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On strongly quasiconvex subgroups

HUNG CONG TRAN

We develop a theory of strongly quasiconvex subgroups of an arbitrary finitely gener-
ated group. Strong quasiconvexity generalizes quasiconvexity in hyperbolic groups
and is preserved under quasi-isometry. We show that strongly quasiconvex subgroups
are also more reflective of the ambient group’s geometry than the stable subgroups
defined by Durham and Taylor, while still having many properties analogous to
those of quasiconvex subgroups of hyperbolic groups. We characterize strongly
quasiconvex subgroups in terms of the lower relative divergence of ambient groups
with respect to them.

We also study strong quasiconvexity and stability in relatively hyperbolic groups,
right-angled Coxeter groups, and right-angled Artin groups. We give complete
descriptions of strong quasiconvexity and stability in relatively hyperbolic groups and
we characterize strongly quasiconvex special subgroups and stable special subgroups
of two-dimensional right-angled Coxeter groups. In the case of right-angled Artin
groups, we prove that the two notions of strong quasiconvexity and stability are
equivalent when the right-angled Artin group is one-ended and the subgroups have
infinite index. We also characterize nontrivial strongly quasiconvex subgroups of
infinite index (ie nontrivial stable subgroups) in right-angled Artin groups by quadratic
lower relative divergence, expanding the work of Koberda, Mangahas, and Taylor on
characterizing purely loxodromic subgroups of right-angled Artin groups.

20F67, 20F65

1 Introduction

One method to understand the structure of a group G is to investigate the subgroups
of G. To utilize this method in the study of the geometry of the word metric on finitely
generated groups, one needs to investigate subgroups which reflect the geometry of G
and are invariant under choices of finite generating set for G. Quasiconvex subgroups of
hyperbolic groups are a primary example of such subgroups. A quasiconvex subgroup
of a hyperbolic group is also hyperbolic. Further, the invariance of quasiconvexity
under quasi-isometries between hyperbolic spaces ensures that the quasiconvexity of a
subgroup is independent of choice of finite generating set for the ambient group.
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Unfortunately, quasiconvexity is not as useful for arbitrary finitely generated groups. In
nonhyperbolic spaces, quasiconvexity is not preserved under quasi-isometry. Therefore
the quasiconvex subgroups of a nonhyperbolic group G will depend upon the choice
of finite generating set for G. In [17], Durham and Taylor introduce a strong notion
of quasiconvexity in finitely generated groups, called stability, which is preserved
under quasi-isometry, and agrees with quasiconvexity when the ambient group is
hyperbolic. Moreover, stable subgroups of mapping class groups are precisely the
convex cocompact subgroups defined by Farb and Mosher in [18] and such subgroups
of mapping class groups are a primary motivation for the concept of stable subgroups
of arbitrary finitely generated groups (see [17]). Stable subgroups have many properties
similar to quasiconvex subgroups of hyperbolic groups and the study of stable subgroups
has received much attention in recent years (see Koberda, Mangahas, and Taylor [26],
Aougab, Durham, and Taylor [3], Antolín, Mj, Sisto, and Taylor [2], Abbott, Durham,
and Behrstock [1], and Cordes and Hume [11]).

However, a stable subgroup of a finitely generated group is always hyperbolic regardless
of the geometry of the ambient group (see [17]). Thus, the geometry of a stable subgroup
does not completely reflect that of the ambient group. Therefore, we introduce another
concept of quasiconvexity, called strong quasiconvexity, which is strong enough to be
preserved under quasi-isometry and relaxed enough to capture the geometry of ambient
groups.

Definition 1.1 Let G be a finitely generated group and H a subgroup of G. We
say H is strongly quasiconvex in G if for every K � 1 and C � 0 there is some
M DM.K;C/ such that every .K;C /–quasigeodesic in G with endpoints on H is
contained in the M–neighborhood of H.

Outside the hyperbolic setting, there are many strongly quasiconvex subgroups that are
not stable. For example, nonhyperbolic peripheral subgroups of a relatively hyperbolic
group and nonhyperbolic hyperbolically embedded subgroups of a finitely generated
group are nonstable strongly quasiconvex subgroups (see Drut,u and Sapir [16] and
Sisto [32]). In Section 7, we also provide many examples of nonstable strongly
quasiconvex subgroups in right-angled Coxeter groups that are not relatively hyperbolic.

However, there is a strong connection between strong quasiconvexity and stability. More
precisely, we prove that a subgroup is stable if and only if it is strongly quasiconvex and
hyperbolic (see Theorem 4.8). As a result, our study of strongly quasiconvex subgroups
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yields new results for stable subgroups of relatively hyperbolic groups, right-angled
Coxeter groups, and right-angled Artin groups (see Corollaries 1.10 and 1.12 and
Theorem 1.16).

In this paper, we prove that strongly quasiconvex subgroups of any finitely generated
group have many of the same properties as quasiconvex subgroups in hyperbolic groups.
We also characterize a strongly quasiconvex subgroup via the completely superlinear
lower relative divergence of the ambient group with respect to the subgroup. Finally,
we study strongly quasiconvex subgroups of relatively hyperbolic groups, right-angled
Artin groups, and right-angled Coxeter groups.

The concept of strongly quasiconvex subgroups was also introduced independently
in [19] by Genevois under the name Morse subgroups. In that paper, Genevois charac-
terizes strongly quasiconvex subgroups in cubulable groups and then he uses strongly
quasiconvex subgroups to give a characterization of hyperbolically embedded subgroups
in the same group collection. He also independently studies strongly quasiconvex
subgroups in right-angled Artin groups and right-angled Coxeter groups.

1.1 Some properties of strongly quasiconvex subgroups

A quasiconvex subgroup of a hyperbolic group is always finitely generated, undistorted,
and has finite index in its commensurator (see Kapovich and Short [24; 31]). Further,
the intersection between two quasiconvex subgroups of a hyperbolic group is also a
quasiconvex subgroup (see Short [31]) and any collection of quasiconvex subgroups of
a hyperbolic group has finite height, finite width, and bounded packing (see Gitik, Mitra,
Rips, and Sageev [20] and Hruska and Wise [23]). In this paper, we prove that strongly
quasiconvex subgroups of arbitrary finitely generated groups have analogous properties.

Theorem 1.2 Let G be an arbitrary finitely generated group. Then:

(1) If H is a strongly quasiconvex subgroup of G, then H is a finitely generated,
undistorted subgroup and H has finite index in its commensurator.

(2) If H1 and H2 are arbitrary strongly quasiconvex subgroups of G, then H1\H2
is strongly quasiconvex in G, H1 , and H2 .

(3) If HD fH1; : : : ;H`g is a finite collection of strongly quasiconvex subgroups
of G, then H has finite height, finite width, and bounded packing. (We refer the
reader to Definitions 4.13 and 4.17 for the concepts of finite height, finite width,
and bounded packing of a finite collection of subgroups.)
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In [2], Antolín, Mj, Sisto, and Taylor prove that if H is a finite collection of stable
subgroups of a finitely generated group, then H has finite height, finite width, and
bounded packing. The above theorem strengthens their work to strongly quasiconvex
subgroups. Combining Theorem 1.2 with the work of Sageev [29; 30] and Hruska
and Wise [23], we have the following as an immediate corollary:

Corollary 1.3 Suppose H is a strongly quasiconvex codimension 1 subgroup of a
finitely generated group G. Then the corresponding CAT.0/ cube complex is finite-
dimensional.

In the hyperbolic setting, the inclusion map H ,! G of a quasiconvex subgroup H
into G induces a topological embedding of the Gromov boundary of H into the
Gromov boundary of G. The image of this embedding is also the limit set ƒH of H in
the Gromov boundary of G. Moreover, if H1 and H2 are two quasiconvex subgroups
of a hyperbolic group G, then the limit set ƒ.H1\H2/ is the intersection ƒH1\ƒH2
(see Gromov [21]).

In order to prove analogies of the above properties for strongly quasiconvex subgroups,
we need a quasi-isometry invariant boundary for any finitely generated group. In [10],
Cordes introduced the Morse boundary of proper geodesic metric spaces which gen-
eralizes the contracting boundary of CAT.0/ spaces (see Charney and Sultan [9]).
Critically, the Morse boundary is a quasi-isometry invariant and it agrees with the
Gromov boundary on hyperbolic spaces (see [10]). In this paper, we prove strongly
quasiconvex subgroups interact with the Morse boundary similarly to how quasiconvex
subgroups of hyperbolic groups interact with the Gromov boundary.

Theorem 1.4 Let G be a finitely generated group. Then:

(1) If H is a strongly quasiconvex subgroup of G, then the inclusion i W H ,! G

induces a topological embedding Oi W @MH ! @MG of the Morse boundary of H
into the Morse boundary of G such that Oi.@MH/DƒH, where ƒH is the limit
set of H in the Morse boundary @MG of G.

(2) If H1 and H2 are strongly quasiconvex subgroups of G, then H1 \ H2 is
strongly quasiconvex in G and ƒ.H1\H2/DƒH1\ƒH2 .

1.2 Strong quasiconvexity and lower relative divergence

Lower relative divergence was introduced by the author in [33] to study the geometric
connection between a geodesic space and its subspaces. Lower relative divergence
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generalizes the lower divergence of quasigeodesics studied by Charney and Sultan [9]
and Arzhantseva, Cashen, Gruber, and Hume [4] to any subset of a geodesic space.
Roughly speaking, relative divergence measures the distance distortion of the comple-
ment of the r–neighborhood of a subspace in the whole space when r increases. Since
lower relative divergence is preserved under quasi-isometry (see Proposition 4.9 in [33]),
we can define the lower relative divergence of a pair of groups .G;H/, where G is
finitely generated and H �G. We refer the reader to Section 2 for precise definitions.

In [33] the lower relative divergence of a hyperbolic group with respect to a quasiconvex
subgroup is at least exponential. For strongly quasiconvex subgroups of arbitrary finitely
generated groups, the lower relative divergence must always be completely superlinear.

Theorem 1.5 Let G be a finitely generated group and H an infinite subgroup of G.
Then H is strongly quasiconvex in G if and only if the lower relative divergence of G
with respect to H is completely superlinear.

Theorem 1.5 is actually a corollary of the following more general statement about the
lower relative divergence of geodesic spaces with respect to Morse subsets.

Theorem 1.6 Let X be a geodesic space and A a subset of X of infinite diameter.
Then A is Morse in X if and only if the lower relative divergence of X with respect
to A is completely superlinear.

In [35], the author proves that the lower relative divergence of a nonhyperbolic group
with respect to a stable subgroup can be any polynomial. In this paper, we prove that
the same result holds for nonstable strongly quasiconvex subgroups.

Theorem 1.7 For each d � 2 there is a nonhyperbolic group Gd together with a non-
stable strongly quasiconvex subgroup whose lower relative divergence is a polynomial
of degree d .

The above theorem shows that the lower relative divergences with respect to strongly
quasiconvex subgroups are potentially diverse. Since lower relative divergence is a
quasi-isometry invariant, Theorem 1.7 suggests that classifying strongly quasiconvex
subgroups using lower relative divergence would produce a rich source of new quasi-
isometry invariants.

Theorem 1.6 is a generalization of the work in [9] and [4], in which the authors
characterize Morse quasigeodesics as those which have completely superlinear lower
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divergence. In fact, Charney and Sultan showed in the setting of CAT.0/ spaces that
Morse quasigeodesics are actually characterized by quadratic lower divergence. Thus
Theorem 1.6 suggests the following interesting question:

Question 1.8 Is the lower relative divergence of a CAT.0/ group with respect to an
infinite strongly quasiconvex subgroup at least quadratic?

1.3 Strong quasiconvexity and stability in relatively hyperbolic groups

In this paper, we fully describe strongly quasiconvex subgroups and stable subgroups of
relatively hyperbolic groups. We remark that strongly quasiconvex subgroups and stable
subgroups of relatively hyperbolic groups are distinct from the relatively quasiconvex
subgroups defined by Dahmani [12] and Osin [27]. We first come up with the description
of strongly quasiconvex subgroups of relatively hyperbolic groups.

Theorem 1.9 Let .G;P / be a finitely generated relatively hyperbolic group and H a
finitely generated undistorted subgroup of G. Then the following are equivalent:

(1) The subgroup H is strongly quasiconvex in G.

(2) The subgroup H \P g is strongly quasiconvex in P g for each conjugate P g of
a peripheral subgroup in P.

(3) The subgroup H \P g is strongly quasiconvex in G for each conjugate P g of
a peripheral subgroup in P.

In [3], Aougab, Durham, and Taylor characterize stability in relatively hyperbolic
groups whose peripheral subgroups are one-ended and have linear divergence. In this
paper, we give a complete characterization of stable subgroups of arbitrary relatively
hyperbolic groups.

Corollary 1.10 Let .G;P / be a finitely generated relatively hyperbolic group and H a
finitely generated undistorted subgroup of G. Then the following are equivalent:

(1) The subgroup H is stable in G.

(2) The subgroup H \P g is stable in P g for each conjugate P g of a peripheral
subgroup in P.

(3) The subgroup H \P g is stable in G for each conjugate P g of a peripheral
subgroup in P.
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1.4 Strong quasiconvexity, stability and the Morse boundary of
right-angled Coxeter groups

In this paper, we establish a characterization of strongly quasiconvex special subgroups
of two-dimensional right-angled Coxeter groups. Independent work of Genevois has
recently partially expanded this characterization to special subgroups of right-angled
Coxeter groups of arbitrary dimension (see Proposition 4.9 in [19]).

Theorem 1.11 Let � be a simplicial, triangle-free graph with vertex set S , and let K
be a subgroup of G� generated by some subset S1 of S. Then the following conditions
are equivalent:

(1) The subgroup K is strongly quasiconvex in G� .

(2) If S1 contains two nonadjacent vertices of an induced 4–cycle � , then S1

contains all vertices of � .

(3) Either jKj<1 or the lower relative divergence of G� with respect to K is at
least quadratic.

An immediate corollary of the above theorem is a characterization of stable special
subgroups of two-dimensional right-angled Coxeter groups.

Corollary 1.12 Let � be a simplicial, triangle-free graph with vertex set S , and let K
be a subgroup of G� generated by some subset S1 of S. Then the following conditions
are equivalent:

(1) The subgroup K is stable in G� .

(2) The set S1 does not contain a pair of nonadjacent vertices of an induced 4–cycle
in � .

Behrstock [5] produced the first example of a CFS right-angled Coxeter group whose
Morse boundary was not totally disconnected. Using Corollary 1.12 and Theorem 1.4,
we establish a sufficient condition for the Morse boundary of a two-dimensional right-
angled Coxeter group to be not totally disconnected. This provides an alternative proof
that the Morse boundary of the example in [5] is not totally disconnected:

Corollary 1.13 If the simplicial, triangle-free graph � contains an induced loop �
of length greater than 4 such that the vertex set of � does not contain a pair of
nonadjacent vertices of an induced 4–cycle in � , then the Morse boundary of the
right-angled Coxeter group G� is not totally disconnected.
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Corollary 1.13 inspires the following conjecture on the connectedness of the Morse
boundary of right-angled Coxeter groups.

Conjecture 1.14 The Morse boundary of a right-angled Coxeter group G� is not
totally disconnected if and only if the defining graph � contains an induced loop � of
length greater than 4 such that the vertex set of � does not contain a pair of nonadjacent
vertices of an induced 4–cycle in � .

1.5 Strong quasiconvexity, stability, and lower relative divergence in
right-angled Artin groups

As discussed above, strong quasiconvexity and stability are equivalent in the hyperbolic
setting, but different in general. It is natural to ask about the existence of a nonhyperbolic
ambient group in which the two notions of strongly quasiconvex subgroup of infinite
index and stable subgroup are equivalent:

Question 1.15 Is there any nonhyperbolic ambient group setting in which the two
notions of strongly quasiconvex subgroup of infinite index and stable subgroup are
equivalent? In other words, is there any nonhyperbolic ambient group setting in which
all strongly quasiconvex subgroups of infinite index are hyperbolic?

The following theorem answers the above question:

Theorem 1.16 Let � be a simplicial, finite, connected graph such that � does not
decompose as a nontrivial join. Let H be a nontrivial, infinite-index subgroup of the
right-angled Artin group A� . Then the following are equivalent:

(1) H is strongly quasiconvex.

(2) H is stable.

(3) The lower relative divergence of A� with respect to H is quadratic.

(4) The lower relative divergence of A� with respect to H is completely superlinear.

In [26], Koberda, Mangahas, and Taylor give several characterizations of purely loxo-
dromic subgroups in right-angled Artin groups. One of these is the equivalence between
purely loxodromic subgroups and stable subgroups. The above theorem builds on the
work of Koberda, Mangahas, and Taylor in [26] to provide several new characterizations
of purely loxodromic subgroups in one-ended right-angled Artin groups.
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Corollary 1.17 Let � be a simplicial, finite, connected graph such that � does not
decompose as a nontrivial join. Let H be a nontrivial, finitely generated, infinite-index
subgroup of the right-angled Artin group A� . Then the following are equivalent:

(1) H is purely loxodromic.

(2) H is strongly quasiconvex.

(3) The lower relative divergence of A� with respect to H is quadratic.

(4) The lower relative divergence of A� with respect to H is completely superlinear.

Genevois provides an alternative proof for the equivalence among strongly quasiconvex,
stable, and purely loxodromic subgroups of one-ended right-angled Artin groups in
Theorem B.1 of [19]. However, Corollary 1.17 also provides a classification of the
possible lower relative divergences for any infinite-index subgroup of a one-ended
right-angled Artin group. In [25], Kim has recently proved a similar characterization
for convex cocompact subgroups of mapping class groups.

1.6 Some questions

Hierarchically hyperbolic groups were recently introduced by Behrstock, Hagen,
and Sisto [7] to provide a uniform framework in which to study many important
families of groups, including mapping class groups, right-angled Coxeter groups, most
3–manifold groups, and right-angled Artin groups. In [1], Abbott, Behrstock, and
Durham prove a characterization of stability in hierarchically hyperbolic groups. We
expect a similar characterization of strong quasiconvexity in hierarchically hyperbolic
groups is possible.

