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Abstract

A classification is given of the finite conical flock planes that admit dou-
bly transitive groups acting on the associated skeleton. Furthermore, this
allows that the set of translation planes derived from conical flock planes
(Ostrom-derivates) usually provide at least two non-isomorphic planes.
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1 Introduction

In the ever accelerating race to find new flocks of quadratic cones, there are,
whenever new flocks are found, some equally new ‘overlooked’ or perhaps ‘for-
gotten’ spreads associated with these flocks.

In the recent conference ‘Combinatorics 2002’ held in Maratea, Italy, there
were a variety of lectures and papers given on geometries associated with flocks
of quadratic cones. In particular, there were a variety of spreads connected with
such flocks. However, there are some spreads missing in Maratea.

A spread in PG(3, q) associated with a flock of a quadratic cone consists of
a set of q reguli that mutually share exactly one line. These reguli, called the
‘base’ reguli, may be derived producing ‘new’ spreads.

In this article, we point out that there are q possible distinct spreads obtained
by the replacement of the q reguli and the number of isomorphism classes is
exactly the number of orbits of base reguli of the full collineation group of the
original translation plane.
∗The authors gratefully acknowledge the help of the referee in the writing of this article.
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In particular, the q reguli share a line that is the axis of an elation group E
of order q fixing each of these and the planes that admit a linear group act-
ing transitively on the reguli are essentially determined by Johnson-Wilke [21],
Biliotti, Jha, Johnson, Menichetti [3] and Jha, Johnson, Wilke [15] and more
recently by Jha and Johnson for even order planes in [14]. Hence, modulo a
small class of planes, and by restriction to orders forcing a group to be linear, it
would normally be possible to claim that any conical flock spread produces at
least two non-isomorphic derived flock spreads.

This is the question that motivated this work: Is it true that any conical
flock spread produces at least two mutually non-isomorphic translation
planes obtained from derivation of the reguli of the spread?

Well, strictly speaking, the answer is no since this is not true in Desargue-
sian, Fisher-Thas-Walker (Walker or Betten) or Knuth semifield flock spreads.
However, we shall see that these are exactly the exceptions.

Given a conical flock spread, there are q+1 conical flock spreads (containing
the given one) in what is called the ‘skeleton’ of the spread. When q is odd,
these correspond to the flocks obtained via the derivation procedure of Bader,
Lunardon and Thas [1] and when q is even, there is an algebraic process of
transforming the spread set corresponding to a given spread into q others. We
call such transformed spreads ‘flock-derivates’ and the set of all such spreads the
‘skeleton’ S(π) of a given spread π. We shall distinguish between the spreads
derived by replacement or derivation of a base regulus and the flock-derivates
by calling the former ‘Ostrom-derivates’.

We would like to claim that normally there are at least two non-isomorphic
Ostrom-derivates arising from a skeleton. An automorphism of a skeleton is
an element of ΓL(4, q) that permutes the members of the skeleton. We first
show that any collineation group of a flock spread must permute the remain-
ing spreads of the associated skeleton and thus act as an automorphism of the
skeleton. Then if all Ostrom-derivates are isomorphic, it will force the existence
of a group that acts doubly-transitively on the flock-derivates. In this regard, we
prove the following theorem.

Theorem 1.1. If π is a flock spread of a quadratic cone in PG(3, q) then there is
an automorphism group acting doubly-transitive on the skeleton of π if and only if
π is one of the following types of spreads:

(1) Desarguesian,

(2) Walker when q is odd or Betten when q is even, or

(3) Knuth semifield and q is odd.

Hence, we obtain:
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Theorem 1.2. If π is a flock spread that is not Desarguesian, Walker, Betten or
Knuth semifield then there are at least two non-isomorphic Ostrom-derivates.

Generally speaking, there are many mutually non-isomorphic Ostrom-deri-
vates and, in particular, we prove:

Theorem 1.3. If the skeleton of π, S(π), is not transitive, and q = 2r, for r odd,
then there exist at least four non-isomorphic Ostrom-derivates.

On the other end of the spectrum are flock spreads in PG(3, q) that provide
q(q + 1) Ostrom-derivates. Do there exist such flock spreads?

2 Background

In this section, we provide a list of the results used in the analysis of Ostrom-
derivates. Furthermore, we give a few details of the interconnections between
flocks, spreads and generalized quadrangles.

2.1 Baer Groups in Translation Planes

Theorem 2.1. (Foulser [5]) Let π be a translation plane of order q2 = pr, where
p is a odd prime.

(1) Then π cannot admit both elations and Baer p-collineations.

(2) If p > 3, and π admits Baer p-collineations then the net of degree q + 1

defined by any pointwise fixed Baer subplane is left invariant under the full
collineation group of π. Furthermore, the group generated by all Baer p-
collineations satisfies the conditions of the Hering-Ostrom theorem for groups
generated by elations in translation planes.

(3) If p = 3 and there exists a Baer 3-group of order at least 9, then the state-
ments of part (2) hold.

Theorem 2.2. (Jha and Johnson [9]) Let π be a translation plane of even order
q2 admitting at least two Baer groups of order 2

√
q in the translation complement.

Then either π is Lorimer-Rahilly or Johnson-Walker of order 16 or π is Hall.

2.2 Flocks of Quadratic Cones

Theorem 2.3. (Gevaert and Johnson [6]) Let π denote a translation plane of
order q2 that corresponds to a flock of a quadratic cone.



38 Jha • Johnson

(1) Then π admits an elation group E of order q such that the component orbits
union the axis of E are reguli.

(2) Coordinates may be chosen so that E has the following form:

〈



1 0 u 0

0 1 0 u

0 0 1 0

0 0 0 1


 ;u ∈ GF (q)

〉
.

Theorem 2.4. (Gevaert and Johnson [6]) Let π be a translation plane of order
q2 with spread in PG(3, q) that admits an affine elation group E of order q such
that there is at least one orbit of components union the axis of E that is a regulus
in PG(3, q). Then π corresponds to a flock of a quadratic cone in PG(3, q).

In the case above, the elation group E is said to be ‘regulus-inducing’ as each or-
bit of a 2-dimensional GF (q)-vector space disjoint from the axis of E will produce
a regulus. The reguli of the spread are called the ‘base reguli’.

Theorem 2.5. (Gevaert, Johnson, Thas [7] and Johnson, Payne [19]) Let π be a
finite conical flock translation plane with spread in PG(3, q).

(1) If π is not Desarguesian then the full collineation group of π permutes the
base reguli.

(2) Let F be the collineation group of the associated flock, G the full translation
complement of π. Let E be the regulus-inducing elation group of π and K∗

the scalar group of order q − 1.

Then F ' G/EK∗.

2.3 Generalized Quadrangles and BLT -Sets

Definition 2.6. Assume that q is odd. Let Q(4, q) be a nonsingular quadric in
PG(4, q). A set B of q + 1 points of Q(4, q) such that no three are collinear
with a common point in Q(4, q) is called a ‘BLT-set’. Assume that B = {Pi; i =

0, 1, 2, . . . , q}. Then, for a fixed Pk, the lines of Q(4, q) incident with Pk form a
quadratic cone Ck. Furthermore, the set of conics Ck,j = P⊥k ∩P⊥j ∩Q(4, q), for
0 ≤ j ≤ q is a flock of Ck, where P⊥k refers to the polarity defined by Q(4, q).

Furthermore, a flock of a quadratic cone induces a BLT-set so that, for q odd,
a BLT-set is equivalent to a flock of a quadratic cone.

