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Long-time behavior of 3–dimensional Ricci flow
Introduction

RICHARD H BAMLER

In the following series of papers we analyze the long-time behavior of 3–dimensional
Ricci flows with surgery. Our main result will be that if the surgeries are performed
correctly, then only finitely many surgeries occur and after some time the curvature is
bounded by C t�1 . This result confirms a conjecture of Perelman. In the course of
the proof, we also obtain a qualitative description of the geometry as t !1 .

53C44; 49Q05, 53C23, 57M15, 57M20, 57M50

1 Introduction

1.1 Statement of the main result

In the following series of papers, we analyze the long-time behavior of 3–dimensional
Ricci flows with surgery and we prove a conjecture of Perelman. In a few words, our
first main result can be summarized as follows. We refer to Theorem 1.1 on page 759
for a precise statement.

Let .M;g/ be a closed and orientable 3–dimensional Riemannian manifold.

Then there is a Ricci flow with only finitely many surgeries whose initial time slice is
.M;g/ and that either goes extinct in finite time or exists for all times. Moreover, there
is a constant C such that the norm of the Riemannian curvature tensor in this flow is
bounded everywhere by C t�1 for large times t .

We moreover obtain a characterization of the geometry of this Ricci flow at large times,
which will be summarized in Theorem 1.4 on page 761.

The Ricci flow with surgery has been used by Perelman [11; 12; 13] to solve the Poincaré
and geometrization conjectures. Given any initial metric on a closed 3–manifold,
Perelman managed to construct a solution to the Ricci flow with surgery on a maximal
time interval and showed that its surgery times do not accumulate. This means that
every finite time interval contains only a finite number of surgery times. Furthermore, he
proved that if the given manifold is a homotopy sphere (or, more generally, a connected
sum of prime, nonaspherical manifolds), then this flow goes extinct in finite time and
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the total number of surgeries is finite. This fact implies that the initial manifold is
a sphere if it is simply connected and hence proves the Poincaré conjecture. On the
other hand, if the Ricci flow with surgery continues to exist for infinite time, Perelman
showed that the manifold decomposes into a thick part, which approaches a hyperbolic
metric, and a thin part, which becomes arbitrarily collapsed on local scales. Based
on this collapse, it is then possible to show that the thin part can be decomposed into
pieces whose topology is well understood; see Shioya and Yamaguchi [14], Morgan and
Tian [10] and Kleiner and Lott [5]. Eventually, this decomposition can be reorganized
to a geometric decomposition, thus establishing the geometrization conjecture.

Although the Ricci flow with surgery was used to solve such hard problems, some
of its basic properties are still unknown, because they surprisingly turned out to be
irrelevant in the end. For example, it was only conjectured by Perelman that in the
long-time existent case there are finitely many surgeries, ie that after some time the
flow can be continued by a conventional smooth, nonsingular Ricci flow defined up to
time infinity. Furthermore, it is still unknown whether and in precisely what way the
Ricci flow exhibits the full geometric decomposition of the manifold.

Lott and Sesum [6; 7; 8] gave a description of the long-time behavior of certain
nonsingular Ricci flows on manifolds whose geometric decomposition consists of a
single component. However, they needed to make additional curvature and diameter
or symmetry assumptions. In [3], the author proved that under a purely topological
condition (sometimes referred to as T1 ), which roughly states that the manifold only
consists of hyperbolic components, the number of surgeries is indeed finite and the
curvature is bounded by C t�1 for large t . In this paper we remove this additional
condition and only assume that the initial manifold is closed and orientable.

This series of papers is a restructured version of the two preprints [1; 2]. In [1], the
condition T1 was generalized to a far more general topological condition T2 , which
requires that the nonhyperbolic pieces in the geometric decomposition of the underlying
manifold contain sufficiently many incompressible surfaces. For example, manifolds
of the form †�S1 for closed, orientable surfaces †, in particular the 3–torus T 3 ,
satisfy property T2 , but the Heisenberg manifold does not. We refer to [1, Section 1.2]
for a precise definition and discussion of the conditions T1 and T2 . Eventually, in [2]
the result was further generalized and condition T2 was removed. This generalization
was obtained by replacing said incompressible surfaces by simplicial complexes in a
careful way. In the present paper we have merged the proofs of [1; 2], so the conditions
T1 and T2 as well as the incompressible surfaces don’t play a role anymore.
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Long-time behavior of 3–dimensional Ricci flow 759

We now state our main result. The notions relating to “Ricci flows with surgery” that
are used in the following are explained in Section 2.1 of the following paper [A]. A
Ricci flow .gt /t2I on a manifold M is a smooth family of Riemannian metrics that
satisfy the evolution equation

@tgt D�2 Ricgt
:

A “Ricci flow with surgery M that is performed by ı.t/–precise cutoff” can briefly be
described as a sequence of 3–dimensional Ricci flows

.M 1; .g1
t /t2Œ0;T 1//; .M 2; .g2

t /t2ŒT 1;T 2//; : : : ;

such that the time-T i slice .M iC1;giC1
T i / is obtained from the singular metric gi

T i

on M i by a so-called surgery process, which amounts to a geometric version of an
inverse connected sum decomposition at a scale less than ı.T i/ and the removal of
spherical or S2 �S1 components. We allow the case in which there are only finitely
many surgery times T i and in which T i D1 for the final index i . Observe that we
have chosen our notion so that a ı.t/–precise cutoff is also ı0.t/–precise if ı0.t/� ı.t/.