Question 1.18 Characterize strong quasiconvexity in hierarchically hyperbolic groups.

We also hope there is a connection between strong quasiconvexity and stability in
some hierarchically hyperbolic groups which is analogous to the one demonstrated in
Theorem 1.16 for right-angled Artin groups.

Question 1.19 What are conditions on a hierarchically hyperbolic group to ensure
that all strongly quasiconvex subgroups of infinite index are stable?

Since quasiconvex subgroups of hyperbolic groups are hyperbolic, it is natural to ask
about the existence of hierarchically hyperbolic structures on a strongly quasiconvex
subgroup of a hierarchically hyperbolic group.
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Question 1.20 Is a strongly quasiconvex subgroup of a hierarchically hyperbolic
group hierarchically hyperbolic?

Moving on from hierarchically hyperbolic groups, we wonder about further connections
between strongly quasiconvex subgroups and hyperbolically embedded subgroups. In
particular, Dahmani, Guirardel, and Osin [13] and Sisto [32] prove that a hyperbolically
embedded subgroup is almost malnormal and strongly quasiconvex, and Genevois [19]
shows that the converse holds in the case of cubulable groups. We ask about other
conditions of a group where one can obtain a converse statement.

Question 1.21 Under what other conditions of a finitely generated group are all almost
malnormal, strongly quasiconvex subgroups hyperbolically embedded?

In [28], Osin characterizes acylindrically hyperbolic groups using hyperbolically embed-
ded subgroups. Therefore, the answer to the above question may give some connection
between the two notions of strongly quasiconvex subgroups and acylindrically hyper-
bolic groups.

Acknowledgements

I want to thank Christopher Hruska, Ruth Charney, Jason Behrstock, Thomas Koberda,
François Dahmani, Hoang Thanh Nguyen, Matthew Haulmark, Anthony Genevois,
Jacob Russell, and Adam Saltz for their very helpful conversations. I also thank the
referee for a careful reading and advice that improved the exposition of the paper.

2 Preliminaries

In this section, we review some well-known concepts in geometric group theory:
geodesic spaces, geodesics, quasigeodesics, quasi-isometries, quasi-isometric embed-
dings, and Morse subsets. We also discuss some recently developed concepts: lower
relative divergence, geodesic divergence, and geodesic lower divergence.

Definition 2.1 Let .X; dX / and .Y; dY / be two metric spaces. A map ˆ from X

to Y is a .K;L/–quasi-isometric embedding if for all x1 and x2 in X the inequality

1

K
dX .x1; x2/�L� dY .ˆ.x1/; ˆ.x2//�KdX .x1; x2/CL

holds. If, in addition, NL.ˆ.X//D Y , then ˆ is called a .K;L/–quasi-isometry. Two
spaces X and Y are quasi-isometric if there is a .K;L/–quasi-isometry from X to Y .
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The special case of a quasi-isometric embedding where the domain is a connected
interval in R (possibly all of R) is called a .K;L/–quasigeodesic. A geodesic is a
.1; 0/–quasigeodesic. The metric space X is a geodesic space if any pair of points
in X can be joined by a geodesic segment.

Definition 2.2 Let X be a geodesic space and A a subset of X. Let r be any positive
number.

(1) Nr.A/D fx 2X j dX .x; A/ < rg.

(2) @Nr.A/D fx 2X j dX .x; A/D rg.

(3) Cr.A/DX �Nr.A/.

(4) Let dr;A be the induced length metric on the complement of the r–neighborhood
of A in X. If the subspace A is clear from context, we can use the notation dr
instead of using dr;A .

Definition 2.3 A subset A of a geodesic metric space X is Morse if for every K � 1
and C � 0 there is some M DM.K;C/ such that every .K;C /–quasigeodesic with
endpoints on A is contained in the M–neighborhood of A. We call the function M a
Morse gauge.

Before we define the concepts of lower relative divergence, geodesic divergence, and
geodesic lower divergence, we need to build the notions of domination and equivalence.

Definition 2.4 Let M be the collection of all functions from Œ0;1/ to Œ0;1�.
Let f and g be arbitrary elements of M. The function f is dominated by the
function g , denoted by f � g , if there are positive constants A, B , C , and D such
that f .x/ � Ag.Bx/CCx for all x > D. Two functions f and g are equivalent,
denoted by f � g , if f � g and g � f . The function f is strictly dominated by the
function g , denoted by f � g , if f is dominated by g and they are not equivalent.

We say a function f in M is completely superlinear if for every choice of C > 0 the
collection of x 2 Œ0;1/ such that f .x/� Cx is bounded.

Remark 2.5 The relations � and � are transitive. The relation � is an equivalence
relation on the set M. If f � g in M and f is completely superlinear, then g is
also completely superlinear. Therefore, if f � g in M and one of them is completely
superlinear, then the other is also completely superlinear.

It is clear that two polynomial functions of degrees 0 and 1 are always equivalent. Now
we let f and g be two polynomial functions of degree at least 1 in the family M.
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We observe that f is dominated by g if and only if the degree of f is less than or
equal to the degree of g . Also, the two functions f and g are equivalent if and only
if they have the same degree. All exponential functions of the form abxCc , where
a > 1 and b > 0, are equivalent. Therefore, a function f in M is linear, quadratic or
exponential if f is respectively equivalent to any polynomial with degree one or two
or any function of the form abxCc , where a > 1 and b > 0.

Definition 2.6 Let fın� g and fı0n� g be two families of functions of M, indexed
over � 2 .0; 1� and positive integers n � 2. The family fın� g is dominated by the
family fı0n� g, denoted by fın� g � fı

0n
� g, if there exists a constant L 2 .0; 1� and a

positive integer M such that ınL� � ı
0Mn
� . Two families fın� g and fı0n� g are equivalent,

denoted by fın� g � fı
0n
� g, if fın� g � fı

0n
� g and fı0n� g � fın� g.

We say a family fın� g of functions in M is completely superlinear if there is some n0�3
such that ın0

� is completely superlinear for all � 2 .0; 1�.

Remark 2.7 A family fın� g is dominated by (or dominates) a function f in M if fın� g
is dominated by (or dominates) the family fı0n� g, where ı0n� D f for all � and n. The
equivalence between a family fın� g and a function f in M can be defined similarly.
Thus, a family fın� g is linear, quadratic, exponential, etc if fın� g is equivalent to the
function f where f is linear, quadratic, exponential, etc.

If fın� g � fı
0n
� g and fın� g is completely superlinear, then fı0n� g is also completely

superlinear. Therefore, if fın� g � fı
0n
� g and one of them is completely superlinear, then

the other is also completely superlinear.

We now review the concept of lower relative divergence, which was originally introduced
by the author in [33].

Definition 2.8 (lower relative divergence in spaces) Let X be a geodesic space and
A a subset of X of infinite diameter. For each � 2 .0; 1� and positive integer n � 2,
we define the function �n� W Œ0;1/! Œ0;1� as follows:

For each positive r , if there is no pair of x1; x22@Nr.A/ such that dr.x1; x2/<1 and
d.x1; x2/� nr , we define �n� .r/D1. Otherwise, we define �n� .r/D inf d�r.x1; x2/,
where the infimum is taken over all x1; x2 2 @Nr.A/ such that dr.x1; x2/ <1 and
d.x1; x2/� nr .

The family of functions f�n� g is the lower relative divergence of X with respect A,
denoted by div.X;A/.
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Convention 2.9 Let X be a geodesic space and A a subset of X of infinite diameter.
Let f�n� g be the lower relative divergence of X with respect to A. Assume that
Nr0

.A/DX for some r0 . Therefore, @Nr.A/D∅ for each r > r0 . This implies for
each � 2 .0; 1� and positive integer n� 2 that �n� .r/D1 for r > r0 .

Definition 2.10 (lower relative divergence in groups) Let G be a finitely generated
group and H its subgroup. We define the lower relative divergence of G with re-
spect to H, denoted by div.G;H/, to be the lower relative divergence of the Cayley
graph �.G; S/ with respect to H for some (any) finite generating set S.

Remark 2.11 The subgroup H in the above definition is not required to be finitely
generated. Moreover, the lower relative divergence is a pair quasi-isometry invariant (see
Proposition 4.9 in [33]). This implies that the lower relative divergence on a finitely gen-
erated group does not depend on the choice of finite generating sets of the ambient group.

We now define geodesic divergence and geodesic lower divergence.

Definition 2.12 (geodesic divergence) The divergence of two geodesic rays ˛ and ˇ
with the same initial point x0 in a geodesic space X, denoted by Div˛;ˇ , is a function
gW .0;1/! .0;1� defined as follows. For each positive r , if there is no path outside
the open ball with radius r about x0 connecting ˛.r/ and ˇ.r/, we define g.r/D1.
Otherwise, we define g.r/ to be the infimum on the lengths of all paths outside the
open ball with radius r about x0 connecting ˛.r/ and ˇ.r/.

The divergence of a bi-infinite geodesic  , denoted by Div , is the divergence of the
two geodesic rays obtained from  with initial point .0/.

Definition 2.13 (geodesic lower divergence) Let ˛ be a bi-infinite geodesic. For
any r > 0 and t 2R, if there is no path from ˛.t � r/ to ˛.tC r/ that lies outside the
open ball of radius r about ˛.t/, we define �˛.r; t/D1. Otherwise, we let �˛.r; t/
denote the infimum of the lengths of all paths from ˛.t �r/ to ˛.tCr/ that lie outside
the open ball of radius r about ˛.t/. Define the lower divergence of ˛ to be the growth
rate of the following function:

ldiv˛.r/D inf
t2R

�˛.r; t/

Remark 2.14 The geodesic divergence is a classical notion related to curvature and the
geodesic lower divergence was originally introduced by Charney and Sultan in [9]. In
general, these concepts measure different aspects of a bi-infinite geodesic in a geodesic
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space. More precisely, let ˛ be a bi-infinite geodesic in a geodesic space X. It is
not hard to see that ldiv˛ � Div˛ and the two functions are not the same in general.
However, ldiv˛ � Div˛ if ˛ is a periodic geodesic (ie there is an isometry g of X
such that g˛ D ˛ ).

Also, the lower divergence ldiv˛ of ˛ in X is equivalent to the lower relative divergence
div.X; ˛/ of X with respect to ˛ . The proof of this fact is similar to the proof of
Proposition 6.6 in [33] and we leave it to the reader.

3 Characterizing Morse subsets via lower relative divergence

In most parts of this section, we characterize Morse subsets with infinite diameter in
terms of the lower divergence related to them. This result will be used to characterize
strongly quasiconvex subgroups, which are defined in Section 4. We also study the
behavior of geodesic rays in a finite neighborhood of some Morse subsets and this
result will be applied to study the height of strongly quasiconvex subgroups later.

Proposition 3.1 (completely superlinear lower relative divergence implies Morse)
Let X be a geodesic space and A a subset of X of infinite diameter. If the lower
relative divergence f�n� g of X with respect to A is completely superlinear, then A is
Morse in X.

Proof Let n0 � 3 and �0 2 .0; 1� such that �n0
�0

is a completely superlinear function.
Let  W Œa; b�!X be an arbitrary .K;L/–quasigeodesic in X connecting two points
in A. By Lemma 1.11 of [8, Chapter III.H], we can find a continuous quasigeodesic
cW Œa; b�!X such that:

(1) c.a/D .a/ and c.b/D .b/.

(2) `.cjŒt;t 0�/ � K1d.c.t/; c.t
0//CL1 , where K1 � 1 and L1 � 0 only depend

on K and L.

(3) The Hausdorff distance between  and c is less than C, where C only depends
on K and L.

Therefore, it is sufficient to prove that c lies in some M–neighborhood of A, where M
only depends on K1 , L1 , n0 , and the function �n0

�0
. Let t0 2 Œa; b� such that c.t0/ is

the farthest point from A, and let mD d.c.t0/; A/. If m� 2L1 , then c obviously lies
in some M–neighborhood of A, where M only depends on L1 . Therefore, we can
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assume that m>2L1 . We claim that if m>2L1 , then �n0
�0
.m=.2K1n0//� .4K1C2/m.

Let m1 Dm=.2K1n0/, t1 2 Œa; t0�, and t2 2 Œt0; b� such that c.t1/ and c.t2/ both lie
in @Nm1

.A/ and cŒt1; t2� lies outside Nm1
.A/. We consider two cases:

Case 1 `.cjŒt1;t2�/� 4K1m.

Because d.c.t0/; A/ D m and d.c.t1/; A/ D m=.2K1n0/, the length `.cjŒt1;t0�/ is
bounded below by .1� 1=.2K1n0//m. Similarly, the length `.cjŒt0;t2�/ is bounded
below by .1� 1=.2K1n0//m. Therefore, the length `.cjŒt1;t2�/ is bounded below by
.2� 1=.K1n0//m. This implies that

d.c.t1/; c.t2//�
1

K1
`.cjŒt1;t2�/�

L1

K1

�
1

K1

�
2�

1

K1n0

�
m�

L1

K1

�
m

K1
C

�
1�

1

K1n0

��
m

K1

�
�
L1

K1

�
m

K1
C

m

2K1
�
L1

K1
�
m

K1
� n0

�
m

2K1n0

�
:

Also, the path c.Œt1; t2�/ lies outside the .m=.2K1n0//–neighborhood of A. Therefore,

�n0
�0

�
m

2K1n0

�
� `.cjŒt1;t2�/� 4K1m:

Case 2 `.cjŒt1;t2�/ > 4K1m.

We can choose t3 and t4 in Œt1; t2� (with t3 < t4 ) such that `.cjŒt3;t4�/ D 4K1m.
Since m1 � d.c.t3/; A/ � m, we can choose a point u in @Nm1

.A/ such that the
geodesic ˛1 connecting u and c.t3/ lies outside Nm1

.A/ and its length is bounded
above by m. Similarly, we can choose a point v in @Nm1

.A/ such that the geodesic ˛2
connecting v and c.t4/ lies outside Nm1

.A/ and its length is bounded above by m. Let
ˇ D ˛1

S
cŒt3; t4�

S
˛2 . Then ˇ is a path outside Nm1

.A/ that connects two points
u and v on @Nm1

.A/. Moreover, the length of ˇ is bounded above by .4K1C 2/m
by construction. Also,

d.u; v/� d.c.t3/; c.t4//� 2m�
1

K1
`.cjŒt3;t4�/�

L1

K1
� 2m

� 4m�
L1

K1
� 2m� 2m�

L1

K1
�m� n0

�
m

2K1n0

�
:
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Therefore,
�n0
�0

�
m

2K1n0

�
� `.ˇ/� .4K1C 2/m:

Since �n0
�0

is a completely superlinear function, there is an upper bound on m depending
on K1 and n0 . Therefore, c lies in some M–neighborhood of A, where M only
depends on K1 , L1 , n0 , and the function �n0

�0
.

The following two lemmas will be used to compute the lower relative divergence of
geodesic spaces with respect to their Morse subsets. Most techniques for the proof of
these lemmas were studied in [4].

Lemma 3.2 Suppose  is a concatenation of two .L; 0/–quasigeodesics 1 and 2 ,
where 1 , 2 , and  are all parametrized by arc length. Let C > 1 and r > 0 such
that the distance between the two endpoints a and c of  is at least r and the length
of  is at most Cr . For each � 2 .0; 1� and L0 > LCC CC=�C 1, there exists an
.L0; 0/–quasigeodesic ˛ parametrized by arc length connecting the two points a and c
such that the image of ˛ lies in the �r–neighborhood of the image of  and the length
of ˛ is bounded above by the length of  .

Proof For each path ˇ parametrized by arc length we will abuse notation by identi-
fying ˇ with its image. Moreover, for each pair of points u and v on ˇ we denote
by dˇ .u; v/ the length of the subpath of ˇ connecting u and v . If  is an .L0; 0/–
quasigeodesic, then ˛D  is a desired quasigeodesic. We now assume that  is not an
.L0; 0/–quasigeodesic.

Since d.a; c/� r � d .a; c/=C > d .a; c/=L0, there is a maximal subsegment Œx; y�
of  such that d.x; y/Dd .x; y/=L0 by the continuity of  . It is obvious that x and y
cannot both lie in the same path 1 or 2 . Therefore, we can assume x 2 1 and y 2 2 .
Let Œx; y� be a geodesic connecting x and y and ˛ D Œa; x�1

[ Œx; y�[ Œy; c�2
. We

parametrized ˛ by arc length and we will prove that ˛ is an .L0; 0/–quasigeodesic.

Let u and v be two arbitrary points in ˛ . If u and v both lie in the same one of the
segments Œa; x�1

, Œx; y�, or Œy; c�2
, then d˛.u; v/ � L0d.u; v/. We now consider

the remaining three cases.

Case 1 One of the points u and v lies in Œa; x�1
and the other lies in Œx; y�. We can

assume that u lies in Œa; x�1
and v lies in Œx; y�. We observe that

d.u; y/ > d .u; y/=L
0
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by the maximality of Œx; y� and the continuity of  . Therefore,

d.u; v/� d.u; y/� d.v; y/�
d .u; y/

L0
� d.v; y/

D
d .u; x/C d .x; y/

L0
� d.v; y/D

d .u; x/

L0
C d.x; y/� d.v; y/

D
d .u; x/

L0
C d.x; v/�

d .u; x/C d.x; v/

L0
D
d˛.u; v/

L0

or d˛.u; v/� L0d.u; v/.

Case 2 One of the points u and v lies in Œy; c�2
and the other lies in Œx; y�. Using

an argument symmetric to that in Case 1, we can prove d˛.u; v/� L0d.u; v/.

Case 3 One of the points u and v lies in Œa; x�1
and the other lies in Œy; c�2

.
We can assume that u lies in Œa; x�1

and v lies in Œy; c�2
. We observe again that

d.u; v/ > d .u; v/=L
0 by the maximality of Œx; y� and the continuity of  . Also,

it is not hard to see d˛.u; v/� d .u; v/. This implies that d.u; v/ > d˛.u; v/=L0 or
d˛.u; v/� L

0d.u; v/.