Note that from a BLT-set there is a set of q+1 flocks and q+1 conical spreads.
These are the flock derivates when q is odd and the associated spreads form the
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skeleton on any one of them. To see how this works in the even order case, we
recall the following theorem of Payne and Rogers.

Theorem 2.7. (Payne and Rogers [25]) Let Q be a generalized quadrangle cor-
responding to a conical flock spread π. Let S(π) denote the skeleton of π. In Q,
let (∞) denote the special point and let [A(j)], j = ∞, 1, . . . , q denote the lines
incident with (∞). In addition, let 0 denote the point corresponding to the identity
in the group defining the points and lines of Q.

Then each conical flock spread of S(π) corresponds to a recoordinatization of Q
by a line [A(i)] taken as [A(∞)]; each spread of the skeleton of π corresponds to
the same generalized quadrangle.

2.4 Ostrom-Derivates and Skeletons

Definition 2.8. Any spread in PG(3,K), for K a finite or infinite field, which
has a ‘matrix spreadset’ as in the following theorem with defining functions g
and f such that

g(u, t) = u+ g(t) and f(u, t) = f(t)

for all u, t ∈ K shall be called a ‘conical spread’ and the corresponding transla-
tion plane is called a ‘conical translation plane’.

We have called an Ostrom-derivate a translation plane that may be derived
from a conical translation plane. We now make specific the exact nature of the
spreads.

Remark 2.9. We shall normally not use different notation to distinguish between
a spread and the associated translation plane.

2.4.1 Derivation of Spreads in PG(3, q)

Theorem 2.10. Let S be a spread represented in the form:

x = 0, y = x

(
g(u, t) f(u, t)

t u

)
∀t, u ∈ K ' GF (q).

Assume that S contains a regulus R in standard form

x = 0, y = x

(
u 0

0 u

)
∀u ∈ K.

Hence, g(u, 0) = u and f(u, 0) = 0 for all u ∈ K.
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Then,

x = 0, y = x

(
u 0

0 u

)
∀u ∈ K

together with

y = x

(−g(u, t)t−1 f(u, t)− g(u, t)t−1u

t−1 ut−1

)
∀t 6= 0, u ∈ K

is also a spread in PG(3, q).

This spread is called the ‘derived spread’ of the original.

2.4.2 s-Inversion and s-Square

We noted above that the conical spreads contain a regulus partial spread and
that there is then a so-called ‘derived spread’ whenever a spread contains such
a partial spread. We may recoordinatize by taking any regulus defined by x = 0

and an image set under the regulus-inducing elation group E to obtain another
spread of the above form. That is, if

x = 0, y = x

(
u+ g(t) f(t)

t u

)
∀t, u ∈ K

is a conical flock spread then the q-reguli are

Rt : x = 0, y = x

(
u+ g(t) f(t)

t u

)
; ∀u ∈ K, for t fixed in K.

Fixing t as t0, we apply the mapping (x, y) 7−→ (x, y)

(
−g(t0) −f(t0)

t0 0

)
to

translate the spread into the form

x = 0, y = x

(
u+ g(t)− g(t0) f(t)− f(t0)

t− t0 u

)
∀t, u ∈ K.

Note that the net Rt0 becomes R0 in the new representation.

Hence, there are potentially q distinct Ostrom-derivates from a given conical
translation plane.

In the special case when the spread is a conical spread, there is another
construction technique that might be of interest to us. The construction may be
given from the associated generalized quadrangle by recoordinatization.

Definition 2.11. Let S be any conical spread in PG(3, q) represented as follows:

x = 0, y = x

(
u+ g(t) f(t)

t u

)
∀t, u ∈ K ' GF (q).
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Assume that q is odd.

For a fixed s ∈ K, we define the ‘s-inversion’ S−s, a set of 2-dimensional
subspaces, as follows:

S−s : x = 0 and

y = x

((
−(g(t)− g(s))/2 f(t)− f(s)

t− s (g(t)− g(s))/2

)−1

+

(
u 0

0 u

))

for all t, u ∈ GF (q).

Theorem 2.12. If S is a conical spread in PG(3, q) and q is odd then an s-inverted
conical spread is a spread in PG(3, q).

Definition 2.13. We now consider a similar situation when q is even. Let S be
a conical spread with defining spread

x = 0, y = x

(
u+ g(t) f(t)

t u

)
∀u, t ∈ K ' GF (q).

Then, for each s ∈ K, we define the structure Ss2 , called the ‘s-square’

x = 0, y = x

(
1/(g(t) + g(s))2

(
g(t) + g(s) f(t) + f(s)

t+ s 0

)
+ uI2

)
,

y = x

(
v 0

0 v

)

∀t, t 6= s, ∀u, v ∈ K.

Theorem 2.14. If q is even then an s-square spread is a conical spread in PG(3, q).

Definition 2.15. We shall call the set of s-inverted spreads or s-square spreads
of a conical flock spread π, the ‘skeleton S(π)’ of π. Although it is possible
to prove directly that an s-inverted spread or an s-square spread is a conical
spread, these are simply the forms that arise from the associated generalized
quadrangle by recoordinatization.

Theorem 2.16. (Johnson [17]) Assume that π is a non-Desarguesian conical flock
plane of odd order q2.

Then the translation complement acts as a permutation group on the planes of
the skeleton S(π) − {π}. The number of orbits of this group acting on the base
reguli is the same as the number of orbits of the planes not equal to π of the
skeleton.

Theorem 2.17. (Jha and Johnson [13]) The full group of a derived conical flock
plane of finite order by one of the base reguli is the group inherited from the conical
flock plane or the conical plane is Desarguesian of order 4 or 9.
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2.5 Structure Theory

Theorem 2.18. (Johnson [16]) Let π denote a translation plane of even order q2

that corresponds to a flock of a quadratic cone.

Then π is a semifield plane if and only if π is Desarguesian.

Theorem 2.19. (see Biliotti and Menichetti [2], Jha and Johnson [8] and John-
son and Wilke [21]) Let π denote a translation plane of even order q2 with spread
in PG(3, q) that admits a linear collineation group G of order q2. If the elation
subgroup of G has order q then π is one of the following planes:

(1) Betten,

(2) Lüneburg-Tits,

(3) Desarguesian, or

(4) Biliotti-Menichetti of order 64.

Theorem 2.20. (Jha and Johnson [10]) If a translation plane of order 2t admits
an affine elation group of order 2t/2 then the plane is a semifield plane.

Theorem 2.21. (Biliotti, Jha, Johnson, Menichetti [3])

Let π be a translation plane of even order q2 with spread in PG(3, q) that
admits a linear group of order q2 that fixes a component and acts regularly on the
remaining components. Then coordinates may be chosen so that the group G may
be represented as follows:

〈
σb,u =




1 T (b) u+ bT (b) + l(b) uT (b) +R(b) +m(u)

0 1 b u

0 0 1 T (b)

0 0 0 1


 ; b, u ∈ GF (q)

〉

where T , m, and l are additive functions on GF (q) and m(1) = 0 and such that

R(a+ b) +R(a) +R(b) + l(a)T (b) +m(aT (b)) + a(T (b))2 = 0, ∀a, b ∈ GF (q).

Theorem 2.22. (Jha and Johnson [10]) Let π be a translation plane of even order
q2 that corresponds to a flock of a quadratic cone. Let B denote the set of reguli
that are defined via the regulus-inducing elation group E. LetK∗ denote the kernel
homology group of order q − 1.

(1) If there exists a collineation group properly containing EK∗ that fixes each
regulus of B then π is Desarguesian.

