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The concept of frames in a Banach space has been introduced by Grochenig
and developed by several authors. The main feature of a frame is to present
every element of the underlying Banach space as a norm-convergent series. In
this decomposition, the dual frame plays an essential role. The existence of a
dual p-frame is not guaranteed in general. Some characterizations of duals of
p-frames are given in this paper.

1. Introduction and preliminaries

A sequence { f;}°2, in a Hilbert space 9 is called a frame if there exist constants

A, B > 0 such that

AISIP =) WL P =BISIP (f €90, (1-1

i=1

The numbers A and B are called frame bounds. A frame is called tight if A = B.
In frame theory, the operator T : /2 — ¥ given by T{ci}2, = 372 ¢ifi is useful
in analyzing various properties of frames. It is called the synthesis or preframe
operator. Tts adjoint T* : % — [2; [+ {(f, Ji)}72, is called the analysis operator.
By composing 7" and T*, we obtain the frame operator

S:9 -9 Sf=) (ffi)fi (fe).

i=1
The frame operator S is invertible and the reconstruction formula
o0
[=8STISF=>(LSTAVA (fe) (1-2)
i=1
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holds. The sequence {S ™! Ji}72, which plays the same role as the dual in the theory
of bases is also a frame. It is called the canonical dual of { f;}{2 ,. In general, the
Bessel sequence {g;}72 | is called a dual of { f;}72, if

o0

f=Y (fe)fi (fe). (1-3)

i=1

For general references on this theory, we refer the reader to [Christensen 2008,
Section 5.1]. Recently, various generalizations of frames have been proposed:
continuous frames [Ali et al. 1993; Askari-Hemmat et al. 2001; Gabardo and Han
2003], g-frames [Sun 2006], fusion frames [Casazza et al. 2008], von Neumann—
Schatten frames [Sadeghi and Arefijamaal 2012], and so on. Frames for Banach
spaces were first introduced in [Grochenig 1991] and were developed in [Aldroubi
et al. 2001; Cazassa and Christensen 1997; Casazza et al. 1999; 2005]. In particular,
Christensen and Stoeva [2003] studied p-frames in Banach spaces and obtained a
lot of interesting and important results.

In applications of frame theory the goal is to recognize the finer properties
of functions by means of the magnitudes of the frame coefficients [Benedetto
et al. 2006; Bolcskei et al. 1998; Candes and Donoho 2004; Heath and Paulraj
2002]. These properties, typically smoothness and decay properties or phase-space
localization of functions, are measured by the Banach space norm. Dual frames
have a key role in the decomposition of elements in the underlying space. Casazza
et al. [2005] present some equivalent conditions for the existence of reconstruction
formulas in Banach spaces. Moreover, sufficient conditions for the existence of dual
frames are studied in [Aldroubi et al. 2001]. In this article, at the first, we review the
definition and basic properties of p-frames, and then express some characterizations
of duals of p-frames. The analogous results concerning frames in Hilbert spaces
may be found in [Li 1995]. Finally, we discuss a stability theorem for duals of
p-frames.

2. Elementary properties of p-frames

Throughout this paper, X is a separable Banach space with dual X*, 1 < p,¢g < oo
and % + é = 1. A sequence {g;}{2, € X™* is called a p-frame for X if there exist
constants 4, B > 0 such that

Allx] < (Z |g,-<x)|l’)” < Blx| (e x). @)

i=1

The sequence {g;}72, is a p-Bessel sequence if at least the upper p-frame
condition is satisfied. Analogous to frame theory in Hilbert spaces, one can define
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the synthesis operator as

o0
T:19->X* T{d}:=) digi.
i=1
A straightforward calculation shows that {g;}°, C X™ is a p-Bessel sequence
with bound B if and only if 7 is well-defined and || 7’| < B; see [Christensen and
Stoeva 2003, Proposition 2.2].
The following result shows other aspects of the synthesis operator:

Proposition 2.1 [Christensen and Stoeva 2003]. Let {g;} € X * be a p-frame. Then
(i) the adjoint of T given by T* : X — [7; > {gi(f)}S2, has closed range;

i=1
(il) X is reflexive;
@i11) T is onto.
The next proposition deals with preservation of the p-frame property under the
action of various operators. Its proof is straightforward and we omit it.

Proposition 2.2. Let X and Y be two Banach spaces and V : Y — X be a bounded
operator. Then

() if{gi}s2, S X* is a p-Bessel sequence for X, then {W*g;}° | is a p-Bessel
sequence for Y

(i) if {gi}$2, is a p-frame for X, and W is one-to-one with closed range, then
{(W*gi}2, is a p-frame for Y.