Therefore, ˛ is an .L0; 0/–quasigeodesic parametrized by arc length connecting a and c .
It is not hard to see the length of ˛ is less than or equal to the length of  . In order to
see that the path ˛ lies completely inside the �r–neighborhood of  , we observe that

d.x; y/D
d .x; y/

L0
<
Cr

C=�
D �r:

Lemma 3.3 For each C > 1 and � 2 .0; 1� there is a constant LD L.C; �/� 1 such
that the following holds. Let r be an arbitrary positive number and  a continuous path
with length less than Cr . Assume the distance between the two endpoints x and y
of  is at least r . Then there is an .L; 0/–quasigeodesic ˛ connecting the two points
x and y such that the image of ˛ lies in the �r–neighborhood of  and the length
of ˛ is less than or equal to the length of  .

Proof Let x0 D x , and let x1 be the last point on  such that d.x0; x1/ D �r=4.
Similarly, we define xi D y if d.xi�1; y/ < �r=2 or to be the last point on 

such that d.xi�1; xi / D �r=4. We observe that, by construction, d.xi ; xj / � �r=4
if i ¤ j and y D xn for some n � 4C=� . Let ˛1 be a concatenation of geodesics
Œx0; x1�Œx1; x2� � � � Œxn�1; xn�. Then ˛1 connects the two points x and y , the length
of ˛1 is less than or equal to the length of  , and ˛1 lies completely inside the
.�r=2/–neighborhood of  .
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Using Lemma 3.2 for each integer 1 � i � bn=2c, there are .L2; 0/–quasigeodesics
(where L2 only depends on C and �) from x2.i�1/ to x2i such that the concate-
nation ˛2 of these with the subpath Œx2bn=2c; xn�˛1

of ˛1 satisfies the following
conditions:

(1) ˛2 lies completely inside the .�r=4/–neighborhood of ˛1 .

(2) The length of ˛2 is less than or equal to the length of ˛1 .

Repeat this process at most d times (d � n) until we get an .Ld ; 0/–quasigeodesic ˛d
(where Ld only depends on C and �) connecting the two points x and y satisfying
the following conditions:

(1) ˛d lies completely inside the .�r=2d /–neighborhood of ˛d�1 .

(2) The length of ˛d is less than or equal to the length of ˛d�1 .

Therefore, the length of the .Ld ; 0/–quasigeodesic ˛d is less than the length of  . Also,
�r

2
C
�r

4
C � � �C

�r

2d
< �r:

This implies that ˛d lies in the �r–neighborhood of  . Therefore, L D Ld is the
desired number only depending on C and � .

Proposition 3.4 (Morse implies completely superlinear lower relative divergence)
Let X be a geodesic space and A a subset of X of infinite diameter. If A is Morse
in X, then the lower relative divergence f�n� g of X with respect to A is completely
superlinear.

Proof We will prove the stronger result that �n� is completely superlinear for all n� 5
and �2 .0; 1�. Let � be the Morse gauge of A and assume for purposes of contradiction
that �n0

�0
is not completely superlinear for some n0 � 5 and �0 2 .0; 1�. Then there

is a C > 0 for which there is an unbounded sequence of numbers rm and paths m
satisfying:

(1) Each path m lies outsides the .�0rm/–neighborhood of A and its endpoints
xm and ym lie in @Nrm

.A/.

(2) d.xm; ym/� n0rm and `.m/� Crm .

For each m, let  0m be a geodesic of length less than 2rm that connects xm and
some point um in A. Similarly, let  00m be a geodesic of length less than 2rm that
connects ym and some point vm in A. Let m D  0m [ m [  00m . Then m is a
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path of length at most .C C 4/rm that connects two points um and vm on A with
d.um; vm/� .n0� 4/rm � rm .

By Lemma 3.3, for each m there is an .L; 0/–quasigeodesic ˛m (here L does not
depend on m) connecting two points um and vm satisfying:

(1) `.˛m/� `.m/� .C C 4/rm .

(2) ˛m lies in the .�0rm=2/–neighborhood of m .

By the triangle inequality, each .�0rm=2/–neighborhood of  0m is contained in the open
ball B.xm; 2rmC �0rm=2/ and each .�0rm=2/–neighborhood of  00m is contained in
the open ball B.ym; 2rmC�0rm=2/. Since d.xm; ym/� n0rm� 5rm , the intersection
between the two open balls B.xm; 2rmC�0rm=2/ and B.ym; 2rmC�0rm=2/ is empty.
Therefore, the .�0rm=2/–neighborhoods of  0m and  00m have an empty intersection.
Since ˛m is connected and ˛m intersects both .�0rm=2/–neighborhoods of  0m and  00m ,
it cannot lie completely inside the .�0rm=2/–neighborhood of  0m[  00m . This implies
that there is a point sm on ˛m that lies in the .�0rm=2/–neighborhood of m . Since
each path m lies outside the .�0rm/–neighborhood of A, the point sm must lie outside
the .�0rm=2/–neighborhood of A.

Recall that each ˛m is an .L; 0/–quasi-geodesic with endpoints on A and that A
is Morse in X with Morse gauge �. Each path m must lie completely inside the
�.L; 0/–neighborhood of A. In particular, each point sm must lie inside the �.L; 0/–
neighborhood of A. Therefore, �.L; 0/ � �0rm=2 for all m, which contradicts
the choice of sequence rm . Therefore, �n� is completely superlinear for all n � 5
and � 2 .0; 1�.

The following theorem is deduced from Propositions 3.1 and 3.4.

Theorem 3.5 (characterization of Morse subsets) Let X be a geodesic space and
A a subset of X of infinite diameter. Then A is Morse in X if and only if the lower
relative divergence of X with respect to A is completely superlinear.

We now study the behavior of geodesic rays in a finite neighborhood of some Morse
subset. We first start with a technical lemma that basically amounts to “quasigeodesic
approximation” of certain concatenations of geodesics.

Lemma 3.6 Let  D 123 be the concatenation of three geodesics 1 , 2 , and 3 .
If there is a number r > 0 such that `.1/ < r , `.2/D 20r , and `.3/ < r , then there
is a .5; 0/–quasigeodesic ˛ with the same endpoints as  and ˛\ 2 ¤∅.
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Proof For each path ˇ parametrized by arc length we will abuse notation by identi-
fying ˇ with its image. Moreover, for each pair of points u and v on ˇ we denote
by dˇ .u; v/ the length of the subpath of ˇ connecting u and v . Let a and b be the
endpoints of 1 , let b and c be the endpoints of 2 , and let c and d be the endpoints
of 3 . We claim that there are points x1 2 1 and y1 2 2 such that d.x1; y1/ � 5r
and the concatenation ˛1 D Œa; x1�1

[ Œx1; y1�[ Œy1; c�2
is a .5; 0/–quasigeodesic,

where Œx1; y1� is a geodesic connecting x1 and y1 .

If the concatenation ˇD12 is a .5; 0/–quasigeodesic, then we can choose x1Dy1Db
and ˛1 D ˇ . We now assume that ˇ is not a .5; 0/–quasigeodesic. Since

d.a; c/� d.b; c/� d.a; b/� 19r and dˇ .a; c/� d.a; b/C d.b; c/� 21r;

d.a; c/ > 1
5
dˇ .a; c/. Therefore, there is a maximal subsegment Œx1; y1�ˇ of ˇ such

that d.x1; y1/ D 1
5
dˇ .x1; y1/, by the continuity of ˇ . It is obvious that x1 and y1

cannot both lie in the same path 1 or 2 . Therefore, we can assume x1 2 1
and y1 2 2 . Obviously, d.x1; y1/ D 1

5
dˇ .x1; y1/ �

1
5
`.ˇ/ � 5r . Moreover, ˛1

is a .5; 0/–quasigeodesic by using the same argument as in Lemma 3.2.

Similarly, there are points x2 2 3 and y2 2 2 such that d.x2; y2/ � 5r and the
concatenation ˛2 D Œb; y2�2

[ Œy2; x2�[ Œx2; d �3
is a .5; 0/–quasigeodesic, where

Œy2; x2� is a geodesic connecting y2 and x2 . Let

˛ D Œa; x1�1
[ Œx1; y1�[ Œy1; y2�2

[ Œy2; x2�[ Œx2; d �3
:

Then ˛ � ˛1 [ ˛2 and ˛\ 2 ¤∅. We now prove that ˛ is a .5; 0/–quasigeodesic.
Let u and v be two arbitrary points in ˛ . We consider several cases.

If two points u and v both lie in ˛1 , then d˛1
.u; v/ � 5d.u; v/ because ˛1 is a

.5; 0/–quasigeodesic. Also, d˛.u; v/ D d˛1
.u; v/ by the construction of ˛ and ˛1 .

This implies that d˛.u; v/ � 5d.u; v/. We also obtain a similar inequality if two
points u and v both lie in ˛2 . In the remaining case, u and v do not lie in the same
path ˛1 or ˛2 . Therefore, one of two points u and v must lie in Œa; x1�1

[ Œx1; y1�

(say u) and the remaining point must lie in Œy2; x2�[ Œy2; d �3
(say v ). Since the

length of Œa; x1�1
[ Œx1; y1� is less than 6r , d.a; u/ � 6r . Similarly, d.d; v/ � 6r .

Therefore,
d.u; v/� d.a; d/� d.a; u/� d.d; v/

� d.b; c/� d.a; b/� d.c; d/� 12r

� 20r � r � r � 12r � 6r:

Geometry & Topology, Volume 23 (2019)



On strongly quasiconvex subgroups 1193

Also, d˛.u; v/� `.˛/� `./� 22r . Therefore, d˛.u; v/� 5d.u; v/. Therefore, ˛ is
a .5; 0/–quasigeodesic.

Proposition 3.7 Let X be a geodesic space and A a Morse subset of X with Morse
gauge �. Then there is a constant D>0 such that the following holds. If  W Œ0;1/!X
is a geodesic ray that lies in some finite neighborhood of A, then there is a C > 0 such
that  jŒC;1/ lies in the D–neighborhood of A.

Proof Assume that  lies in the r–neighborhood of A for some r > 0. For each i � 1
let i D  jŒ20.i�1/r;20ir� . Then each i is a geodesic of length 20r . Since  lies
in the r–neighborhood of A, for each i � 0 there is a geodesic ˇi of length less
than r that connects .20ir/ and A. By Lemma 3.6 for each i � 1 there is a
.5; 0/–quasigeodesic ˛i with the same endpoints as the concatenation ˇi�1iˇi such
that ˛i \ i ¤∅.

Since each ˛i is a .5; 0/–quasigeodesic with endpoints in A, each ˛i lies entirely
inside the �.5; 0/–neighborhood of A. We recall that ˛i\i ¤∅. Therefore, there is a
ti 2 Œ20.i�1/r; 20ir� such that .ti / lies in the �.5; 0/–neighborhood of A. Therefore,
for each i �1 each geodesic  jŒti ;tiC1� has endpoints in the �.5; 0/–neighborhood of A.
This implies that  jŒti ;tiC1� lies in some D–neighborhood of A, where D only depends
on �. Set C D t1 . Then  jŒC;1/ lies in the D–neighborhood of A obviously.

4 Strong quasiconvexity, stability, and lower relative
divergence

In this section, we propose the concept of strongly quasiconvex subgroups. We show
the connection between strongly quasiconvex subgroups and stable subgroups and we
characterize these subgroups using lower relative divergence. We also study some
basic properties of strongly quasiconvex subgroups that are analogous to properties of
quasiconvex subgroups in hyperbolic groups.

Definition 4.1 Let ˆW A! X be a quasi-isometric embedding between geodesic
metric spaces. We say A is strongly quasiconvex in X if the image ˆ.A/ is Morse
in X. We say A is stable in X if for any K� 1 and L� 0 there is an RDR.K;L/� 0
such that if ˛ and ˇ are two .K;L/–quasigeodesics with the same endpoints in ˆ.A/,
then the Hausdorff distance between ˛ and ˇ is less than R .
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Note that when we say A is strongly quasiconvex (stable) in X we mean that A
is strongly quasiconvex (stable) in X with respect to a particular quasi-isometric
embedding ˆW A!X. Such a quasi-isometric embedding will always be clear from
context, for example an undistorted subgroup H of a finitely generated group G. The
following proposition provides some basic facts about strong quasiconvexity.

Proposition 4.2 Suppose A, B , and X are geodesic metric spaces and B f
!A

g
!X

are quasi-isometric embeddings.

(1) If B is strongly quasiconvex in X via g ı f , then B is strongly quasiconvex
in A via f .

(2) If B is strongly quasiconvex in A via f and A is strongly quasiconvex in X
via g , then B is strongly quasiconvex in X via g ıf .

Proof We first prove statement (1). More precisely, we are going to prove that f .B/
is Morse in A. For each K � 1 and L� 0 let  be an arbitrary .K;L/–quasigeodesic
in A that connects two points in f .B/. Then g./ is a .K 0; L0/–quasigeodesic in X
that connects two points in g.f .B//, where K and L0 depend only on K , L, and
the quasi-isometric embedding g . Since B is strongly quasiconvex in X via g ı f ,
g./ lies in some M–neighborhood of g.f .B//, where M depends only on K 0 and L0.
Again, g is a quasi-isometric embedding. Therefore,  lies in some M 0–neighborhood
of f .B/, where M 0 depends only on K , L, f , and the quasi-isometric embedding g .
This implies that B is strongly quasiconvex in A via f .

We now prove statement (2). More precisely, we are going to prove that .g ıf /.B/ is
Morse in X. For each K � 1 and L� 0 let ˛ be an arbitrary .K;L/–quasigeodesic
in X that connects two points in g.f .B//. Since g.f .B// � g.A/ and g.A/ is a
Morse subset in X, we know that ˛ lies in some M–neighborhood of g.A/, where M
depends only on K and L. Also, gW A!X is a quasi-isometric embedding. Then there
is a .K1; L1/–quasigeodesic ˇ in A that connects two points in f .B/ such that the
Hausdorff distance between g.ˇ/ and ˛ is bounded above by C, where K1 , L1 , and C
depend only on K , L, M, and the quasi-isometric embedding g . Also, f .B/ is a
Morse subset of A. Then ˇ lies in some M1–neighborhood f .B/, where M1 depends
only on K1 and L1 . Again, gW A! X is a quasi-isometric embedding. Then g.ˇ/
lies in some M2–neighborhood of g.f .B//, where M2 depends only on M1 and the
map g . Therefore, ˛ lies in the .M2CC/–neighborhood of g.f .B//. Therefore, B
is strongly quasiconvex in X via g ıf .
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The following proposition gives the exact relationship between strongly quasiconvex
and stable subspaces.

Proposition 4.3 Let ˆW A! X be a quasi-isometric embedding between geodesic
metric spaces. Then A is stable in X if and only if A is strongly quasiconvex and
hyperbolic.

Proof One direction of the above proposition is deduced from Remark 3.1 and
Lemma 3.3 in [17]. We now prove that if A is strongly quasiconvex and hyperbolic,
then A is stable in X. For any K � 1 and L � 0, let ˛ and ˇ be two .K;L/–
quasigeodesics with the same endpoints in ˆ.A/. Since ˆ.A/ is Morse in X, there
is a constant C � 0 not depending on ˛ and ˇ such that ˛ and ˇ both lie in the
C–neighborhood of ˆ.A/. It is an easy exercise that there are constants K1 � 1,
L1 � 0, and D � 0 not depending on ˛ and ˇ and two .K1; L1/–quasigeodesics
˛1 and ˇ1 with the same endpoints in A such that the Hausdorff distance between
ˆ.˛1/ and ˛ and the Hausdorff distance between ˆ.ˇ1/ and ˇ are both bounded
above by D. Since A is a hyperbolic space and ˆ is a quasi-isometric embedding, the
Hausdorff distance between ˆ.˛1/ and ˆ.ˇ1/ is bounded above by some constant D1
which does not depend on ˛ and ˇ . Therefore, the Hausdorff distance between ˛ and ˇ
is bounded above by D1C 2D. Therefore, A is stable in X.

We now define the concepts of strongly quasiconvex subgroups and stable subgroups.

Definition 4.4 Let G be a finitely generated group and S an arbitrary finite generating
set of G. Let H be a finitely generated subgroup of G, and let T be an arbitrary finite
generating set of H. The subgroup H is undistorted in G if the natural inclusion
i W H !G induces a quasi-isometric embedding from the Cayley graph �.H; T / into
the Cayley graph �.G; S/. We say H is stable in G if �.H; T / is stable in �.G; S/.

We remark that stable subgroups were proved to be independent of the choice of finite
generating sets (see Section 3 in [17]).

Definition 4.5 Let G be a finitely generated group and H a subgroup of G. We
say H is quasiconvex in G with respect to some finite generating set S of G if there
exists some C > 0 such that every geodesic in the Cayley graph �.G; S/ that connects
a pair of points in H lies inside the C–neighborhood of H. We say H is strongly
quasiconvex in G if H is a Morse subset in the Cayley graph �.G; S/ for some (any)
finite generating set S.
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Remark 4.6 If H is a quasiconvex subgroup of a group G with respect to some
finite generating set S, then H is also finitely generated and undistorted in G (see
Lemma 3.5 of [8, Chapter III.�]). However, we emphasize that the concept of quasi-
convex subgroups depends on the choice of finite generating set of the ambient group.

It is clear that if H is a Morse subset in the Cayley graph �.G; S/ with some finite gener-
ating set S, then H is also a quasiconvex subgroup of G with respect to S. In particular,
H is finitely generated and undistorted in G. Therefore, the strong quasiconvexity of
a subgroup does not depend on the choice of finite generating sets, by statement (1)
in Proposition 4.2. Moreover, if a finitely generated group G acts properly and cocom-
pactly in some space, then H is a strongly quasiconvex (stable) subgroup of G if and
only if H is strongly quasiconvex (stable) in X via some (any) orbit map restricted to H.

