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We apply discrete time optimal control theory to the mathematical modeling of
pest control. Two scenarios: biological control and the combination of pesticide
and biological control are considered. The goal is maximizing the “valuable”
population, minimizing the pest population and the cost to apply the control
strategies. Using the extension of Pontryagin’s maximum principle to discrete
system, the adjoint systems and the characterization of the optimal pest controls
are derived. Numerical simulations of various cases are provided to show the
effectiveness of our methods.

1. Introduction

Pesticides and biological control are two popular ways of pest control. One of
the conventional applications of control uses pesticides. The detrimental effects to
local ecologies of overuse of pesticides has been widely documented, therefore, the
conservation, introduction, and restocking of a pest’s natural enemies has become
increasingly popular. Biological control is the use of living organisms to suppress
the population of a specific pest organism, making it less abundant or less damaging
than it would otherwise be [Eilenberg et al. 2001]. It is an environmentally sound
and effective means of reducing or mitigating pests and pest effects through the
use of natural enemies, and biological control has successfully contributed to the
protection of the flora and fauna of many natural ecosystems [Driesche et al. 2010;
Driesche 1994].

This study will focus on developing and analyzing two mathematical models for
pest control using biocontrol and the combination of the pesticide and the biocontrol,
while finding the optimal pest control strategies.

But biological control is both powerful and risky. Biological control agents
may negatively affect native species directly or indirectly. Historically biological
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control introductions were not regulated the way they are today, and some horrible
mistakes were made in the name of biological control (e.g., cane toads in Australia).
Hawkins and Cornell [1999] gathered together recent theoretical developments and
provide a guide to the critical issues that need to be considered in applying theory
to biological control, they pointed out by developing theories based on fundamental
population principles and the biological characteristics of the pest and agent, we
can gain a much better understanding of when and how to use biological control.

A lot of studies done in this field have focused on the continuous predator-prey
models, which are based on the assumption that population changes are always
occurring. While this may be true for humans (births and deaths are fairly well
distributed over time), many species have well-defined cycles of reproductions
(births and deaths generally occur over a season or period of a few weeks or
months). This fact causes us to focus on a discrete model over a continuous one for
these biological systems.

The efficacy with which one is able to reduce a pest population is always subject
to the amount of resources available to control that population. Due to cost and
environmental consideration, it may be more appropriate to release a smaller amount
of the predator population into the ecosystem, and then add to that amount incre-
mentally for a given time frame to reduce the pest population more gradually. The
costs involved will be substantially less in this case because the predator population
will grow on its own, thus reducing the need to introduce more predators artificially,
and it will be beneficial to the natural ecosystems.

Optimal control theory for discrete systems is well developed [Clark 1990;
Sethi and Thompson 2006], but there are very few applications in pest control
problems. Tang and Cheke [2008] studied integrated pest control problems using
both continuous and discrete host-parasitoid models. Jang and Yu [2012] proposed
a simple discrete time host-parasitoid model and derived an optimal control model
using a chemical as a control for the hosts. They conclude that applying a chemical
to eliminate the hosts directly may be a more effective control strategy than using the
parasitoids to indirectly suppress the hosts. Whittle et al. [2007] use a discrete-time
optimal control model to provide management for an invasive species consisting of
a large main focus and several smaller outlier populations. Dabbs [2010] presents
discrete time pest control models using three different growth functions: logistic,
Beverton–Holt and Ricker spawner-recruit functions and compares the optimal
control strategies respectively. Berryman [Hawkins and Cornell 1999] provides a
review of the historic development of the ecological theory that relates to biological
control, focusing on discrete time models that best describe systems in which the
insects reproduce seasonally. He presents the control theory and the theory of
predator-prey dynamics which are the key elements of the theory of biological
control.
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The paper is organized as follows: in Section 2 we present the optimal biological
control problem, derive the adjoint equations and the characterization of the control,
and give numerical results. In Section 3, we formulate the optimal dual control prob-
lems, derive the necessary conditions of optimal control and give some numerical
results.