Perelman [12] showed the existence of a (nonexplicit) function ı.t/ such that every
normalized Riemannian manifold .M;g/ (see Definition 2.12 in the next paper [A])
can be evolved into a Ricci flow with surgery M that is performed by ı.t/–precise
cutoff1 and he proved that for any such Ricci flow with surgery — performed by ı.t/–
precise cutoff and with normalized initial conditions — the surgery times T i do not
accumulate. So if there were infinitely many surgery times (or, equivalently, infinitely
many surgeries), then we must have limi!1 T i D1. Our main result now states that
this cannot happen under normalized initial conditions and if ı.t/ has been chosen
sufficiently small. Note that these two conditions are not very restrictive since they had
already been imposed in Perelman’s work.

Theorem 1.1 Given a surgery model .Mstan;gstan;Dstan/, there is a continuous func-
tion ıW Œ0;1/! .0; 1/ such that the following holds:

Let M be a (3–dimensional) Ricci flow with surgery, defined on some time interval
Œ0;T0/ for T0 �1, that has normalized initial conditions and is performed by ı.t/–
precise cutoff.

Then M has only finitely many surgeries and there are constants T;C <1 such that
jRmt j< C t�1 on M.t/ for all t � T .

1Perelman uses a slightly different notion of Ricci flow with ı.t/–cutoff. For example, he performs
surgeries at a scale D r.t/ı2.t/ instead of < ı.t/ , where r.t/ is another function that goes to 0 as t!1 .
Both notions are however equivalent modulo the choice of a different function ı.t/ .
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Note that this curvature bound is optimal apart from the nonexplicit constant C . For
example, if we consider a Ricci flow on a hyperbolic manifold, then the sectional
curvature behaves like �1

4
t�1 as t !1.

We mention two interesting direct consequences of Theorem 1.1, which can be expressed
in a completely elementary way and which illustrate the power of this theorem. None of
these results have been proven so far to the author’s knowledge. The first consequence
is just a restatement of Theorem 1.1 in the case in which M is nonsingular. Note that
even in this particular case our proof does not simplify significantly, apart from the
fact that we don’t have to deal with various technicalities. In fact, the reader is advised
to only consider nonsingular Ricci flows upon first reading of this series of papers.

Corollary 1.2 Let .M; .gt /t2Œ0;1// be a nonsingular, long-time existent Ricci flow
on a closed 3–manifold M . Then there is a constant C <1 such that

jRmt j<
C

tC1
for all t � 0:

The next result provides a characterization of when the condition of the previous
corollary can indeed be satisfied.

Corollary 1.3 Let M be a closed 3–manifold. Then there exists a long-time existent
Ricci flow .gt /t2Œ0;1/ on M if and only if �2.M /D �3.M /D 0.

Note that this topological condition is equivalent to M being aspherical, which is
equivalent to M being irreducible and not diffeomorphic to a spherical space form.

This corollary can be deduced from Theorem 1.1 as follows: Any normalized Riemann-
ian metric g on an aspherical manifold M can be evolved into a long-time existent
Ricci flow with surgery M on the time interval Œ0;1/ that is performed by ı.t/–precise
cutoff, due to Perelman [12]; see also [A, Proposition 2.16]. The topological condition
ensures that all surgeries on M are trivial and hence that every time slice of M has a
component that is diffeomorphic to M . By Theorem 1.1, there is a final surgery time
T <1 on M. So the flow M restricted to the time interval ŒT;1/ is nonsingular
and the underlying manifold is diffeomorphic to M . Shifting this flow in time by �T

yields the desired Ricci flow. The reverse direction is well known, for example it is a
direct consequence of Proposition 4.5 in the last paper of the series [D] and finite-time
extinction (see Perelman [13], Colding and Minicozzi [4] and Morgan and Tian [9]).