(2) If π is non-Desarguesian, linear Baer involutions cannot exist.
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Theorem 2.23. (Jha and Johnson [14]) Let π be a translation plane of even order
that corresponds to a flock of a quadratic cone. If π admits a linear collineation
group G (i.e. in GL(4, q)) that acts transitively on the components not equal to a
fixed component x = 0, then π is one of the following:

(1) Betten, or

(2) Desarguesian.

Theorem 2.24. (Gevaert and Johnson [6]) Two conical flocks in PG(3, q) are
isomorphic if and only if the corresponding translation planes are isomorphic.

Theorem 2.25. (Johnson and Pomareda [20]) Let Σ be a Pappian affine plane,
finite or infinite, that admits derivation. If the order of Σ is > 9, then the collin-
eation group of the Hall plane obtained by derivation of Σ is the group inherited
from the collineation group of Σ.

Theorem 2.26. (Johnson, Lunardon, Wilke [22]) Let π be a conical flock plane
and let S(π) denote the skeleton of π. Assume that the collineation group of π acts
transitively on the base reguli.

(1) If q is odd and all of the planes of the skeleton are isomorphic then π is one
of the following types of planes:

(a) Desarguesian,

(b) Walker, or

(c) Knuth semifield of conical plane type.

(2) If S(π) is a doubly transitive skeleton then π is one of the planes of part (1).

Theorem 2.27. (see Johnson and Wilke [21]) Let π denote a conical flock plane
of odd order q2 that admits a collineation group of order q2 in the linear trans-
lation complement. Then either π is a semifield plane or the spread for π may be
represented in the following form:

x = 0, y = x

[
u− a2 −a3

3 + J(a)

a u

]
;u, a ∈ GF (q),

J a function on GF (q) such that the following group G is

a collineation group.

G =








1 a u ua− a3

3 + J(a)

0 1 a u

0 0 1 a

0 0 0 1


 ;u, a ∈ GF (q)




.
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Theorem 2.28. (Johnson [18]) Let P be a non-linear partial flock containing a
linear subflock of (q − 1)/2 conics, for q odd. Then P may be uniquely extended to
a Fisher flock.

For a discussion of the BLT-set corresponding to the Fisher flock, the reader
is directed to the last section.

3 The Classification Theorem

It will be convenient to list here the classification theorem of finite doubly tran-
sitive groups.

Let v denote the degree of the permutation group. We shall take the classifi-
cation as appearing in Kantor [23] p.67. The possibilities are as follows:

(A) G has a simple normal subgroup N, and N ≤ G ≤ AutN where N and v
are as follows:

(1) Av , v ≥ 5,

(2) PSL(d, z), d ≥ 2, v = (zd − 1)/(z − 1) and (d, z) 6= (2, 2), (2, 3),

(3) PSU(3, z), v = z3 + 1, z > 2,

(4) Sz(w), v = w2 + 1, w = 22e+1 > 2,

(5) 2G2(z)′, v = z3 + 1, z = 32e+1,

(6) Sp(2n, 2), n ≥ 3,v = 22n−1 ± 2n−1,

(7) PSL(2, 11), v = 11,

(8) Mathieu groups Mv, v = 11, 12, 22, 23, 24

(9) M11, v = 12

(10) A7, v = 15

(11) HS (Higman-Sims group), v = 176,

(12) .3 (Conway’s smallest group), v = 276.

(B) G has a regular normal subgroup N which is elementary Abelian of order
v = ha, where h is a prime. Identify G with a group of affine transforma-
tions x 7−→ xg + c of GF (ha), where g ∈ G0. Then one of the following
occurs:

(1) G ≤ AΓL(1, v),

(2) G0 D SL(n, z), zn = ha,

(3) G0 D Sp(n, z), zn = ha,
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(4) G0 D G2(z)′, z6 = ha, z even,

(5) G0 D A6 or A7, v = 24,

(6)G0 D SL(2, 3) or SL(2, 5), v = h2, h = 5, 11, 19, 23, 29, or 59 or v = 34,

(7) G0 has a normal extraspecial subgroup E of order 25 and G0/E is
isomorphic to a subgroup of S5, where v = 34,

(8) G0 = SL(2, 13), v = 36.

4 The Fundamental Theorems

We begin with the fundamental theorem regarding derived conical flock planes.

Theorem 4.1. (also see Johnson and Payne [19], part of (10.1) and (10.7)) Let
π1 and π2 be non-Desarguesian conical flock spreads in PG(3, q) and let Q1 and
Q2 denote the corresponding generalized quadrangles with special points (∞)i , 0i
and lines [Ai(j)], j =∞, 1, . . . , q for i = 1, 2.

(1) If π1 and π2 are represented in the conical flock form listed above, and the
generalized quadrangles are obtained via the associated q-clans then π1 and
π2 are isomorphic if and only if there is an isomorphism of Q1 onto Q2 that
maps (∞)1 onto (∞)2, maps 01 onto 02 and maps [A1(∞)] onto [A2(∞)].

(2) If π1 and π2 belong to the same skeleton let πi correspond to the line [A(ji)]

in Q1 = Q2.

(a) Then π1 is isomorphic to π2 if and only if there is a collineation of
Q1 = Q2 fixing (∞)1 and 01 and mapping [A(j1)] onto [A(j2)].

(b) In particular, let σ be a collineation of π1 in the translation complement.
Denote π2σ by π3. Then there is an induced collineation σ∗ of Q1 that
fixes [A(j1)] and maps [A(j2)] onto [A(j2)]σ∗. The conical flock spread
of S(π1) corresponding to [A(j3)] = [A(j2)]σ∗ is π3.

(c) The collineation group of π1 permutes the elements of S(π1) − {π1} in
the sense that an image is an isomorphic translation plane to the preim-
age. If π1 is not Desarguesian then the collineation group permutes the
base reguli and the group acting on the base reguli is permutation iso-
morphic to the group acting on the planes 6= π1 of the skeleton.

(d) π2 is in the skeleton of π1 ⇐⇒ S(π2) = S(π1).

Proof. Part (1) is in Johnson and Payne but in the flock isomorphism form. The
corresponding conical spread or conical translation plane part may then be ob-
tained from Theorem 2.24. Parts (2)(b), (c) and (d) are not in Johnson and
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Payne. However, part (b) can be deduced in the following manner: The skele-
ton of a conical flock plane π1 arises as follows: Each generalized quadrangle
in this situation corresponds to a q-clan. Each q-clan produces a spread for a
translation plane in PG(3, q). If the generalized quadrangle is recoordinatized
so that a line incident with (∞)1 is the new [A(∞)1], then there is a new q-
clan that produces another conical flock spread. The spreads turn out to be the
s-inverted or s-square spreads previously mentioned and these constitute the
skeleton S(π1) of π1. Since the lines incidence with (∞)1 correspond to the ele-
ments of the skeleton S(π1) of π1 by Payne and Rogers’ result, a collineation of
π1 induces a collineation of Q1 that fixes the line associated with π1. Since the
induced collineation simply permutes the remaining lines incident with (∞)1, it
follows that σ∗ then induces a collineation (i.e. σ) that maps π2 to π3 and π3 is
another spread of the skeleton of π1.

If the base reguli are denoted by Ri for i = 1, . . . , q, the s-inverted or s-square
planes ρi are constructed by recoordinatizing so that Ri is the standard regulus
and then an application of the s-inversion or s-square process produces the
spread. Hence, a permutation of base reguli induces the same permutation of
the planes of the skeleton. A collineation of π1 corresponds to a collineation
of the corresponding conical flock, which corresponds to a collineation of the
associated generalized quadrangle fixing (∞)1 and [A(∞)1]. This collineation
then induces isomorphism mappings on the associated planes of the skeleton
and leaves π1 invariant.

