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We consider optimal transportation with constraint, as did Korman and McCann
(2013, 2015), provide simplifications and generalizations of their examples and
results, and provide some new examples and results.

1. Introduction

The classical problem of optimal transportation seeks the least-cost way to move
material between two locations in Rn. Monge [1781] sought an optimal mapping.
A more general problem, introduced in [Kantorovitch 1942], see also [Villani 2009,
Theorem 3.1], seeks a cost-minimizing coupling between two measure spaces. If
the coupling is absolutely continuous, it is given by a density H on the product.
Recently optimal transportation has been used to better understand Riemannian
manifolds and extend concepts such as Ricci curvature to more general spaces;
[Cordero-Erausquin et al. 2006; Villani 2009].

Korman and McCann [2015] studied a constraint on the amount of material that
can be transported between any two locations, an upper bound h(x, y) on the den-
sity H, which goes back at least to [Levin 1984]. It is easy to show (Proposition 2.2)
that if h is not prohibitively small, there is an optimal density H which equals 0 or
h almost everywhere.

In this paper we specialize to the case of constant h. We assume h ≥ 1, which is
necessary and sufficient for existence (Proposition 2.2). Focusing on the solutions
of the form 0 or h almost everywhere, for this paper we define a transportation plan
as a map F from X to subsets of Y with measure 1/h.

Our main section, Section 3, recognizes that many old and new examples of
optimal transportation have the stronger “universal” property of minimizing the
cost at each point separately. This leads to simplified proofs for many of the results
and examples of [Korman and McCann 2013; 2015], as well as explicit examples
of optimal transportation plans for all constraints h ≥ 1. For instance, Example 3.7,
due to Korman and McCann [2015, Example 1.1], provides a very short proof
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that optimal transportation from the unit interval to itself with cost (x − y)2 with
constraint h = 2 maps each point to whichever half of the unit interval it lies in.
Proposition 3.13 proves that the intersection of two optimal transportation plans is
optimal under certain conditions. Proposition 3.18 shows that in the torus or any
Lie group, every admissible translation-invariant transportation plan is optimal for
some continuous cost.

Proposition 4.3 presents a simplified approach to the surprising symmetries for
dual cost constraints found by Korman and McCann [2013, Section 4].

Section 5 relates the case of finite spaces to some known combinatorial compu-
tations and asymptotic estimates.

2. Existence and uniqueness of optimal transportation plans

Proposition 2.2 provides existence of an optimal transportation plan F for admissible
(constant) constraint h.

Definitions 2.1. Let X and Y be smooth manifolds, not necessarily compact, com-
plete, or connected. Let f and g be nonnegative densities on X and Y, yielding
probability measures on X and Y. A transportation plan F with constant constraint
h ≥ 1 is a measurable map from X to the power set P(Y ) such that F(x) has
measure 1/h in Y for almost all x ∈ X and such that {x ∈ X | y ∈ F(x)} has measure
1/h in X for almost all y ∈ Y. (By F measurable we mean that the associated
density H(x, y), defined as the characteristic function of F(x), is measurable.) For
a cost function c(x, y) ∈ L∞(X × Y ), the total cost of transportation is defined as

c[F] =
∫

X

∫
F(x)

c(x, y) dy dx .

A transportation plan F is optimal if it minimizes cost.

Proposition 2.2. Let X and Y be smooth (positive-dimensional) manifolds with non-
negative densities f and g respectively and total measure 1. There exists an optimal
transportation plan F(x) if and only if the (constant) constraint h is at least 1.

Proof. If h < 1, F(x) cannot have measure 1/h. On the other hand, if h ≥ 1, the
set of transportation densities 0(X, Y ) is nonempty, since it includes H(x, y)= 1,
and an optimal transportation density exists by standard compactness arguments;
see [Korman and McCann 2015, Theorem 3.1].