In the course of the proof of Theorem 1.1 we will obtain a more detailed description
of the geometry of the time slices M.t/ for large times t . In short, we will find that
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Long-time behavior of 3–dimensional Ricci flow 761

as t !1 the Ricci flow decomposes the manifold into regions that are hyperbolic or
exhibit different collapsing behavior at scale

p
t . The collapse can either be observed

on the whole manifold, in which case we speak of a total collapse and the underlying
manifold is a quotient of a torus or a Heisenberg manifold, or it occurs along incompress-
ible (ie �1 –injective) circle (S1 ) or 2–torus (T 2 ) fibers. A collapse along S1 –fibers
gives rise to Seifert structures (compare with the white regions M1;t ; : : : ;M6;t in
Figure 1). Regions that collapse along T 2 –fibers look like T 2 � I or like a twisted
interval bundle over the Klein bottle (compare with the gray regions E1;t ; : : : ;E7;t in
Figure 1). Those regions either cover the whole manifold, in which case the manifold
is a quotient of a 2–torus bundle over a circle, or they serve as interpolations between
different Seifert fibrations. By this we mean the following: A region Ei;t �T 2�I that
collapses along the T 2 –factor is adjacent to two regions Mj1;t and Mj2;t that carry
Seifert fibrations. The Seifert fibers on Mj1;t and Mj2;t represent, possibly different
S1 –directions of the boundary tori of Ei;t . Towards the ends of Ei;t one S1 –direction
of the 2–tori along which Ei;t collapses becomes so large that on Mj1;t or Mj2;t we
only observe a collapse along the other S1 –direction.

This decomposition of the underlying manifold into regions that are hyperbolic or
Seifert corresponds to a geometric decomposition, as defined in Definition 2.7 of the
third paper in this series [C]. However, this decomposition is not necessarily minimal,
ie it may a priori be possible to simplify it by fusing together certain Seifert structures.

We will now summarize our findings more precisely:

Theorem 1.4 Given a Ricci flow with surgery M as in Theorem 1.1, we can find a
time T <1 and a function "W ŒT;1/! .0; 1/ with limt!1 ".t/D 0 such that the
following holds:

The flow M has no surgeries past time T <1, ie M restricted to the time interval
ŒT;1/ is a nonsingular, long-time existent Ricci flow .gt /t2ŒT;1/ on some orientable
manifold M . Let M0 � M be a component of M . Then M0 is aspherical (ie
irreducible and not diffeomorphic to a spherical space form) and as t!1 the metric gt

on M0 behaves as follows:

(a) If M0 is diffeomorphic to a hyperbolic manifold, then 1
4
t�1gt converges to a

unique hyperbolic metric on M0 .

(b) If M0 is diffeomorphic to the 3–torus T 3 , then either gt converges to a flat
metric on M0 , or t�1=2 diamt M0 is unbounded on ŒT;1/ and, for every t � T , there
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Figure 1: An example of a decomposition of M0 . The subsets E2;t ; : : : ;E7;t

are diffeomorphic to T 2 � I and are collapsed along the T 2 –factor. The
subset E1;t is diffeomorphic to an interval-bundle over the Klein bottle. The
component M1;t is geometrically close to a hyperbolic manifold with cusps
and M2;t ; : : : ;M6;t collapse along Seifert fibers. It may happen that the
Seifert fibers of M3;t and M4;t are homotopic within E5;t and hence the
Seifert fibrations on these two components can be combined to a fibration
on M3;t [E5;t [M4;t . Analogously, M5;t could collapse to an annulus and
hence be diffeomorphic to T 2 � I . In this case, E6;t [M5;t [E7;t would
be diffeomorphic to T 2 � I .

is a metric g0t that is .1C".t//–bilipschitz close to gt , t�1g0t is ".t/–close to t�1gt

in the C Œ"�1.t/�–sense2 and g0t is invariant under a free T 2 –action on M0 . The orbits
of this action have diameter < ".t/

p
t and are the fibers of a T 2 –fibration over a circle.

If M0 is diffeomorphic to a quotient of T 3 , then the same statement holds after passing
to a finite cover.

(c) If M0 is diffeomorphic to a Heisenberg manifold Nil3 , then for every t � T there
is a metric g0t such that gt is .1C".t//–bilipschitz close to gt , t�1g0t is ".t/–close to
t�1gt in the C Œ"�1.t/�–sense and such that the following holds:

Either we have diamt M0 < ".t/
p

t for all t � T and the metrics g0t are isometric
to quotients of left-invariant metrics on Nil3 , or the following holds: The normalized
diameter t�1=2 diamt M0 is unbounded on ŒT;1/ and for every t � T we can express
M0 as a T 2 –bundle over a circle such that in a fibered neighborhood of every T 2 –fiber
there is a free T 2 –action that is isometric with respect to g0t and whose orbits are the
T 2 –fibers. Moreover, the diameter of each T 2 –fiber with respect to gt is < ".t/

p
t .

2By this we mean we mean that kt�1.gt �g0t /kC Œ"�1.t/� < ".t/ , with respect to the metric t�1gt .
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If M0 is diffeomorphic to a quotient of Nil3 , then the same statement holds after
passing to a finite cover.

