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In this paper, we present our constructions and results leading up to our discovery
of a class of Klein links that are not equivalent to any torus links. In particular,
we calculate the number and types of components in a K p,q Klein link and show
that K p,p ≡ K p,p−1, K p,2 ≡ Tp−1,2, and K2p,2p ≡ T2p,p. Finally, we show that
in contrast to the fact that every Klein knot is a torus knot, no Klein link K p,p,
where p ≥ 5 is odd, is equivalent to a torus link.

1. Introduction

When we began thinking about Klein knots, we were told that they were uninteresting
since all Klein knots are torus knots. We decided to see if we could prove that
statement using elementary methods, and whether it was also true for Klein links.
In this paper, we present our constructions and results leading up to our discovery
of a class of Klein links that are not equivalent to any torus links. While results
identical or similar to Theorems 2, 3, 4 and 5 are also proved in [Bowen et al. 2013;
Bush et al. 2014; Freund and Smith-Polderman 2013; Shepherd et al. 2012] using
braids, our approach uses different constructions and methods.

2. Constructions

Our construction of Klein knots and links is modeled after the standard construction
of torus knots and links, as in [Adams 2004; Murasugi 2008]. Recall that for
nonnegative integers p and q, the torus link Tp,q is the link on the torus which
crosses the longitude p times and crosses the meridian q times, with no crossing
on the torus itself. We illustrate the construction of T2,3 in Figure 1. Notice that we
can translate the construction to a planar diagram as in Figure 1.

We will construct Klein knots and links in a similar way, being careful of certain
issues. The first difficulty is that Klein bottles do not exist in three-dimensional
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(a) Constructing T2,3 on a torus. (b) Planar diagram for T2,3.

Figure 1. Torus knot T2,3.

space, and knots are trivial in four-dimensional space. To get around this, we
will work with punctured Klein bottles in three-dimensional space. The puncture
occurs where the Klein bottle appears to (but does not) intersect itself. Warning:
the knots and links we work with will be dependent on the relative position of the
puncture. Mimicking the construction of Tp,q , the Klein link K2,3 is illustrated
in Figure 2. The corresponding planar diagram representation of K2,3 is again
modeled after the torus version, except that we need to account for the Möbius-
band twist and be mindful of the puncture. By deforming the Klein bottle as in
Figure 3, we see that the twist produces a pattern of additional crossings as in
Figure 4, with the puncture occurring in the lower left corner. Note that K p,0 is the
p-component unlink.

In general, we construct K p,q on the planar diagram just as for Tp,q , except
with the pattern of extra crossings. See Figure 5. We emphasize that the class of
links that we are denoting by K p,q and the results in this paper are dependent on
placing the puncture in the lower left corner. We do not consider Klein links with
the puncture placed in different positions in this paper. Furthermore, deformations
of our links are as links in space, not on the Klein bottle, and so the puncture does

Figure 2. Klein link K2,3.
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Step 1 Step 2

Step 3 Step 4

Figure 3. Deformations of K2,3.

not affect deformations. For this reason, and since our puncture is always in the
lower left corner, we do not include it in our illustrations.

It is worth noting that, while the diagrams are configured a bit differently, our
K p,q Klein links are the same as the K (p, q) Klein links found in [Bowen et al.
2013; Bush et al. 2014; Freund and Smith-Polderman 2013; Shepherd et al. 2012].
Additionally, some of the same authors of the previously cited papers have done
preliminary work in which they found explicit relationships between Klein links with
different choices of puncture. There are certainly more questions to be answered
in this regard.

Figure 4. Planar diagram for K2,3.
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Figure 5. Planar diagram for K p,q .

3. The wrapping function

The underlying key to many of our results is our “wrapping” function. Given a
strand entering the left side of the rectangle in the planar diagram construction
of K p,q (see Figure 6), the wrapping function determines where that particular
strand re-enters the left side of the rectangle.

This allows us to count components, to characterize the types of components,
and sometimes to tell that the components are unlinked. We have a similar wrapping

1 2 p

1
2

x

Wp,q(x)

q

1
2

Rp,q(x)

q

Figure 6. The wrapping function.
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1= (p+1)−p

2= (p+2)−p

q−p

q−p+1≡ 1−p

q−p+2≡ 2−p

q

Figure 7. Rp,q with p ≤ q .

function and similar results for torus links, though we will concentrate only on our
results for Klein links here.

Let 1≤ x ≤ q , so that x is the position at which a particular strand passes through
the left side of the planar diagram for K p,q as in Figure 6. Then the wrapping
function is given by

Wp,q(x)= 1− x + p (mod q).

To see why this formula works, we will first back up a step and determine the
position at which the strand entering the left side at x exits the right side of the planar
diagram as shown in Figure 6; we denote this position by Rp,q(x). In Figure 7,
with p ≤ q , we can see that

Rp,q(x)= x − p (mod q).