Because L∞(X, Y ) is the dual of L1(X, Y ), by Alaoglu’s theorem, see [Rudin
1991, Section 3.15], the unit ball is compact in the weak-∗ topology. Thus the set
of transportation densities 0(X, Y ) is compact as well as convex. By the Krein–
Milman theorem, every compact convex set has an extreme point, see [Wikipedia
2014a], and thus 0(X, Y ) has an extreme point. The set of optimal transportation
densities is a convex face of 0(X, Y ) which contains an extreme point H, which is
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also an extreme point of 0(X, Y ). Such an extreme H must equal 0 or h almost
everywhere, i.e., it must be a transportation plan F, see [Korman and McCann 2013,
Proposition 3.2], although this can fail for finite sets of points; see Remark 2.3
below. �

Remark 2.3. Of course there is an optimal transportation plan between finite sets
(because there are only finitely many transportation plans), but the same proof
does not work because there might be a better transportation density. For example
the optimal transportation density from {0, 1} to

{
0, 1

2 , 1
}

with h = 3
2 maps 0

to 1 with density 2
3 and 1

2 with density 1
3 and maps 1 to 1

2 with density 1
3 and 2

with density 2
3 , and there is no equally good transportation plan F(x); the only

transportation plan maps each point to all three points. Actually Proposition 2.2
and its proof work as long as one of the two manifolds is positive-dimensional.

Although we will not need it, we provide the following uniqueness theorem of
Korman and McCann.

Proposition 2.4 [Korman and McCann 2013, Theorem 3.3]. Let X and Y be
smooth manifolds with nonnegative densities f and g respectively and total mea-
sure 1. If the cost c(x, y) is bounded, twice differentiable, and nondegenerate, i.e.,
det[D2

x i y j c(x, y)] 6= 0 for almost all (x, y) ∈ X ×Y, then an optimal transportation
plan F(x) is unique (up to measure 0).

Proof. Theorem 3.3 in [Korman and McCann 2013] gives a unique optimal density H.
Since at least one optimal transportation density is an extreme point of 0, H must
be an extreme point of 0 and thus a transportation plan F. �

Additionally, we give necessary and sufficient conditions for a map F from X to
subsets of Y to be a transportation plan.

Proposition 2.5. Let F be a measurable map from X to subsets of Y with constant
constraint h ≥ 1 such that F(x) has measure 1/h in Y for almost all x ∈ X. Then F
is a transportation plan if and only if for every A ⊂ X of measure greater than 1/h,⋂

x∈A F(x) has measure 0.

Proof. If F is a transportation plan, the condition holds. Suppose that F is not a
transportation plan. Then it is not true that {x ∈ X | y ∈ F(x)} has measure 1/h for
almost all y. Since by Fubini’s theorem the average satisfies∫

Y
f ({x ∈ X | y ∈ F(x)}) dy =

∫
X

g(F(x)) dx = 1/h

for some nontrivial subset of Y, we have {x ∈ X | y ∈ F(x)} has measure greater
than 1/h, and the condition fails. �
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3. Universally optimal transportation

Finding optimal transportation plans for a given cost and constraint is hard. For
example, the problem of optimal transportation from the unit interval I = [0, 1] to
itself with cost c(x, y)= (x− y)2 is still open for h 6= 2; see [Korman and McCann
2013, Figure 1; 2015, Example 1.2]. In certain cases, however, it is possible to
minimize the cost at each point separately. Further, for every optimal density, the
cost function can be adjusted so that the same optimal density is also minimal at
each point separately; see Remark 3.2 below.

Definition 3.1. For two smooth manifolds X and Y, a transportation plan F for the
cost function c under constant constraint h ≥ 1 is universally optimal if for almost
every x ∈ X it minimizes ∫

F(x)
c(x, y) dy.

It follows immediately that F is optimal.

Remark 3.2. Korman, McCann, and Seis [Korman et al. 2015, Theorem 4.2]
showed that for continuous densities f , g and h > 1, every optimal density is
universally optimal for some equivalent cost c(x, y)+ u(x)+ v(y) and hence for
c(x, y)+ v(y); by Proposition 2.2 and its proof, this applies to optimal plans in the
positive-dimensional case.

Morgan uses this concept of universal optimality to generalize and give shorter
proofs of some of the examples of Korman and McCann.

Proposition 3.3 [Korman and McCann 2015, Example 1.3; Morgan 2013, Proposi-
tion 1]. Let X be a Riemannian manifold of unit volume, with a transitive group of
measure-preserving isometries, with cost of transportation c(x, y) increasing in dis-
tance with constant constraint h. Then unique (universally) optimal transportation
is that which maps each x ∈ X to a geodesic ball about x of volume 1/h.

