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This paper describes a permutation notation for the Weyl groups of type F4 and
G2. The image in the permutation group is presented as well as an analysis of
the structure of the group. This description enables faster computations in these
Weyl groups which will prove useful for a variety of applications.

1. Introduction

Weyl groups, or finite Coxeter groups, are widely used in mathematics and in
applications (some examples are given in Section 2). They are most commonly
represented by generators and relations. The disadvantage of that representation
is that elements are not uniquely represented by strings or even minimal strings of
generators. For the classical Weyl groups combinatorialists use one-line permuta-
tion notation, which corresponds to the orbit of the standard basis vectors under
the Weyl group. This combinatorial representation provides unique representation,
which makes it efficient for computation (see [Haas and Helminck 2012]). Many
properties of the elements, such as length and order, can be quickly read from
the combinatorial representation (see, for example, [Haas et al. 2007]). Further,
the unique representation provides insight into more complex structures such as
involution and twisted involution posets; see [Haas and Helminck 2011].

For the exceptional Weyl groups of type G2, F4, E7 and E8, the orbit of the
standard basis vectors includes not just the positive and negative axes but additional
vectors, making description by permutation somewhat less obvious. Nonetheless,
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similar representations can be made in these cases as well. In this paper we give a
permutation representation for the Weyl group of type F4 and discuss a number of
properties of this representation. We also give a similar presentation for G2.

2. Motivation

Given a field k, symmetric k-varieties are the homogenous spaces G/H , where
G is the set of k-rational points of reductive group G defined over k and H the
set of k-rational points of the set of fixed points of an automorphism σ (defined
over k) of the group G. For k the real or p-adic numbers these are also known
as reductive symmetric spaces. These symmetric k-varieties have a detailed fine
structure of root systems and Weyl groups, similar to that of the group G itself.
This fine structure involves 4 (restricted) root systems and Weyl groups. To study
the structure of symmetric k-varieties one needs detailed descriptions of this fine
structure and how they act on the various types of elements of these root systems
and Weyl groups. For example, to study the representations associated with these
symmetric k-varieties one needs a detailed description of the orbits of (minimal)
parabolic k-subgroups acting on these symmetric k-varieties. A characterization
of these orbits was given in [Helminck and Wang 1993]. They showed that these
orbits can be characterized by

⋃
i∈I WG(Ai )/WH (Ai ), where {Ai | i ∈ I } is a set

of representatives of the H -conjugacy classes of the σ -stable maximal k-split tori,
WG(Ai ) is the set of Weyl group elements that have a representative in NG(Ai ),
the normalizer of Ai in G, and WH (Ai ) is the set of Weyl group elements that have
a representative in NH (Ai ). To fully classify these orbits one needs to compute the
subgroups WH (Ai ) of WG(Ai ). This requires a detailed analysis of the structure
of the Weyl groups and their subgroups.

Another example is that the classification of Cartan subspaces can be reduced
to a classification of WH (A)-conjugacy classes of σ -singular involutions. The
WG(A)-conjugacy classes of involutions were classified in [Helminck 1991]. A
detailed analysis of the Weyl groups and their subgroups will enable one to deter-
mine how a WG(A)-conjugacy class breaks up in WH (A)-conjugacy classes. There
are many other problems related to symmetric k-varieties for which one needs a
detailed description of the various Weyl groups and their subgroups. The detailed
combinatorial analysis of the structure of the Weyl groups of types F4 and G2 in
this paper enables us to compute the necessary data to solve those problems for
those symmetric k-varieties that have a restricted Weyl group of type F4 and G2.

The classical text on Weyl groups is [Bourbaki 2002], while a good modern
treatment to Weyl groups and their uses in Lie theory can be found in [Humphreys
1972]. The Weyl groups of type F and G are two of the exceptional Coxeter
groups; see [Humphreys 1990] for a basic treatment of these groups.
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3. The Weyl group of type F4

The root system of type F4 has the following characteristics. There are n = 48
roots. The usual basis is the set{

α1 = e2− e3, α2 = e3− e4, α3 = e4, α4 =
1
2(e1− e2− e3− e4)

}
.