(d) If M0 is diffeomorphic to a solv manifold, then for every t � T there is a metric
g0t such that gt is .1C".t//–bilipschitz close to gt , t�1g0t is ".t/–close to t�1gt in
the C Œ"�1.t/�–sense and such that the following holds: For every t � T we can express
M0 as a T 2 –bundle over a circle such that in a fibered neighborhood of every T 2 –fiber
there is a free T 2 –action that is isometric with respect to g0t and whose orbits are the
T 2 –fibers. Moreover, the diameter of each T 2 –fiber with respect to gt is < ".t/

p
t .

If t�1=2 diamt M0 stays bounded on ŒT;1/, then for all t � T the metric g0t is
isometric to a quotient of a left-invariant metric on the solv Lie group.

If M0 is diffeomorphic to a quotient of the solv manifold, then the same statement
holds after passing to a finite cover.

(e) In all other cases we have the following picture: There is a constant A0 <1,
which only depends on the topology of M0 , and for every � > 0 there are constants3

a.�/ > 0 and B.�/;T0.�/ <1 such that:

Let .H1;ghyp;1/; : : : ; .Hp;ghyp;p/ be the hyperbolic manifolds (of finite volume)
whose underlying topological manifolds occur as hyperbolic pieces in the geometric
decomposition of M0 . For each j D 1; : : : ;p and sufficiently small b > 0, denote by
H
.b/

j the manifold that arises from Hj by chopping off the cusps along horospherical,
cross-sectional 2–tori of area b .

Then for each t � T0.�/ we can find a metric g0t on M0 that is .1C�/–bilipschitz
close to gt and �–close to gt in the C Œ��1�–sense. Moreover, there are finitely many
pairwise disjoint subsets E1;t ; : : : ;Emt ;t � M0 such that the following holds: Let
M1;t ; : : : ;Mkt ;t �M0 be the closures of components M0n.E1;t[� � �[Emt ;t /. Then:

(e1) Each Ei;t is diffeomorphic to I � T 2 or to a twisted interval bundle over the
Klein bottle, Klein2

z�I . The (generic) T 2 –fibers of Ei;t are incompressible (ie
�1 –injective) in M0 .

(e2) We have kt � p and, after possibly relabeling the Mj ;t , we have: For each j D

1; : : : ;p the interior of Mj ;t is diffeomorphic to Hj . For each j DpC1; : : : ; kt

the component Mj ;t admits a Seifert fibration pj ;t W Mj ;t !†j ;t , where †j ;t

is an orbifold with boundary whose singularities are of cone type.

3Note that, unlike A0 , the constants a;B and T0 may depend not only on the topology of M0 , but
on the geometry of M .
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(e3) For all i D 1; : : : ;mt we have diamt Ei;t > �
�1
p

t .

(e4) For all j D 1; : : : ; kt we have diamt Mj ;t < B.�/
p

t .

(e5) For each Ei;t that is diffeomorphic to T 2 � I there is a diffeomorphism
ˆEi;t

W T 2 � I ! Ei;t such that ˆ�
Ei;t

g0t is invariant under the T 2 –action on
the first factor. Moreover, the orbits of this action have diameter < �

p
t and

second fundamental form < B.�/t�1=2 with respect to ˆ�Ei;t
g0t and ˆ�Ei;t

gt .

If Ei;t � Klein z�I , then the same statements hold for the double cover that is
diffeomorphic to T 2 � I .

(e6) For each j D 1; : : : ;p there is a diffeomorphism ĵ ;t W H
.".t//

j !Mj ;t such that
1
4
t�1ˆ�j ;tgt is ".t/–close to the hyperbolic metric ghyp;j on H

.".t//
j in the

C Œ"�1.t/�–sense.

(e7) For each j D p C 1; : : : ; kt , the fibers of the Seifert fibration on Mj ;t have
diameter <".t/

p
t and are orbits of an S1 –action on Mj ;t that is isometric with

respect to g0t . There is an orbifold metric g00j ;t on †j ;t such that the projection
map pj ;t W .Mj ;t ;g

0
t /! .†j ;t ;g

00
t / is a submersion. The geodesic curvature of

the Seifert fibers on Mj ;t is bounded by B.�/t�1=2 with respect to g0t and gt

and the curvature on .†j ;t ;g
00
t / is bounded by B.�/t�1 . Moreover, on Mj ;t the

metrics gt and g0t are even ".t/–close in the C Œ��1�–sense.

(e8) We have the area bounds

area.†j ;t ;g
00
t / > a.�/t for all j D pC 1; : : : ; kt

and
area.†pC1;t ;g

00
t /C � � �C area.†kt ;t ;g

00
t / <A0t:

(e9) Every component of M0n Int.M1;t [� � �[Mp;t / that is diffeomorphic to T 2�I

is equal to some Ei;t .