The following theorem is a direct consequence of Theorem 3.5

Theorem 4.7 (characterizing strongly quasiconvex subgroups) Let G be a finitely
generated group and H an infinite subgroup of G. Then H is strongly quasiconvex
in G if and only if the lower relative divergence of G with respect to H is completely
superlinear.

We also obtain several characterizations of stable subgroups by the following theorem,
whose proof can be deduced from Proposition 4.3 and Theorem 4.7.

Theorem 4.8 (characterizing stable subgroups) Let G be a finitely generated group
and H an infinite subgroup of G. Then the following are equivalent:

(1) H is stable in G.

(2) H is hyperbolic and strongly quasiconvex in G.

(3) H is hyperbolic and the lower relative divergence of G with respect to H is
completely superlinear.

We now study some basic results about strongly quasiconvex subgroups related to
subgroup inclusion and subgroup intersection.

Lemma 4.9 [22, Proposition 9.4] Let G be a group with a finite generating set S.
Suppose xH and yK are arbitrary left cosets of subgroups of G. For each constant L
there is a constant L0 D L0.G; S; xH; yK;L/ such that in the metric space .G; dS /,

NL.xH/\NL.yK/�NL0.xHx
�1
\yKy�1/:
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Proposition 4.10 Let G be a finitely generated group, A a subgroup of G, and B a
subgroup of A. Then:

(1) If A is finitely generated and undistorted in G , and B is strongly quasiconvex
in G, then B is strongly quasiconvex in A.

(2) If B is strongly quasiconvex in A, and A is strongly quasiconvex in G, then B
is strongly quasiconvex in G.

Proof We note that if the subgroup A is undistorted in G, then B is undistorted in A
if and only if B is undistorted in G. Therefore, the above proposition is a direct result
of Proposition 4.2.

Statement (1) in Proposition 4.10 can be strengthened by the following proposition.

Proposition 4.11 Let G be a finitely generated group and A an undistorted subgroup
of G. If H is a strongly quasiconvex subgroup of G, then H1 DH \A is a strongly
quasiconvex subgroup of A. In particular, H1 is finitely generated and undistorted in A.

Proof Fix finite generating sets S and T for G and A respectively. Let f W �.A; T /!
�.G; S/ be a quasi-isometric embedding which is an extension of the inclusion A ,!G.
We will prove that H1 is a Morse subset of �.A; T /. For each K � 1 and L � 0,
let ˛ be an arbitrary .K;L/–quasigeodesic in �.A; T / that connects two points in H1 .
Since f W �.A; T /! �.G; S/ is a quasi-isometric embedding which is an extension
of the inclusion A ,!G, f .˛/ is a .K 0; L0/–quasigeodesic in �.G; S/ that connects
two points in H1 , and f .˛/ lies in some D–neighborhood of A in �.G; S/, where
K 0, L0 , and D depend only on K , L, and the map f . Since H is a Morse subset
in �.G; S/, f .˛/ also lies in some D1–neighborhood of H in �.G; S/, where D1
depends only on K 0 and L0. By Lemma 4.9, there is an M DM.G; S;A;H;D;D1/
such that f .˛/ lies in the M–neighborhood of H1 D H \ A in �.G; S/. Again,
f W �.A; T / ! �.G; S/ is a quasi-isometric embedding which is an extension of
the inclusion A ,! G. Then ˛ lies in some M 0–neighborhood of H1 in �.A; T /,
where M 0 depends only on M and the map f .

The following proposition is a direct result of Propositions 4.10 and 4.11.

Proposition 4.12 Let G be a finitely generated group and H1 and H2 strongly
quasiconvex subgroups of G. Then H1\H2 is strongly quasiconvex in H1 , H2 , and G.
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Quasiconvex subgroups in hyperbolic groups have the well-known property of finite
height, and therefore, they have finite index in their commensurators. We now show
that strongly quasiconvex subgroups in general also have these properties.

Definition 4.13 Let G be a group and H a subgroup.

(1) Conjugates g1Hg�11 ; : : : ; gkHg
�1
k

are called essentially distinct if the cosets
g1H; : : : ; gkH are distinct.

(2) H has height at most n in G if the intersection of any .nC1/ essentially distinct
conjugates is finite. The least n for which this is satisfied is called the height
of H in G.

(3) The width of H is the maximal cardinality of the set

fgiH W jgiHgi
�1
\gjHgj

�1
j D1g;

where fgiH g ranges over all collections of distinct cosets.

Similarly, given a finite collection HD fH1; : : : ;Hlg:

(1) Conjugates g1H�.1/g�11 ; : : : ; gkH�.k/g
�1
k

are called essentially distinct if the
cosets g1H�.1/; : : : ; gkH�.k/ are distinct.

(2) The finite collection H of subgroups of G has height at most n if the intersection
of any .nC1/ essentially distinct conjugates is finite. The least n for which this
is satisfied is called the height of H in G.

(3) The width of H is the maximal cardinality of the set

fg�.i/H�.i/ W jg�.i/H�.i/g
�1
�.i/\g�.j /H�.j /g

�1
�.j /j D1g;

where fg�.i/H�.i/g ranges over all collections of distinct cosets.

Definition 4.14 Let G be a group and H a subgroup. The commensurator of H
in G, denoted by CommG.H/, is defined as

CommG.H/D fg 2G j ŒH WH \gHg�1� <1 and ŒgHg�1 WH \gHg�1� <1g:

Theorem 4.15 Let HD fH1; : : : ;H`g be a finite collection of strongly quasiconvex
subgroups of a finitely generated group G. Then H has finite height.
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Proof By Proposition 3.7 there is a constant D > 0 such that the following holds.
If  W Œ0;1/! �.G; S/ is a geodesic ray in the Cayley graph �.G; S/ that lies in
some finite neighborhood of Hi , then there is a C > 0 such that  jŒC;1/ lies in
the D–neighborhood of Hi . Let g1H�.1/g�11 ; : : : ; gkH�.k/g

�1
k

be essential distinct
conjugates with infinite intersection

T
giH�.i/g

�1
i .

Since the Cayley graph �.G; S/ is proper and
T
giH�.i/g

�1
i is an infinite strongly

quasiconvex subgroup, there is a geodesic ray  W Œ0;1/! �.G; S/ in the Cayley
graph �.G; S/ that lies in some finite neighborhood of

T
giH�.i/g

�1
i . Therefore,

for each i the ray  lies in some finite neighborhood of giH�.i/ . This implies that
the ray g�1i  lies in some finite neighborhood of H�.i/ . Thus, there is some Ci > 0
such that g�1i  jŒCi ;1/ lies in the D–neighborhood of H�.i/ . In other words,  jŒCi ;1/
lies in the D–neighborhood of giH�.i/ . Therefore, all left cosets giH�.i/ intersect
some ball B.a;D/. But there is a uniform bound N on the number of cosets of
subgroups in H intersecting any metric ball of radius D. Thus, the collection H has
finite height.

Corollary 4.16 If H is an infinite strongly quasiconvex subgroup of a finitely gener-
ated group G, then H has finite index in its commensurator CommG.H/.

We now prove that a finite collection of strongly quasiconvex subgroups has bounded
packing and finite width. We first recall the concept of bounded packing subgroups
in [23].

Definition 4.17 Let G be a finitely generated group and � a Cayley graph with
respect to a finite generating set. A subgroup H has bounded packing in G if, for
all D � 0, there exists N 2N such that for any collection of N distinct cosets gH
in G, at least two are separated by a distance of at least D.

Similarly, a finite collection H D fH1; : : : ;H`g of subgroups of G has bounded
packing if, for all D � 0, there exist N 2N such that for any collection of N distinct
cosets gHi with Hi 2H , at least two are separated by a distance of at least D.

Lemma 4.18 Let .X; d/ be a geodesic space. Let A, B , and C be Morse subsets
of X with Morse gauge �. For each D > 0 there is a number D0 depending on
D and � such that if A, B , and C are pairwise D–close, then the intersection
ND0.A/\ND0.B/\ND0.C / is nonempty.
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Proof Let

x 2ND.A/\ND.B/; y 2ND.B/\ND.C /; and z 2ND.C /\ND.A/:

Let u be a point in a geodesic Œy; z� connecting y and z such that d.x; u/Dd.x; Œy; z�/.
Let 1 be the concatenation of two geodesics Œx; u� and Œu; y�. Similarly, let 2 be
the concatenation of two geodesics Œx; u� and Œu; z�. Then 1 and 2 are both .3; 0/–
quasigeodesics. The proof of this claim is quite elementary and the reader can also see
the proof of this claim in the proof of Lemma 2.2 in [10]. Since 1 , 2 , and Œy; z� are
all .3; 0/–quasigeodesics and A, B , and C are all �–Morse subsets of X, there is a
number D0 depending on D and � such that

1 �ND0.B/; 2 �ND0.A/; and Œy; z��ND0.C /:

In particular, u belongs to the intersection ND0.A/\ND0.B/\ND0.C /. Therefore,
this intersection is nonempty.

Lemma 4.19 [23, Lemma 4.2] Suppose H � G has height 0 < n < 1 in G.
Choose g 2 G so that gH ¤H, and let K DH \ gHg�1 . Then K has height less
than n in H.

Theorem 4.20 Let H be a strongly quasiconvex subgroup of a finitely generated
group G. Then H has bounded packing in G.

The proof of the above theorem follows the same line of argument as Theorem 4.8
in [23]. At some point in the proof of Theorem 4.8 in [23], Hruska and Wise need
to use the thinness of a triangle in a hyperbolic space. However, due to the lack of
hyperbolicity in the group G and subgroup H in the above theorem, we need to use
Lemma 4.18 instead.

Proof Fix finite generating sets S and T for G and H respectively. By Theorem 4.15,
we know that the height of H in G is finite. We will prove the theorem by induction
on the height. If the height of H in G is zero, then H is a finite group. Therefore, H
has bounded packing by Corollary 2.6 in [23]. We now assume by induction that
the theorem holds for every finitely generated group G0 and strongly quasiconvex
subgroup H0 with the height of H0 in G0 less than the height of H in G.

Let H be a set of left cosets gH which are pairwise D–close. We are going to prove
that the cardinality of H is bounded by a number depending on D. Translating H if
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necessary, assume that H 2H . Observe that if d.gH;H/ <D then gH D hxH for
some h 2H and x 2 B.1;D/. It follows that the left cosets gH intersecting ND.H/
lie in at most jB.1;D/j distinct H–orbits. Thus it suffices to bound the number of
elements of H in the orbit H.gH/ for each fixed g …H.

If we let K D H \ gHg�1 , then Lemma 4.19 shows that the height of K in H is
less than the height of H in G. Since K is a strongly quasiconvex subgroup H, the
inductive hypothesis applied to K �H gives for each D0 a number M 0 DM 0.D0/
such that any collection of M 0 distinct cosets hK in H contains a pair separated by a
dT –distance at least D0. Furthermore, the proof of Lemma 4.2 in [23] shows that there
is a well-defined map hgH ! hK taking left cosets of H in the orbit of gH to left
cosets of K . A similar argument shows that this map is bijective.

In order to complete the proof, we will show that D–closeness of distinct cosets
h1gH and h2gH in .G; dS / implies D0–closeness of the corresponding cosets
h1K and h2K in .H; dT /, for some D0 depending on D. The proof of this step
in Theorem 4.8 in [23] requires the thinness of a triangle. However, we need to
use Lemma 4.18 for our situation. In fact, there is a D1 depending on D such that
the intersection ND1

.H/\ND1
.h1gH/\ND1

.h2gH/ contains an element u. By
Lemma 4.9, there is a number D2 depending on D1 but independent of the choice
of hi 2H such that

ND1
.H/\ND1

.higH/�ND2
.hiK/:

Therefore, u 2 ND2
.h1K/ \ ND2

.h2K/. In other words, dS .h1K; h2K/ < 2D2 .
Since H is an undistorted subgroup of G, we can conclude that dT .h1K; h2K/ <D0
for some D0 depending on D, as desired.

Theorem 4.21 Let HD fH1; : : : ;H`g be a finite collection of strongly quasiconvex
subgroups of a finitely generated group G. Then H has bounded packing in G. Further,
H has finite width.

Proof First, let M be a collection of cosets of subgroups in H which are pairwise
D–close. By Theorem 4.20, for each i D 1; 2; : : : ; `, there is an Ni � 0 such that the
number of cosets of Hi in M is at most Ni . Therefore, the number of elements of M
is at most †Ni . Thus, H has bounded packing.

Arguing as in the proof of Theorem 4.15, we see that any two conjugates of subgroups
in H with infinite intersection have cosets uniformly close together. Therefore, H has
finite width.
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5 Morse boundaries and strong quasiconvexity

We recall basic properties of a quasiconvex subgroup in a hyperbolic group: The
subgroup is also a hyperbolic group and the subgroup inclusion induces a topological
embedding of the Gromov boundary of the subgroup into the Gromov boundary of
the ambient group. Moreover, the image of this topological embedding is identical
to the limit set of the subgroup inside the ambient group. Also, the intersection of
two quasiconvex subgroups is again a quasiconvex subgroup and the limit set of the
intersection of two quasiconvex subgroups is equal to the intersection of the limit sets
of the two subgroups. In this section, we prove some analogous properties for strongly
quasiconvex subgroups in general.

We first review the concept of Morse boundary in [10].

Definition 5.1 Let M be the set of all Morse gauges. We put a partial ordering
on M such that, for two Morse gauges N;N 0 2M, we say N � N 0 if and only if
N.K;L/�N 0.K;L/ for all K and L.

Definition 5.2 Let X be a proper geodesic space. The Morse boundary of X with
basepoint p , denoted by @MXp , is defined to be the set of all equivalence classes of
Morse geodesic rays in X with initial point p , where two rays ˛; ˛0W Œ0;1/!X are
equivalent if there exists a constant K such that dX .˛.t/; ˛0.t// <K for all t > 0. We
denote the equivalence class of a ray ˛ in @MXp by Œ˛�.

On @MXp , we could build a topology as follows:

Consider the subset of the Morse boundary

@NMXpDfxjthe class x contains at least one N–Morse geodesic ray ˛ with ˛.0/Dpg:

We define convergence in @NMXp by xn ! x as n!1 if and only if there exists
N–Morse geodesic rays ˛n with ˛n.0/Dp and Œ˛n�Dxn such that every subsequence
of ˛n contains a subsequence that converges uniformly on compact sets to a geodesic
ray ˛ with Œ˛�D x . The closed subsets F in @NMXp are those satisfying the condition

Œfxng � F and xn! x� D) x 2 F:

We equip the Morse boundary @MXp with the direct limit topology

@MXp D lim��!
M
@NMXp:
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Let A be a subset of X with basepoint p . The limit set ƒA of A in @MXp is the
set of all points c in @MXp represented by rays based at p that lie in some finite
neighborhood of A.

Remark 5.3 The direct limit topology on @MXp is independent of the basepoint p
(see Proposition 3.5 in [10]). Therefore, we can assume the basepoint is fixed, suppress
it from the notation and write @MX . Moreover, the Morse boundary is a quasi-isometry
invariant (see Proposition 3.7 in [10]). Therefore, we define the Morse boundary of
a finitely generated group G, denoted by @MG, as the Morse boundary of its Cayley
graph. We also define the limit set of a subgroup H of G in @MG accordingly.

We define an action of G on @MG as follows. For each element g in G and Œ˛�
in @MG, we define gŒ˛�D Œˇ�, where ˛ and ˇ are two rays at the basepoint in some
Cayley graph of G such that the Hausdorff distance between g˛ and ˇ is finite.

Definition 5.4 Let X and Y be proper geodesic metric spaces, p 2 X , and p0 2 Y .
We say that f W @MXp! @MYp0 is Morse-preserving if given an N in M there exists
an N 0 in M such that f injectively maps @NMXp to @N

0

M Yp0 .

The following proposition shows that if a quasi-isometric embedding defines a strongly
quasiconvex subspace then it induces a Morse-preserving map. This proposition is
a key lemma for the proof of the fact that inclusion map of a strongly quasiconvex
subgroup into a finitely generated group induces a topological embedding on Morse
boundaries.

Proposition 5.5 Let X and A be two proper geodesic spaces and A be strongly
quasiconvex in X via the map f . Then for each Morse gauge N there is another
Morse gauge N 0 such that for every N–Morse geodesic ray  W Œ0;1/! A there is
an N 0–Morse geodesic ray with basepoint f ..0// in X bounded Hausdorff distance
from f ./ (ie f induces a Morse-preserving map).

Proof Since f is a quasi-isometric embedding, f ./ is a .K;L/–quasigeodesic,
where K and L only depend on the quasi-isometric embedding constants of f . Also,
f ./ is Morse with Morse gauge N1 depending only on the Morse gauge N and the
map f (see the proof of statement (2) of Proposition 4.2). Let .yn/ be a sequence
of points in f ./ such that d.f ..0/; yn// approaches infinity as n approaches in-
finity. For each n let ˛n be a geodesic segment connecting the basepoint f ..0//
and yn . Since f ./ is a .K;L/–Morse quasigeodesic with Morse gauge N1 , each
geodesic segment ˛n lies in some D1–neighborhood of f ./, where D1 only depends
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on the Morse gauge N1 . Since X is a proper geodesic space, some subsequence
of .˛n/ converges to a ray ˛ based at f ..0//. Moreover, the Hausdorff distance
between ˛ and f ./ is bounded above by some constant D depending only on K , L,
and the Morse gauge N1 . This implies that D only depends on the Morse gauge N
and the map f . Since the Hausdorff distance between f ./ and ˛ is D and f ./
is N1–Morse, the ray ˛ is N 0–Morse, where N 0 only depends on D and the Morse
gauge N1 . Therefore, N 0 only depends on the Morse gauge N and the map f .

Theorem 5.6 Let X and A be two proper geodesic spaces and A be strongly quasicon-
vex in X via the map f . Then f induces a topological embedding @Mf W @MA!@MX
such that @Mf .@MA/Dƒf .A/.