Proof. An optimal transportation plan F with constraint h must map a point x ∈ X
to a set of volume at least 1/h, and the geodesic ball minimizes cost among such.
By the symmetry assumption, all balls of the same radius have the same volume, so
the set mapped to a target point y ∈ Y is the ball about x with volume 1/h and the
map satisfies the definition of a transportation plan and is clearly uniquely optimal
(up to sets of measure 0). �

Proposition 3.4 [Korman and McCann 2015, Example 1.1; Morgan 2013, Propo-
sition 2]. Let X and Y be two Riemannian manifolds of unit volume with cost of
transportation c(x, y) and constant constraint h ≥ 1. Suppose that for almost all
x ∈ X , c(x, y) is negative for 1/h of the y’s in Y and nonnegative for the rest, and
for almost all y ∈ Y, c(x, y) is negative for 1/h of the x’s in X and nonnegative for
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the rest. Then unique (universally) optimal transportation maps each x ∈ X to the
subset of Y with negative cost.

Proof. By hypothesis, both F(x) and {x ∈ X | y ∈ F(x)} have measure 1/h for
almost all x ∈ X and y ∈ Y respectively, and F is clearly universally and uniquely
optimal (up to sets of measure 0). �

Proposition 3.5. Every transportation plan for which all images and inverse images
have measure 1/h is optimal for some cost.

Proof. Let c(x, y)=−χF(x)(y). Then F is optimal by Proposition 3.4. �

Example 3.6 [Korman and McCann 2015, Example 1.1; Morgan 2013, Exam-
ple 2.1]. For h ≥ 2 an integer, let X consist of h equal-volume regions in Rn such
that the maximum diameter of a region is less than the minimum distance between
regions. Let c(x, y) be a cost function on X × X increasing in distance. Then
optimal transportation from X to itself with constant constraint h maps the points of
each region to itself. (To apply Proposition 3.4, subtract a constant from the cost.)

Example 3.7 [Korman and McCann 2015, Example 1.1; Morgan 2013, Exam-
ple 2.2]. Let X be a centrally symmetric body in Rn. For cost c(x, y)=−2x · y,
which is equivalent to (x − y)2 because its integral differs by a constant, and
for constraint h = 2, (universally) optimal transportation from X to itself is that
which maps x to y with x · y positive (see Figure 1). In R1 central symmetry is
unnecessary as long as the origin is the median. A similar result holds for any
cost having the same sign at each point as −x · y. The analysis generalizes to any
centrally symmetric probability measure on Rn for which hyperplanes through the
origin have measure 0 and to any probability measure on R1. Optimal transportation
from X to itself with cost−2x · y is still open for constraint h 6= 2, though numerical
estimates from some cases are given in [Korman and McCann 2013, Figure 1; 2015,
Example 1.2].

xF(  )

−
+

+

x

−

x ∙ y

x ∙ y

Figure 1. Optimal transportation F from the unit ball in R2 to
itself with cost c(x, y)= (x − y)2 and constraint h = 2 maps each
x to the half-ball {x · y > 0}.
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xF(  )

−

+

+

x

cost

cost
−

Figure 2. Optimal transportation F maps each x on a ray from
the origin to a cone about that ray.

Example 3.8. Unique (universally) optimal transportation from the sphere Sn to
the ball Bn+1 with cost c(x, y)= (x − y)2 and constraint h = 2 maps a point x to
the half-ball {x · y > 0}.

Proof. As in Example 3.6, the cost is equivalent to −2x · y, which is negative
precisely on the asserted half-ball, proving the asserted map uniquely universally
optimal. �

Example 3.9 [Morgan 2013, Example 2.3]. Let X be a planar region with h-fold
rotational symmetry, such as a square (h = 4) as in Figure 2. For cost

c(x, y)= cos(π/h)|x ||y| − x · y,

and constant constraint h ≥ 1, (universally) optimal transportation maps all points
on a ray from the origin to a cone of angle π/h about that ray.