The subsets E1;t ; : : : ;Emt ;t that are diffeomorphic to T 2 � I can be interpreted as
tubular neighborhoods of the incompressible 2–tori of a geometric decomposition
of M0 . This geometric decomposition is not necessarily minimal (compare again with
Definition 2.7 of the third paper in this series [C]). For example, we did not exclude the
possibility that there is a component Ei;t that is diffeomorphic to T 2 � I and that has
the property that the Seifert fibers coming from the two adjacent Mj ;t are homotopic to
each other within Ei;t . Such a component Ei;t would correspond to a redundant torus
in the geometric decomposition, because the Seifert fibrations on the two adjacent Mj ;t

could be extended (topologically) to a Seifert fibration on the union of those two Mj ;t
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and the connecting Ei;t . Another possibility that we did not exclude in Theorem 1.4 is
that one of the Mj ;t is a (nonsingular) Seifert fibration over an annulus and therefore
diffeomorphic to T 2 � I . In this case, the T 2 –fibration of the two adjacent Ei;t

can be extended topologically onto Mj ;t in an analogous way, making the 2–torus
corresponding to one of those Ei;t redundant. In both examples, the extension process
would simplify the decomposition of M0 . This simplification, however, is then not
reflected by the metric gt . The previous theorem makes no statement about whether
such pieces Ei;t that correspond to redundant tori in the geometric decomposition can
occur. See again Figure 1 for an illustration of these two possibilities.

For a more concrete example consider the case in which M0 �†�S1 , where † is
a surface of genus g � 2. Then a priori there is no bound on mt that only depends
on the topology of M0 , since a geometric decomposition can be induced from cutting
† along arbitrarily many pairwise disjoint, embedded, noncontractible loops. If the
number of these loops is large enough, then some components in their complement
are annuli and hence some of the Mj ;t are diffeomorphic to T 2 � I . So the following
question arises naturally:

Question 1.5 In Theorem 1.4(e), can we choose E1;t ; : : : ;Emt ;t so that none of the
components Mj ;t are diffeomorphic to T 2 � I or Klein z�I ?

If that were the case, then mt would be uniformly bounded in terms of the topology
of M0 . More generally, we may ask:

Question 1.6 Can we choose E1;t ; : : : ;Emt ;t so that the corresponding geometric
decomposition is minimal?

Note that minimal geometric decompositions are unique up to isotopy (see Section 2
of [C]). An affirmative answer to this question would imply that the Seifert fibers
on either side of each Ej ;t are not homotopic to each other. Moreover, mt would
be a constant depending only on the topology of M0 . In the setting in which M0

consists of a single geometric component that is not flat, nil or solv, the previous
question is equivalent to the fact that mt D 0 and to the following question (via
Theorem 1.4(e3)–(e4)):

Question 1.7 Assume that the geometric decomposition of M0 consists of a single
component. Is there a constant C <1 such that diamt M0 < C

p
t for all t � T ?

If this diameter bound were known, then by the work of Lott [7] we could understand
the subsequential Gromov–Hausdorff limits of .M0; t

�1gt / as t !1 as well as the
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Gromov–Hausdorff limits of the universal covers of .M0; t
�1gt /. More generally, we

may ask:

Question 1.8 Assume that we are in case (e) of Theorem 1.4. Do the submersion
metrics t�1g00t on each base orbifold †j ;t limit to a certain standard metric? Or, more
generally: do the metrics t�1gt on larger and larger neighborhoods around Mj ;t

collapse to certain standard geometries? When are these geometries unique, ie when do
they only depend on the topology of M0 .

Natural candidates for such standard geometries would be the hyperbolic surfaces of
curvature �1

2
. Motivated by this picture, a further question would be the following:

Question 1.9 Is there a function "W ŒT;1/! .0;1/ such that limt!1 ".t/D 0 and
such that, for all t � T ,

�
�

1
2
C".t/

�
t�1< sect <

�
1
4
C".t/

�
t�1 and �

�
1
2
C".t/

�
t�1<Rict <

�
1
6
C".t/

�
t�1

on M0 ?

(The two lower bounds are realized by the geometric models H2 � R, PSL.2;R/
and Sol, the upper sectional curvature bound is realized by Sol and the upper Ricci
curvature bound is realized by Nil.)

Finally, we may still ask:

Question 1.10 Does the metric t�1gt converge pointwise to a possibly singular metric
g1 as t !1?

Note that all these questions reduce to questions about nonsingular Ricci flows
.gt /t2Œ0;1/ in the wake of Theorem 1.1.

1.2 Outline of the proofs

We will now give a brief outline of the proofs of Theorems 1.4 and 1.1. More detailed
explanations of specific aspects of the proofs can be found in the introductions of the
subsequent four papers.

The most important finding of these four papers is the curvature bound jRmt j< C t�1

for large t . Using this bound, it is possible to rule out the existence of surgeries at
large times, since surgeries only occur where the curvature blows up. Moreover, the
geometric characterization of Theorem 1.4 follows from looking at the proof of this
curvature bound. It will turn out that in order to establish said curvature bound, the
existence of surgeries does not create any major issues, apart from several technical
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difficulties. So in this outline we will restrict ourselves to the case in which the given
Ricci flow is nonsingular, ie it is given by a smooth family of metrics .gt /t2Œ0;1/

on M . In other words, in the following we will sketch the proof of Corollary 1.2.