Proof The fact that f induces a topological embedding @Mf W @MA! @MX is a
direct result of Proposition 5.5 via Proposition 4.2 in [10]. However, we need to check
that @Mf .@MA/Dƒf .A/.

We first recall the construction of the map @Mf from Proposition 4.2 in [10]. Fix a
point p in A and let q D f .p/. By Proposition 5.5, for each Morse gauge N there is
another Morse gauge N 0 such that for every N–Morse geodesic ray ˛ based at p there
is an N 0–Morse geodesic ray ˇ with basepoint q in X bounded Hausdorff distance
from f .˛/. We define @Mf .Œ˛�/D Œˇ�, and then @Mf W @MA! @MX is a topological
embedding (see the proof of Proposition 4.2 in [10]). Obviously, @Mf .@MA/�ƒf .A/
by construction. We now prove the opposite inclusion.

Let c be an arbitrary element in ƒf .A/. There is a Morse geodesic ray ˇ1 based at q
in X such that c D Œˇ1� and ˇ1 lies in some finite neighborhood of f .A/. Since f
is a quasi-isometric embedding, there is a quasigeodesic ˛1 based at p in A such
that the Hausdorff distance between f .˛1/ and ˇ1 is finite. Therefore, f .˛1/ is also
a Morse quasigeodesic. This implies that ˛1 is also a Morse quasigeodesic in A by
statement (1) of Proposition 4.2. Also, A is a proper geodesic space. Then by a
similar argument as in the proof of Proposition 5.5 there is a Morse geodesic ray ˛
based at p in X such that the Hausdorff distance between ˛ and ˛1 is finite. Thus,
the Hausdorff distance between f .˛/ and f .˛1/ is also finite. This implies that the
Hausdorff distance between f .˛/ and ˇ1 is finite. By the construction of @Mf we have
@Mf .Œ˛�/D Œˇ� for some geodesic ray ˇ based at q such that the Hausdorff distance
between f .˛/ and ˇ is finite. Therefore, the Hausdorff distance between ˇ and ˇ1
is finite. This implies that c D Œˇ1� D Œˇ� D @Mf .Œ˛�/ 2 @Mf .@MA/. Therefore,
@Mf .@MA/Dƒf .A/.
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We now state the main theorem of this section.

Theorem 5.7 Let G be a finitely generated group. Then:

(1) If H is a finitely generated strongly quasiconvex subgroup of G, then the in-
clusion i W H ,! G induces a topological embedding Oi W @MH ! @MG such
that Oi.@MH/DƒH.

(2) If H1 and H2 are finitely generated strongly quasiconvex subgroups of G,
then H1\H2 is strongly quasiconvex in G and ƒ.H1\H2/DƒH1\ƒH2 .

Proof Statement (1) is a direct result of Theorem 5.6. Therefore, we only need
to prove statement (2). The fact that H1 \H2 is strongly quasiconvex in G is a
result of Proposition 4.12. Since H1 \H2 � H1 , ƒ.H1 \H2/ � ƒH1 . Similarly,
ƒ.H1 \H2/�ƒH2 . Therefore, ƒ.H1 \H2/�ƒH1 \ƒH2 . We now let c be an
arbitrary element in ƒH1\ƒH2 . Then there is a Morse geodesic ray  based at e in
some Cayley graph �.G; S/ such that Œ�D c and  lies in some finite neighborhoods
of H1 and H2 . Therefore,  also lies in a finite neighborhood of H1 \ H2 by
Lemma 4.9. This implies that c is also an element in ƒ.H1\H2/.

6 Strong quasiconvexity and stability in relatively hyperbolic
groups

In this section, we investigate strongly quasiconvex subgroups and stable subgroups in
relatively hyperbolic groups. We first recall the concepts of coned-off Cayley graphs
and relative hyperbolic groups.

Definition 6.1 Given a finitely generated group G with Cayley graph �.G; S/ that is
equipped with the path metric and a finite collection P of subgroups of G , one can
construct the coned-off Cayley graph y�.G; S;P / as follows: For each left coset gP ,
where P 2P, add a vertex vgP , called a peripheral vertex, to the Cayley graph �.G; S/
and for each element x of gP, add an edge e.x; gP / of length 1

2
from x to the

vertex vgP . This results in a metric space that may not be proper (ie closed balls need
not be compact).

Definition 6.2 (relatively hyperbolic group) A finitely generated group G is hyper-
bolic relative to a finite collection P of subgroups of G if the coned-off Cayley graph
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is ı–hyperbolic and fine (ie for each positive number n, each edge of the coned-off
Cayley graph is contained in only finitely many circuits of length n).

Each group P 2 P is a peripheral subgroup and its left cosets are peripheral left cosets
and we denote the collection of all peripheral left cosets by ….

We now review some known results on relatively hyperbolic subgroups including
undistorted subgroups and peripheral subgroups in relatively hyperbolic groups and
relations between quasigeodesics in Cayley graphs and coned-off Cayley graphs.

Theorem 6.3 [22, Theorem 1.5 and Theorem 9.1] Let .G;P / be a finitely generated
relatively hyperbolic group and let H be a finitely generated undistorted subgroup of G.
Let S be some (any) finite generating set for G. Then:

(1) There is a constant A D A.S/ such that for each geodesic c in the coned-off
Cayley graph y�.G; S;P / connecting two points of H, every G–vertex of c lies
within the A–neighborhood of H with respect to the metric dS .

(2) All the subgroups of H that are of the form H \P g , where g 2 G, P 2 P ,
and jH \P g j D1, lie in only finitely many conjugacy classes in H. Further-
more, if O is a set of representatives of these conjugacy classes then .H;O/ is
relatively hyperbolic.

Theorem 6.4 [16, Corollary 1.14] A relatively hyperbolic group .G;P / is hyperbolic
if each peripheral subgroup in P is hyperbolic.

Lemma 6.5 [22, Lemma 8.8] Let .G;P / be a finitely generated relatively hyper-
bolic group with a finite generating set S. For each K � 1 and L � 0 there is an
A D A.K;L/ > 0 such that the following holds. Let ˛ be a .K;L/–quasigeodesic
in �.G; S/ and c a geodesic in y�.G; S;P / with the same endpoints in G. Then each
G–vertex of c lies in the A–neighborhood of some vertex of ˛ with respect to the
metric dS .

Lemma 6.6 [16, Lemma 4.15] Let .G;P / be a finitely generated relatively hyper-
bolic group. Then each conjugate P g of a peripheral subgroup in P is strongly
quasiconvex in G. Moreover, each D–neighborhood of a peripheral left coset is M–
Morse in the Cayley graph of G , where the Morse gauge M only depends on D and
the choice of finite generating set of G.
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The following theorem provides characterizations of strongly quasiconvex subgroups
in relatively hyperbolic groups. This is the main theorem of this section.

Theorem 6.7 Let .G;P / be a finitely generated relatively hyperbolic group and H a
finitely generated undistorted subgroup of G. Then the following are equivalent:

(1) The subgroup H is strongly quasiconvex in G.

(2) The subgroup H \P g is strongly quasiconvex in P g for each conjugate P g of
a peripheral subgroup in P.

(3) The subgroup H \P g is strongly quasiconvex in G for each conjugate P g of
a peripheral subgroup in P.

Proof The implications .1/) .2/) .3/ are direct results from Propositions 4.10
and 4.12 and Lemma 6.6. We now prove the implication .3/) .1/. Let S be a finite
generating set of G, and let A0DA0.S/ be the constant in statement (1) of Theorem 6.3.

Let K � 1 and L� 0 be arbitrary. Let ADA.K;L/ be the constant in Lemma 6.5. By
Lemma 4.9 there is a constant A1 > 0 such that for each t 2B.e; A0/\G and P 2 P,

NA.tP /\NACA0
.H/�NA1

.tP t�1\H/:

Let � be the maximum of all Morse gauge functions of all sets having the form
NA1

.tP t�1\H/, where jt jS < A0 and P 2 P.

Let
D DK.2AC 1/CLC�.K;L/CA0CACA1C 1:

Let ˛W Œa; b�!�.G; S/ be an arbitrary .K;L/–quasigeodesic in �.G; S/ that connects
two points h1 and h2 in H. By Lemma 1.11 of [8, Chapter III.H], we can assume
that ˛ is continuous and

`.˛jŒt;t 0�/�KdS .˛.t/; ˛.t
0//CL:

We will show ˛ lies in the D–neighborhood of H. Let c be a geodesic in y�.G; S;P /
that connects two points h1 and h2 , and let h1 D s0; s1; : : : ; sn D h2 be all the
G–vertices of c . By the choice of A0 , all the G–vertices si lie in the A0–neighborhood
of H. Also by the choice of A, there is a ti 2 Œa; b� such that dS .si ; ˛.ti // < A. We
consider t0D s0 and tnD sn . Then each point ˛.ti / lies in the .A0CA/–neighborhood
of H. It is sufficient to show that each ˛.Ii / lies in the D–neighborhood of H , where Ii
is a closed subinterval of Œa; b� with endpoints ti�1 and ti . We consider two cases:
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Case 1 Two G–vertices si�1 and si are adjacent in �.G; S/. Then the distance
between the two points ˛.ti�1/ and ˛.ti / with respect to the metric dS is bounded
above by 2AC 1. Therefore,

`.˛jIi
/�KdS .˛.ti�1/; ˛.ti //CL�K.2AC 1/CL:

Also, ˛.ti / lies in the .ACA0/–neighborhood of H. Therefore, ˛.Ii / lies in the
D–neighborhood of H by the choice of D.

Case 2 Two G–vertices si�1 and si are not adjacent in �.G; S/. Thus, si�1 and si
both lie in the same peripheral left coset gP. Since dS .gP;H/ � dS .si ;H/ < A0 ,
gP D htP for some h 2 H and jt jS < A0 . Observe that the endpoints of ˛.Ii /
both lie in NA.htP /\NACA0

.H/. Therefore, the endpoints of h�1˛.Ii / both lie in
NA.tP /\NACA0

.H/�NA1
.tP t�1\H/. Since h�1˛ is also a .K;L/–quasigeodesic,

h�1˛.Ii / lies entirely in the �.K;L/–neighborhood of the set NA1
.tP t�1 \ H/.

Therefore, h�1˛.Ii / lies in the .�.K;L/CA1/–neighborhood of the set H. Translating
by h, we see that ˛.Ii / also lies in the .�.K;L/CA1/–neighborhood of the set H.
By the choice of D, ˛.Ii / lies in the D–neighborhood of the set H.

Therefore, the subgroup H is strongly quasiconvex in G.

Two characterizations of stable subgroups in relatively hyperbolic groups follow imme-
diately.

Corollary 6.8 Let .G;P / be a finitely generated relatively hyperbolic group and H a
finitely generated undistorted subgroup of G. Then the following are equivalent:

(1) The subgroup H is stable in G.

(2) The subgroup H \P g is stable in P g for each conjugate P g of a peripheral
subgroup in P.

(3) The subgroup H \P g is stable in G for each conjugate P g of a peripheral
subgroup in P.

Proof We can easily see that (1) implies (2) and (1) implies (3). In fact, if the
subgroup H is stable in G, then H is strongly quasiconvex in G, and H is hyperbolic
(see Theorem 4.8). Therefore, H \P g is strongly quasiconvex in H, P g , and G by
Proposition 4.12 and Lemma 6.6. In particular, H \P g is hyperbolic because H is a
hyperbolic group. Therefore, H \P g is stable in P g and G by Theorem 4.8. The
equivalence between (2) and (3) can also be seen easily from Theorems 4.8 and 6.7.

We now prove that (3) implies (1). By the hypothesis, H \P g is strongly quasiconvex
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in G for each conjugate P g of a peripheral subgroup in P. Therefore, H is strongly
quasiconvex in G by Theorem 6.7. Also, H \P g is hyperbolic for each conjugate P g

of a peripheral subgroup in P. Therefore, the subgroup H is also hyperbolic by
statement (2) of Theorem 6.3 and Theorem 6.4. Therefore, the subgroup H is stable
in G by Theorem 4.8.

7 Strong quasiconvexity, stability in right-angled Coxeter
groups and related lower relative divergence

In this section, we investigate strongly quasiconvex subgroups and stable subgroups
in right-angled Coxeter groups. More precisely, we characterize strongly quasiconvex
(stable) special subgroups in two-dimensional right-angled Coxeter groups. Also, for
each integer d � 2, we construct a right-angled Coxeter group together with a nonstable
strongly quasiconvex subgroup whose lower relative divergence is exactly polynomial
of degree d . These are also the first examples of groups together with nonhyperbolic
subgroups whose lower relative divergences are polynomial of degree d (d � 2).

7.1 Some background in right-angled Coxeter groups

This subsection provides background on right-angled Coxeter groups.

Definition 7.1 Given a finite, simplicial graph � , the associated right-angled Coxeter
group G� has generating set S the vertices of � , and relations s2 D 1 for all s in S
and st D ts whenever s and t are adjacent vertices.

Let S1 be a subset of S. The subgroup of G� generated by S1 is a right-angled
Coxeter group G�1

, where �1 is the induced subgraph of � with vertex set S1 (ie �1
is the union of all edges of � with both endpoints in S1 ). The subgroup G�1

is called
a special subgroup of G� . Any of its conjugates is called a parabolic subgroup of G� .

Definition 7.2 Given a finite, simplicial graph � , the associated Davis complex †�
is a cube complex constructed as follows. For every k–clique T � � , the special
subgroup GT is isomorphic to the direct product of k copies of Z2 . Hence, the Cayley
graph of GT is isomorphic to the 1–skeleton of a k–cube. The Davis complex †� has
1–skeleton the Cayley graph of G� , where edges are given unit length. Additionally,
for each k–clique T � � and coset gGT , we glue a unit k–cube to gGT �†� . The
Davis complex †� is a CAT.0/ cube complex and the group G� acts properly and
cocompactly on the Davis complex †� (see [15]).
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Remark 7.3 (see [15]) Let � be a finite simplicial graph with vertex set S and �1 the
induced subgraph of � generated by some subset T of S. Then the Davis complex †�1

embeds isometrically in the Davis complex †� . Moreover, the Cayley graph †.1/�1
of

the group G�1
embeds isometrically in the Cayley graph †.1/� of the group G� .

We also remark that a Davis complex †� is a two-dimensional cube complex if and
only if the defining graph � is triangle-free and contains at least one edge.

Definition 7.4 Let † be a CAT.0/ cube complex. In †, we consider the equivalence
relation on the set of midcubes of cubes generated by the rule that two midcubes are
related if they share a face. A hyperplane H is the union of the midcubes in a single
equivalence class. We define the support of a hyperplane H, denoted by N.H/, to be
the union of cubes which contain midcubes of H.

Remark 7.5 Let � be a finite simplicial graph with vertex set S and †� the associated
Davis complex. Each hyperplane in †� separates †� into two convex sets. It follows
that the distance between a pair of vertices with respect to the metric dS equals the
number of hyperplanes in †� separating those vertices.

For a generator v , let ev denote the edge from the basepoint 1 to the vertex v . Any
edge in †� determines a unique hyperplane, namely the hyperplane containing the
midpoint of that edge. Denote by Hv the hyperplane containing the midpoint of ev .

For a cube in †� , all of the parallel edges are labeled by the same generator v . It
follows that all of the edges crossing a hyperplane H have the same label v , and we
say this a hyperplane of type v . Obviously, if two hyperplanes of types v1 and v2 cross,
then v1 and v2 commute. Since G� acts transitively on edges labeled v , a hyperplane
is of type v if and only if it is a translate of the standard hyperplane Hv . Obviously,
the star subgroup Gst.v/ is the stabilizer of the hyperplane Hv , and Gst.v/ can also
be viewed as the vertices of the support N.Hv/ of Hv . Therefore, the subgroup
gGst.v/g

�1 is the stabilizer of the hyperplane gHv , and gGst.v/ can also be viewed
as the vertices of the support N.gHv/ of gHv .

7.2 Strongly quasiconvex special subgroup and stable special subgroup
characterizations in right-angled Coxeter groups

In this subsection, we establish characterizations of strongly quasiconvex special
subgroups and stable special subgroups in two-dimensional right-angled Coxeter groups
in terms of defining graphs. As a consequence, we give a criterion on simplicial, triangle-
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free graphs that guarantees that the associated right-angled Coxeter groups possess
Morse boundaries which are not totally disconnected.

We first develop some results in right-angled Coxeter groups that help establish the
characterizations of strongly quasiconvex (stable) special subgroups in two-dimensional
right-angled Coxeter groups.

Lemma 7.6 Let � be a simplicial graph with vertex set S. Let K be a special
subgroup of G� generated by some subset S1 of S and �1 the subgraph of � induced
by S1 . For each g 2 G� ,  is a shortest path in †.1/� that connects g to some point
in K if and only if  is a geodesic in †.1/� and each hyperplane crossed by some edge
of  does not intersect the Cayley graph †.1/�1

of K .

Proof We first assume  is a shortest path in †.1/� that connects g to some point h
in K . Obviously,  must be a geodesic in †.1/� connecting h and g . Let n be the
length of  . Then the geodesic  along the direction from h to g is the concatenation
e1e2 � � � en of n edges, where each edge ei is labeled by some vertex si in S. Therefore,
g D h.s1s2 � � � sn/.

Assume for purposes of contradiction that there is a hyperplane Hi crossed by the
edge ei that intersects †.1/�1

. We choose the smallest number i with that property. In
particular, si 2 S1 � K . We claim that for each j < i the hyperplane Hj crossed
by the edge ej of  intersects Hi . Indeed, each hyperplane Hj (for j < i ) does
not intersect †.1/�1

by the choice of i . Moreover, since †.1/�1
is connected there is a

path ˛ in †.1/�1
that connects h and a point u in Hi\†.1/�1

. Let ˇ be the path in Hi that
connects u to the midpoint of ei . Then each hyperplane Hj (for j < i ) must intersect
the concatenation ˛ˇ . However, each hyperplane Hj (for j < i ) does not intersect ˛
because it does not intersect †.1/�1

. This implies that each hyperplane Hj (for j < i )
intersects Hi . Therefore, sj commutes with si for each j < i . Thus,

g D h.s1s2 � � � si�1sisiC1 � � � sn/D .hsi /.s1s2 � � � si�1siC1 � � � sn/:

This equality shows there is path of length n� 1 that connects g to the point hsi 2K .
This is a contradiction. Therefore, each hyperplane crossed by some edge of  does
not intersect the Cayley graph †.1/�1

.