2. Optimal control using biological control

2.1. The biological control problem. Biological control of pests has been practiced
in greenhouse as well as in field crops. For example E. formosa and P. persimilis
have been used as biological control agents to reduce parasites over different crops
such as tomatoes and cucumbers [van Lenteren and Woets 1988]. In our model,
the valuable population, pest population and the predator (biological control agent)
population are represented by

x = (x0, x1, . . . , xT ), y = (y0, y1, . . . , yT ), z = (z0, z1, . . . , zT ),

respectively, where the subscripts represent the time steps. The control satisfies

U1 = {u = (u0, u1, . . . , uT−1) ∈ RT
| 0≤ uk ≤ M, k = 0, 1, . . . , T − 1},

with M the maximum control effort.
The model is, for k = 0, 1, . . . , T − 1 and given x0, y0, z0,

xk+1 = xk + r xk(1− xk)− c1xk yk,

yk+1 = dyk + c2xk yk − c3 ykzk,

zk+1 = zk −mzk + c4 ykzk + ukzk,

(2-1)

where r and d are the intrinsic growth rates for the valuable population and pest
population respectively, m is the death rate of the predator (biological control agent),
the constants ci , i = 1, . . . , 4 are the interaction coefficients between the species.
We apply the control uk to increase the growth rate of the predator at each time
step, for example, we can import the natural enemies of the pest or supplement the
existing predators.

The goal is to maximize

T−1∑
k=0

B1xk − B2 yk − B3zk −
1
2 Au2

k (2-2)

over u ∈ U1, with A > 0, Bi > 0, i = 1, 2, 3 constants; that is, we want to
maximize the valuable population while minimizing the pest population and the
cost of applying the biological control, we also minimize the predator population
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for environmental consideration over the entire time period. We choose a quadratic
cost for simplicity and other forms could be treated.

We will use the extension of Pontryagin’s maximum principle (PMP) [Lenhart and
Workman 2007; Pontryagin et al. 1962; Sethi and Thompson 2006] for the optimal
control of discrete system. The technique involves the use of adjoint functions, which
append the discrete system (2-1) to the maximization of the objective functional
(2-2). PMP gives the optimality system of difference equations consisting of the state
and adjoint difference equations coupled with the control characterization. Note that
the adjoint equations have final time boundary conditions while the state equations
have initial conditions. The key idea is that the adjoint method provides us with
the gradient of the cost function needed for the maximization procedure. We note
that an optimal control exists due to the finite dimensional structure of this system.

Applying the extension of Pontryagin’s maximum principle for discrete systems
[Lenhart and Workman 2007; Pontryagin et al. 1962; Sethi and Thompson 2006],
we form the Hamiltonian:

Hk = B1xk − B2 yk − B3zk −
1
2 Au2

k + λ1,k+1
(
xk + r xk(1− xk)− c1xk yk

)
+ λ2,k+1(dyk + c2xk yk − c3 ykzk)+ λ3,k+1(zk −mzk + c4 ykzk + ukzk), (2-3)

which is used to derive the necessary conditions in the next theorem.

Theorem 2.1. Given an optimal control u∗ ∈ U1 and the corresponding states
x∗, y∗, z∗ from (2-1), there exist adjoint functions λi , i = 1, 2, 3 satisfying:

λ1,k = B1+ λ1,k+1
(
1+ r − 2r x∗k − c1 y∗k

)
+ λ2,k+1c2 y∗k ,

λ2,k =−B2− λ1,k+1c1x∗k + λ2,k+1
(
d + c2x∗k − c3z∗k

)
+ λ3,k+1c4z∗k ,

λ3,k =−B3− λ2,k+1c3 y∗k + λ3,k+1
(
1−m+ c4 y∗k + u∗k

)
,

λ1,T = λ2,T = λ3,T = 0.

(2-4)

Furthermore, the characterization of u∗k is

u∗k =min
{
max{λ3,k+1z∗k/A, 0},M

}
. (2-5)

Proof. Using the extension of Pontryagin’s maximum principle for discrete systems
[Lenhart and Workman 2007; Pontryagin et al. 1962; Sethi and Thompson 2006],
we have

λ1,k =
∂Hk

∂xk
= B1+ λ1,k+1(1+ r − 2r x∗k − c1 y∗k )+ λ2,k+1c2 y∗k ,

λ2,k =
∂Hk

∂yk
=−B2−λ1,k+1c1x∗k +λ2,k+1(d+c2x∗k −c3z∗k)+λ3,k+1c4z∗k ,

λ3,k =
∂Hk

∂zk
=−B3− λ2,k+1c3 y∗k + λ3,k+1(1−m+ c4 y∗k + u∗k). (2-6)
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In addition, the transversality conditions are

λ1,T = λ2,T = λ3,T = 0.