For this, we have to recall an important result of Perelman, which in this outline we will
refer to as the “Key Lemma”. Define for every point .x; t/ 2M � Œ0;1/ in space-time
the scale �.x; t/ > 0 as follows

�.x; t/ WD supfr > 0 W sect � �r�2 on B.x; t; r/g:

The condition after the colon reads that the sectional curvature on a ball at time-t
radius r around x is bounded at time t from below by �r�2 . Equivalently, we could
say that �.x; t/ is the maximal radius such that if we rescale the ball B.x; t; �.x; t//

to have radius 1, then the sectional curvature on this ball is bounded from below by �1.
If the sectional curvature on the component of M in which x lies is nonnegative at
time t , then we write �.x; t/D1. Now Perelman’s Key Lemma can be phrased as
follows:

Key Lemma For every w > 0 there are constants x�.w/ > 0 and K.w/ <1 such that
if

(1-1) voltB.x; t; �.x; t// > w�
3.x; t/;

then
�.x; t/ > x�.w/

p
t and jRmj.x; t/ <

K.w/

t
:

It is even possible to obtain the same curvature bound on the ball B.x; t; x�.w/
p

t/ and
for times of the time interval Œ.1� �.w//t; t � for some uniform �.w/ > 0. Motivated
by this Key Lemma, Perelman decomposes the manifold M into a thick part Mthick.t/

and a thin part Mthin.t/ for every time t :

M DMthick.t/ �[Mthin.t/

The thick part roughly consists of all points x 2M that at time t satisfy (1-1) for
a suitable w and the thin part is the complement of the thick part. So on Mthick.t/

the curvature is bounded by K.w/t�1 and Mthin.t/ is locally collapsed at the scale � .
Using the curvature bound on the thick part, Perelman could show that, for sufficiently
large t , the metric on Mthick.t/ is close to a hyperbolic metric. On the other hand,
using collapsing theory — see Shioya and Yamaguchi [14], Morgan and Tian [10] and
Kleiner and Lott [5] — it is possible to decompose Mthin.t/ into regions that exhibit
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different collapsing behaviors at the scale � . Generically, those collapses can occur
along S1 –, T 2 – or S2 –fibers or M could be globally collapsed. The decomposition
of Mthin.t/ into regions of different collapsing behaviors arises from cutting Mthin.t/

along embedded 2–spheres or 2–tori. Note that some of these 2–spheres or 2–tori
could be contractible or compressible in M . So, a priori, this decomposition can be
very different from, and far more complex than, the geometric decomposition of M (see
[C, Definition 2.7]). Further topological arguments are needed in order to reorganize
this decomposition into a geometric decomposition of M .

For the main result, Theorem 1.1, it suffices to establish the desired curvature bound on
the thin part of M since this is the part of the manifold where Perelman’s Key Lemma
fails. In order to achieve this bound, we make use of the observation that Perelman’s
Key Lemma continues to hold if we pass to the universal cover. By this we mean the
following: Consider the universal cover � W zM !M of M and pull back the family
of metrics gt to zM via the projection map � . Then these pull-backs ��gt still satisfy
the Ricci flow equation. It turns out that Perelman’s proof also works in this (possibly
noncompact) setting. Now consider for every point x 2M one of its lifts zx 2 zM
(ie �.zx/ D x ) and look at the ball B

zM .zx; t; �.x; t// around zx in . zM ; ��gt /. The
volume of this ball is not smaller than the volume of the ball B.x; t; �.x; t// in M .
Hence we can generalize Perelman’s Key Lemma as follows:

Generalized Key Lemma For every w > 0 there are constants x�.w/ > 0 and
K.w/ <1 such that if

(1-2) voltB
zM .zx; t; �.x; t// > w�3.x; t/;

then
�.x; t/ > x�.w/

p
t and jRmj.x; t/ <

K.w/

t
:

In Section 2.2 of [D] will see that the bound (1-2) can be guaranteed for a suitable w ,
whenever the metric around x is either noncollapsed at scale �.x; t/ or is collapsed at
scale �.x; t/ along incompressible S1 – or T 2 –fibers. Recall that by “incompressible”
we mean that the fundamental group of the fibers injects into the fundamental group
of M . From now on we will call regions of Mthin.t/ where such a collapse occurs
good and the remaining regions bad. So we obtain a decomposition

Mthin.t/DMgood.t/ �[Mbad.t/:
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x
M

M
x

�

� � S1 �D2

� T 2 � I � S1 �D2

t

t 0

Figure 2: In this example the universal cover of the ball B.x; t; �/ , which
is contained in the region that is diffeomorphic to T 2 � I , is larger than the
ball around a lift zx in the universal cover of zM , because some loops that
are noncontractible within B.x; t; �/ are contractible in the region that is
diffeomorphic to S1 �D2 . Perelman’s estimates cannot be localized easily
in this case, since B.x; t 0; �/ may include this region at some time t 0 < t .