If π2 is in the skeleton of π1 then π2 simply corresponds to a line of Q1

incident with (∞)1. We may think of the lines of Q1 incident with (∞)1 as the
skeleton of π1, where π1 corresponds to [A(∞)1]. However, since π2 produces
the same generalized quadrangle Q1, if π2 now corresponds to the line [A(∞)1],
we have a recoordinatization of Q1, where π1 now is denoted by another line
incident with (∞)1. Similarly, any element of the skeleton of S(π1) is contained
in the skeleton of S(π2); S(π1) = S (π2). This proves all parts of the theorem.

Theorem 4.2. If π is a conical flock plane of order q2, for q > 3, let Ri for
i = 1, 2, . . . , q denote the set of ‘base’ reguli and let π∗i denote the translation plane
obtained by the replacement of Ri by its opposite regulus (net) R∗i .

Then π∗i is isomorphic to π∗j if and only if there is a collineation in π mapping
Ri to Rj .

Proof. Part of the proof of this theorem may be deduced from Theorem 2.17 but
we give a complete proof here.

By Theorem 2.25, if q > 3, the full collineation group of any derived Pappian
spread by replacement of a regulus is the ‘inherited’ group; the group leaves the
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derivable net invariant.

More generally, any base regulus is defined by an orbit of the ‘regulus-inducing’
elation group E of order q union the axis of E. Since the axis becomes a Baer
subplane of the opposite regulus net, it follows that we have a Baer group of
order q acting on any derived plane. By Theorem 2.1, part (2) if q is odd and
q > 3, all Baer subplanes that are fixed pointwise by a Baer p-element, q = pr,
must share their parallel classes. Hence, the derived net is invariant, implying
that the original net is invariant. When q is even, we may apply Theorem 2.2
to show that if the axis is moved then the plane is either Hall or the order is
16. However, the planes of order 16 that admit a Baer group of order 4 and
correspond to derived conical flock planes can only include the Hall plane of
order 16; the derived Desarguesian plane.

Hence, by Theorem 2.25, we have that the full collineation group of a de-
rived conical flock spread leaves the replaced regulus invariant. Thus, an iso-
morphism of π∗i to π∗j must map R∗i onto R∗j so that Ri must map to Rj . Also,
this means that if π∗k = R∗k ∪Mk for i = 1, 2 then Mi then is mapped to Mj .
Hence, Ri ∪Mi maps to Rj ∪Mj so that we have a collineation of π achieving
this mapping. This completes the proof of the theorem.

5 Flock-Derivation and Ostrom-Derivation

Of course there is some confusion with the use of the term ‘derivation’ as ap-
plied to ‘Ostrom-derivation’ of a net corresponding to a regulus and the term
‘derivation’ as applied to the process of Bader, Lunardon and Thas [1], ‘BLT-der-
ivation’ obtaining exactly q ‘other’ flocks and hence conical flock spreads from a
given one. This derivation process works geometrically for q odd using BLT-sets
but there is an algebraic process for q even due to Payne and Rogers [25], by
recoordinatizations of the corresponding generalized quadrangle, as we noted
in the background section.

The algebraic process also works just as well when q is odd and we have re-
viewed the form of the constructed spreads in the background section. The main
point is that what we have called the s-inverted constructions define the spreads
that correspond to the BLT -derivation in the odd order case. The s-square con-
struction is then the analogue in the even order case. Hence, our use of the
term ‘skeleton’ just refers to the q+1 conical flock spreads that may be obtained
from a given one algebraically as noted.

We shall use the term ‘flock-derivation’ to describe the associated spreads in
the skeleton of a given one. In the background section, we have included a note
on the derivation process using a ‘standard’ regulus. Since we may derive using
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any of the q-reguli in any of the conical flock spreads, we have q(q + 1) distinct
spreads arising from a given conical flock spread by the standard derivation of
the reguli in the spreads of the skeleton of a given spread.

Here we note the fundamental connection. There is a corresponding but
stronger fundamental theorem.

We recall that the set of flock-derivates of a conical flock plane π, S(π), is
called the ‘skeleton’ of π. Furthermore, S(π) = S(ρ) for ρ ∈ S(π).

Theorem 5.1. If π is a conical flock plane of order q2, for q > 3, let ρ ∈ S(π) and
let Rρi for i = 1, 2, . . . , q, denote the set of ‘base’ reguli for ρ and let ρ∗i denote the
translation plane obtained by the replacement of Rρi by its opposite regulus (net).

Then π∗i is isomorphic to ρ∗j if and only if there is a element of ΓL(4, q) mapping
π to ρ that also maps Rπi to Rρj .

Proof. The proof of the previous situation basically applies, noting that in the
two planes in question, there is a unique net of degree q + 1 containing a Baer
group of order q. If is therefore clear that any isomorphism σ from π∗i onto ρ∗j
must map one such net onto the other.

Definition 5.2. The set of Ostrom-derivations of planes of the skeleton S(π)

of a conical flock spread π is called the ‘Baer skeleton’. The subset of the Baer
skeleton of Ostrom-derivations of ρ ∈ S(π) is called the ‘ρ-Baer skeleton’.

Theorem 5.3. Let π be a non-Desarguesian conical flock translation plane of order
q2 with spread in PG(3, q).

Then the number of mutually non-isomorphic Ostrom-derivations of π – the π-
Baer skeleton – is precisely the number of orbits of the set of flock-derivations in
S(π)− π under the collineation group of π.

Proof. The processes of flock-derivation for the odd and even cases are expli-
cated in the background obtaining the so-called s-inverted and s-square spreads,
respectively. In particular, given any base regulus, a transformation of this base
regulus to the so-called ‘standard’ base regulus begins the algebraic process of
flock-derivation in both the even and odd cases. Recall that the standard base
regulus has the form:

x = 0, y = x

[
u 0

0 u

]
;u ∈ GF (q).

Then we may apply the s-inversion or s-square processes respectively as q is odd
or even.

Recall that we have noted that any collineation of a conical flock spread
induces a collineation on the associated generalized quadrangle permuting the
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lines incident with (∞), which in turn, induces a permutation of the spreads of
the skeleton S(π)− {π}.

Hence, assume that there is a collineation mapping a given base regulus
R1 onto another base regulus R2. Then, we may use Ri to construct say an
si-inverted or si-square conical flock spreadπi, for i = 1, 2, implying that the
collineation will map π1 onto π2.

6 Transitive and Doubly-Transitive Skeletons

Definition 6.1. We shall say that a skeleton is ‘cyclic’ if and only if there is a
cyclic collineation group in PΓL(4, q) that acts transitively on the q + 1 coni-
cal flocks planes of the skeleton of any of them. More generally, a skeleton is
‘transitive’ if and only if there is a transitive permutation group acting on the
skeleton.

Remark 6.2. If π is a conical flock spread and S(π) is a transitive skeleton then
either there are at least two non-isomorphic planes of the Baer skeleton cor-
responding to π or there is a group that acts doubly transitive on the skeleton
S(π).

Proof. If the skeleton is transitive then the complete Baer skeleton may be de-
termined using the π-Baer skeleton. If there are not two non-isomorphic planes
of the π-Baer skeleton, then there is a collineation group of π that permutes
the base reguli transitively. However, the above results show that this means
that there is a transitive permutation group on S(π)−{π}; the full permutation
group is doubly-transitive.