Definition 2.3. Let X be a Banach space and 1 < p < co. A sequence { f;}72, € X

is called a p-Riesz basis for X if the closed linear span of { f;}72 | is X and there

exist constants 4 and B such that, for any finite scalars {c;},

A(T1al?)? < | Safil < BT lel?)?. @2)
Clearly, if {g;}72, € X* is a p-Riesz basis for X* then its synthesis operator
has a bounded inverse. In particular, every p-Riesz basis for X* is a ¢-frame for
X with the same bounds.
If {gi}2, € X* is a p-frame for X, then Proposition 2.1 shows that every
g € X* can be written as g = Y ;o d;g; for some {di}{2, € 19. Our aim is to
find such a decomposition for the elements of X.

1

3. Main results

Let { fi}72, be a frame in a Hilbert space ¢ with the synthesis operator 7". The
canonical dual {S~! Ji}72, deals with the frame operator S see (1-2). It is not

guaranteed that the canonical dual frame has the same structure as the frame itself
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[Daubechies 1990]. Alternate duals are now presented as being a good candidate to
apply the reconstruction formula (1-2).

Unfortunately, in p-frames, the frame operator cannot be defined. Hence, we
first try to describe the canonical dual with respect to the synthesis operator. In
fact, let { f;}$2 | be a frame in a Hilbert space ¥ with the analysis operator 7°*.
Then the frame condition (1-1) implies that 7* is injective and has closed range
[Christensen 2008, Corollary 5.4.3]. Hence, the operator (T*)™! : R(T*) — %
can be extended to a bounded operator ® : /2 — ¥. Therefore,

STl i =87IT8; = ST TT*08; = 8,

where {§;}72 | is the canonical orthonormal basis for / 2,
We summarize this fact in the following lemma.

Lemma 3.1. Let { f;}72, be a frame in ¥ with the analysis operator T*. The
7oy where @ : 12 — Y is the
unique extension of (T*)~! and {5; 122 | is the canonical orthonormal basis of 1. 2

canonical dual { f;}72 | can be represented as {®§;}72

Let X be a Banach space with dual X* and 1 < p < oco. The usual duality
between X and X* allows us to consider p-frames for X™*. In fact, a sequence
{/i}72, € X is a p-frame if there exist constants A and B such that

1

Allg] < ( 5 |g(fl>|1’)” < Blgll (gex").

i=1
If the upper frame condition is satisfied we call { f;}7° | a p-Bessel sequence.

Definition 3.2. Let {g;}°, € X be a p-Bessel sequence for X. A g-Bessel
sequence { f;}°2, € X for X* is called a dual for {g;}72 , if

g=) gfgi (geX*) or f=) gNfi (feX). (3-1)

If {gi}{2, is p-frame, by using the Cauchy—Schwarz inequality, { f;}72 , is auto-
matically a ¢-frame for X*, and vice versa. For more details see Theorem 2.10 of
[Christensen and Stoeva 2003].

Denote the synthesis operators of {g;}7° and { f;}72, by T and U, respectively.
Also let X be reflexive. Then (3-1) holds if and only if TU* = Iy« or UT* = Ix.
Although, for every p # 2, there exist a Banach space X and a p-frame for X
without any dual [Casazza et al. 1999], Christensen and Stoeva [2003] showed that a
p-frame {g;}72 | has a dual if and only if %(7"*), the range of 7'*, is complemented
in /7. Obviously, every p-Riesz basis for X * has a unique dual.

Now we give a characterization of dual p-frames:
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Proposition 3.3. Ler {g;}72, € X™ be a p-frame for X with the synthesis opera-
tor T. Then there exists a one-to-one correspondence between duals of {g;}>°
and bounded left inverses of T*.

i=1

Proof. Suppose that ® : /? — X is a bounded left inverse of 7* and consider
{8i}72 | as the canonical basis of /7. It is obvious that { f;}72, := {®§;}72, is a
q-Bessel sequence and

i=1" :

[=0T*f =0 gi(Nsi=> gi(Nfi (feX).

i=1 i=1

Thus { f;}$2, is a g-frame for X*. Conversely, let { f;}72, € X be a dual for
{gi}72,. Consider ® : /? — X as the synthesis operator of { f;}{2 . Then ® is

bounded and for each f € X we have

=Y g(Nfi=) ()P = (g2, = ®T* . m

i=1 i=1

As a consequence, we show that a p-frame {g;}{2, € X™* with a unique dual
is a g-Riesz basis for X*. In fact, by Proposition 3.3 there exists a one-to-one
correspondence between the dual frames of {g;}72, and all bounded left inverse
operators of 7, in which 7 is the synthesis operator of {g;}7° . Hence, {g;}{2
has a unique dual if and only if 7T is injective. 7 is also surjective by Proposition 2.1.
Thus T is invertible and ||7~'|| < oo. This implies that { gi}i2, is a g-Riesz basis
for X*.