Summarizing our results, we can say that we have established the curvature bound
jRmt j< C t�1 on Mthick.t/[Mgood.t/DM nMbad.t/.

Note that the ball B
zM .zx; t; �/ in the universal cover of M is in general not equal to the

universal cover of the ball B.x; t; �/, which we will denote by zB.x; t; �/. The volume
of a �–ball in this cover is in general even bigger than the volume of B

zM .zx; t; �//. But,
unfortunately, Perelman’s Key Lemma does in general not seem to hold if we replace
the volume in (1-2) by the volume of a �–ball in the universal cover of B.x; t; �/. This
is why we need the collapse in Mgood.t/ to occur along fibers that are incompressible
in M . We explain briefly, why it seems unlikely to prove such a curvature bound
assuming this more general volume bound: In order to prove such a bound, we would
have to pass to a (local) cover of B.x; t; �/. The proof of Perelman’s Key Lemma
can only be carried out in such a local cover, if we can ensure that all its estimates
only take place very close to x . However, these estimates involve the metric at slightly
earlier times and due to the lack of a priori curvature bounds, we have no control on
the distance distortion under the Ricci flow. So points that are very close to x at some
time t 0 < t can lie outside B.x; t; �/ at time t . Figure 2 illustrates this problem. Here
the ball B.x; t; �/ has fundamental group Z2 , as does the region that is diffeomorphic
to T 2 � I , but this region is contained in a union of two regions, which as a whole is
diffeomorphic to a solid torus S1 �D2 and hence has fundamental group Z. In other
words, the homotopy classes corresponding to one of the Z factors of the fundamental
group of the left region are “destroyed” by the right region. Since we don’t know
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S1;t

S2;t

Mthin.t/Mthick.t/

Mthin.t/
Mthick.t/


3;t


3;t h03;t

S3;t
t

˛0t

Figure 3: The curvature is bounded outside the solid tori S1;t , S2;t and S3;t .
The solid tori S1;t and S2;t have time-t diameter <D0

p
t and the curvature

is bounded on S1;t [S2;t by K0t�1 . The diameter of S3;t is >D0

p
t and

S3;t persists until time ˛0t < t . We can find a loop 
3;t � @S3;t that is short
and geometrically controlled on the time interval Œ˛0t; t � . At time ˛0t this
loop spans a disk h03;t W D

2!M of time-.˛0t/ area <A0˛0t .

whether the right region is disjoint from the ball B.x; t 0; �/ at the earlier time t 0 , we
cannot pass to an appropriate local cover. Thus a further generalization of Perelman’s
Key Lemma in this broad setting seems unlikely. It will become important later on,
however, that if we can exclude such behavior, then it is in fact possible to localize
Perelman’s arguments and prove an even more general Key Lemma in certain settings.

Let us now return to our analysis of Mthin.t/. Recall that in order to prove the main
theorem, it remains to establish the desired curvature bound on Mbad.t/. In the
following paragraphs we will roughly sketch how this bound is obtained. For more
details we refer to the introductions of the following papers, particularly of the last
paper of this series [D].

First, we analyze the topology of the decomposition of Mthin.t/ to understand its
fragmentation into good and bad parts. We will learn that Mbad.t/ can be covered by
pairwise disjoint regions that are either diffeomorphic to T 2�I or to solid tori S1�D2 .
On those regions that are diffeomorphic to T 2 � I it is in fact possible to localize
Perelman’s Key Lemma. The reason we can do this comes from the fact that the part
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of M that “destroys” certain homotopy classes of the T 2�I regions stays sufficiently
far away from this region for a short but uniform time interval. So we conclude
that there are pairwise disjoint, embedded solid tori S1;t ; : : : ;Smt ;t �M with each
Si;t � S1 �D2 such that

jRmt j<Kt�1 on M n .S1;t [ � � � [Smt ;t /:

Note that the number and position of the solid tori S1;t ; : : : ;Smt ;t depends on t .

It now remains to analyze the solid tori Si;t . This analysis requires further generaliza-
tions of Perelman’s arguments in the collapsing case, eg bounded curvature at bounded
distance results. A major goal of this analysis is to show that behavior such as that
illustrated in Figure 2 cannot occur. This will allow us to apply a localized version of
Perelman’s Key Lemma yielding curvature control on large collar neighborhoods of
those Si;t whose diameter is large. We refer to the introduction of the last paper of
this series [D] for further details on the analysis of the solid tori Si;t .

