
distributions u and F on R2. The problem is to give a meaning to the claim that
“F = f (u)”, because u is merely a distribution and can therefore not be substituted
in a nonlinear function. In this section we show how to overcome this problem by
adding the assumption that the initial function is Lipschitz continuous, i.e.,

for all x, y ∈ R, |u0(x)− u0(y)| ≤ L|x − y| (20)

for some real L > 0, and showing that the standard part of the approximating solu-
tion U is a continuous function on R×[0,∞). The substitution f (U (x, t)) is then
well-defined and we can verify that the continuous standard function corresponding
to U is a distributional solution of the reaction diffusion equation (1a).

4.1. Weak solutions to the reaction diffusion equation. Rather than writing the
initial value problem in the distributional form ut−uxx− f (u)= u0(x) δ(t), we use
the integral version (12) of the definition of weak solution. Thus we define a weak
solution to (1a), (1b) to be a continuous function u : R×[0,∞)→ R that satisfies∫∫

R×[0,∞)
{u(x, t)(−ϕxx −ϕt)− f (u(x, t)) ϕ} dx dt =

∫
R

u0(x) ϕ(x, 0) dx (21)

for all test functions ϕ ∈ C∞c (R
2).

3The assumption that f be globally Lipschitz continuous rules out the Fisher–Kolmogorov nonlin-
earity f (u) = u− u2. However, for that particular nonlinearity the only solutions that are relevant
to the interpretation of u as an allele ratio are those with 0 ≤ u ≤ 1. If f (u)= u− u2, then a quick
look at our finite difference scheme (22) shows that for initial data that satisfy 0 ≤ u(x, 0) ≤ 1 the
approximate solution to the difference equation also satisfies 0≤U (x, t)≤ 1, provided α < 1

2 , so that
the subsequent arguments still apply.
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Theorem 4.1.1. If f is Lipschitz continuous as in (18), and if the initial function u0

is bounded by
for all x ∈ R, |u0(x)| ≤ M

for some positive real M , and if u0 also is Lipschitz continuous, as in (20), then the
reaction diffusion equation (1a), (1b) has a weak solution.

4.2. Definition of the approximate solution. To construct the solution we consider
the grid GC as defined in Section 3.3 with infinitesimal mesh sizes dx, dt > 0, and
consider the finite difference scheme

D+t U (x, t)= D2
xU (x, t)+ f (U (x, t)). (22)

Solving for U (x, t + dt) we get

U(x, t+dt)=αU(x+dx, t)+(1−2α)U(x, t)+αU(x−dx, t)+dt f (U(x, t)), (23)

where, as before, α= dt/(dx)2. We extend the continuous function u0 to an internal
function u0 :

∗R → ∗R, and specify the initial conditions U (x, 0) = u0(x) for
x = m dx , m =−N , . . . ,+N. The finite difference equation (23) then determines
U (x, t) for all (x, t) ∈ GC .

We now establish a number of a priori estimates for the approximate solution U
that will let us verify that its standard part is well-defined and that it is a weak
solution of the initial value problem.

4.3. Boundedness of the approximate solution. First we bound |U (x, t)|.

Lemma 4.3.1. For all (x, t) ∈ GC we have

|U (x, t)| ≤ eK1t M +
K0

K1
(eK1t

− 1). (24)

Proof. Using (19), i.e., | f (u)| ≤ K0+ K1|u|, we get

|U (x, t + dt)| ≤ α|U (x + dx, t)| + (1− 2α)|U (x, t)|

+α|U (x − dx, t)| + dt (K0+ K1|U (x, t)|). (25)

In terms of M(t)=maxx |U (x, t)| this implies

M(t + dt)≤ M(t)+ dt (K0+ K1 M(t))= (1+ K1 dt)M(t)+ K0 dt.

Setting t = n dt we see that this is an inequality of the form Mn ≤ aMn−1+b, with
Mn = M(n dt). By induction this implies

M(t)= M(n dt)≤ (1+ K1 dt)n M(0)+
(1+ K1 dt)n − 1

1+ K1 dt − 1
K0 dt

≤ eK1t M(0)+
K0

K1
(eK1t

− 1).

Since M(0)= M, this proves (24). �
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4.4. Lipschitz continuity in space of the approximate solution. We now show that
U (x, t) is Lipschitz continuous in the space variable.

Lemma 4.4.1. For any two points (x, t), (x ′, t) ∈ GC we have

|U (x, t)−U (x ′, t)| ≤ LeK1t
|x − x ′|, (26)

where L is the Lipschitz constant for the initial function u0, as in (20).

Proof. Let

V (x, t) def
=

U (x + dx, t)−U (x, t)
dx

= D+x U (x, t).