Remark 3.10 [Morgan 2013, Example 2.4]. Such examples of universally optimal
transportation plans from X i to Yi extend to universally optimal transportation plans
from

∏
X i to

∏
Yi with a cost which is negative if and only if the costs of the

projections are all negative: optimal transportation with constraint h =
∏

hi maps
to points of negative cost. In particular, Example 3.9 generalizes to a product of
such actions on R2n with negative cost if and only if xi · yi ≥ (cosπ/hi )|xi ||yi |

for all i : optimal transportation with constant constraint h =
∏

hi maps all points
with projections on rays from the origin to a product of cones of angle π/hi about
the ray.

Remark 3.11 [Morgan 2013, Example 2.5]. Such examples of universally op-
timal transportation plans from X to Y with cost c(x, y) extend to universally
optimal transportation plans on warped products A × X , A × Y, as long as the
cost c′(a, x, a, y) has the same sign as c(x, y). For example, for any h ≥ 1,
Proposition 3.4 on the sphere, with cost c(x, y)= a|x ||y|− x · y, with a chosen so
that optimal transportation maps to points of negative cost, extends to the ball, with
points on a ray from the origin mapped to a cone of negative cost about that ray.
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Remark 3.12. Although universally optimal transportation plans are by definition
optimal transportation plans, the converse is not true in general. Consider trans-
portation from the unit interval to itself with cost of transportation increasing with
distance and constant constraint h = 2. Minimizing cost for each x does not even
give a valid transportation plan because points near 0 and 1 are mapped to by less
than half of the interval.

Given two universally optimal transportation plans for two different costs, we
seek ways to generate a third cost and a related universally optimal transportation
plan.

Proposition 3.13. Let F1 and F2 be optimal transportation plans from X to Y with
costs c1 and c2 and constant constraints h1 and h2 respectively. Suppose that for
almost all x , we have Fi (x) = {y ∈ Y | ci (x, y) < 0}. If for some 1 ≤ h < ∞,
for almost all x ∈ X , F1(x)∩ F2(x) has measure 1/h, and for almost all y ∈ Y,
{x ∈ X | y∈ F1(x)}∩{x ∈ X | y∈ F2(x)} has measure 1/h, then F(x)= F1(x)∩F2(x)
is a universally optimal transportation plan from X to Y with cost c(x, y) =
max(c1, c2) and constraint h.

Proof. It suffices to show that for almost all x ∈ X , c(x, y) is negative for 1/h of
the y ∈ Y and nonnegative for the rest and for almost all y ∈ Y, c(x, y) is negative
for 1/h of the x ∈ X and nonnegative for the rest. By hypothesis on F, for almost
all x ∈ X , c(x, y) is negative for 1/h of the y ∈ Y. It is nonnegative for the rest
because x 6∈ F(x) implies some ci (x, y) must be nonnegative; thus c(x, y) must
also be nonnegative. The reverse condition holds by a similar argument. �

Corollary 3.14. Let X be a region with 4-fold rotational symmetry in R2 with cost
of transportation from X to X given by c(x, y) = max((x · y), det[x | y]), where
det[x | y] is the determinant of the matrix with x and y as its column vectors.
Mapping each point to the region of negative cost uniquely gives (universally)
optimal transportation for h = 4 (see Figure 3).

c − x ∙ y=1 xF (  )1

xF (  )2c x y =2

+ −

+

−

−
+c = max (        ),c1 c2 F(  ) = xF (  )1x xF (  )2

⊂

Figure 3. The intersection of optimal transportation plans yields
a new optimal transportation plan under certain hypotheses.
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Proof. The map F1(x)= {y ∈ X | x · y > 0} is an optimal transportation plan from
X to itself with cost c1(x, y) = −x · y and constraint h = 2 (see Example 3.6).
Similarly the cost c2(x, y)= det[x | y] with constraint h= 2 satisfies the hypotheses
of Proposition 3.4 and thus the map F2(x)= {y ∈ X | det[x | y]< 0} is an optimal
transportation plan from X to itself with cost c2(x, y) and constraint h = 2. By
Proposition 3.13, if for almost all x, y ∈ X , F1(x)∩F2(x) and {x ∈ X | y ∈ F1(x)}∩
{x ∈ X |y ∈ F2(x)} both have constant measure 1/h for some h > 1, then F(x)=
F1(x)∩ F2(x) is an optimal transportation plan from X to itself with cost c(x, y)=
max(c1, c2) and constraint 1/h. For almost all x ∈ X , ∂F1(x) is the line through the
origin normal to the line through x and the origin and ∂F2(x) is the line through x
and the origin. Because two normal lines both through the origin partition a region
with 4-fold rotational symmetry centered on the origin in R2 into four congruent
regions, and exactly one of these regions is equivalent to F1(x)∩ F2(x), it follows
that F1(x) ∩ F2(x) has constant measure 1