We now assume that  is a geodesic in †.1/� and each hyperplane crossed by some edge
of  does not intersect the Cayley graph †.1/�1

. Let  0 be an arbitrary path in †.1/� that
connects g to some point h1 in K . Because †.1/�1

is connected, there is a path ˛0 in †.1/�1
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that connects h and h1 . Therefore, hyperplanes crossed by edges of  intersect the
concatenation ˛0 0. Also, these hyperplanes do not intersect ˛0 since they do not inter-
sect †.1/�1

. Therefore, all these hyperplanes must intersect  0. This implies `./� `. 0/.
Therefore,  is a shortest path in †.1/� that connects g to some point in K .

Lemma 7.7 Let � be a simplicial graph with vertex set S. Let K be a special
subgroup of G� generated by some subset S1 of S. Let � be an induced 4–cycle with
two pairs of nonadjacent vertices .a1; a2/ and .b1; b2/ such that a1 and a2 both lie
in S1 but b1 does not. Then dS ..b1b2/n; K/D 2n and dS ..b1b2/nb1; K/D 2nC 1.

Proof We will only prove that dS ..b1b2/n; K/D 2n. The argument for the remaining
equality is identical. Let �1 the subgraph of � induced by S1 . Let g D .b1b2/n and
choose the path  in †.1/� connecting the identity element e and g that reads the
word .b1b2/n . Since the two vertices b1 and b2 are not adjacent, the path  is a
geodesic in †.1/� by Remark 7.3. Let Hi be the hyperplane crossed by the i th edge
of  in the direction from e to g . Since the hyperplane H1 is labeled by b1 … S1 ,
H1 does not intersect †.1/�1

. Also, the geodesic  is labeled by the noncommuting
elements b1 and b2 alternately. This implies that Hi does not intersect Hj for i ¤ j .
In particular, Hi does not intersect H1 for i ¤ 1. This implies that Hi also does
not intersect †.1/�1

for i ¤ 1. By Lemma 7.6, the geodesic  is a shortest path that
connects .b1b2/n and some point in K . Therefore, dS ..b1b2/n; K/ D `./ D 2n.
Using a similar argument we also obtain the equality dS ..b1b2/nb1; K/D 2nC 1.

Proposition 7.8 Let � be a simplicial graph with vertex set S. Let K be a special
subgroup of G� generated by some subset S1 of S. Assume that there is an induced
4–cycle � with two pairs of nonadjacent vertices .a1; a2/ and .b1; b2/ such that
a1 and a2 both lie in S1 but b1 does not. Then K is not strongly quasiconvex in G� .

Proof By Theorem 4.7, it is sufficient to prove that the lower relative divergence
of G� with respect to K is not completely superlinear. Let f�n� g be the lower relative
divergence of †.1/� with respect to K . We claim that for each n� 2 and � 2 .0; 1�,

�n� .r/� .4nC 2/r for each r > 1:

Indeed, for each r > 1 choose an integer m in Œr; 2r�. If mD 2k for some integer k ,
we choose x D .b1b2/k . Otherwise, mD 2kC 1 for some integer k and we choose
xD .b1b2/

kb1 . Then dS .x;K/Dm by Lemma 7.7. We choose yD .a1a2/mnx . Then

dS .y;K/D dS ..a1a2/
mnx;K/D dS .x; .a1a2/

�mnK/D dS .x;K/Dm:
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Since x commutes with both a1 and a2 , y D x.a1a2/mn . This implies that there
is a geodesic  connecting x and y , and  traces the word .a1a2/mn . Obviously,
dS .x; y/D `./D 2mn.

By construction, each vertex of  is an element of the form x.a1a2/
i or x..a1a2/ia1/

in G� . Again, x commutes with both a1 and a2 . Therefore,

dS .x.a1a2/
i ; K/D dS ..a1a2/

ix;K/D dS .x; .a1a2/
�iK/D dS .x;K/Dm> r

and dS .x..a1a2/ia1/;K/Dm > r similarly. Therefore, the path  lies outside the
r–neighborhood of K .

Since r � dS .x;K/ D m � 2r , there is a path 1 in †.1/� connecting x and some
point u in @Nr.K/ such that 1 lies outside the r–neighborhood of K and its length is
bounded above by r . In particular, dS .x; u/� r . Similarly, there is a path 2 in †.1/�
connecting y and some point v in @Nr.K/ such that 2 lies outside the r–neighborhood
of K and its length is bounded above by r . In particular, dS .x; u/� r . Therefore,

dS .u; v/� dS .x; y/� dS .x; u/� dS .y; v/� 2mn� r � r � .2n� 2/r � nr:

We observe that  D 1 [  [ 2 is the path outside the r–neighborhood of K that
connects the two points u and v in @Nr.K/. Also,

`./D `.1/C `./C `.2/� r C 2mnC r � .4nC 2/r:

Therefore, �n� .r/ � .4nC 2/r for each r > 1. This implies that the lower relative
divergence of G� with respect to K is not completely superlinear. Therefore, K is
not strongly quasiconvex in G� by Theorem 4.7.

Proposition 7.9 Let � be a simplicial, triangle-free graph with vertex set S , and let K
be a subgroup of G� generated by some subset S1 of S. We assume that if S1 contains
two nonadjacent vertices of an induced 4–cycle � , then S1 contains all vertices of � .
If K is an infinite subgroup of G� , then the lower relative divergence of G� with
respect to K is at least quadratic.

Proof Let f�n� g be the lower relative divergence of †.1/� with respect to K . We claim
that for each n� 3 and � 2 .0; 1�,

�n� .r/� .r � 1/.�r � 1/ for each r > 0:

In fact, if �n� .r/D1, then the above inequality is true obviously. Otherwise, let  be
an arbitrary path outside N�r.K/ that connects two points x and y in @Nr.K/ such
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that dS .x; y/� nr . Let  01 be a shortest geodesic in †.1/� that connects x and some
point k1 in K . Similarly, let  02 be a shortest geodesic in †.1/� that connects y and
some point k2 in K . Then dS .x; k1/D dS .y; k2/D r obviously. This implies that

dS .k1; k2/� dS .x; y/� dS .x; k1/� dS .y; k2/� .n� 2/r � r:

Let �1 the subgraph of � induced by S1 . We connect k1 and k2 by a geodesic
˛ D e1e2 � � � em of length m in the Cayley graph †.1/�1

of K . Obviously m � r and
each edge ei of ˛ is labeled by some vertex si in S1 . Let Hi be the hyperplane crossed
by the edge ei of ˛ . Then each Hi must intersect  01 [  [  02 . However, Hi does
not intersect  01 [  02 by Lemma 7.6. Therefore, each hyperplane Hi must intersect
some edge fi of  .

Let h0; h1; h2; : : : ; hm be the vertices of ˛ such that hi�1 and hi are endpoints
of ei . For 1 � i � m, let gi be the endpoint of the edge fi of  that lies in the
component of †� �Hi containing hi . Let ˛i be a the geodesic in the support of Hi
that connects hi and gi . By the convexity of the graph †.1/�1

in the graph †.1/� each ˛i
is the concatenation of two geodesics ˇi and ˇ0i such that ˇi lies entirely in †.1/�1

, and
ˇ0i intersects †.1/�1

only at the common endpoint h0i 2K of ˇi and ˇ0i .

We set mi D `.ˇ0i / for 1 � i � m. Then mi � �r since gi lies outside the �r–
neighborhood of K . We assume that ˇ0i D ei1ei2 � � � eimi

. Then each edge eij of ˇ0i
is labeled by an element in lk.si / and the first edge ei1 is labeled by a vertex not
in S1 . We claim that for each 1� i �m� 1 there are at least .mi � 1/ hyperplanes
crossed by ˇ0i intersecting the subpath i of  connecting gi and giC1 . Since � is
triangle-free, no pair of different vertices in lk.si / are adjacent. This implies that no
pairs of hyperplanes crossed by two different edges of ˇ0i intersect. Since the first
edge ei1 of ˇ0i is labeled by a vertex not in S1 , the hyperplane crossed by ei1 does not
intersect †.1/�1

. Therefore, no subsequent hyperplane crossed by ˇ0i intersects †.1/�1

either. We now consider the possibility that a hyperplane crossed by ˇ0i intersects ˇ0iC1 .

If the hyperplane Hei
1

crossed by the first edge ei1 of ˇ0i does not intersect ˇ0iC1 , no
subsequent hyperplane crossed by ˇ0i intersects ˇ0iC1 either (otherwise, some hyper-
plane crossed by an edge of ˇ0i intersects the hyperplane Hei

1
, which is a contradiction).

Therefore, all mi hyperplanes crossed by ˇ0i intersect the subpath i of  . If the
hyperplane crossed by ei1 intersects ˇ0iC1 , then the edge ei1 is labeled by a vertex a in
lk.si /\ lk.siC1/. Since � is triangle-free, two consecutive vertices si and siC1 are
never adjacent. We claim that the hyperplane crossed by the second edge ei2 of ˇ0i does
not intersect ˇ0iC1 . Otherwise, the second edge ei2 of ˇ0i is labeled by a vertex b other
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than a in lk.si /\lk.siC1/. Therefore, the four points a , b , si , and siC1 are all vertices
of an induced 4–cycle � in � . Moreover, two nonadjacent vertices si and siC1 both lie
in S1 but a does not. This is a contradiction. Therefore, the hyperplane crossed by the
second edge ei2 of ˇ0i does not intersect ˇ0iC1 . This also implies that the hyperplanes
crossed by edges eij (where 2� j �m) of ˇ0i do not intersect ˇ0iC1 . Thus, all these
hyperplanes must intersect the subpath i of  . Therefore, there are exactly .mi � 1/
hyperplanes crossed by ˇ0i intersecting the subpath i of  .

For 1� i �m�1, the length of the subpath i of  is at least .mi �1/ because there
are at least .mi � 1/ hyperplanes crossed by ˇ0i intersecting the subpath i . Thus

`./�

m�1X
iD1

`.i /� .m� 1/.mi � 1/� .r � 1/.�r � 1/:

Therefore, �n� .r/� .r �1/.�r �1/ for each r > 0. This implies that the lower relative
divergence of G� with respect to K is at least quadratic.

The following theorem establishes characterizations of strongly quasiconvex subgroups
in two-dimensional right-angled Coxeter groups. This theorem is a direct result of
Propositions 7.8 and 7.9 and Theorem 4.7. This is also the main theorem of this section.

Theorem 7.10 Let � be a simplicial, triangle-free graph with vertex set S , and let K
be a subgroup of G� generated by some subset S1 of S. Then the following conditions
are equivalent:

(1) The subgroup K is strongly quasiconvex in G� .

(2) If S1 contains two nonadjacent vertices of an induced 4–cycle � , then S1

contains all vertices of � .

(3) Either jKj<1 or the lower relative divergence of G� with respect to K is at
least quadratic.

Question 7.11 Is the lower relative divergence of a CAT.0/ group with respect to an
infinite strongly quasiconvex subgroup at least quadratic?

The following corollary is a direct result of Theorem 7.10. The corollary establishes a
characterization of stable subgroups in two-dimensional right-angled Coxeter groups.

Corollary 7.12 Let � be a simplicial, triangle-free graph with vertex set S , and let K
be a subgroup of G� generated by some subset S1 of S. Then the following conditions
are equivalent:
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(1) The subgroup K is stable in G� .

(2) The set S1 does not contain a pair of nonadjacent vertices of an induced 4–cycle
in � .

Proof Assume that S1 does not contain any pair of nonadjacent vertices of an induced
4–cycle of � . Then the subgroup K is hyperbolic (see Corollary 12.6.3 in [15]). Also,
the subgroup K is strongly quasiconvex in G� by Theorem 7.10. Therefore, K is
stable subgroup by Theorem 4.8.

We now assume that S1 contains a pair of nonadjacent vertices of an induced 4–cycle �
of � . We will prove that K is not stable in G� . If K is not strongly quasiconvex
in G� , then K is not stable in G� by Theorem 4.8. Otherwise, S1 contains all vertices
of the induced 4–cycle � by Theorem 7.10. This implies that K is not hyperbolic by
Corollary 12.6.3 in [15]. Thus, K is not stable in G� .

Question 7.13 Can we characterize all strongly quasiconvex (stable) subgroups of
right-angled Coxeter groups using defining graphs?

We guess that the recent work of Abbott, Behrstock, and Durham [1] can help us
characterize all stable subgroups of right-angled Coxeter groups using defining graphs.
However, characterizing all strongly quasiconvex subgroups of right-angled Coxeter
groups using defining graphs is still a difficult question.

The following corollary gives a criterion on two-dimensional right-angled Coxeter
groups to possess Morse boundaries which are not totally disconnected. We remark that
the first example of a right-angled Coxeter group whose Morse boundary is not totally
disconnected was constructed by Behrstock in [5]. The following corollary generalizes
his example in some sense.

Corollary 7.14 If the simplicial, triangle-free graph � contains an induced loop �
of length greater than 4 such that the vertex set of � does not contain a pair of
nonadjacent vertices of an induced 4–cycle in � , then the Morse boundary of the
right-angled Coxeter group G� is not totally disconnected.

Proof Since the vertex set S1 of the loop � satisfies the hypothesis of Corollary 7.12,
the subgroup G� generated by S1 is a stable subgroup in G� . This implies that the
Morse boundary of G� is topologically embedded in the Morse boundary of G� , by
Theorem 5.6. Also, G� is a two-dimensional hyperbolic orbifold group. Therefore, the
Morse boundary of G� is also the Gromov boundary of G� , which is a topological

Geometry & Topology, Volume 23 (2019)



On strongly quasiconvex subgroups 1217

circle. This implies that the Morse boundary of G� also contains a circle, and therefore,
it is not totally disconnected.

Conjecture 7.15 The Morse boundary of a right-angled Coxeter group G� is not
totally disconnected if and only if the defining graph � contains an induced loop � of
length greater than 4 such that the vertex set of � does not contain a pair of nonadjacent
vertices of an induced 4–cycle in � .

7.3 Higher relative lower divergence in right-angled Coxeter groups

In this subsection, we construct right-angled Coxeter groups together with nonstable
strongly quasiconvex subgroups whose lower relative divergences are arbitrary poly-
nomials of degrees at least 2. We remark that the author in [35] also constructed
various examples of right-angled Coxeter groups whose lower relative divergences with
respect to some subgroups are arbitrary polynomials of degrees at least 2. However,
all subgroups in those examples are stable and in this subsection we work on cases of
nonstable subgroups.

We first establish a connection between the lower relative divergence of certain pairs
of right-angled Coxeter groups and the divergence of certain geodesics in their Davis
complexes. This connection is a key ingredient for the main examples in this subsection.

Lemma 7.16 Let � be a simplicial graph with vertex set S , and let u and v be
two nonadjacent vertices of � . Let � be a new graph obtained by coning off the
two points u and v of � with a new vertex t , and let S D S [ ftg. Let x and y
be endpoints of a path  in †.1/� �N1.G�/. If g1 and g2 are two elements in G�
such that dS .x;G�/D dS .x; g1/ and dS .y;G�/D dS .y; g2/, then g�11 g2 lies in the
subgroup I generated by u and v .

Proof We can assume that x and y both lie in G� . Let 1 be a geodesic in †.1/�
connecting x and g1 , and let 2 be a geodesic in †.1/� connecting y and g2 . We can
assume that 1 along the direction from g1 to x is the concatenation 1 D e1e2 � � � em
of edges of †.1/� . Similarly, 2 along the direction from g2 to y is the concatenation
2 D f1f2 � � � fn of edges of †.1/� . We claim that the two edges e1 and f1 are both
crossed by the hyperplane which is labeled by t .

We first recall that G� is the subgroup generated by S and S �S D ftg. Also, 1 is
a shortest geodesic that connects x and G� . Then the first edge e1 of 1 is labeled
by t and we denote by H the hyperplane crossed by e1 . By Remark 7.5 the vertex set
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of the support of H is g1Gst.t/ . Also, each element in g1Gst.t/ has distance 0 or 1
from G� . This implies that H \†.1/� lies in the 1–neighborhood of G� . In particular,
H does not intersect  . Also, H does not intersect the Cayley graph †.1/� of G� .
Thus, H intersects the path 2 . Moreover, H must intersect the first edge f1 of 2
because H \†.1/� lies in the 1–neighborhood of G� . This fact implies that g1 and g2
are both vertices of the support of H. In other words, g1 and g2 lie in the same left
coset of Gst.t/ or g�11 g2 lies in Gst.t/ . Also, g�11 g2 lies in G� , and G� \Gst.t/ D I ,
where I is the subgroup generated by u and v . Thus, g�11 g2 lies in the subgroup I.

Lemma 7.17 Let � be a simplicial graph with vertex set S , and let u and v be two
nonadjacent vertices of � . Let � be a new graph obtained by coning off the two
points u and v of � with a new vertex t , and let S D S [ftg. Let I be the subgroup
generated by u and v . Then dS .tx;G�/D dS .x; I /C 1 for each x in †.1/� .

Proof We assume that x lies in G� and let nD dS .x; I /. Let  be a geodesic of
length n in †.1/� that connects x to some point h in I. We can express De1e2 � � � en as
a concatenation of edges in †.1/� , where each edge ei is labeled by some element si 2S.
Then x D h.s1s2 � � � sn/. Let 1 D t . Then 1 is a geodesic that connects th and tx .
Moreover, we can express 1 D f1f2 � � � fn , where each edge fi is the translation of
the edge ei of  by t . In particular, each edge fi is also labeled by si . Since thD ht ,
there is an edge e01 labeled by t with endpoints h and th. We construct  D e01[ 1
and we claim that  is a shortest geodesic that connects tx and G� .