The complete set of roots is {±ei ,±ei ± e j ,
1
2(±e1± e2± e3± e4)}. The positive

roots are {ei , ei ± e j ,
1
2(e1 ± e2 ± e3 ± e4)}. Recall the associated Weyl group is

generated by the reflections over the hyperplanes orthogonal to the basis roots.
These are usually denoted sαi , which we abbreviate to si . Here we label the short
positive roots with the numbers 1- 12 and describe how the Weyl group of type F4

is associated with a subgroup of the permutation group on [−12, . . . , 12]. I.e., each
element in W (F4) will be associated with a signed permutation on {1, . . . , 12}.

To begin compute the images of the short roots under the basis. These are
given in Table 1. Each column in the table describes where each root goes under
each basis reflection, so when read from top to bottom, the column gives one-line
notation for the generators of the Weyl group. These generators are

s1 = (1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12),

s2 = (1, 2, 4, 3, 5, 6, 8, 7, 9, 10, 12, 11),

s3 = (1, 2, 3,−4, 12, 11, 10, 9, 8, 7, 6, 5),

s4 = (9, 10, 11, 12,−5, 6, 7, 8, 1, 2, 3, 4).

root r sα1(r) sα2(r) sα3(r) sα4(r)

1 e1 1 1 1 9
2 e2 3 2 2 10
3 e3 2 4 3 11
4 e4 4 3 −4 12
5 1

2(e1− e2− e3− e4) 5 5 12 −5
6 1

2(e1− e2+ e3+ e4) 7 6 11 6
7 1

2(e1+ e2− e3+ e4) 6 8 10 7
8 1

2(e1+ e2+ e3− e4) 8 7 9 8
9 1

2(e1+ e2+ e3+ e4) 9 9 8 1
10 1

2(e1+ e2− e3− e4) 11 10 7 2
11 1

2(e1− e2+ e3− e4) 10 12 6 3
12 1

2(e1− e2− e3+ e4) 12 11 5 4

Table 1. Generators of W (F4).



84 P. CAHN, R. HAAS, A. G. HELMINCK, J. LI AND J. SCHWARTZ

In cycle notation, they can be expressed as products of transpositions as follows:

s1 = (2, 3)(6, 7)(10, 11), s3 = (8, 9)(7, 10)(6, 11)(5, 12)(4,−4),

s2 = (3, 4)(7, 8)(11, 12), s4 = (1, 9)(2, 10)(3, 11)(4, 12)(5,−5).

Note that the elements of W (F4) are in one-to-one correspondence with only
a subset of signed permutations on [1, . . . , 12]. In particular, since the first 4
elements give the image of the standard basis of R4, they determine the other 8
positions uniquely. In Section 3.10 we will see that there are further restrictions
on what can occur in the first four places.

3.1. A minimal word algorithm. We develop a method for the important task of
converting from this one-line notation to the standard representation of an element
as a minimal word. For x ∈W (F4), recall that the length of x , l(x), is the number
of letters in the minimal word of x . It is well-known that the length of x equals the
number of positive roots mapped to negative roots by x .

Lemma 3.2. Any nontrivial element of W (F4) maps at least one of e4, e2 − e3,
e3− e4, and 1

2(e1− e2− e3− e4) to a negative root.

Proof. This set of roots is exactly the set of roots which get mapped to negative
roots under the basis reflections. �

Lemma 3.3. Let x ∈ W (F4). Then x maps αi to a negative root if and only if
l(xsi ) < l(x).

Proof. This follows directly from the definitions. �

Algorithm 3.4. Given an element x = (a1, a2, . . . , a12) ∈ W (F4), the following
algorithm will output a minimal word for x .