In particular, notice that Rq,q(x) = x − q = x (mod q), as one would expect.
Next, if p > q , we divide p by q to get p= nq+r for some n, r ∈N with 1≤ r ≤ q .
By concatenating n copies of the planar diagram for Kq,q and one copy of the
diagram for Kr,q , we get that

Rp,q(x)= Rnq+r,q(x)

= Rr,q ◦ Rq,q ◦ Rq,q ◦ · · · ◦ Rq,q(x)

= Rr,q(x)

= x − r

= x − (p− nq)

= x − p (mod q).

Finally, since strands exiting the right side of the planar diagram enter the left side
in reverse order, we have that Wp,q(x)= 1− Rp,q(x)= 1− x − p (mod q).
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In our work, we will reference the following result about composing the wrapping
function with itself.

Lemma 1. For any p, q ≥ 0, we have W 2
p,q(x)= x. Therefore, every component of

K p,q wraps at most twice.

Proof. Applying Wp,q twice, we see that

W 2
p,q(x)=Wp,q ◦Wp,q(x)=Wp,q(1− x + p)

= 1− (1− x + p)+ p

= x (mod q). �

4. Results

First we compute the number of components in a K p,q link and determine the
types of components, results that we use to prove that K5,5 is not equivalent to any
torus link.

Theorem 2 (number of components). If q = 0, then K p,q has p components. If
q 6= 0, then the number of components of K p,q is

(q + 1)/2 if q is odd,

q/2 if q and p are both even,

(q + 2)/2 if q is even and p is odd.

Proof. For q=0, no components wrap around the rectangle. So there is a component
for each point on the top. Thus, there are p components.

For q > 0, by Lemma 1, each component wraps at most twice. We find how
many components wrap once. If there are t components that wrap once, then there
are (q− t)/2 components that wrap exactly twice. So there will be (q− t)/2+ t =
(q + t)/2 components in all.

To find the number of components of K p,q that wrap once, we solve the modular
equation

Wp,q(x)= 1− x + p = x (mod q),

2x − p− 1= 0 (mod q).
(1)

In other words, q divides 2x − p− 1.

Case 1: q odd. Since we are adding modular q , without loss of generality, we can
assume p < q . Since x ≤ q , we have

q < 2x − p < 2q − p H⇒ q − 1 < 2x − p− 1 < 2q − p− 1.
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Thus we have that q − 1 < 2x − p− 1 < 2q. So, if 2x − p− 1= 0 (mod q), then
2x − p−1= q . Then there is one component that wraps once. So, for q odd, K p,q

has (q + 1)/2 components.

Case 2: p and q even. Let p = 2n and q = 2r . In this special case, (1) becomes

2(x − n)− 1= 2rk for some k ∈ Z. (2)

Notice that the left-hand side of (2) is odd while the right-hand side is even. So
Wp,q(x) 6= x for any x , and thus no components wrap once. Thus, for K p,q = K2n,2r ,
there are q/2= r components.

Case 3: p odd, q even. Let p = 2n+ 1 for some integer n and q = 2r for some
integer r . Then, (1) becomes 2(x−n−1)= 0 (mod q). Now since x ≤ q , we have

2(x − n− 1) < 2(q − n− 1) < 2q.

Thus the only possibilities for (1) to be true are 2(x−n−1)= 0 or 2(x−n−1)= q .
So, there are exactly two components of K p,q that wrap once, namely when x=n+1
and x = n+ 1+ q/2. Then, for K p,q , there are (q + 2)/2 components. �

The components of a link are knots. More generally, a link can be viewed as
a collection of sublinks, possibly tangled together. For notational purposes, if a
link L is made up of m copies of a sublink M and n copies of a sublink N , we will
write L ≡ m ·M ∪ n · N . In the next theorem, we determine the types of knots that
make up a Klein link.

Theorem 3 (types of components). If p < q, then

K p,q ≡ K p,p ∪ K0,q−p,

where the sublink K p,p is disjoint (untangled) from K0,q−p. Furthermore:

(1) If q = 2n+ r with n ∈ N and r = 0 or r = 1, then

K0,q ≡ n · K0,2 ∪ r · K0,1.

(2) If p = 2n+ r with n ∈ N and r = 0 or r = 1, then

K p,p ≡ n · K2,2 ∪ r · K1,1.

Proof. We begin by showing that if p < q , then K p,q ≡ K p,p ∪ K0,q−p. Let X1 be
the positions 1, 2, . . . , p on the left side of the planar diagram for K p,q , as shown in
Figure 8. Similarly, let X2 be the positions p+ 1, . . . , q on the left, Y1 be the posi-
tions 1, . . . , q− p on the right, and Y2 be the positions q− p+1, . . . , q on the right.