6.1 Double Transitivity

By Theorem 2.26, we have a classification of all doubly transitive skeletons,
when q is odd.

When q is even, we may consider the s-squares of a given flock plane (also
see Jha and Johnson [11]. Hence, we have a set of q + 1 spreads algebraically
constructed from one of them π; the skeleton S(π) of π.

One question that could be asked is if two of the spreads are isomorphic by
an element σ of PΓL(4, q), does σ act on the remaining skeleton? If S(π) is the
skeleton of π and πσ ∈ S(π), is S(π)σ = S(π)? In fact, Theorem 4.1 says exactly
that.
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Hence, to classify the double transitive skeletons, we may use the classifica-
tion theorem of finite simply groups and apply the action of the stabilizer of π
as a quotient of a collineation group of the associated translation plane.

We shall use the list given in the background section of the doubly transitive
finite groups and their associated degrees v.

Theorem 6.3. A doubly-transitive skeleton where q is even exists if and only if the
skeleton is Betten or Desarguesian.

We shall structure the proof as a series of lemmas. Hence, throughout this
section, we shall assume the hypothesis in the statement above.

We begin with a lemma that helps identify the collineation group arising from
an associate group acting on a skeleton.

Lemma 6.4. Let π be a non-Desarguesian conical flock plane with spread in
PG(3, q), q even, and let E denote the regulus inducing elation group of order
q and let K∗ denote the kernel homology group of order q − 1. Let G denote the
full collineation of π. Then G normalizesE and therefore permutes the base reguli.
Then G/EK∗ is the group induced on the flock skeleton S(π)− {π}.

Proof. The group induced on the skeleton is simply the quotient by the subgroup
N that fixes all base reguli. We know that EK∗ is transitive on all the compo-
nents different from the axis of each base regulus. Furthermore, we know that
each base regulus net corresponds to a plane of intersection of the flock of the
quadratic cone and the Baer subplanes incident with the zero vector correspond
to the conic within the plane of intersection. We note that EK∗ induces trivially
on the quadratic cone. By Theorem 2.22, it follows that N = EK∗.

To apply the classification theorem of finite simple groups, we first assume
that q+ 1 is a prime power and that we have the socle is an elementary Abelian
normal subgroup. Since q + 1 is an odd prime power, then by Ribenboim [27],
either q = 8 or q + 1 is a prime v. We let G = G/EK∗, the permutation group
induced on the skeleton S(π)− {π}.

6.2 q + 1 = v is prime or q = 8

When q = 8, there is a unique non-linear flock due to Herssens and De Clerck
[4], which is the Betten flock. Hence, we may always assume that q+1 is prime.
We refer back to the statement of the classification theorem, part (B).

Lemma 6.5. Case (1), where G/EK∗ ≤ AΓL(1, v) cannot occur.



Ostrom-derivates 51

Proof. We may assume that v is prime so that G is sharply two-transitive and
the stabilizer is cyclic of order exactly v − 1 = q. Hence, we have a collineation
group H such that H/EK∗ is cyclic of order q. Let S2, for q = 2r, be a Sylow
p-subgroup of order q2 in the collineation group of π so that H = S2K

∗. Since
S2 fixes the axis of E, then the group induced on the axis x = 0 may be chosen
to have the following form:

〈
τ : (x1, x2) 7−→ (xσ1 , x

σ
2 )

[
1 λ

0 1

]
;λ ∈ W ⊆ GF (q)

〉
,

for some subset W of GF (q), and furthermore, this group is cyclic. Let E+

denote the full elation group with axis x = 0. Since K∗ is a normal subgroup of
G, it follows directly that S2/E

+ is cyclic. Hence, the group induced on x = 0

is cyclic.

Furthermore, the group H acts transitively on the base reguli. Note that 〈τ r〉
is still cyclic but the subgroup generated is also elementary Abelian, implying
that the order of the above group divides 2r2, where r2 is the even part of r.
Note that the Sylow 2-subgroup has order q2 and the group induced on x = 0

has order dividing 2r2. Hence, we have an elation subgroup of order at least
q2/2r2. Moreover, the group acting on the base reguli induced by an elation
subgroup is still elementary Abelian of order at least q/2r2, since we know that
the kernel of the action is precisely E by the previous lemma. However, this is
a subgroup of a cyclic group and is therefore cyclic. Hence, q/2r2 ≤ 2 so that
2r ≤ 4r2, or rather that

2r−2 ≤ r2.

An examination of the possible cases show that only r = 1, 2 or 4 survives this
test.

Therefore, the possible orders q = 2, 22 or 24. In the latter case, there is a
translation group of order at least q2/2r2 = q2/8 = 2q. Note the translation
planes of order 16 are determined and only the Desarguesian is a conical flock
plane. Hence, we must consider when q = 24. In this case, there is a unique
non-linear flock due to Herssens and De Clerck [4], and the full group on the
flock is cyclic of order 8. So, since we must have a group of order 24, this case
does not occur.

Lemma 6.6. Case (2) G0 D SL(n, z), zn = v (a prime) cannot occur.

Proof. In this situation, we may assume that z = v and n = 1. Thus, we have
SL(1, v) as a normal subgroup. Hence, we may use the argument of the previous
case.

Lemma 6.7. Case (3) G0 D Sp(n, z), zn = v, does not occur.
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Proof. This again implies that we have Sp(1, v) and we may use the previous
case.

Lemma 6.8. The cases (4) through (8) of case (B) cannot occur.

Proof. A check of the degrees provides the proof, since v is an odd prime.

Hence, we may assume that the socle is non-Abelian and simple. We refer
back to the statement of the classification theorem, part (A).

Lemma 6.9. Case (1) Aq+1, does not hold.

Proof. In this case, the stabilizer of a point has order q! —take the preimage
group H . Hence, we have a 2-group of order q(q!)2/2. This group will act on
the translation plane and fix a component. So, the order must divide q3r2 where
q = 2r. Since the plane is not a semifield plane by Theorem 2.18, as it is not
Desarguesian, then the translation group must have order dividing q2/4. Thus,
the order of the group induced on x = 0 is at least 4(q− 1)!2/2 = 2(q− 1)!2 and
this must divide qr2. But,

(2 · (2 · 22 · . . . 2r−1) = 21+r(r−1)/2

divides 2(q − 1)! implying that

2r(r−1)/2+1−r = 2r(r−3)/2+1 divides r2.

Now assume that (r − 3)/2 > 1. Then

r ≥ r2 ≥ 2r(r−3)/2+1 ≥ 2r+1,

a contradiction. Hence, (r − 3)/2 ≤ 1 so that r ≤ 5. We may assume that
q is not 2, 4, 8 or 16 by previous arguments. We are left considering q = 25.
25(5−3)/2+1 = 26 which does not divide 2552. This completes the proof of the
lemma.

Lemma 6.10. If case (2) PSL(d, z), q + 1 = v = ( z
d−1
z−1 ) holds then z = q and

d = 2.

Proof. If this case holds, then

q = z + z2 + · · ·+ zd−1

so that q ≡ 0 mod z, hence z = 2a, where q = 2r and a ≥ r. Assume that a > r.
Then dividing by q produces a contradiction as the left hand side is odd and the
right hand side is even. Hence, z = q and d = 2.
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Lemma 6.11. If PSL(2, q) acts then the plane is either Desarguesian or Betten.