Applying D+x to both sides of (4) for U, and using the definition of V and commu-
tativity of the difference quotient operators, we find

D+t V = D2
x V + D+x f (U ).

Solving for V (x, t + dt) we find

V (x, t + dt)= αV (x + dx, t)+ (1− 2α)V (x, t)+αV (x − dx, t)+ D+x f (U ).

Examining D+x f (U ), we have

|D+x f (U )| =
| f (U (x + dx, t))− f (U (x, t))|

dx

≤
K1 |U (x + dx, t)−U (x, t)|

dx
= K1|V (x, t)|,

so that

|V(x, t+dt)| ≤α|V(x+dx, t)|+(1−2α)|V(x, t)|+α|V(x−dx, t)|+K1 dt |V(x, t)|.

Using Gronwall’s inequality on maxx V, we get the inequality

max
x
|V (x, t)| ≤ eK1t max

x
|V (x, 0)|.

The initial condition u0 satisfies |u0(x)− u0(x ′)| ≤ L|x − x ′| for all x, x ′ ∈ R, and
therefore the extension of u0 to the hyperreals satisfies this same inequality. Hence
|V (x, 0)| ≤ L for all grid points (x, 0), and thus we have |V (x, t)| ≤ LeK1t. This
implies (26). �

4.5. Hölder continuity in time of the approximate solution.

Lemma 4.5.1. Given any real t̄ > 0, for any two grid points (x0, t0), (x0, t1) ∈ GC

with 0≤ t0 ≤ t1 ≤ t̄ , we have

|U (x0, t1)−U (x0, t0)| ≤ C
√

t1− t0, (27)

where C is a constant that only depends on t̄ , K0, K1, L , and M.
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Proof. We begin by observing that f (U (x, t)) is bounded on the time interval we
are considering. Indeed, for t ≤ t̄ we have shown for all (x, t) ∈ GC that

|U (x, t)| ≤ A0
def
= eK1 t̄ M +

K1

K0
(eK1 t̄

− 1),

while the Lipschitz condition for f implies | f (U (x, t))|≤K0+K1|U |≤K0+K1 A0.
So if we set A = K0+ K1 A0, then we have

for all (x, t) ∈ GC with t ≤ t̄, | f (U (x, t))| ≤ A. (28)

Next, we construct a family of upper barriers for U using parabolas. In particular,
for any real a, b, c > 0 we consider

U (x, t) def
= U (x0, t0)+ a(t − t0)+

b
2
(x − x0)

2
+ c.

For any b > 0 we will find a, c > 0 so that U is an upper barrier, in the sense that

D+t U − D2
xU ≥ A+ 1, (29)

U (x, 0) >U (x, 0) for all (x, 0) ∈ GC . (30)

A direct computation shows that D+t U − D2
xU = a− b, so for a given b we choose

a = b+ A+ 1 and (29) will hold.
To satisfy (30) we use (26), i.e., that U (x, t) is Lipschitz continuous with Lips-

chitz constant L def
= eK1 t̄ L:

U (x, t)≤U (x0, t0)+ L|x − x0| ≤U (x0, t0)+
2
b
(x − x0)

2
+

L2

2b
.

If we choose c> L2/(2b), e.g., c= L2/b, then our upper barrier U also satisfies (30).
Next, we apply a maximum principle argument to compare U and U. Consider

W (x, t)=U (x, t)−U (x, t). Then we have shown that W (x, 0) < 0 for all x , and
D+t W − D2

x W < 0, which implies

W (x, t + dt) < αW (x − dx, t)+ (1− 2α)W (x, t)+αW (x + dx, t)

for all (x, t) for which (x ± dx, t) ∈ GC . By induction we get W (x, t) < 0 for all
(x, t) ∈ GC . In particular U (x0, t) <U (x0, t) for all t > t0; i.e., we have shown

U (x0, t1) <U (x0, t0)+ (b+ A+ 1)(t1− t0)+
L2

b
.

This upper bound holds for any choice of b > 0. To get the best upper bound
we minimize the right-hand side over all b > 0. The best bound appears when
b = L/

√
t1− t0. After some algebra one then finds

U (x0, t1)−U (x0, t0) < (A+ 1)(t1− t0)+ 2L
√

t1− t0.
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Finally, using t1− t0 =
√

t1− t0
√

t1− t0 ≤
√

t̄
√

t1− t0 we get

U (x0, t1)−U (x0, t0) < ((A+ 1)
√

t̄ + 2L)
√

t1− t0.