Notice that |X1| = |Y2| = p and |X2| = |Y1| = q − p.
By construction of the planar diagram for K p,q with p < q, strands from the

p positions in X1 pass through the p positions on the top of the diagram, then through
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Figure 8. X1, X2, Y1 and Y2.

the p positions on the bottom of the diagram, and hence to the p positions in Y2.
Throughout, the order is preserved. In other words, Rp,q |X1 : X1→ Y2 is a bijection.
Similarly, strands from the q − p positions in X2 cross the diagram directly to the
q − p positions in Y1, preserving order, and Rp,q |X2 : X2→ Y1 is also a bijection.

Inside of the rectangle in the diagram, all strands from X2 on the left cross over
all strands from X1 before passing through positions in Y1. Outside of the rectangle,
these same strands exit from positions in Y1, cross over all strands exiting from Y2,
and re-enter through X2 in reverse order. Thus Wp,q |X2 : X2→ X2, and the strands
passing through positions in X2 form a link L2 that crosses over all other strands
in K p,q . Similarly, strands through positions in X1 pass under strands from X2

both inside and outside the rectangle in the diagram, Wp,q |X1 : X1→ X1, and these
strands form another link L1 completely disjoint from L2. These two links are
illustrated in Figure 9.

1 p

1

p

1 p

Figure 9. The links L1 (left) and L2 (right).
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Figure 10. Planar diagrams of K p,p (left) and K p,p−1 (right).

Viewed separately, these disjoint links are L1 = K p,p and L2 = K0,q−p. Thus
K p,q ≡ K p,p ∪ K0,q−p.

Since K p,q is composed of the two links K p,p and K0,q−p, our next step is to
characterize the components of Klein links of these types.

Consider K0,q for any value of q ≥ 1. By Lemma 1, for all 0 < x ≤ q, we
have W 2

0,q(x)= x , and hence each component of K0,q wraps horizontally around
the rectangle in the planar diagram at most twice. It follows that each component
is either a K0,1 or a K0,2. Now, to have a K0,1 component, we must have some
0 < x ≤ q such that x = W0,q(x) = 1− x (mod q). This occurs exactly when q
divides x− (1− x)= 2x−1, that is, exactly when q is odd. In this case, q = 2n+1
for some positive integer n (and r = 1 in the statement of the theorem). Since
2x−1≤ 2q−1 < 2q , we see that W0,q(x)= x implies that 2x−1= q . Thus, there
is only one component of the form K0,1 which passes through x = (q+1)/2. Since
all other components wrap twice, there are n components of the form K0,2, and
K0,q ≡ n · K0,2 ∪ K0,1. On the other hand, suppose q is even with q = 2n for some
positive integer n (and r =0). Then every component wraps twice, so K0,q ≡n ·K0,2.

For K p,p, since every component wraps at most twice, every component is of
the form K2,2 or K1,1. Similar to the K0,q situation, there is at most one component
of type K1,1 and it exists if and only if p is odd. Therefore, if p = 2n + r with
r = 0 or 1, we have K p,p ≡ n · K2,2 ∪ r · K1,1. �

Above we see that K p,p has components consisting entirely of the knots K2,2

and K1,1. It turns out that we can also view K p,p as the slightly simpler Klein
link K p,p−1.

Theorem 4 (Klein to Klein). If p ∈ N, then K p,p ≡ K p,p−1.

Proof. By construction, the diagram of K p,p has a loop sitting on top of the rest of
the link. This top loop, which is highlighted in Figure 10 (left), can be pulled tight
(with one of the basic Reidemeister moves), turning the double diagonal strands into
one diagonal strand. The resulting diagram, Figure 10 (right), is the link K p,p−1. �
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1 2 3 4 p−1 p

1

2

Figure 11. Planar diagram of K p,2.

Now we are ready to compare Klein links and torus links. Recall that all Klein
knots are torus knots. Similarly, certain classes of Klein links are torus links. In the
next two theorems, we investigate Klein links of the forms K p,2 and K2p,2p.

Theorem 5 (Klein to torus, I). If p ∈ N, then K p,2 ≡ Tp−1,2.

Proof. Consider the planar diagram of K p,2 as in Figure 11.
Notice the crossing on the right of the planar diagram, in particular the strand

that crosses underneath. If we follow this strand to the left, it wraps under the
planar diagram. By unwrapping this strand and pulling it upward, the crossing is
now gone. (This is a type-II Reidemeister move.) The resultant diagram is shown
in Figure 12 (left).

We no longer have two nodes on the right side of the planar diagram. However,
we may slide the strand so the strand exits the planar diagram from the right side
as opposed to the top side. See Figure 12 (right).