1. If all ai > 0, go to step 6. Otherwise, go to step 2.

2. If a4 < 0, right multiply by s3 and go to step 1. Otherwise, go to step 3.

3. If a5 < 0, right multiply by s4 and go to step 1. Otherwise, go to step 4.

4. If a3 < 0, right multiply by s2 and go to step 1. Otherwise, go to step 5.

5. Right multiply by s1 and go to step 1.

6. If the resulting element is not the identity, compare it to the following list in
order to determine the final step(s).
(a) {1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12} = s1.
(b) {1, 2, 4, 3, 5, 6, 8, 7, 9, 10, 12, 11} = s2.
(c) {1, 3, 4, 2, 5, 7, 8, 6, 9, 11, 12, 10} = s2s1.
(d) {1, 4, 2, 3, 5, 8, 6, 7, 9, 12, 10, 11} = s1s2.
(e) {1, 4, 3, 2, 5, 8, 7, 6, 9, 12, 11, 10} = s1s2s1.

Theorem 3.5. Algorithm 3.4 produces a minimal word for x.
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Proof. Note that even if ai > 0 for all i , the length of x may not be zero because
not all positive roots are represented in the list of twelve roots. In particular, there
are six elements of W (F4) such that ai > 0 for all i . They are precisely those listed
in Step 6. of the algorithm together with the identity. Clearly steps 2 and 3 reduce
the length of x . If we arrive at step 4, i.e., a4 > 0, and a3 < 0, then one can check
that e3− e4 maps to a negative root under x , so multiplying by s2 will reduce the
length of x .

If we arrive at step 5, i.e., a3, a4, a5 > 0, but some other ai is negative, then we
show that a2 must be negative. Suppose instead that a2>0. Let 〈i〉+〈 j〉 denote the
root which is the vector sum of roots i and j . E.g., 〈5〉= 1

2(〈1〉−〈2〉−〈3〉−〈4〉) and
since x is a linear map this implies 〈a5〉=

1
2(〈a1〉−〈a2〉−〈a3〉−〈a4〉). Rearranging

gives 〈a1〉 = 〈a2〉 + 〈a3〉 + 〈a4〉 + 2〈a5〉, with all terms on the right positive by
assumption. Therefore, a1> 0. Similar calculations done in the correct order show
that all other ai must be positive. Explicitly: 〈a10〉=〈a5〉+〈a2〉; 〈a12〉=〈a5〉+〈a4〉;
〈a11〉 = 〈a5〉 + 〈a3〉; 〈a6〉 = 〈a12〉 + 〈a3〉; 〈a7〉 = 〈a12〉 + 〈a2〉; 〈a8〉 = 〈a10〉 + 〈a3〉;
〈a9〉 =

1
2(〈a1〉+ 〈a2〉+ 〈a3〉+ 〈a4〉).

Thus a2 < 0. In this case e2 − e3 will be mapped to a negative root, so right
multiplication by s1 will reduce the length.

If we arrive at step 6 then all ai > 0. Clearly these must be products of s1 and
s2 only. The 5 elements listed above plus the identity are all the possibilities. �

One can determine the length of any x ∈ W (F4) by finding a reduced word as
above. In what follows we give a combinatorial description of length. Partition the
short roots of F4 into the three sets

α = {±1,±2,±3,±4}, β = {±5,±6,±7,±8}, γ = {±9,±10,±11,±12}.

Lemma 3.6. For all x ∈ W (F4), {x(α), x(β), x(γ )} = {α, β, γ }. In other words,
x permutes the sets α, β and γ .

Theorem 3.7. For an element x = (a1, a2, · · · , a12), define

N (x)= |{i : ai < 0}|
and

p(ai , a j )=


0 if |ai |< |a j | and ai > 0,
2 if |ai |< |a j | and ai < 0,
1 if |ai |> |a j |.

Find k such that {±a4k+1,±a4k+2,±a4k+3,±a4k+4} = α. If k = 1,

l(x)=
∑
i> j

p(a4k+i , a4k+ j )+ N (x).

Otherwise,
l(x)=

∑
i< j

p(a4k+i , a4k+ j )+ N (x).
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Proof. The length counts the number of positive roots mapped to negative roots
under x . The function N (x) counts the number of short roots mapped to negative
roots, while the p(a4k+i , a4k+ j ) terms account for the number of long roots mapped
to negative roots. There are three cases depending on which set is mapped to α.

