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Let N.5;D5;X / be the number of quintic number fields whose Galois closure
has Galois group D5 and whose discriminant is bounded by X . By a conjecture
of Malle, we expect that N.5;D5;X / � C �X

1
2 for some constant C . The best

upper bound currently known is N.5;D5;X /�X
3
4
C", and we show this could

be improved by counting points on a certain variety defined by a norm equation;
computer calculations give strong evidence that this number is� X

2
3 . Finally,

we show how such norm equations can be helpful by reinterpreting an earlier
proof of Wong on upper bounds for A4 quartic fields in terms of a similar norm
equation.

1. Introduction and statement of results

Let K be a number field and G � Sn a transitive permutation group on n letters.
In order to study the distribution of fields with given degree and Galois group, we
introduce the following counting function:

N.d;G;X / WD

#fdegree d number fields K with Gal.Kgal=Q/'G and jDK j �X g:

Here DK denotes the discriminant of K, counting conjugate fields as one. Our
goal is to study this function for d D 5 and GDD5. Malle [2002] has conjectured
that

N.d;G;X /� C.G/ �X a.G/
� log.X /b.G/�1 (1)

for some constant C.G/ and for explicit constants a.G/ and b.G/, and this has been
proven for all abelian groups G. Although this conjecture seems to be close to the
truth on the whole, Klüners [2005] found a counterexample when G D C3 o C2
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by showing that the conjecture predicts the wrong value for b.G/. This conjecture
has been modified to explain all known counterexamples in [Turkelli 2008].

We now turn to the study of N.5;D5;X /. By Malle’s conjecture, we expect
that

N.5;D5;X /
?
� C �X

1
2 : (2)

This question is closely related to average 5-parts of class numbers of quadratic
fields. In general, let l be a prime, D range over fundamental discriminants, and
rD WD rkl.Cl

Q.
p

D/
/. Then the heuristics of Cohen–Lenstra predicts that the aver-

age of lrD � 1 over all imaginary quadratic fields is 1, and the average of lrD � 1

over all real quadratic fields is l�1.
In fact, one can show using class field theory that the Cohen–Lenstra heuris-

tics imply that Malle’s conjecture is true for D5 quintic fields. Conversely, the
best known upper bound for N.5;D5;X / is proved using the “trivial” bound (see
[Klüners 2006])

lrD � # Cl
Q.
p

D/
DO.D

1
2 log D/: (3)

This gives N.5;D5;X /�X
3
4
C", and any improved bound would give nontrivial

information on average 5-parts of class groups in a similar manner.
In this paper, we consider a method of point counting on varieties to give upper

bounds on N.5;D5;X /. Our main result is the following:

Theorem 1.1. To any quintic number field K with Galois group D5, there corre-
sponds a triple .A;B;C / with A;B 2 O

QŒ
p

5�
and C 2 Z, such that

NmQŒ
p

5�
Q

.B2
� 4 � NA �A2/D 5 �C 2 (4)

and satisfying the following bounds under any archimedean valuation:

jAj �D
1
4

K
; jBj �D

3
8

K
; and jC j �D

3
4

K
: (5)

Conversely, the triple .A;B;C / uniquely determines K.

In Section 6, we further provide numerical evidence that N.5;D5;X /�X
2
3
C˛

for very small ˛; in particular the exponent appears to be much lower than 3
4

.
Before we prove Theorem 1.1, we show that earlier results from [Wong 2005]

in the case of G D A4 can be handled in a similar fashion. Namely, we give a
shorter proof of the following theorem:

Theorem 1.2 (Wong). To any quartic number field K with Galois group A4, there
corresponds a tuple .a2; a3; a4;y/ 2 Z4 such that

.4a2
2C 48a4/

3
D NmQŒ

p
�3�

Q

�
32a3

2C 108a2
3� 6a2.4a2

2C 48a4/� 12
p
�3y

�
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and satisfying the following under any archimedean valuation:

ja2j �D
1
3

K
; ja3j �D

1
2

K
; ja4j �D

2
3

K
; and jyj �DK :

Conversely, given such a tuple, there corresponds at most one A4-quartic field. In
particular, we have N.4;A4;X /�X

5
6
C".