So there are p− 1 nodes along the top and two nodes along the side. Notice the
strand that exits on the top node on the right enters through the top node on the left,
and similarly the strand that exits on the bottom node on the right enters through
the bottom node on the left. Thus, we obtain the planar diagram for Tp−1,2 and
K p,2 ≡ Tp−1,2. �

Theorem 6 (Klein to torus, II). If p ∈ N, then K2p,2p ≡ T2p,p.

Proof. A general K2p,2p has 2p strands entering or leaving each side of the rectangle
in the planar diagram. Instead of manipulating each strand separately, we will collect

1 2 3 4 p−1 p

1

2

1 2 3 4 p−1

1

2

Figure 12. K p,2 with crossing removed (left) and with two nodes
on right restored (right).
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Figure 13. K2p,2p as a ribbon.

together the first p strands entering the left side of the rectangle as if they are on a
ribbon, as illustrated in Figure 13.

Manipulating the ribbon moves the p strands together, resulting in an equivalent
link. Our first steps are to flip up the inner loop of the ribbon, and unfold the lower
right portion of the ribbon, resulting in Figure 14(a). In Figure 14(b), we turn the
loop into a twist in the ribbon, and in Figure 14(c), we push the twist down to
produce a fold. Returning to the p strands instead of the ribbon, we now have T2p,p,
as desired. �

The final class of Klein links that we consider are those of the form Kb,b where
b ≥ 5 is odd. We will use linking numbers in our proof. To denote the linking
number for an oriented link L of more than two components, we use the notation
lk(L) = [l1, l2, . . . , ln], where l1, l2, . . . , ln are the individual linking numbers of
each two-component pair and are arranged in no particular order. This is not the
total linking number found in [Bush et al. 2014; Murasugi 2008] which goes one
step further by summing up the pair-wise linking numbers.

Theorem 7 (Klein not torus). Let b ≥ 5 be an odd integer. For every choice of
p, q ∈ N, we have Kb,b 6≡ Tp,q . In other words, Kb,b is not a torus link.

Proof. By Theorem 2, Kb,b has c = (b+ 1)/2 components, and by Theorem 3, one
of the components is a copy of K1,1 and all of the other components are copies
of K2,2. Note that both K2,2 and K1,1 are unknots.

(a) K2p,2p after flipping (b) K2p,2p with twist. (c) K2p,2p as T2p,p.
and unfolding.

Figure 14. Deforming K2p,2p into T2p,p.
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Figure 15. T3m,3.

If Kb,b ≡ Tp,q , then Tp,q must also have c = (b+ 1)/2 components. It is well
known (see [Adams 2004; Murasugi 2008]) that Tp,q has c components exactly when
gcd(p, q)= c. So we let p = mc and q = nc, where m, n ∈N with gcd(m, n)= 1.
Then, as determined in [Murasugi 2008], Tp,q ≡ Tmc,nc ≡ c · Tm,n . Furthermore,
we may assume that m > n without loss of generality since Tp,q ≡ Tq,p for all p, q
(see [Adams 2004; Murasugi 2008]). As noted above, each individual component
of Kb,b is an unknot. From our (very convenient) knowledge of torus knots and
[Murasugi 2008], a torus knot Tm,n is equivalent to the unknot only when n = 1.
So if Kb,b is equivalent to some torus link, it must be the case that Kb,b ≡ Tmc,c.

In order to determine if Kb,b ≡ Tmc,c for some m, we examine the linking
numbers. From our standard planar diagram of Kb,b, regardless of orientation,
we have that lk(Kb,b) = [2, . . . , 2, 1, . . . , 1]. Any pair of components consisting
of the copy of K1,1 and one of the copies of K2,2 has four crossings within the
rectangle in the planar diagram, all of the same type, and two crossings outside of
the rectangle, all of the opposite type, resulting in a crossing number of (4−2)/2=1.
Any pair consisting of two copies of K2,2 has eight crossings within the rectangle
and four opposite crossings outside of the rectangle, and hence a linking number
of (8− 4)/2= 2.

Now consider the planar diagram for the general Tmc,c. As an example, T3m,3 is
shown in Figure 15. Orient each strand entering the left side of the rectangle in an
upward direction. Consider the block on the left side of the diagram corresponding
to the first c points along the top of the rectangle. In this block, each component
crosses each of the other components exactly twice, and each crossing is left-
handed. The same thing happens in each of the m blocks corresponding to groups
of c points along the top of the rectangle. Thus the linking number between
any two components in the Tmc,c is | − 2m|/2= m and consequently lk(Tmc,c)=

[m, m, . . . , m] 6= [2, . . . , 2, 1, . . . , 1]. So there is no m for which Kb,b ≡ Tmc,c.
Hence, Kb,b 6≡ Tp,q for any choice of p, q. �

Since all Klein knots are also torus knots, we expected all Klein links to be torus
links. So this last result was a pleasant surprise.
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