Using
∂Hk

∂uk
=−Auk + λ3,k+1zk,

and ∂Hk/∂uk = 0 at u∗ on the interior of the control set, we have the control
characterization

u∗k =min
{
max{λ3,k+1z∗k/A, 0},M

}
. (2-7)

This concludes the proof. �

The optimality system consists of the state equations (2-1) with initial con-
ditions and adjoint equations (2-4) with the final time conditions and with the
characterization of the optimal control (2-5).

2.2. Numerical results. To solve the optimal biological control problem numeri-
cally, due to the boundary conditions being at the initial time for the states and at the
final time for adjoints, an iterative method is used to solve this optimality system.
Given initial guesses for the control and the state equations, the state system (2-1)
is solved forward in time, and the adjoint system (2-4) is solved backward in time.
The control is updated using the characterization (2-7) with the newly found state
and adjoint values, and the iteration repeats until convergence occurs. See [Lenhart
and Workman 2007] for details of this method.

Figure 1 (left) gives the valuable, pest and predator populations without the
application of the control. Without the control, the pest population increases, killing
off the valuable population, for r = d = 1.1, m = 0.05, c1 = 1, c2 = c3 = 1.2,
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Figure 1. Valuable, pest, predator populations without biological
control (left) and with biological control (right; A = 5).
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Figure 2. Optimal biological control, A = 5.

c4 = 0.2. In contrast, with the biological control, the growth of the pest population
decreases, allowing the valuable population to grow quickly; see Figure 1 (right).
Figure 2 gives the optimal biocontrol result for A = 5, M = 1, Bi = 1, i = 1, 2, 3.
We see the optimal biological control effort is gradually decreasing and we don’t
apply it after time step 5.

3. Optimal control using dual control

3.1. The dual control problem. Now we attempt to control the pest population
using both biological control and pesticide at the same time.

The controls satisfy

U2 =
{
(ui,0, ui,1, . . . , ui,T−1) ∈RT

| 0≤ ui,k ≤ M, i = 1, 2, k = 0, 1, . . . , T −1
}
,

with M the maximum control effort.
The model is, for k = 0, 1, . . . , T − 1 and given x0, y0, z0,

xk+1 = xk + r xk(1− xk)− c1xk yk,

yk+1 = dyk + c2xk yk − c3 ykzk − u1,k yk,

zk+1 = zk −mzk + c4 ykzk + u2,kzk,

(3-1)

where the control u1,k is the pesticide and we also apply the control u2,k to increase
the growth rate of the predator (biological control agent) at each time step.

The goal is to maximize

T−1∑
k=0

B1xk − B2 yk − B3zk −
1
2 A1u2

1,k −
1
2 A2u2

2,k, (3-2)

with Bi > 0, i = 1, 2, 3, A j > 0, i = 1, 2; that is, we want to maximize the
valuable population while minimizing the pest population and the cost of applying
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the pesticide and biological control, we also minimize the predator population for
environmental purpose over the entire time period.

Applying the extension of Pontryagin’s maximum principle for discrete systems
[Lenhart and Workman 2007; Pontryagin et al. 1962; Sethi and Thompson 2006],
we form the Hamiltonian:

Hk = B1xk − B2 yk − B3zk −
1
2 A1u2

1,k −
1
2 A2u2

2,k

+ λ1,k+1
(
xk + r xk(1− xk)− c1xk yk

)
+ λ2,k+1(dyk + c2xk yk − c3 ykzk − u1,k yk)

+ λ3,k+1(zk −mzk + c4 ykzk + u2,kzk), (3-3)

which is used to derive the necessary conditions in the next theorem.