2. Upper bounds via point counting

Let G be a transitive permutation group. If K is a number field of discriminant
DK and degree n for which Gal.Kgal=Q/ ' G, then Minkowski theory implies
there is an element ˛ 2 OK of trace zero with

j˛j �D
1

2.n�1/

K
(under any archimedean valuation),

where the implied constant depends only on n. In particular, if K is a primitive
extension of Q, then K D Q.˛/, so the characteristic polynomial of ˛ will deter-
mine K. One can use this to give an upper bound on N.n;G;X / (at least in the
case where K is primitive), since every pair .K; ˛/ as above gives a Z-point of

Spec QŒx1;x2; : : : ;xn�
G=.s1/;

where s1 D x1C x2C � � � C xn (here QŒx1;x2; : : : ;xn�
G denotes the ring of G-

invariant polynomials in QŒx1;x2; : : : ;xn�).

3. Proof of Theorem 1.2

In this section, we sketch a simplified (although essentially equivalent) version of
Wong’s proof [Wong 2005] that N.4;A4;X /�X

5
6
C� as motivation for our main

theorem. In this section, we assume that the reader is familiar with the arguments
in Wong’s paper. As noted in the last section, it suffices to count triples .a2; a3; a4/

for which jak j �X
k
6 under any archimedean valuation and

256a3
4� 128a2

2a2
4C .16a4

2C 144a2a2
3/a4� 4a3

2a2
3� 27a4

3

D Disc.x4
C a2x2

C a3xC a4/D y2

for some y 2 Z. (See Equation 4.2 of [Wong 2005].)
The key observation of Wong’s paper (although he does not state it in this way)

is that this equation can be rearranged as

.4a2
2C48a4/

3
DNmQŒ

p
�3�

Q

�
32a3

2C108a2
3�6a2.4a2

2C48a4/�12
p
�3y

�
: (6)

One now notes that there are�X
2
3 possibilities for 4a2

2
C48a4, and for each of

these choices .4a2
2
C48a4/

3 can be written in�X " ways as a norm of an element
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of QŒ
p
�3�. Thus, it suffices to count the number of points .a2; a3/ for which

32a3
2C 108a2

3� 6a2.4a2
2C 48a4/� 12

p
�3y and 4a2

2C 48a4

are fixed. But the above equation defines an elliptic curve, on which the number
of integral points can be bounded by Theorem 3 in [Heath-Brown 2002]. This
then gives Wong’s bound (as well as the conditional bound assuming standard
conjectures as Wong shows).

4. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. As explained in Section 2, it
suffices to understand the Z-points of

Spec QŒx1;x2;x3;x4;x5�
D5=.x1Cx2Cx3Cx4Cx5/

inside a particular box. Write � for a primitive fifth root of unity, and define

Vj D

5X
iD1

�ij xi :

In terms of the Vj , we define

AD V2 �V3;

B D V1 �V
2

2 CV 2
3 �V4;

C D
1
p

5
� .V1 �V

2
2 �V 2

3 �V4/ � .V2 �V
2

4 �V 2
1 �V3/:

Lemma 4.1. The expressions A, B, and C are invariant under the action of D5.

Proof. The generators of D5 act by Vj 7! V5�j and Vj 7! �j Vj ; the result follows
immediately. �

Lemma 4.2. We have A;B 2 O
QŒ
p

5�
and C 2 Z.

Proof. To see the first assertion, it suffices to show that A and B are invariant by the
element of Gal.QŒ��=Q/ given by � 7! ��1. But this induces the map Vj 7! V5�j ,
so this is clear.

To see that C is in Z, we observe that the generator of Gal.QŒ��=Q/ given by
� 7! �2 acts by C

p
5 7!�C

p
5. Since C

p
5 is an algebraic integer, it follows that

C
p

5 must be a rational integer times
p

5, so C 2 Z. �

Now, we compute

B2
�4 � NA �A2

D .V1 �V
2

2 CV 2
3 �V4/

2
�4 �V1 �V4 �.V2 �V3/

2
D .V1 �V

2
2 �V 2

3 �V4/
2:
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Therefore,

NmQŒ
p

5�
Q

.B2
� 4 � NA �A2/D .V1 �V

2
2 �V 2

3 �V4/
2
� .V2 �V

2
4 �V 2

1 �V3/
2
D 5 �C 2;

which verifies the identity claimed in Theorem 1.1.
To finish the proof, it remains to show that to each triple .A;B;C /, there cor-

responds at most one D5-quintic field. To do this, we begin with the following
lemma.

Lemma 4.3. None of the Vj are zero.