Proposition 3.4. Assume that p-frame {g;}32 | € X * has a dual. Then the q-Bessel
sequence { fi}72, € X is a dual for {g,}l_1 if there exists a bounded operator
W X* — 19 such that TV = 0. Conversely, all duals of {g;}*°, (provided
existence) can be described in this manner.

i=1

Proof. Let {g;}72, be a p-frame. As a consequence of Proposition 2.1, the operator
(T*)™ ' : R(T*) - X is well-defined. If {gi}$2, has a dual, then R(T*) is
complemented and so this operator can be extended to a bounded linear operator
W 1P — X. Now assume that { /;}7° | € X is a dual for {g;}72, with the synthesis
operator U. Then (3-1) immediately implies that TU* = I. Define ¥ : X* — [4
by W = U* — W?*. Clearly, ¥ is a bounded operator and

TU=TU*—TW*=1—(WT**

Conversely, suppose that ¥ : X™* — /7 is a bounded operator via TW = 0. Take
® =W —¢*. Then ® is a bounded operator and ®7* = I. Using Proposition 3.3
we conclude that {®d;}72 | is a dual for {g;}7> O
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Suppose that {g;}°2, € X* is a p-frame with the synthesis operator 7" such
that R(T*) € I? is complemented. Then {W§;}°2 , is called the canonical dual of
{gi}72,, where W : [P — X is the extension of (T *)~1. Other duals, which are
characterized by Proposition 3.3, are called alternate duals. In other words, the
canonical dual is associated to the bounded inverse of 7* whereas alternate duals
are in fact obtained by the left inverses of 7*.

Now we are ready to state a perturbation theorem about duals.

Theorem 3.5. Let {g;}2 | € X ™ be a p-frame for X with bounds Ay and By. The
p-frames sufficiently close t0{gi}72 | have a dual. More precisely, let { f;}° | € X
be a dual for {g;}72 | with bounds A2 and By, and let {g[}°2 | be another p-frame
with bounds A" and B’ such that {g; — g} }$2 e is a p-Bessel sequence with constant
sufficiently small €. Then there exists a dual q-frame { f}2 | for {g(}$2 | such that
{fi — J]332, is also a q-Bessel sequence with bound multiplied by €.

Proof. Denote by T} and T, the synthesis operators of {g;}7°, and {g;}°,
respectively. Then ||T7 — T>|| < € by Proposition 2.2 of [Christensen and Stoeva
2003]. Moreover, (Tl’")_1 : R(T}") — X can be extended to a bounded operator
W :1? — X by the assumption. Hence

11 =T Wl =T — T)*WI < [WIIT: — T2ll < e[ W].

Consequently 7 W is invertible. It follows that 7' has a bounded right inverse. A
similar argument shows that its left inverse also exists. Consider Uy : [? — X as
the synthesis operator of { f;}7° . Then

11— U\ T || = |U(T1 = T2)* | < [ULllII Ty — T2l < €| U l.

Therefore, the p-frame {g; 72, has a dual. We are looking for the desired dual.
First by Proposition 3.4 there exists a bounded operator ¥ : X* — [9 such that
T1¥ = 0. Assume that W, : /[? — X is an extension of (Tz*)_l. Put

hi = (Wp + ¥%)35;.

Then {£;}7° | is a g-Bessel sequence with the synthesis operator U, := W, + ¥*
by Proposition 2.2. Moreover, for each f € X we have

I/ =15 fll = 1 T5 [
= |U* T/ =TS f]
=T =2 IILAN = el Al

Therefore, U, T is invertible for sufficiently small € > 0. In particular,

1 =0T | < €] W]
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It remains to show that the g-frame { f;'}$2
theorem. It is easy to see that

X2, =T f,}l_l satisfies the

Uy T} = I+ (T} —T). (3-2)

Hence,
L—€|¥| = UL TS (3-3)

For each sequence {d;}72 | in /” by using (3-2) and (3-3) we get

S difi— 1) = 10 diy — T Uy (i)

i=1

1
o0 D
< ||Ul||||1—<U2T2*>—1||( 5 |di|f’)

i=1

1
o0 2
< NI TS 0TS —1||( > |d,-|1’)
i=1
vz (

e\ & "p)

i=1
This means that { f; — f/}$2, is a g-Bessel sequence and its bound is a multiple
of €. O

Let {g;}$2, € X™ be a p-Bessel sequence for X with the synthesis operator 7.
We say that a q -Bessel sequence { f;}°° . € X with the synthesis operator U is an
approximately dual of {g;}%° . if

i=1—
i=1

II-TU*|<1 or |[I-UT*||<1. (3-4)

Obviously, { f;}72 is a dual of {g;}$2, when TU* = or UT* = I. Approximate
duals are studled 1n a Hilbert space setting in [Christensen and Laugesen 2010]. They
are easier to construct than the classical dual frames. For p-frames, which don’t
have duals in general, it is natural to ask whether we can exploit the approximate
duals instead of duals. Unfortunately, the answer is negative. In fact, if {g;}{2, isa
p-frame for X with an approximate dual { ;}° ., then, with notation as above the
operator UT™* is invertible. Hence, {UT™ f;}° . is a p-frame by Proposition 2.2.
Moreover,

_1’

i=1

f=UTHUT f =OTH Y @GN fi= Y a(HUTH ™ fi.

i=1 i=1

Therefore, {(UT*)™! f;} is a dual of 1gi}72,
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