Theorem 3.1. Given optimal controls u∗i ∈ U2, i = 1, 2 and the corresponding
states x∗, y∗, z∗ from (3-1), there exist adjoint functions λi , i = 1, 2, 3 satisfying

λ1,k = B1+ λ1,k+1
(
1+ r − 2r x∗k − c1 y∗k

)
+ λ2,k+1c2 y∗k ,

λ2,k =−B2− λ1,k+1c1x∗k + λ2,k+1
(
d + c2x∗k − c3z∗k − u∗1,k

)
+ λ3,k+1c4z∗k ,

λ3,k =−B3− λ2,k+1c3 y∗k + λ3,k+1
(
1−m+ c4 y∗k + u∗2,k

)
,

λ1,T = λ2,T = λ3,T = 0.

(3-4)

Furthermore, the characterizations of u∗1,k, u∗2,k are

u∗1,k =min
{
max{−λ2,k+1 y∗k /A1, 0},M

}
,

u∗2,k =min
{
max{λ3,k+1z∗k/A2, 0},M

}
.

(3-5)

Proof. Using the extension of Pontryagin’s maximum principle for discrete systems
[Lenhart and Workman 2007; Pontryagin et al. 1962; Sethi and Thompson 2006],
we have

λ1,k =
∂Hk

∂xk
= B1+ λ1,k+1

(
1+ r − 2r x∗k − c1 y∗k

)
+ λ2,k+1c2 y∗k ,

λ2,k =
∂Hk

∂yk
=−B2−λ1,k+1c1x∗k+λ2,k+1(d+c2x∗k−c3z∗k−u∗1,k)+λ3,k+1c4z∗k ,

λ3,k =
∂Hk

∂zk
=−B3− λ2,k+1c3 y∗k + λ3,k+1(1−m+ c4 y∗k + u∗2,k).

In addition, the transversality conditions are

λ1,T = λ2,T = λ3,T = 0. (3-6)
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Using
∂Hk

∂u1,k
=−A1u1,k − λ2,k+1 yk,

and ∂Hk/∂u1,k = 0 at u∗1 on the interior of the control set, we have the control
characterization

u∗1,k =min
{
max{−λ2,k+1 y∗k /A1, 0},M

}
. (3-7)

And using
∂Hk

∂u2,k
=−A2u2,k + λ3,k+1zk,

and ∂Hk/∂u2,k = 0 at u∗2 on the interior of the control set, we have the control
characterization

u∗2,k =min
{
max{λ3,k+1z∗k/A2, 0},M

}
. (3-8)

This concludes the proof. �

3.2. Numerical results and conclusion. In this section, we apply dual control,
combining pesticide and biological control. Figure 3 shows the significant increase
in valuable population and decrease in pest population after applying dual control,
and maintaining the predator at a reasonable level. Figure 3 (left) gives the result
for A1 = A2 = 5 and Figure 3 (right) gives the result for A1 = A2 = 1, with all the
other parameters kept the same with Section 2.2. We vary the cost coefficients A1,
A2 to see the effect on the populations and the optimal control strategy. With the
lower cost coefficients Ai , i = 1, 2, we can apply more pesticide and biological
control, and the pest population can be reduced to a lower level; see Figures 3 and
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Figure 3. Valuable, pest, predator populations with dual control.
Left: A1 = 5, A2 = 5. Right: A1 = 1, A2 = 1.
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Figure 4. Optimal dual control, different A1 and A2. Top: pesti-
cide, A1 = 5, A2 = 5 (left); biological control, A1 = 5, A2 = 5
(right). Bottom: pesticide, A1=1, A2=1 (left); biological control,
A1 = 1, A2 = 1 (right).

4. We note that lowering the cost of both controls provides a substantial increase in
pesticide use and only a modest increase in the use of biological control.

We also compare the result of biological control and dual control. We see from
Figures 1 (right) and 3 that dual control gives better results for maintaining the
valuable population and reducing the pest population, while keeping the predator at
a low level.

In summary, we give a theoretical framework using discrete time optimal control
theory for pest control problems and provide the numerical results. We apply the
biological control and the combination of the pesticide and biological control (dual
control) to find the optimal strategy. The results provide suggestions in the design
of appropriate control strategies and assist management decision-making.

We should note that in our models (2-1) and (3-1), the order of events is that
population growth occurs first, then it is increased/decreased by interactions with
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other species or through human intervention. We can explore other order of events
since Bodine et al. [2012] point out for discrete models different order of events
can lead to qualitatively different optimal control strategies.
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