A major ingredient that is used in this analysis is the fact that, in most cases, the
solid tori Si;t admit compressing disks of bounded area. By this we mean that for
every solid torus Si;t we can find a map hi;t W D

2!M with the following properties:
hi;t .@D

2/ � @Si;t and hi;t j@D2 parametrizes a loop that is noncontractible in @Si;t

(but contractible in M ). Moreover, the time-t area of hi;t , is <A0t for some uniform
constant A0 < 1 that only depends on the topology of M . These compressing
disks roughly arise from the intersection of Si;t with certain “minimal simplicial
complexes”, whose area is bounded by At for some other uniform A<1. Note that
both the area bound for these “minimal simplicial complexes” and the extraction of said
compressing disks are nontrivial steps in our proof and occupy most of the second and
third papers [B; C]. Furthermore, unfortunately, the extraction of the compressing disk
seems to fail in the special case in which M is topologically a quotient of a 2–torus
bundle over a circle. In this case, we employ a different argument, which makes use of
the special topology of M .

Taking all these facts into account, the analysis of the Si;t yields the following con-
clusion for each i : Either the diameter of Si;t is bounded by a constant of the form
D0

p
t and the curvature on Si;t is bounded by a constant of the form K0t�1 or the

diameter of Si;t is larger than D0

p
t and the solid torus Si;t persists in a certain sense

if we go backwards in the flow on a long time interval of the form Œ˛0t; t �. Moreover,
after passing to a smaller solid torus, we find a loop 
i;t � @Si;t that is noncontractible
in @Si;t , but contractible in M , that is short and whose geodesic curvature is sufficiently
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controlled on the whole time interval Œ˛0t; t �. This loop can be chosen so that it spans
a disk h0i;t W D

2 !M of area < A1˛0t at time ˛0t , where A1 can be determined
from A0 and the topology of M . See Figure 3 for an illustration of these two cases.

We can finally rule out the second case using a minimal disk argument, which is due to
Hamilton. This argument implies that the loop 
i;t can only be short and have bounded
geodesic curvature on a maximal time interval of the form Œ˛0t;B.A1/˛0t �, where
B.A1/ <1 only depends on A1 . This bound follows from a computation that implies
that the area of a minimal disk that is spanned by the given loop has to go to zero before
time B.A1/˛0t . As a result, Hamilton’s minimal disk argument yields a contradiction
if ˛0 is chosen small enough such that B.A1/˛0t < t . This implies that the diameter
of each Si;t must be bounded by D0

p
t and hence the curvature is bounded by K0t�1

on each Si;t . We hence obtain the desired curvature bound on the last remaining part
of M , concluding the proof of the main theorem. Note that the choice of constants
D0 , K0 and ˛0 is highly nontrivial.

1.3 Structure of the following papers

The proof of the two main theorems, Theorems 1.1 and 1.4, is divided into the following
four papers:

[A] Generalizations of Perelman’s long-time estimates In this paper we define
precisely what we mean by “Ricci flows with surgery and precise cutoff”. The definition
is chosen so that it incorporates most of the common notions of Ricci flows with
surgery. Then we review Perelman’s analysis of these flows. We will carry out some of
Perelman’s arguments again and generalize them to the case in which the underlying
manifold is noncompact or has a boundary. Then we prove various generalizations of
Perelman’s long-time estimates in the collapsing case. These include several versions
and localizations of the Generalized Key Lemma, as mentioned above.

[B] Evolution of the minimal area of simplicial complexes under Ricci flow This
paper deals with area bounds of minimal surfaces or simplicial complexes under the
Ricci flow. We will show that minimal simplicial complexes are bounded by At in
area and we will recall Hamilton’s minimal disk argument, as well as a version of his
argument for spheres.

The methods used in this paper are purely analytical. Surgeries only play a very minor
role.
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[C] 3–manifold topology and combinatorics of simplicial complexes in 3–mani-
folds In this paper, we first recall several facts from the topology of 3–manifolds.
Then we construct the (topological) simplicial complex to which we will apply the area
estimate from the previous paper. The simplicial complex is chosen in such a way that,
in many cases, it is possible to extract a disk from its intersection with an arbitrary
incompressible solid torus. This fact is surprisingly nontrivial and its proof occupies
the major part of the paper.

Note that this paper is purely topological in nature. Ricci flows will not be used.

[D] Proof of the main results In this paper we assemble the results obtained in the
previous papers and we finish the proofs of Theorems 1.1 and 1.4. The paper contains the
geometric characterization of the thin part Mthin.t/ and a topological discussion of its
decomposition. We will then understand its fragmentation into good and bad parts and
use the results of paper [A] to deduce the desired curvature bound first outside the solid
tori S1;t ; : : : ;Smt ;t , as mentioned in the outline, then on those Si;t of bounded diameter
and eventually on collar neighborhoods of those Si;t of large diameter. Finally, we use
the simplicial complex from paper C together with the area bound of paper B to construct
the required disk of bounded area. This will then yield the desired contradiction.

We mention that each of the papers [A], [B] and [C] is essentially self-explanatory and
doesn’t use any results of the other papers. Only paper [D] makes use of the results of
papers [A]–[C].
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