Suppose x(α) = α. Each of the positive long roots ei ± e j , i < j is the sum or
difference of the roots 〈1〉, 〈2〉, 〈3〉, 〈4〉; where the difference is taken as 〈i〉 − 〈 j〉
where i < j . Thus to determine which of these is mapped to a negative long root,
we need only consider the sum and difference of 〈ai 〉 for i = 1, . . . , 4. It is easy to
check that 〈ai 〉+ 〈a j 〉 is a negative root exactly when either |ai |> |a j | and a j < 0
or when |ai | < |a j | and ai < 0. As well, 〈ai 〉 − 〈a j 〉 is negative exactly when
|ai |< |a j | and ai < 0 or when |ai |> |a j | and a j > 0.

Suppose x(β) = α. Each of the positive long roots ei ± e j , j < i is the sum or
difference of the roots 〈5〉, 〈6〉, 〈7〉, 〈8〉 where the difference is taken as 〈i〉 − 〈 j〉
where j < i . With this reversed order the same conditions for when 〈ai 〉 + 〈a j 〉

and 〈ai 〉− 〈a j 〉 are negative will still hold.
Suppose x(γ ) = α. Each of the positive long roots ei ± e j , i < j is the sum

or difference of the roots 〈9〉, 〈10〉, 〈11〉, 〈12〉; where the difference is taken as
〈i〉− 〈 j〉 where i < j . Again the same conditions hold. �

3.8. Group structure and notation properties. It is also useful to consider the
images of the three sets of short roots as permutations in signed S4. Refer to
the elements in positions 1-4 as set A, the elements in positions 5-8 as set B,
and the elements in positions 9-12 as set C . Formally, let f ∈ F4 such that f =
( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12). For 1 ≤ i ≤ 4 let ai = fi (mod
4), using the representatives {1, 2, 3, 4} for Z4. Similarly, bi = f4+i (mod 4), and
ci = f8+i (mod 4), for 1 ≤ i ≤ 4 again using the representatives {1, 2, 3, 4} for
Z4. Let A = (a1, a2, a3, a4), B = (b1, b2, b3, b4), and C = (c1, c2, c3, c4). Denote
(|a1|, |a2|, |a3|, |a4|) by |A|, and define |B| and |C | analogously. For example,
if f = (6,−8, 5,−7, 9, 11,−10, 12,−2, 4, 1, 3), then |A| = (2, 4, 1, 3), |B| =
(1, 3, 2, 4), and |C | = (2, 4, 1, 3).

Theorem 3.9. The parity of the negations in each block, given the order of the sets
α, β, and γ , is the following:

set order block A (1–4) block B (5–8) block C (9–12)

αβγ even even even
αγβ odd even even
βαγ odd odd odd
βγα even odd odd
γαβ odd even odd
γβα even odd even
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Proof. Note that generators s1 and s2 do not change the parity of negations in any
set, nor do they change the order of the sets. Therefore it suffices to inductively
show that this table holds after operating by generators s3 and s4 on the right. It is
simple to compute using the following rules. s3 swaps the second and third blocks,
and adds or subtracts one negative from the first block. s4 swaps the first and third
blocks, and adds or subtracts one negative from the second block. �

3.10. Restrictions on the values of |ai |. Let V be the subset of S4 generated by
(12)(34) and (13)(24), and K be the subset of S4 generated by (23) and (34).

For X ∈ S4 define v(X) to be the unique element of V in the coset K X .

Theorem 3.11. Let f ∈ W (F4) with sets A f , B f and C f as defined above. Then
|C f | = |B f |v(|A f |), |B f | = |A f |v(|C f |), and |A f | = |C f |v(|B f |).
Alternative statement: Let f ∈ W (F4) with sets fα, fβ , and fγ as defined above.
Then fγ = fβv( fα), fβ = fαv( fγ ), and fα = fγ v( fβ).

Proof. We proceed by induction. The statement is true for f = identi t y. Assume
its true for f , we show its true for si f for each si . Note that v((si f )µ) = v( fµ)
when i = 1, 2, 4 and µ= α, β, γ ; v((s3 f )α)= v( fα), v((s3 f )β)= (14)(23)v( fγ )
and v((s3 f )γ )= (14)(23)v( fβ). The cases for si where i 6= 3 are straightforward.