Proof. Suppose that some Vj is zero. Since NA �A2 D V1 � V
2

2
� V 2

3
� V4, it follows

that NA �A2 D 0, and hence

NmQŒ
p

5�
Q

.B2/D 5 �C 2;

which implies BDC D0. Using BD0, we have V1V 2
2
�V 2

3
V4DV1V 2

2
CV 2

3
V4D0,

so V1V 2
2
DV 2

3
V4D 0. Similarly, using NBD 0, we have V2V 2

4
DV 2

1
V3D 0. Thus,

all pairwise products ViVj with i ¤ j are zero, so at most one Vk is nonzero.
Solving for the xi , we find xi D �

�ikc for some constant c. (It is easy to verify
that this is a solution, since

P
�i D 0; it is unique up to rescaling because the

transformation .xi/ 7! .Vi/ is given by a Vandermonde matrix of rank 4). Hence,
the minimal polynomial of ˛ is t5�c5D 0, which is visibly not a D5 extension. �
Lemma 4.4. For fixed .A;B;C /, there are at most two possibilities for the ordered
quadruple

.V1V 2
2 ;V

2
3 V4;V2V 2

4 ;V
2

1 V3/:

Proof. Since V1V 2
2
CV 2

3
V4DB and V1V 2

2
�V 2

3
V4D

NA �A2 are determined, there
are at most two possibilities for the ordered pair .V1V 2

2
;V 2

3
V4/. Similarly, there at

most two possibilities for the ordered pair .V2V 2
4
;V 2

1
V3/; thus if V1V 2

2
D V 2

3
V4,

then we are done. Otherwise,

V2 �V
2

4 �V 2
1 �V3 D

C
p

5

V1 �V
2

2
�V 2

3
�V4

:

Since V2V 2
4
C V 2

1
V3 D

NB, this shows that the ordered pair .V1V 2
2
;V 2

3
V4/ de-

termines .V2V 2
4
;V 2

1
V3/. Hence there are at most two possibilities our ordered

quadruple. �
Lemma 4.5. For fixed .A;B;C /, there are at most ten possibilities for the ordered
quadruple .V1;V2;V3;V4/.

Proof. In light of Lemmas 4.4 and 4.3, it suffices to show there at most five possi-
bilities for .V1;V2;V3;V4/ when we have fixed nonzero values for

.V1V4;V2V3;V1V 2
2 ;V

2
3 V4;V2V 2

4 ;V
2

1 V3/:
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But this follows from the identities

V 5
1 D

V1V 2
2
� .V 2

1
V3/

2

.V2V3/2
; V3 D

V 2
1

V3

V 2
1

; V4 D
V 2

3
V4

V 2
3

; V2 D
V2V 2

4

V 2
4

: �

This completes the proof of Theorem 1.1, because jD5j D 10, so each D5-
quintic field corresponds to ten ordered quadruples .V1;V2;V3;V4/, each of which
can be seen to correspond to the same triple .A;B;C /. Thus, the triple .A;B;C /
uniquely determines the D5-quintic field, since otherwise we would have at least 20

quadruples .V1;V2;V3;V4/ corresponding to .A;B;C /, contradicting Lemma 4.5.

5. The quadratic subfield

Proposition 5.1. Suppose that K is a D5-quintic field corresponding to a triple
.A;B;C / with C ¤ 0. Then the composite of QŒ

p
5� with the unique quadratic

subfield F �Kgal is generated by adjoining to QŒ
p

5� the square root of

.2
p

5� 10/ � .B2
� 4 � NA �A2/:

Proof. Using the results of the previous section, we note thatq
.2
p

5� 10/ � .B2� 4 � NA �A2/D 2 � .� � ��1/ � .V1 �V
2

2 �V 2
3 �V4/:

By inspection, the D5-action on the above expression is by the sign representation,
and the action of Gal.QŒ��=QŒ

p
5�/ is trivial. Hence, adjoining the above quantity

to QŒ
p

5� generates the composite of QŒ
p

5� with the quadratic subfield F . �

6. Discussion of computational results

Numerical evidence indicates that the number of triples .A;B;C / satisfying the
conditions of Theorem 1.1 is O.X

2
3
C˛/ for a small number ˛ (in particular, much

less than O.X
3
4 /). More precisely, we have the following table of results. The

computation took approximately four hours on a 3.3 GHz CPU, using the program
available at http://web.mit.edu/~elarson3/www/d5-count.py.

X #.A;B;C / X #.A;B;C / X #.A;B;C /

10 3 1000 127 100000 5145
31 3 3162 397 316227 11385

100 7 10000 951 1000000 25807
316 55 31622 2143 3162277 57079

The log plot on the next page shows that after the first few data points, the least
squares best fit to the last four data points given by yD 0:698xC0:506 with slope
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a little more than 2
3

is quite close.

2 4 6 8 10 12 14

2

4

6

8

10
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