We first prove that  is a geodesic in †.1/� . Since the inclusion †.1/� ,! †.1/� is an
isometric embedding,  is also a geodesic in †.1/� . Thus, 1D t is a geodesic in †.1/� .
Since 1 is labeled by elements in S and the first edge e01 of  is labeled by t … S,
the hyperplane crossed by e01 does not intersect 1 . Thus,  is a geodesic in †.1/� .

We now prove that  is a shortest geodesic that connects tx and G� . By Lemma 7.6,
it is sufficient to prove that each hyperplane crossed by some edge of  does not
intersect the Cayley graph †.1/� of G� . Since G� is the subgroup generated by S
and the hyperplane H crossed by the first edge e01 of  is labeled by t , H does not
intersect †.1/� . Assume for purposes of contradiction that a hyperplane Hi crossed
by some edge fi of  intersects †.1/� . We choose i to be the smallest number with
that property. In particular, Hi must intersect H , and therefore, si commutes with t .
This implies that si D u or si D v . Therefore, si is an element in I.

By the choice of i , each hyperplane Hj crossed by the edge fj (where j < i ) does not
intersect †.1/� . Therefore, each Hj must intersect Hi . This implies that si commutes
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with all sj for j < i . Therefore,

x D h.s1s2 � � � si�1sisiC1 � � � sn/D .hsi /.s1s2 � � � si�1siC1 � � � sn/:

This implies that there is a path in †.1/� with length n � 1 that connects x to the
element hsi 2 I , which is a contradiction. Thus, each hyperplane crossed by some
edge of  does not intersect the Cayley graph †.1/� of G� . Therefore, the path  is
a shortest geodesic that connects tx and G� . This implies that

dS .tx;G�/D `./D `.1/C 1D `./C 1D dS .x; I /C 1:

Proposition 7.18 Let � be a simplicial graph with vertex set S , and let u and v be
two nonadjacent vertices of � . Let � be a new graph obtained by coning off the two
points u and v of � with a new vertex t , and let S D S [ftg. Let ˛ be the bi-infinite
geodesic containing the identity e labeled by u and v alternately. Then

Div†
.1/
�

˛ � div.G�; G�/� Div†
.1/
�

˛ ;

where Div†
.1/
�

˛ and Div†
.1/
�

˛ are the geodesic divergences of ˛ in †.1/� and †.1/�
respectively.

Proof Let I be the subgroup generated by u and v . Then the geodesic ˛ is the
Cayley graph of I in †.1/� and †.1/� . Therefore, the lower relative divergences of
†.1/� and †.1/� with respect to the path ˛ are equivalent to the lower relative divergences
of these spaces with respect to I. Also, by Remark 2.14, the lower relative divergence
of a geodesic space with respect to a periodic bi-infinite geodesic is equivalent to the
divergence of the geodesic in the space. Therefore, it is sufficient to prove

div.†.1/� ;I /� div.†.1/� ;G�/� div.†.1/� ;I /:

Let f�n� g be the lower relative divergence of †.1/� with respect to G� , let f�n� g be the
lower relative divergence of †.1/� with respect to I, and let f�n� g be the lower relative
divergence of †.1/� with respect to I. We will prove that for each n� 2 and � 2 .0; 1�

�n� .r/� �
n
� .r/� �

2n
� .r/C 2r for each r > 1:

We first prove the left inequality. If �n� .r/D1, the left inequality is true obviously.
Otherwise, let x and y be two arbitrary points in @Nr.G�/ such that there is a path
outside Nr.G�/ in †.1/� that connects x and y and dS .x; y/� nr . Let g1 and g2 be
two elements in G� such that dS .x;G�/D dS .x; g1/ and dS .y;G�/D dS .y; g2/.
Then g1 and g2 both lie in the same left coset gI of the subgroup I by Lemma 7.16.
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Since the element g in G� acts isometrically on †.1/� ,

div.†.1/� ; gI /D div.†.1/� ; I /D f�n� g:

It is obvious that

dS .x; gI /D dS .x;G�/D r and dS .y; gI /D dS .y;G�/D r:

Also, any path that lies outside some s–neighborhood of G� also lies outside the
s–neighborhood of gI because gI is a subset of G� . Therefore, �n� .r/� �

n
� .r/. This

implies that div.†.1/� ; I /� div.†.1/� ; G�/.

We now prove the second inequality, �n� .r/ � �2n� .r/C 2r for each r > 1. In the
case that �2n� .r/D1, the inequality is true obviously. Otherwise, let x1 and y1
be two arbitrary points in @Nr.I / � †.1/� such that there is a path outside Nr.I /
connecting x1 and y1 and dS .x1; y1/� .2n/r . Since the inclusion †.1/� ,!†.1/� is
an isometric embedding, dS .x1; y1/D dS .x1; y1/� .2n/r .

Let ˇ be an arbitrary path outside N�r.I / in †.1/� connecting x1 and y1 . Then the
path ˇ1 D tˇ connects the two points tx1 and ty1 . By Lemma 7.17, ˇ1 lies outside
the .�rC1/–neighborhood of G� in †.1/� , and

dS .tx1; G�/D dS .x1; I /C1D rC1 and dS .ty1; G�/D dS .y1; I /C1D rC1:

This implies there is a geodesic ˇ2 with length 1 that lies outside the r–neighborhood
of G� in †.1/� and ˇ2 connects tx1 with some point x2 2Nr.G�/. Similarly, there
is a geodesic ˇ3 with length 1 that lies outside the r–neighborhood of G� in †.1/�
and ˇ3 connects ty1 with some point y2 2Nr.G�/. Moreover,

dS .x2; y2/� dS .tx1; ty1/� dS .tx1; x2/� dS .ty1; y2/

� dS .x1; y1/� dS .tx1; x2/� dS .ty1; y2/

� 2nr � 1� 1� nr:

Also, ˇ D ˇ2[ˇ1[ˇ3 is the path outside the �r–neighborhood of G� connecting
x2 and y2 . Therefore,

�n� .r/� `.ˇ/� `.ˇ2/C `.ˇ1/C `.ˇ3/� 1C `.ˇ/C 1� `.ˇ/C 2r:

This implies �n� .r/� �2n� .r/C 2r . Therefore, div.†.1/� ; G�/� div.†.1/� ; I /. Thus,

Div†
.1/
�

˛ � div.G�; G�/� Div†
.1/
�

˛ :

We are now ready to construct the main examples for this subsection and we start
with defining graphs. More precisely, for each integer d � 2, a graph �d and its
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subgraph �d are constructed as in Figure 1. We remark that the graph �d was originally
constructed by Dani and Thomas [14] to study divergence of right-angled Coxeter
groups and the graph �d is a variation of �d . However, we are going to use these
pairs of graphs to construct corresponding pairs of right-angled Coxeter groups with
desired lower relative divergence.

Proposition 7.19 [34, Proposition 3.19] For each d � 2, let �d be the graph in
Figure 1. Let ˛d be a bi-infinite geodesic containing e and labeled by � � � adbdadbd � � � .
Then the divergence of ˛d in †.1/�d

is equivalent to a polynomial of degree d .

We remark that the above proposition was proved in [34] but the proof was based
mostly on the work of Dani and Thomas in [14]. Similarly, we also obtain an analogous
proposition as follows.

Proposition 7.20 For each d � 2, let �d be the graph in Figure 1. Let ˛d be a bi-
infinite geodesic containing e and labeled by � � � adbdadbd � � � . Then the divergence
of ˛d in †.1/�d

is equivalent to a polynomial of degree d .

Proof We observe that �d is an induced subgraph of �d . Therefore, the graph †.1/�d

embeds isometrically in the graph †.1/�d
. This implies that for each r > 0 any path

in †.1/�d
that stays outside the ball centered at the identity element e with radius r in †.1/�d

also stays outside the ball with the same center and radius in †.1/�d
. Therefore, the

divergence of ˛d in †.1/�d
is dominated by the divergence of ˛d in †.1/�d

. This implies
that the divergence of ˛d in †.1/�d

is dominated by rd by Proposition 7.19.

We now prove that the divergence of ˛d in †.1/�d
dominates rd . We observe that �d

is an induced subgraph of �dC2 . Using the same proof as that in the first paragraph,
the divergence of ˛d in †.1/�d

dominates the divergence of ˛d in †.1/�dC2
. Therefore,

it is sufficient to prove that the divergence of ˛d in †.1/�dC2
dominates rd . In fact,

for each r > 0, let  be an arbitrary path connecting ˛d .�r/ and ˛d .r/ that lies
outside the ball centered at e with radius r . Let ˛ be the ray obtained from ˛d

containing ˛d .r/ with initial point e . Then ˛ lies in the support of a hyperplane
crossed by an edge labeled by bdC1 . Since the hyperplane H crossed by the first edge
of ˛ intersects  , there is a geodesic ˇ in the support of H connecting e and some
point x in  . Let 1 be the subpath of  connecting x and ˛d .r/. Then the length
of 1 is at least .1=2d.dC1//rd by the proof of Proposition 5.3 in [14]. Therefore, the
length of  is also at least .1=2d.dC1//rd . This implies that the divergence of ˛d
in †.1/�dC2

dominates rd . Therefore, the divergence of ˛d in †.1/�d
dominates rd .
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b0

a0

b1 a1 a2 a3
ad�1 ad

b2 b3 b4 bd�1 bd t

b0

a0

b1 a1 a2 a3
ad�1 ad

b2 b3 b4 bd�1 bd

Figure 1: The graph �d (top) is constructed from the graph �d (bottom) by
coning off two nonadjacent vertices ad and bd by a new vertex t .

We now state the main theorem of this subsection.

Theorem 7.21 For each d � 2, we construct a graph �d and subgraph �d as in
Figure 1. Then G�d

is a nonstable strongly quasiconvex subgroup of G�d
and the

lower relative divergence of G�d
with respect to G�d

is equivalent to a polynomial
of degree d .

Proof By Propositions 7.18, 7.19, and 7.20, the lower relative divergence of G�d

with respect to G�d
is equivalent to a polynomial of degree d . In particular, G�d

is
a strongly quasiconvex subgroup of G�d

by Theorem 4.7. However, the subgroup
G�d

is not hyperbolic because the graph �d contains an induced 4–cycle. This implies
that G�d

is not a stable subgroup of G�d
.

8 Strong quasiconvexity, stability, and lower relative
divergence in right-angled Artin groups

In this section, we prove that the two notions of strong quasiconvexity and stability
are equivalent in the right-angled Artin group A� (except for the case of finite-index
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subgroups). We also characterize nontrivial strongly quasiconvex subgroups of infinite
index in A� (ie nontrivial stable subgroups in A� ) by quadratic lower relative diver-
gence. These results strengthen the work of Koberda, Mangahas, and Taylor [26] on
characterizing purely loxodromic subgroups of right-angled Artin groups.

8.1 Some background in right-angled Artin groups

Definition 8.1 Given a finite simplicial graph � , the associated right-angled Artin
group A� has generating set S the vertices of � , and relations st D ts whenever
s and t are adjacent vertices.

Let S1 be a subset of S. The subgroup of A� generated by S1 is a right-angled Artin
group A�1

, where �1 is the induced subgraph of � with vertex set S1 (ie �1 is the
union of all edges of � with both endpoints in S1 ). The subgroup A�1

is called a
special subgroup of A� .

A reduced word for a group element g in A� is a minimal-length word in the free
group F.S/ representing g .

Definition 8.2 Let �1 and �2 be two graphs. The join of �1 and �2 is a graph obtained
by connecting every vertex of �1 to every vertex of �2 by an edge.

Let J be an induced subgraph of � which decomposes as a nontrivial join. We call AJ
a join subgroup of A� . A reduced word w in A� is called a join word if w represents
an element in some join subgroup. If ˇ is a subword of w , we will say that ˇ is a join
subword of w when ˇ is itself a join word.

Definition 8.3 Let � be a simplicial, finite, connected graph such that � does not
decompose as a nontrivial join. A group element g in A� is loxodromic if g is not
conjugate into a join subgroup. If every nontrivial group element in a subgroup H
of A� is loxodromic, then H is purely loxodromic.

Definition 8.4 Let � be a finite simplicial graph with vertex set S . Let T be a torus of
dimension jS j with edges labeled by the elements of S. Let X� denote the subcomplex
of T consisting of all faces whose edge labels span a complete subgraph in � (or
equivalently, mutually commute in A� ). We call X� the Salvetti complex.

Remark 8.5 The fundamental group of X� is A� . The universal cover zX� of X�
is a CAT.0/ cube complex with a free, cocompact action of A� . Obviously, the
1–skeleton zX .1/� of zX� is the Cayley graph of A� with respect to the generating set S.
Consequently, reduced words in A� correspond to geodesics in zX .1/� , which we call
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combinatorial geodesics. We refer to distance in zX .1/� as combinatorial distance. If �1
is an induced subgraph of a � , then there is a natural isometric embedding of the
1–skeleton zX .1/�1

of zX�1
into the 1–skeleton zX .1/� of zX� .

Theorem 8.6 [26, Theorem 1.1, Theorem 5.2, and Corollary 6.2] Let � be a sim-
plicial, finite, connected graph such that � does not decompose as a nontrivial join.
Let H be a finitely generated subgroup of A� . Then the following are equivalent:

(1) H is a purely loxodromic subgroup.

(2) H is stable.

(3) There exists a positive number N D N.H/ such that for any reduced word w
representing h 2H, and any join subword w0 of w , we have `.w0/�N.

The following corollary is a direct consequence of the above theorem.

Corollary 8.7 Let � be a simplicial, finite, connected graph with vertex set S such
that � does not decompose as a nontrivial join. Let H be a nontrivial finitely generated
purely loxodromic subgroup. Then there is a positive constant M such that every
geodesic in the Cayley graph zX .1/� connecting points in H lies in the M–neighborhood
of H.

The properties of hyperplanes of zX� in the following remark were observed in [6] by
Behrstock and Charney.

Remark 8.8 Each hyperplane in zX� separates zX� into two convex sets. It follows that
the combinatorial distance between a pair of vertices equals the number of hyperplanes
in zX� separating those vertices.

For a generator v , let ev denote the edge from the basepoint 1 to the vertex v . Any
edge in zX� determines a unique hyperplane, namely the hyperplane containing the
midpoint of that edge. Denote by Hv the hyperplane containing the midpoint of ev .

For a cube in zX� , all of the parallel edges are labeled by the same generator v . It
follows that all of the edges crossing a hyperplane H have the same label v , and we
call this a hyperplane of type v . Since A� acts transitively on edges labeled v , a
hyperplane is of type v if and only if it is a translate of the standard hyperplane Hv .

For a vertex v of the graph � let lk.v/ denote the subgraph of � spanned by the
vertices adjacent to v and let st.v/ denote the subgraph spanned by v and lk.v/.
Obviously, Ast.v/ is a join subgroup and Alk.v/ is a subgroup of Ast.v/ . We call such a
subgroup Ast.v/ a star subgroup.
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Lemma 8.9 [6, Lemma 3.1] Let H1 D g1Hv and H2 D g2Hw . Then:

(1) H1 intersects H2 if and only if v and w commute and g�11 g2 2 Alk.v/Alk.w/ .

(2) There is a hyperplane H3 intersecting both H1 and H2 if and only if there is
a u in st.v/\ st.w/ such that g�11 g2 2 Alk.v/Alk.u/Alk.w/ .

8.2 Lower relative divergence of a right-angled Artin group with respect
to a purely loxodromic subgroup

In this section, we compute the lower relative divergence of a right-angled Artin group
with respect to a purely loxodromic subgroup (ie a stable subgroup). We first prove the
quadratic upper bound for the lower relative divergence of a right-angled Artin group
with respect to a loxodromic subgroup and we need the following lemmas.

Lemma 8.10 Let � be a simplicial, finite, connected graph with vertex set S such
that � does not decompose as a nontrivial join. Let H be a nontrivial, finitely generated
purely loxodromic subgroup of A� . There is a positive number K such that for each
element g in A� and each pair of commuting generators .s1; s2/ in S,

dS .gs
i
1s
j
2 ;H/�

ji jC jj j

K
� jgjS � 1:

Proof By Theorem 8.6, there is a positive integer N such that for any reduced word w
representing h2H, and any join subword w0 of w , we have `.w0/�N. Let KDNC1
and we will prove that

dS .gs
i
1s
j
2 ;H/�

ji jC jj j

K
� jgjS � 1:

Let m D dS .gsi1s
j
2 ;H/. Then there is an element g1 in A� with jg1jS D m and

an h in H such that hD gsi1s
j
2g1 . Since si1s

j
2 is an element in some join subgroup

of A� and jg1jS Dm, the element h can be represented by a reduced word w that
is a product of at most .jgjS C 1Cm/ join subwords. Also, the length of each join
subword of w is bounded above by N. Therefore, the length of w is bounded above
by N.jgjS CmC 1/. Also,

`.w/� jsi1s
j
2 jS � jg1jS � jgjS � ji jC jj j �m� jgjS :

This implies that
ji jC jj j �m� jgjS �N.jgjS CmC 1/:

Therefore,

dS .gs
i
1s
j
2 ;H/Dm�

ji jC jj j

N C 1
� jgjS �

N

N C 1
�
ji jC jj j

K
� jgjS � 1:
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Lemma 8.11 Let � be a simplicial, finite, connected graph with vertex set S such
that � does not decompose as a nontrivial join. Let H be a nontrivial, finitely generated
purely loxodromic subgroup of A� , and let h be an arbitrary element in H. There is a
number L� 1 such that for each positive integer m� L2 and generator s in S there
is a path ˛ outside the .m=L�L/–neighborhood of H connecting sm and hsm with
length bounded above by Lm.