This proves the upper bound in (27). To get the analogous lower bound one changes
the signs of the coefficients a, b, c, which will turn U into a lower barrier. After
working through the details, one finds the appropriate lower bound. �

Now that we have Lipschitz in space and Hölder in time, we also have for any
pair of points (x, t), (y, s) ∈ GC that

|U (x, t)−U (y, s)| ≤ |U (x, t)−U (y, t)| + |U (y, t)−U (y, s)|

≤ L|x − y| +C
√
|t − s|. (31)

4.6. Definition of the weak solution. So far we have been establishing estimates
for the solution U to the finite difference scheme. It is worth pointing out that a
standard existence proof would have required exactly the same estimates. At this
point, however, the standard and nonstandard proofs diverge.

For (x, t) ∈ R× [0,∞) we choose (x̃, t̃) ∈ GC with x ≈ x̃ and t ≈ t̃ , and then
define u(x, t) = St(U (x̃, t̃)). The continuity property (31) of the approximate
solution U implies that the value of St(U (x̃, t̃)) does not depend on how we chose
the grid point (x̃, t̃), for if (x̂, t̂ )∈GC also satisfied x̂≈ x , t̂≈ t , then x̃≈ x̂ and t̃≈ t̂ ,
so that U (x̃, t̃)≈U (x̂, t̂ ). It follows directly that the function u : R×[0,∞)→ R

is well-defined, that it satisfies the continuity condition (31), and that it satisfies the
same bounds as in (24).

By the transfer principle, the standard function u extends in a unique way to an
internal function ∗R× ∗[0,∞)→ ∗R. It is common practice to abuse notation and
use the same symbol u for the extension. The extended function satisfies the same
continuity condition (31).

Lemma 4.6.1. If (x, t) ∈ GC is limited, then u(x, t)≈U (x, t).

Proof. If (x, t) is limited, then x ′ = St(x) and t ′ = St(t) are well-defined real
numbers. By continuity of both u we have u(x, t) ≈ u(x ′, t ′). By the definition
of u it follows from x ′ ≈ x and t ′ ≈ t that u(x ′, t ′) ≈ U (x, t). Combined we get
u(x, t)≈U (x, t). �

4.7. Proof that u is a weak solution. We will now show that u is a weak solution
whose existence is claimed in Theorem 4.1.1; i.e., we verify that u satisfies (21) for
any test function ϕ ∈ C∞c (R

2).
Since ϕ has compact support, there is a positive real ` such that ϕ(x, t) = 0

outside the square [−`, `]× [−`, `]. We therefore have to verify∫ `

0

∫ `

−`

{u(x, t)(−ϕxx −ϕt)− f (u(x, t))ϕ} dx dt =
∫ `

−`

u0(x)ϕ(x, 0) dx .
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Since the integrands are continuous functions we only make an infinitesimal error
when we replace the two Riemann integrals by Riemann sums over the part of the
grid GC that lies within the square [−`, `]× [−`, `]. Thus we must prove∑
(x,t)∈GC

{u(x, t)(−ϕxx−ϕt)− f (u(x, t))ϕ} dx dt≈
∑

(x,0)∈GC

u0(x)ϕ(x, 0) dx . (32)

We now intend to replace u by U, and the derivatives of ϕ by the corresponding
finite differences. In doing so we make errors that we must estimate. Let GC` =

GC ∩ [−`, `]
2, so that the only nonzero terms in the two sums come from terms

evaluated at points in GC`. The intersection of internal sets is again internal, so the
set GC` is internal and hyperfinite.

For each (x, t) ∈ GC` the quantities

|u(x, t)−U (x, t)|, |ϕt(x, t)− D+t ϕ(x, t)|, and |ϕxx(x, t)− D2
xϕ(x, t)|

are infinitesimal. Since they are defined by internal functions, one of the numbers
in the hyperfinite set

{|u(x, t)−U (x, t)|, |ϕt(x, t)−D+t ϕ(x, t)|, |ϕxx(x, t)−D2
xϕ(x, t)| : (x, t) ∈ GC`}

is the largest. This number, which we call ε, is again infinitesimal. Therefore we
have

max
GC`
{|u(x, t)−U (x, t)|, |ϕt(x, t)−D+t ϕ(x, t)|, |ϕxx(x, t)−D2

xϕ(x, t)|} ≤ ε (33)

for some infinitesimal ε > 0.
The remainder of the argument is very similar to our proof in Section 3.4 that

the distribution u defined was a distribution solution to the linear heat equation.
Namely, if we replace u by U and derivatives of ϕ by finite differences of ϕ in
(32), then (33) implies that we only make an infinitesimal error on both sides. We
therefore only have to prove∑
(x,t)∈GC

{U (x, t)(−D2
xϕ−D+t ϕt)− f (u(x, t))ϕ} dx dt ≈

∑
(x,0)∈GC

u0(x)ϕ(x, 0) dx .

This follows after applying summation by parts, and using the finite difference
equation (22) satisfied by U. This completes the existence proof.
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