Proof. The stabilizer of one of the q + 1 elements has order q(q − 1), so there
is a collineation group H of a conical flock spread such that H/EK∗ has order
q(q − 1). Now the quotient 2-groups are elementary Abelian of order q. There-
fore, on x = 0, a 2-group has the form:

〈
τσ,λ : (x1, x2) 7−→ (xσ1 , x

σ
2 )

[
1 λ

0 1

]
;λ ∈W ⊆ GF (q)∗

〉
.

Note that this group may not have order q, since it is possible to have affine
elations other than in E.

Since this group T is elementary Abelian, it follows that τ 2
σ,λ = 1 so that

σ2 = 1 and λσ + λ = 0. Let R denote the subgroup where σ = 1 and assume
that there is an element where σ 6= 1. Then τ1,ρτ√q,λ = τ√q ,ρλ, so that

(ρλ)
√
q = (ρλ)

for all associated elements τ1,ρ in R. Hence, |R| ≤ √q. In general, the elements
attached to σ′s, where σ =

√
q, are in GF (

√
q).

However, any two distinct elements of T − R multiply to an element of R,
implying that by fixing an element of T − R and multiplying by the remaining
elements, a set of distinct non-identity elements of R are obtained. First assume
that the only elations obtained are in E. Hence, we would obtain:

q −√q − 1 ≤ √q − 1.

However, this implies that

q ≤ 2
√
q so
√
q ≤ 2, and q = 2 or 4.

The order 16 case does not provide conical flock spreads.

Hence, it follows that R = T . Thus, the 2-groups are linear; in GL(4, q) as
acting on the translation plane, or there are affine elations other than those in
E. Assume that the elation group E+ has order q2t so that T has order 2r−t.
Then, we obtain:

2r−t ≤ 2
√
q,

so that
r/2− t ≤ 1.

But, also the group of order q(q − 1) contains a subgroup of order q − 1 that
normalizes the 2-group part and acts transitively on the involutions of this ele-
mentary Abelian 2-group. Let S2 be a Sylow 2-subgroup of order q2. Let g be an
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affine elation of S2 −E and let g1 be any element of S2 −E. Then, there exists
an element h in H such that gEK∗ is conjugated by hEK∗ to g1EK

∗. Hence,
g−1

1 gh ∈ EK∗. Thus, g−1
1 gh = 1, implying that g1 = gh. That is, if there is

an elation that is not in E then S2/E has a coset representative set of elations,
implying that the plane is a semifield plane. However, a semifield plane that is
conical is Desarguesian by Theorem 2.18

We have a linear group in GL(4, q) as acting on the associated translation
plane, and we have only the elation group of order q, so we may then employ
Theorem 2.21. Therefore, the plane is Betten since neither the Lüneburg-Tits
planes nor the plane of order 64 of Biliotti and Menichetti are conical flock
planes. This completes the proof of the lemma.

Lemma 6.12. The case (3) PSU(3, z) where q + 1 = v = z3 + 1, z > 2 does not
occur.

Proof. In this situation, z is 2r/3, where q = 2r.The order of a Sylow 2-group is
z2(2+1)/2 = q. However, this means that there is a group of order q2 acting on
the associated translation plane and fixing a component. Actually, (see Goren-
stein p. 466), the stabilizer of an element in this group PSU(3, z) is MS, where
S is a non-Abelian special 2-group of order z3 = q, with elementary Abelian
center of order z = q1/3.

Still, the 2-group induced on x = 0 is of the following form:
〈
τσ,λ : (x1, x2) 7−→ (xσ1 , x

σ
2 )

[
1 λ

0 1

]
;λ ∈W ⊆ GF (q)∗

〉
.

Furthermore, no element of S − 〈1〉, fixes a second permutation letter. Since
q of the letters of permutation can be realized as the base regulus nets of the
given translation plane (faithfully represented as permutation isomorphic to
the stabilizer of the spread in the group of the skeleton), this means that no
non-identity element of S can fix a base regulus net. So, the Sylow 2-groups
are regular on the q2 infinite points not equal to (∞). Let T2 denote a Sylow
2-subgroup so that T2/E is S. We consider Z(T2/E) of order z = q1/3. If
bE ∈ Z(T2/E) then b2 ∈ E. Assume that b is not an affine elation so that the
order of b is 4. Furthermore, b induces an involution on x = 0, say τσ,λ. Hence,
σ2 = 1 and λσ = λ.

Furthermore, the stabilizer of three letters has order (q1/3 + 1)/d and hence
there is a corresponding collineation groupW of order q(q−1)(q1/3+1)/dwhere
d = 1 or 3, respectively as q1/3 is not congruent to 1 mod 3 or congruent to −1

mod 3. But, 22z is congruent to 1 mod 3 so d = 1 or 3 respectively when r is
even or odd. Note that if r is odd then T2 is linear, in GL(4, q). This collineation
group W fixes two reguli and a common component.
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Every two such reguli lie in and uniquely determine a Desarguesian spread
admitting W as a collineation group. Hence, there is a collineation group fix-
ing two components of order (q − 1)(q1/3 + 1)/d of one regulus and fixing a
second regulus. However, if the group is linear in GL(2, q2) acting on the De-
sarguesian spread, then elements of order dividing (q1/3 + 1)/d must permute
semi-regularly q components of the second regulus, which is a contradiction or
the group acts as a central collineation group of the Desarguesian spread.

Now the group normalizes a Sylow 2-subgroup fixing x = 0 and T2 must
fix non-zero vectors on x = 0, and the preimage group H+ leaves invariant
Fix(T2). Note that H+ contains K∗, hence there is a subgroup that fixes two
reguli and fixes non-zero vectors of x = 0. Therefore, it is impossible for any
such group of this type to act as a central collineation group of a Desarguesian
spread.

So, there are no linear elements in a group of order (q1/3 + 1)/d. Thus, all of
these elements correspond to automorphisms so we must have that (q1/3 + 1)/d

divides 2r where q = 2r, implying that (q1/3 + 1)/d divides r. However, with
d = 1 or 3, this almost never occurs.

The exact solutions are r = 3, 9 so that q = 23 or q = 29. In both of these
cases the Sylow 2-group T2 is linear in GL(4, q) as acting on the associated
translation plane and hence we can apply the results of Theorem 2.21, since we
know that the plane cannot be a semifield plane without being Desarguesian by
Theorem 2.18. If we take squares of the elements listed in that theorem then
since we have E, we have m(u) = 0 for all u, with the notation of the theorem,
and a direct calculation will show that squares have the following form:




1 0 bT (b) (bT (b) + l(b))T (b)

0 1 0 bT (b)

0 0 1 0

0 0 0 1


 .

Since we have E, it follows that

(bT (b) + l(b))T (b) = 0 ∀b ∈ GF (q).

In any case, this means that modulo E, all elements have order 2 or equivalently,
T2/E is elementary Abelian, a contradiction. Hence, this situation does not
occur.

Lemma 6.13. Case (4) Sz(w) does not hold.

Proof. In this setting, q + 1 = v = w2 + 1 so that q = w2. The order is
q(q + 1)(

√
q − 1)–but this does not count the E group –forcing a 2-group of



56 Jha • Johnson

order q2 that acts transitively on the infinite points not equal to (∞). However,
the 2-group is not elementary Abelian. If we consider the argument given in
the last case, we see that if we assume that the group is linear, in GL(4, q), as
acting on the translation plane, we get again that T2/E is elementary Abelian,
a contradiction. But, now q = w2 and w = 2r/2 so that r/2 must be odd since
we have Sz(w) acting. This means the 2-part of r is exactly 2, implying that
we have a linear subgroup of order either q2 or q2/2. However, since we may
assume that T2 commutes with some elation of E, we choose this elation as
[ I I0 I ] and this will force the linear elements to have the following general form:

ω =




1 s a b

0 1 c d

0 0 1 s

0 0 0 1


 .