4 . Similarly, the boundary of the set
{x ∈ X | y ∈ F1(x)} is the line through the origin normal to the line through y and
the origin and the boundary of the set {x ∈ X | y ∈ F2(x)} is a line through y and the
origin. Thus, by the same argument as above, {x ∈ X | y∈ F1(x)}∩{x ∈ X | y∈ F2(x)}
has measure 1

4 . By Proposition 3.13, the asserted map is optimal. �

Remark 3.15. If the hypotheses of Proposition 3.13 hold, then the maps F(x)=
F1(x)∪ F2(x) and F(x)= F1(x)4 F2(x) are optimal transportation plans for costs
c = min(c1, c2) and c′ = c1 · c2 and some constraints h and h′ respectively (the
symbol 4 denotes the symmetric difference of two sets).

Example 3.16. Let X be a region with 4-fold rotational symmetry in R2. Then an
optimal transportation plan F for cost

c(x, y)= ((cos 3π/4h)|x ||y| − x · y)((cosπ/4h)|x ||y| − x · y)

and constraint h= 2 maps points on a ray from the origin to two cones (see Figure 4).

c a x y − x ∙ y=1 xF (  )1

xF (  )2c b x y − x ∙ y=2

+ −

+ −

−

−
+ +c = c1c2 xF (  )1 xF (  )2∆

Figure 4. Other set operations yield even more examples of opti-
mal transportation.
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x2 x0
x

υ τ

1

υ τ
x2 x0

xF( )
F( )

F( )1

Figure 5. Optimal transportation F maps each x to an H -shaped region.

The condition in Proposition 3.13 that F1(x)∩ F2(x) have constant measure 1/h
for almost all x ∈ X and some h is independent of the condition that {x ∈ X |
y ∈ F1(x)} ∩ {x ∈ X | y ∈ F2(x)} have constant measure 1/h for almost all y ∈ Y.

Example 3.17. Let X be {1, 2, 3, 4} or equivalently the unit interval divided into
four quarters. Consider transportation F1, F2 from X to X such that

F1(1)= {3, 4}, F1(2)= {2, 3}, F1(3)= {1, 2}, F1(4)= {1, 4},

F2(1)= {1, 4}, F2(2)= {1, 2}, F2(3)= {2, 3}, F2(4)= {3, 4}.

Then F(x)= F1(x)∩ F2(x) has constant measure 1
4 but

{x ∈ X | y ∈ F(x)} = {x ∈ X | y ∈ F1(x)} ∩ {x ∈ X | y ∈ F2(x)}

has measure 1
2 for {2, 4} and measure 0 for {1, 3}.

Proposition 3.18. Let X be a Lie group. Given an open subset A of X with
measure 1/h, there exists a continuous cost function c(x, y) such that the unique
(universally) optimal transportation plan F from X to itself with constant constraint
h maps the identity to the set A and maps each element x ∈ X to the set x · A = x A.

Proof. Let the cost c(x, y) equal the distance from y to the boundary of x · A, with
negative cost on the interior of x · A and nonnegative cost on the complement of
x · A. By Proposition 3.4, the asserted map is optimal. �

Example 3.19. Let X =S1
×S1 with unit area. Given an open subset A⊂ X with

measure 1/h, such as the H -shaped region in Figure 5, there exists a continuous cost
function c(x, y) such that the unique (universally) optimal transportation plan F
from X to itself with constant constraint h maps the origin to the set A and maps
almost every x to the set τx(A), where τx is the translation that takes the origin to x .