Proof Let M D diam� , let K be the positive integer as in Lemma 8.10, and
let k D jhjS . Let LD 2.kC 1/.M C 1/CKC kCM C 1. Choose a reduced word

w D s
�1

1 s
�2

2 � � � s
�k

k
; where si 2 S and �i 2 f�1; 1g;

that represents the element h. For each i 2 f1; 2; : : : ; kg let ti be a vertex in st.si /
and wi D s

�1

1 s
�2

2 � � � s
�i

i . Then the length of each word wi is bounded above by k ,
wiC1 D wis�i

i , and wk D w .

We now construct a path ˛0 outside the .m=L�L/–neighborhood of H connecting
sm and w1tm1 with length bounded above by 2.M C 1/m. Since M D diam� , we
can choose a positive integer n�M and nC 1 generators u0; u1; : : : ; un in S such
that the following conditions hold:

(1) u0 D s and un D t1 .

(2) uj and ujC1 commute for j 2 f0; 1; 2; : : : ; n� 1g.

For each j 2f0; 1; 2; : : : ; n�1g let ǰ be a path connecting umj and umjC1 of length 2m
with vertices

umj ; u
m
j ujC1; umj u2jC1; : : : ; umj umjC1; um�1j umjC1; um�2j umjC1; : : : ; umjC1:

By Lemma 8.10, the above vertices must lie outside the .m=K�1/–neighborhood of H.
Therefore, these vertices also lies outside the .m=L�L/–neighborhood of H. There-
fore, ǰ is a path outside the .m=L�L/–neighborhood of H connecting umj and umjC1 .
Since w1tm1 D s

�1

1 t
m
1 D t

m
1 s

�1

1 , we can connect tm1 and w1tm1 by an edge ˇn labeled
by s1 . Let ˛0 D ˇ0 [ˇ1 [ � � � [ˇn . Then it is obvious that the path ˛0 outside the
.m=L�L/–neighborhood of H connecting sm and w1tm1 has length bounded above
by 2.M C 1/m.

By similar constructions as above, for each i 2 f1; 2; : : : ; k � 1g there is a path ˛i
outside the .m=L�L/–neighborhood of H connecting wi t

m
i and wiC1tmiC1 with

length bounded above by 2.M C 1/m. We can also construct a path ˛k outside
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the .m=L�L/–neighborhood of H connecting htm
k

and hsm with length bounded
above by 2Mm. Let ˛D ˛0[˛1[� � �[˛k . Then it is obvious that the path ˛ outside
the .m=L�L/–neighborhood of H connecting sm and hsm has length bounded above
by 2.kC 1/.M C 1/m. By the choice of L we observe that the length of ˛ is also
bounded above by Lm.

Proposition 8.12 Let � be a simplicial, finite, connected graph with vertex set S
such that � does not decompose as a nontrivial join. Let H be a nontrivial, finitely
generated purely loxodromic subgroup of A� . Then the lower relative divergence
of A� with respect to H is at most quadratic.

Proof Let h be an arbitrary group element in H and L � 1 a constant as in
Lemma 8.11. Since each cyclic subgroup in a CAT.0/ group is undistorted (see
Corollary 4.8 and Theorem 4.10 in [8, Chapter III.�]), there is a positive integer L1
such that

jhkjS �
jkj

L1
�L1 for each integer k:

Let f�n� g be the lower relative divergence of zX .1/� with respect to H. We will prove
that the function �n� .r/ is bounded above by some quadratic function for each n� 2
and � 2 .0; 1�.

Choose a positive integer m 2 ŒL.LC r/; 2L.LC r/� and a generator s in S. Then
there is a path ˛0 outside the .m=L�L/–neighborhood of H connecting sm and hsm

with length bounded above by Lm. It is obvious that the path ˛0 also lies outside
the r–neighborhood of H by the choice of m. Choose a positive integer k which
lies between L1.nr C 8L.LC r/CL1/ and L1.nr C 8L.LC r/CL1 C 1/. Let
˛ D ˛0[ h˛0[ h

2˛0[ � � � [ h
k�1˛0 . Then ˛ is a path outside the r–neighborhood

of H connecting sm and hksm with length bounded above by kLm. By the choice of
k and m, the length of ˛ is bounded above by 2L1L2.LCr/.nrC8L.LCr/CL1C1/.

Since r � dS .sm;H/ � m, there is a path 1 outside Nr.H/ connecting sm and
some point x 2 @Nr.H/ such that the length of 1 is bounded above by m. By the
choice of m, the length of 1 is also bounded above by 2L.LC r/. Similarly, there
is a path 2 outside Nr.H/ connecting hksm and some point y 2 @Nr.H/ such that
the length of 2 is bounded above by 2L.LC r/. Let ˛ D 1[˛[ 2 . Then ˛ is a
path outside Nr.H/ connecting x and y and the length of ˛ is bounded above by
2L1L

2.LCr/.nrC8L.LCr/CL1C1/C4L.LCr/. Therefore, for each � 2 .0; 1�,

d�r.x; y/� 2L1L
2.LC r/.nr C 8L.LC r/CL1C 1/C 4L.LC r/:
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Also,

dS .x; y/� dS .s
m; hksm/� dS .s

m; x/� dS .h
ksm; y/

� .jhkjS � 2m/� 2L.LC r/� 2L.LC r/�
k

L1
�L1� 8L.LC r/

� .nr C 8L.LC r//� 8L.LC r/� nr:

Thus, for each � 2 .0; 1�,

�n� .r/� 2L1L
2.LC r/.nr C 8L.LC r/CL1C 1/C 4L.LC r/:

This implies that the lower relative divergence of A� with respect to H is at most
quadratic.

We now establish the quadratic lower bound for the lower relative divergence of a
right-angled Artin group with respect to a loxodromic subgroup.

Proposition 8.13 Let � be a simplicial, finite, connected graph with vertex set S
such that � does not decompose as a nontrivial join. Let H be a nontrivial, finitely
generated purely loxodromic subgroup of A� . Then the lower relative divergence
of A� with respect to H is at least quadratic.

Proof By Corollary 8.7, there is a positive integer M such that every geodesic in the
Cayley graph zX .1/� connecting points in H lies in the M–neighborhood of H. By
Theorem 8.6, there is another positive integer N such that for any reduced word w
representing h 2H, and any join subword w0 of w , we have `.w0/�N. Let f�n� g be
the lower relative divergence of zX .1/� with respect to H. We will prove that for each
n� 9 and � 2 .0; 1�,

�n� .r/�
�
r�1

3NC1

�
.�r � 3N/� 2r for each r > 2MC3NC2

�
:

Let u and v be an arbitrary pair of points in @Nr.H/ such that dr.u; v/ <1 and
dS .u; v/ � nr . Let  be an arbitrary path that lies outside the �r–neighborhood
of H connecting u and v . We will prove that the length of  is bounded below
by ..r � 1/=.3N C 1//.�r � 3N/� 2r .

Let 1 be a geodesic of length r in zX .1/� connecting u and some point x in H.
Let 2 be another geodesic of length r in zX .1/� connecting v and some point y in H.
Let ˛ be a geodesic in zX .1/� connecting x and y . Then ˛ lies in the M–neighborhood
of H. Choose a positive integer m such that r < .3N C 1/mC 1 < 2r .
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Since dS .x; y/ � dS .u; v/� 2r � .n� 2/r � 7r , there is a subpath ˛1 with length
.3N C 1/mC 1 of ˛ such that ˛1\ .B.x; 2r/[B.y; 2r//D∅. Also, the lengths of
1 and 2 are both r . This implies that .1[2/\Nr.˛1/D∅. Since \N�r.H/D∅
and ˛1�NM .H/, we can conclude that \N�r�M .˛1/D∅. Also, �r�M >�r=2.
Thus,  \N�r=2.˛1/D∅. Let  D 1[  [ 2 . Then  \N�r=2.˛1/D∅.

We assume that ˛1 D e0w1e1w2 � � � emwm , where each ei is an edge labeled by
some generator ai in S, each wi is a subpath of ˛1 of length exactly 3N. For each
i 2 f0; 1; 2; : : : ; mg, let Hi be the hyperplane intersecting ei , and let vi be a point in
Hi\ . For each i 2 f1; 2; : : : ; mg, let ˇi be the subpath of  connecting vi�1 and vi .

If there is some hyperplane of type b that intersects two hyperplanes Hi�1 and Hi
for some i 2 f1; 2; : : : ; mg, then ei�1wi corresponds to a word w that represents an
element in Alk.ai�1/Alk.b/Alk.ai / by Lemma 8.9. Also, the length of w is 3N C 1.
Then w is a product of three join words and so one of the join words has length
greater than N. This contradicts the choice of N. Therefore, no hyperplane intersects
both Hi�1 and Hi for each i 2 f1; 2; : : : ; mg. Also,  lies outside the .�r=2/–
neighborhood of ˛1 . The number of hyperplanes that intersect Hi�1[Hi is bounded
below by 2.�r=2/D�r . Moreover, each of these hyperplanes either intersects wi or ˇi .
We note that the number of hyperplanes that intersect wi is exactly `.wi /D3N since wi
is a geodesic. This implies that the number of hyperplanes that intersect ˇi is bounded
below by �r � 3N. Thus,

`.ˇi /� �r � 3N:

Therefore,

`./D `./� 2r �

mX
iD1

`.ˇi /� 2r �m.�r � 3N/� 2r �
�
r�1

3NC1

�
.�r � 3N/� 2r:

Thus,

�n� .r/�
�
r�1

3NC1

�
.�r � 3N/� 2r for each r > 2MC3NC2

�
;

or the lower relative divergence of G with respect to H is at least quadratic.

The following theorem is obtained from Propositions 8.12 and 8.13.

Theorem 8.14 Let � be a simplicial, finite, connected graph with vertex set S such
that � does not decompose as a nontrivial join. Let H be a nontrivial, finitely generated
purely loxodromic subgroup of A� . Then the lower relative divergence of A� with
respect to H is exactly quadratic.
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We now construct an example of a right-angled Artin group A� together with a
subgroup H that is not virtually cyclic in which the lower relative divergence of the
pair .A� ;H/ is exactly quadratic.

Corollary 8.15 Let � be the following graph:

a b c d

Let A� be the associated right-angled Artin group, and let H be the subgroup of A�
generated by the two elements ada and dad . Then H is a free subgroup of rank 2,
and the lower relative divergence of A� with respect to H is exactly quadratic.

Proof It is obvious that the subgroup K generated by the two elements a and d is
a free group of rank 2. Since H is a subgroup of K generated by the two elements
ada and dad , it is also a free group of rank 2. It is obvious that any join subword
of a reduced word in A� representing a nontrivial group element in H is an element
in the set fa; a�1; a2; a�2; d; d�1; d2; d�2g. Therefore, H is a loxodromic subgroup
by Theorem 8.6. This implies that the lower relative divergence of A� with respect
to H is exactly quadratic by the main theorem.

8.3 Main theorem

Lemma 8.16 Let K be a simplicial, finite graph (K is not necessarily connected)
and � the coned-off graph of K with cone point v . If H is a strongly quasiconvex sub-
group of the right-angled Artin group A� , then H is trivial or H has finite index in A� .

Proof We assume that H is nontrivial and we will prove that H has finite index in A� .
Since A�DAK�hvi, it is sufficient to prove that H\AK has finite index in AK and vn

lies in H for some n¤ 0. We first assume for purposes of contradiction that H\hvi is
a trivial group. Since v commutes with all vertices of � , it commutes with all elements
in H. Therefore, vnHv�n DH for all n. Also, viH ¤ vjH for i ¤ j . This is a
contradiction by Theorem 4.15. Therefore, vn lies in H for some n¤ 0.

We now assume again for purposes of contradiction that H \AK has infinite index
in AK . Then there is an infinite sequence .gn/ of distinct elements in AK such
that gi .H \ AK/ ¤ gj .H \ AK/ for i ¤ j . Therefore, g�1i gj is not a group
element in H \ AK for i ¤ j . This implies that g�1i gj is not a group element
in H since gi and gj are already elements of AK . Thus, we see that giH ¤ gjH
for i ¤ j . Since vn lies in H and vn commutes with all gi , the infinite cyclic group
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generated by vn is a subgroup of each giHg�1i . Therefore,
T
giHg

�1
i is an infinite

subgroup. This again contradicts Theorem 4.15. Therefore, H \AK has finite index
in AK . This implies that H has finite index in A� .

Lemma 8.17 Let � be a simplicial, finite, connected graph and K be an induced star
subgraph st.v/. For each g1 and g2 in A� there is a finite sequence of conjugates of
star subgroups g1AKg�11 D Q0;Q1; : : : ;Qm D g2AKg�12 such that Qi�1 \Qi is
infinite for each i 2 f1; 2; : : : ; mg.

Proof Let S be the vertex set of � and nD jg�11 g2jS . We will prove the lemma by
induction on n. If nD 0, then g1 D g2 . Therefore, the conclusion is true obviously.
We now assume that n D 1. Then there is a vertex u such that g2 D g1u� , where
�D 1 or �D�1. Since � is finite and connected, there is a finite sequence of vertices
uDu0; u1; u2; : : : ; u`Dv such that ui�1 is adjacent to ui for each i 2f1; 2; 3; : : : ; `g.
Let Pi D g1Ast.ui /g

�1
1 and P 0i D g2Ast.ui /g

�1
2 for each i 2 f0; 1; 2; 3; : : : ; `g. It is

not hard to check Pi�1\Pi and P 0i�1\P 0i are infinite for each i 2 f1; 2; 3; : : : ; `g.
Moreover, P0 D P 00 because g2 D g1u� , where � D 1 or � D �1. Therefore, the
conclusion is true for nD 1 obviously.

Assume the conclusion is true for all n � k for some k � 1. We will prove that the
conclusion is true for nD kC1. In fact, if jg�11 g2jS D kC1, then there is a g3 in A�
such that jg�11 g3jS Dk and jg�13 g2jS D1. By the inductive hypothesis, there is a finite
sequence of conjugates of star subgroups g1AKg�11 D L0; L1; : : : ; Lm1

D g3AKg
�1
3

such that Li�1\Li is infinite for each i 2 f1; 2; : : : ; m1g. Similarly, there is a finite
sequence of conjugates of star subgroups g3AKg�13 D L00; L01; : : : ; L0m2

D g2AKg
�1
2

such that L0i�1\L0i is infinite for each i 2 f1; 2; : : : ; m2g. Therefore, there is a finite
sequence of conjugates of star subgroups g1AKg�11 DQ0;Q1; : : : ;Qm D g2AKg�12
such that Qi�1 \Qi is infinite for each i 2 f1; 2; : : : ; mg. This implies that the
conclusion is true for nD kC 1.

Proposition 8.18 Let � be a simplicial, finite, connected graph such that � does not
decompose as a nontrivial join. Let H be a nontrivial, infinite-index subgroup of the
right-angled Artin group A� . If H is a strongly quasiconvex subgroup, then H is free.

Proof We are going to prove H is star-free (ie for each vertex v of � and g 2 A�
the subgroup gHg�1\Ast.v/ is trivial) and then H is a free group by Theorem 1.2
in [26]. We first observe that H is finitely generated and each conjugate of H is also a
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strongly quasiconvex subgroup. We now prove that for each vertex v of � and g 2A�
the subgroup gHg�1 \ Ast.v/ is trivial. We assume for purposes of contradiction
that g0Hg�10 \Ast.v/ is not trivial for some vertex v and some g0 2 A� . We claim
that gHg�1\Ast.v/ has finite index in Ast.v/ for all g 2 A� .

In fact, since g0Hg�10 is a strongly quasiconvex subgroup and Ast.v/ is an undis-
torted subgroup, g0Hg�10 \Ast.v/ is a strongly quasiconvex subgroup of Ast.v/ by
Proposition 4.11. Therefore, g0Hg�10 \Ast.v/ has finite index in Ast.v/ by Lemma 8.16.

We now prove that gHg�1 \ Ast.v/ has finite index in Ast.v/ for all g 2 A� . By
Lemma 8.17, there is a finite sequence of conjugates of star subgroups

g�10 Ast.v/g0 DQ0; Q1; : : : ; Qm D g
�1Ast.v/g

such that Qi�1\Qi is infinite for each i 2 f1; 2; : : : ; mg. Since g0Hg�10 \Ast.v/ has
finite index in Ast.v/ , H \g�10 Ast.v/g0 has finite index in Q0 D g�10 Ast.v/g0 . Also,
the subgroup Q0\Q1 is infinite. Then H\Q1 is not trivial. Using a similar argument
as above, we obtain that H \Q1 has finite index in Q1 . Repeating this process, we
have H \g�1Ast.v/g has finite index in g�1Ast.v/g . In other words, gHg�1\Ast.v/

has finite index in Ast.v/ .

By Theorem 4.15, there is a number n such that the intersection of any .nC1/ essentially
distinct conjugates of H is finite. Since H has infinite index in A� , there are nC 1
distinct elements g1; g2; : : : ; gnC1 such that giH ¤ gjH for each i ¤ j . Also,
giHg

�1
i \Ast.v/ has finite index in Ast.v/ for each i . Then

�T
giHg

�1
i

�
\Ast.v/ also

has finite index in Ast.v/ . In particular,
T
giHg

�1
i is infinite, which is a contradiction.

Therefore, for each vertex v of � and g 2 A� the subgroup gHg�1\Ast.v/ is trivial.
This implies that H is a free group by Theorem 1.2 in [26].

We are now ready for the main theorem in this section.

Theorem 8.19 Let � be a simplicial, finite, connected graph such that � does not
decompose as a nontrivial join. Let H be a nontrivial, infinite-index subgroup of the
right-angled Artin group A� . Then the following are equivalent:

(1) H is strongly quasiconvex.

(2) H is stable.

(3) The lower relative divergence of A� with respect to H is quadratic.

(4) The lower relative divergence of A� with respect to H is completely superlinear.
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Proof The implication .1/) .2/ is obtained from Theorem 4.8 and Proposition 8.18.
The implication .2/) .3/ is deduced from Theorem 3.5. The implication .3/) .4/

is trivial and the implication .4/) .1/ follows Theorem 4.8.
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