Now

ω2 =




1 0 s s(a+ d)

0 1 0 s

0 0 1 0

0 0 0 1


 .

Since, E exists, again we must have

s(a+ d) = 0.

Let T−2 denote the linear subgroup of T2. Hence, the above shows that T−2 /E
is elementary Abelian or order q or q/2. Thus, we are finished or we have the
case that Sz(w) has Sylow 2-subgroups with elementary Abelian subgroups of
order q/2. However, the largest elementary Abelian subgroup has order

√
q,

implying that
√
q ≥ q/2 so that q = 4. However, the planes of order 16 are all

determined and no non-Desarguesian planes are conical flock planes. Hence,
this case cannot occur.

Lemma 6.14. The remaining cases are all out by degree.

Proof. None of the following cases can occur:

Case (5) 2G2(h)′, v = q + 1 = 33(2e+1) + 1,

Case (6) Sp(2n, 2), v = q + 1 = 22n−1 ± 2n−1,

Case (7) PSL(2, 11), v = q + 1 = 11,

Case (8) v = 11, 12, 22, 23, 24 = q + 1,

Case (9) M11 and v = 12,

Case (10) A7 and v = q + 1 = 15,
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Case (11) HS and v = 176,

Case (12) .3 and v = 276 = q + 1.

Hence, we have the proof to our theorem and this coupled with the odd order
theorem previously proved shows the following corollary to be true.

Corollary 6.15. Let π be a conical flock of a quadratic cone that is not Desar-
guesian, Walker-Betten or Knuth semifield. Then there are at least two mutually
non-isomorphic Ostrom derived planes from the skeleton of π.

Corollary 6.16. Let π be a conical flock plane and let Q(π) be the generalized
quadrangle corresponding to π. Let (∞) denote the special point of Q(π). Assume
that π is not one of the spreads mentioned above.

Then the number of orbits of lines incident with (∞) of Q(π) is strictly less than
the number of mutually non-isomorphic Ostrom-derivates.

Proof. The number of orbits is the number of distinct planes of the skeleton. For
each plane of the skeleton, there are q Ostrom-derivates. Assume that there are
k orbits of lines incident with (∞), implying that are exactly k mutually non-
isomorphic conical flock spreads. If there are exactly k Ostrom-derivates then it
follows that each spread admits a collineation group acting transitively on the
q base reguli. However, this would mean that the full group is doubly-transitive
and we have classified such flock planes above.

We record the following result concerning Frobenius groups acting on a con-
ical flock.

Theorem 6.17. Let π be a conical flock plane of even order q2 that admits a col-
lineation group H in the translation complement such that H/EK∗ is a Frobenius
group of order q(q − 1).

Then π is either Desarguesian or Betten.

Proof. Basically, we may repeat the argument above when there is a skeleton
group isomorphic to PSL(2, q). We shall leave the details to the reader to verify.

7 Even Order

If the skeleton is transitive, we still obtain at least two non-isomorphic Ostrom-
derivates. Hence, we consider the situation when the skeleton is not transitive
and there are at least two orbits of planes. Within each other, we ask if there
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are at least two Ostrom-derivates. If not there is a collineation group that acts
transitively on the base reguli of a given flock plane.

As mentioned in the background section, the authors have completely de-
termined the conical flock planes of even order that admit a linear collineation
group acting transitively on the base reguli of the flock plane

Theorem 7.1. (see Jha and Johnson [14]) Let π be a conical flock translation
plane of even order 22r admitting a linear collineation group in the translation
complement that acts transitively on the base reguli.

Then π is one of the following planes:

(1) Betten, or

(2) Desarguesian.

Note, that we cannot be certain that a group that acts transitively must, in
fact, be linear unless q = 2r and r is odd. So, we make this assumption when
considering Ostrom-derivates. Note that in both of the above types of planes
the skeleton is transitive. Hence, we then have the following:

Theorem 7.2. Let π be a conical flock plane of even order 22r, where r is odd.
Assume that the skeleton S(π) is not transitive. Assume that there are k ≥ 2 orbits
of planes within the skeleton with representatives say πi ; i = 1, . . . , k.

(1) Corresponding to each plane πi , there that at least two mutually non-isomor-
phic Ostrom-derivates.

(2) Hence, there are at least 2k mutually non-isomorphic Ostrom-derivates.

Proof. If the skeleton is not transitive, assume that there are k orbits in the
skeleton. Consider a representative plane πi. Assume that there is a unique Os-
trom-derivate arising from πi. Then there is a group acting transitively on the
base reguli. However, this implies that the plane is Betten or Desarguesian.

Corollary 7.3. Any even order conical flock plane of order 22r for r odd, which
does not belong to a transitive skeleton produces at least four mutually non-isomor-
phic Ostrom-derivates.

8 A Few Examples

For many of the known conical flock planes, the full collineation group is also
known. This means that using this group, we may determine how many mutu-
ally non-isomorphic Ostrom-derivates actually are produced per skeleton. We
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have shown that normally, there are at least two non-isomorphic Ostrom-deri-
vates when the skeleton is transitive. Indeed, for the known transitive skeletons,
such as arising from the Penttila flocks or the Adelaide flocks, there are an enor-
mous number of ‘missing’ spreads that may be obtained by derivation of the
base reguli.

8.1 The Penttila Flocks/spreads

The Penttila flocks/spreads are most easily described using BLT-sets: For exam-
ple, let K be isomorphic to GF (q) and let F extend K and be isomorphic to
GF (q2). Let q be odd and ≥ 5. Let α be a primitive element for E and let
β = αq−1 of order q + 1. Let V = {(x, y, a);x, y ∈ F and a ∈ K} considered as
a 5-dimensional K-space. Define

Q by Q(x, y, a) = xq+1 + yq+1 − a2.

Then Q is a quadratic form on V . Furthermore,

{(2β2j , β3j ,
√

5) ∈ V ; 0 ≤ j ≤ q}, q ≡ ±1 mod 10

is a BLT-set (see background section).

We note that
τβ : (x, y, b) 7−→ (xβ, yβ, b)

defines an isometry, since Q(x, y, a) = Q(xβ, yβ, a). Indeed, 〈τβ〉 is a group that
acts transitively on the BLT-set. We notice that a group acting transitively on the
BLT-set implies that there is a cyclic group induced on the skeleton of planes;
we have a ‘cyclic skeleton.’

In order to determine how many Ostrom-derivates exist, we need to deter-
mine the stabilizer of any point of the BLT-set for this induces the collineation
group of the associated translation plane, which must permute the q base reguli.
The number of orbits of the reguli is the number of mutually non-isomorphic
Ostrom-derivates. The number of orbits of the reguli is the number of orbits
minus 1 of the points of the BLT-set of the stabilizer of any given point.

Here we list the following interesting problem:

Problem 1. Determine the stabilizer of a point of the BLT-set producing the Pent-
tila flocks. Use this to enumerate the number of mutually non-isomorphic Os-
trom-derivates.
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8.2 The Fisher Flocks/planes

A BLT-set for the Fisher flocks is

{(β2j , 0, 1), (0, β2j , 1); 1 ≤ j ≤ (q + 1)/2},

(see Payne [24], form determined by Penttila [26]). Consider the following
group:

〈σ, gβ〉 ;σ : (x, y, a) 7−→ (y, x, a) and gβ : (x, y, a) 7−→ (xβ2, yβ2, a),

a group isomorphic to Z2 × Z(q+1)/2, where the notation of the previous sub-
section is utilized. Hence, we again have a transitive, but not necessarily cyclic
skeleton.