Furthermore, (s3 f )β = (14)(23) fγ and (s3 f )γ = (14)(23) fβ . These equa-
tions provide all of the required components for the proof. For example assume
fβ = fγ v( fα). Since v((s3 f )α) = v( fα) and (s3 f )γ = (14)(23) fβ and (s3 f )β =
(14)(23) fγ it follows that (s3 f )γ = (s3 f )βv((s3 f )α). �

3.12. W(F4) as a semidirect product. Let FD denote the subgroup of W (F4) con-
taining all d ∈ FD where d(α) = α, d(β) = β, and d(γ ) = γ , and let FS be the
subgroup of W (F4) generated by the generators s3 and s4. Let T be the group
representing the order of the sets α, β and γ . Define τ : W (F4) 7→ T in the
obvious way. Note that τ( f ) = id if and only if f ∈ FD . Now by Theorem 3.9,
the sets α, β and γ occur in order αβγ in the bottom row notation of f if and only
if the permutation A f contains an even number of negative signs.

Lemma 3.13. FD is isomorphic to D4.

Proof. The map ψ : FD → D4 such that ψ( f ) = A f for f ∈ FD provides the
isomorphism. �

Theorem 3.14. W (F4)= FD o FS .

Proof. We can represent f ∈ W (F4) by a pair (d, s) where f = ds and s is
the unique element of FS such that τ(s) = τ( f ). Define φs : FD 7→ FD where
φs(d)= sds−1 for d ∈ FD and s ∈ FS . One can check that if f1= d1s1, represented
by the pair (d1, s1), and f2 = d2s2, represented by the pair (d2, s2), then f1 f2 =

d1φs1(d2)s1s2, represented by the pair (d1 ·φs1(d2), s1 · s2). �
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One might hope that this semidirect product would provide an efficient notation
for computation in W (F4). A road block to this seems to be finding a combinatorial
description of the multiplication.

4. The Weyl group of type G2

The root system of type G2 has the following characteristics. There are n = 12
roots. The usual basis is the set {α1 = e1−e2, α2 =−2e1+e2+e3}. The complete
set of roots is {±(ei−e j )}, where i < j and i, j ∈ {1, 2, 3}, and {±(2ei−e j−ek)},
where {i, j, k} = {1, 2, 3}. The positive roots are {α1, α2, α1+α2, 2α1+α2, 3α1+

α2, 3α1+2α2}. Again we let si denote the reflection over the hyperplane orthogonal
to αi . We label the short positive roots 2α1+α2, α1+α2, and α1, with the numbers
1-3 respectively, and describe how the Weyl group of type G2 is associated with a
subgroup of the permutation group on [−3, . . . , 3]. Here are the images of roots
1, 2, and 3 under the generators of W (G2):

root r sα1(r) sα2(r)

1 −e2+ e3 2 1
2 −e1+ e3 1 3
3 e1− e2 −3 2

Reading from top to bottom in each column gives one-line notation for the gener-
ators, namely s1 = (2, 1,−3) and s2 = (1, 3, 2).

As with W (F4) we can give a simple combinatorial length formula for W (G2).

Theorem 4.1. The length of an element x = (a1, a2, a3) in W (G2) is given by
l(x)=

∑
i< j p(ai , a j ) where p(ai , a j ) is defined as follows:

p(ai , a j )=


0 if |ai |< |a j | and ai > 0,
2 if |ai |< |a j | and ai < 0,
1 if |ai |> |a j |.

Proof. The length counts the number of positive roots mapped to negative roots
under x . One can check that the positive roots in W (G2) are of the form 〈i〉± 〈 j〉
where i < j and i, j ∈ {1, 2, 3}. To determine which of 〈i〉 ± 〈 j〉 are mapped to
negative roots, we need to determine when 〈ai 〉± 〈a j 〉 is a negative root. One can
check that 〈ai 〉+ 〈a j 〉 is negative when |ai |< |a j | and ai < 0, or when |ai |> |a j |

and a j < 0. Similarly 〈ai 〉− 〈a j 〉 is negative when |ai |< |a j | and ai < 0, or when
|ai |> |a j | and a j > 0. �
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