Example 3.20. Optimal transportation from a flat rectangular torus to itself with
cost c(x, y)=min(d(xi , yi )) and constraint h maps each point to a neighborhood
around the coordinate axis centered at that point; see Figure 6.
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xF(  )

−

+

+

x

cost

cost−

Figure 6. Optimal transportation on the flat rectangular torus maps
each x to a small neighborhood around the coordinate axis centered
at that point.

4. Transportation and symmetry

Korman and McCann [2013, Section 4] found surprising symmetries between
optimal transportation plans with dual constraints. Proposition 4.3 presents a
simplified approach.

Definition 4.1. A map f from X ′ to X is called measure preserving if the measure
of any A ⊂ X equals the measure of f −1(A)⊂ X ′.

Proposition 4.2. Let F be an optimal transportation plan from X to Y with cost
c(x, y) and constraint h. Let f and g be measure-preserving maps from X ′ to X
and from Y ′ to Y respectively. Then G(x ′) = g−1(F( f (x ′))) provides optimal
transportation from X ′ to Y ′ with cost c ◦ ( f, g) and constraint h.

Proof. We need to show that G(x ′) and G−1(y′) both have measure 1/h and that the
total cost of transportation is minimal. For x ′ ∈ X ′, G(x ′)= g−1(F( f (x ′))) must
have the same measure as F( f (x ′)), which is 1/h by hypothesis. Similarly, for
y′ in Y ′, G−1(y′)= f −1(F−1(g(y′))) must have the same measure as F−1(g(y′)),
which is also 1/h by hypothesis. To show that G is optimal, we will show that
G and F have the same cost and that any other transportation plan G2 from X ′

to Y ′ has the same cost as an analogous transportation plan F2 from X to Y and
therefore must be of greater total cost than G. The cost of transportation from
x ′ to y′ is equal to c( f (x ′), F( f (x ′))); thus G and F have the same total cost of
transportation. Let G2 be another transportation map from X ′ to Y ′. Let F2( f (x ′))
= g(G2). Then G2 = g−1(F2( f (x ′))) and the result follows. �

Proposition 4.3 [Korman and McCann 2013, Lemma 4.1; Morgan 2013, Propo-
sition 3]. Let M1, M2 be subsets of Rn or Riemannian manifolds with boundary
or metric measure spaces of volume V . Let Ti be a measure-preserving map from
Mi to itself and let T = T1 × T2. Let c(x, y) be a cost satisfying c ◦ T = −c. If
the map F is an optimal transportation plan from M1 to M2 with cost c(x, y) with
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constraint h, then the map T2(F ′ ◦ T1) is an optimal transportation plan from M1 to
M2 with cost c and constraint h′, where 1/h+ 1/h′ = 1 and F ′(x)= F(x)C.

Proof. If F is an optimal transportation plan for cost c and constraint h, then
F(x)′= F(x)C is the most expensive transportation plan for cost c with constraint h′,
and hence an optimal transportation plan for cost −c. Therefore T2(F ′ ◦ T1) is an
optimal transportation plan for cost −c ◦ T = c and constraint h′. �

Example 4.4 [Morgan 2013, Example after Proposition 3; Korman and McCann
2013, Lemma 4.1]. Let M1 and M2 be subsets of Rn, with M1 centrally symmetric,
and let c(x, y)=−x · y (which is equivalent to (x − y)2). Then central inversion
in x carries optimal transportation with constraint h to optimal transportation with
constraint h′.

5. Transportation plans on finite sets

Consider the case where X and Y are finite sets, say X = {1, 2, . . . ,m} and Y =
{1, 2, . . . , n}. In this case we may assume that the constraint h is a common divisor
of m and n. A map F from X to Y is equivalent to the n×m matrix of 0’s and
1’s with entry ai j = 1 if and only if i ∈ F( j); see [Wikipedia 2014b; Weisstein].
Such a matrix gives a transportation plan if and only if the matrix has m/h 1’s in
each column and n/h 1’s in each row. Thus the number of transportation plans is
equal to the number of n×m binary matrices with constant column sums n/h and
constant row sums m/h. Asymptotic estimates exist for large m, n; see [Canfield
and McKay 2005; McKay and Wang 2003].
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