The stabilizer of a point induces a collineation group of the Fisher planes.

Theorem 8.1. The full collineation group of the Fisher planes is the group inher-
ited from the associated Desarguesian affine plane.

Proof. We know that a Fisher plane π contains a Desarguesian net of degree
1 + q(q − 1)/2 shared by the Desarguesian plane Σ from which it may be con-
structed and consisting of (q − 1)/2 reguli sharing a component x = 0, the axis
of the elation group E. We also know that the full collineation group of π per-
mutes the base reguli. Since a Desarguesian affine plane is uniquely determined
by any two reguli that share a component, it follows that either the theorem is
proved or there is a collineation σ that maps all but possible one of the reguli
of Σ in π into the (q + 1)/2 reguli in an orbit. But, this means that at least
(q− 1)/2− 1 of the reguli of the (q+ 1)/2-orbit map into the linear part. There-
fore, we have an orbit of reguli of length q − 1 or q. In the latter case, we have
a group of order q2 acting transitively on the components of π, a contradiction
by Theorem 2.27. In the former case, we have a group of order q(q − 1) which
leaves a regulus invariant. Furthermore, this says that the (q + 1)/2-orbit con-
tains a linear subset of (q−1)/2 reguli. However, by Theorem 2.28 , it is possible
to extend any non-linear subset of (q + 1)/2 reguli that contains a linear subset
of (q−1)/2 reguli to a Fisher type spread. In other words, there is a collineation
group acting transitive on the spread minus any linear set of (q − 1)/2 reguli.
Hence, we are back to having a collineation group that is transitive on the q,
reguli and hence a collineation group of order q2 that acts transitively on the
components. This is contrary to Theorem 2.27 and completes the proof of the
result.

For a nice representation of the Fisher planes of arbitrary order, the reader is
referred to the authors’ recent article [12].
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Theorem 8.2. (Jha and Johnson [12]) Let K be a full field of odd or 0 character-
istic and let K[θ] be a quadratic extension of K that is also a full field. Let Σ be
the Pappian affine plane coordinatized by K[θ] and let H be the kernel homology
group of squares in Σ.

Let s be any element of K[θ] such that sσ+1 is non-square in K if −1 is a non-
square in K, and sσ+1 is square in K if −1 is a square in K. Let E denote the
regulus-inducing group and H is the homology group of squares of kernel homolo-
gies in Σ. Then,

EH(y = xσs) ∪
{
y = xm; (m+ β)σ+1 6= sσ+1 ∀β ∈ K

}

is a generalized Fisher conical spread in PG(3,K).

In the finite case, the spread is a union of q reguli that share a component.
There are (q+1)/2 reguli in an orbit under a group EH , of order q(q+1), where
the group H of order q + 1 is a kernel homology subgroup of the associated
Desarguesian affine plane Σ , and the group E is a regulus-inducing elation
group of order q. There are (q−1)/2 reguli from Σ, each of which is left invariant
by EH .

Hence, we may consider a collineation g of Σ that fixes y = xqs and fixes
x = 0 and is in ΓL(2, q2). Let

g : (x, y) 7−→ (xτa, xτb+ yτc),

acting on Σ represented in the standard manner. Then,

y = xqs 7−→ y = xqa−τqsτc+ xa−τb = xqs,

if and only if
b = 0 and c = s1−τaq.

Hence, g fixes x = 0, y = 0 and must normalize E, implying that g must fix the
standard regulus net so that

s1−τaq−1 ∈ GF (q)− {0}.
Moreover, we may assume, using the kernel homology group of order q − 1,
that g fixes pointwise a 1-dimensional K-subspace of y = xqs, say generated by
(xo, x

q
os).

So,
a = x1−τ

o .

Therefore, the collineation g has the form:

g : (x, y) 7−→ (xτx1−τ
o , yτx(1−τ)q

o s1−τ ).

So, if τ = 1 then g = 1. It follows that there is a cyclic group of order 2r, where
q2 = p2r, and p is a prime, acting on the Fisher spreads. Thus, we have:



62 Jha • Johnson

Theorem 8.3. Let π be a Fisher plane of odd order p2r, where p is a prime. Then,
there are at least 1 + (q−1)

2([2r]) mutually non-isomorphic Ostrom-derivates.

If (r, q − 1) = 1 then there are:

(a) 1+(q−1)/2 mutually non-isomorphic Ostrom-derivates if q ≡ −1 mod

4 and

(b) 1+(q−1)/4 mutually non-isomorphic Ostrom-derivates if q ≡ 1 mod 4.

Proof. Since the q-reguli are in orbits of lengths (q+1)/2 and 1 under GL(2, q2),
we have 1+(q−1)/2 possible Ostrom-derivates considering the action ofGL(2, q2)

and hence at least the indicated number under ΓL(2, q2).

8.3 The Adelaide Flocks/planes

The Adelaide flocks in PG(3, 2e) are cyclic admitting a group acting on the
skeleton isomorphic to Cq+1 × C2e. This means that the stabilizer of a given
flock has order 2e in latter case. Hence, the group acting on the q base reguli
of the associated spread also has order 2e. Thus, there are at least q/2e orbits
of base reguli providing at least this number of Ostrom-derivates from a given
Adelaide flock.

Theorem 8.4. For any Adelaide conical flock plane of order 22e, there are at least
[2e−1/e] mutually non-isomorphic Ostrom-derivates.

For general background on the above remarks, the reader is referred to the
survey article by Payne [24]

8.4 Law-Penttila Flocks/spreads

When the skeleton is not transitive, we have given one general result for conical
flocks of even order but again this is a very rough lower bound for the number
of mutually non-isomorphic planes obtained.

We mention again the following question raised previously: Can there exist
a conical flock plane in PG(3, q) that produces (q + 1)q mutually non-
isomorphic Ostrom-derivates?

For example, the infinite class of Law-Penttila flocks of order/spreads of order
q2 and characteristic three come fairly close to providing such numbers of Os-
trom-derivates. The spreads for these conical planes are as follows:

x = 0, y = x

[
u− t4 − nt2 n−1t9 − t7 − n2t3 + n3t

t u

]
;u, t ∈ GF (3e),

and n is a fixed non-square in GF (3e).
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For example, the Law-Penttila flocks of order 3p
h

have 3p
h−1
(

3φ(ph)−1
2ph

)
orbits

of flocks in the skeleton which have trivial automorphism groups. This means
that each such flock contributes q = 3p

h

mutually non-isomorphic Ostrom-der-

ivate planes. There are at least 3p
h−1
(

3φ(ph)−1
2ph

)
3p
h

mutually non-isomorphic
Ostrom-derivates from these orbits. The flocks in other orbits contribute at least
[q/2ph] Ostrom-derivates (see Payne [24] for details on the orbit structure of
the group).

Theorem 8.5. Let π denote a Law-Penttila conical plane of order 32ph . Then,

there are at least 3p
h−1
(

3φ(ph)−1
2ph

)
3p
h

+ [3p
h

/2ph] mutually non-isomorphic Os-
trom-derivates.

Finally, we mention a very general problem, which is of general interest.

Problem 2. Study the known conical flock planes and determine the number of
mutually non-isomorphic Ostrom-derivates obtained from each plane.
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