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Goldman algebra, opers and the swapping algebra

FRANÇOIS LABOURIE

We define a Poisson algebra called the swapping algebra using the intersection of
curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping
algebra, called the algebra of multifractions, as an algebra of functions on the space
of cross ratios and thus as an algebra of functions on the Hitchin component as well as
on the space of SLn.R/–opers with trivial holonomy. We relate this Poisson algebra
to the Atiyah–Bott–Goldman symplectic structure and to the Drinfel’d–Sokolov
reduction. We also prove an extension of the Wolpert formula.

32G15; 32J15, 17B63

1 Introduction

The purpose of this article is threefold. We first introduce the swapping algebra, which
is a Poisson algebra generated, as a commutative algebra, by pairs of points on the
circle. Then we relate this construction to two well-known Poisson structures:

� The Poisson structure of the character variety of representations of a surface
group in PSLn.R/, discovered by Atiyah, Bott and Goldman [1; 8; 9].

� The Poisson structure of the space of PSLn.R/–opers introduced by Dickey,
Gel’fand and Magri and described in a geometrical way by Drinfel’d and
Sokolov [22; 6; 5].

One way to heuristically interpret these relations is to say that the swapping algebra
embodies the notion of a “Poisson structure” for the space of all cross ratios, a space
that contains both the space of opers and the “universal (in genus) Hitchin component”.
As a byproduct of the methods of this paper, we also produce a generalization of the
Wolpert formula, which computes the brackets of length functions for the Hitchin
component.

The results of this article were announced in [19]. The relation, at a topological level,
between the character variety and opers was already noted by the author [16], by
Fock and Goncharov [7], and foreseen by Witten [30]; see also Govindarajan and
Jayaraman [10; 11].

We now explain more precisely the content of this article.
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1.1 The swapping algebra

Our first result is the construction of the swapping algebra. To avoid cumbersome
expressions, most of the time we shall denote the ordered pair .X;x/ of points of the
circle by the concatenated symbol Xx . We recall in Section 2.1 the definition and
properties of the linking number ŒXx;Yy� of the two pairs .X;x/ and .Y;y/. If P is a
subset of the circle, we denote by L.P/ the commutative associative algebra generated
by pairs of points of P with the relations XX D 0 for all X in P. Our starting result
is the following.

Theorem 1 (swapping bracket) For every complex number ˛ , there exists a unique
Poisson bracket on L.P/ such that the bracket of two generators is

fXx;Yyg˛ WD ŒXx;Yy�.Xy :YxC˛:Xx :Yy/:

The swapping algebra is the algebra L˛.P/ endowed with the Poisson bracket f � ; � g˛ .
This theorem is proved in Section 2. The goal of this paper is to relate this swapping
algebra to other Poisson algebras.

One should note that this bracket can be used to express very simply some results of
Wolpert and in particular, the variation of the length of curve transverse to a shear; see
Wolpert [31; 32].

1.2 Cross ratios and the multifraction algebra

We shall concentrate on the interpretation of an offshoot of the swapping algebra. We
denote by Q˛.P/ the algebra of fractions of L˛.P/ equipped with the induced Poisson
structure. The multifraction algebra B.P/ is the vector subspace of Q˛.P/ generated
by the elementary multifractions

ŒX; xI �� WD
Qn

iD1 Xix�.i/Qn
iD1 Xixi

;

where XD .X1; : : : ;Xn/ and xD .x1; : : : ;xn/ are n–tuples of points of P and � is
a permutation of f1; : : : ; ng. Then we have the following easy proposition.

Proposition 2 The multifraction algebra is a Poisson subalgebra of Q˛.P/. The
induced Poisson structure does not depend on ˛ . Finally, B.P/ is generated as a
commutative algebra by the cross fractions

ŒX;Y;x;y� WD
Xx:Yy

Yx:Xy
:
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In particular, it follows that the multifraction algebra is naturally mapped to the com-
mutative algebra of functions on cross ratios; see Section 3. Thus the existence of a
Poisson structure on the multifraction algebra can be interpreted as that of a Poisson
structure on the space of cross ratios.

1.3 The multifraction algebra as a “universal” Goldman algebra

We then relate the multifraction algebra to the Goldman algebra. Let � be the fundamen-
tal group of a surface S , @1� the boundary at infinity of � , and P the subset of @1�
consisting of fixed points of elements of � . The Hitchin component H.n;S/ of the
character variety of representations of � in PSLn.R/ was interpreted in Labourie [17]
as a space of cross ratios. Thus every multifraction in B.P/ gives a smooth function
on the Hitchin component; see Proposition 4.2.4 for details. Thus we have a restriction

IS W B.P/! C1.H.n;S//:

This mapping is not a Poisson morphism, nevertheless it becomes one when we take
sequences of well-chosen finite-index subgroups. More precisely, we define and prove,
as an immediate consequence of one of the main results of Niblo [24], the existence
of vanishing sequences of finite-index subgroups f�ngn2N of � ; these sequences are
essentially such that every geodesic becomes eventually simple and for which the
intersection of two geodesics becomes eventually minimal; see Section 6.2.1 and the
appendix for details.

Then denoting by f � ; � gW the swapping bracket, and by f � ; � gSn
the Goldman bracket

for Sn WD
zS=�n coming from the Atiyah–Bott–Goldman symplectic form on the

character variety, we prove in Section 9:

Theorem 3 (Goldman bracket for vanishing sequences) Let f�mgm2N be a vanishing
sequence of subgroups of �1.S/. Let P � @1�1.S/ be the set of end points of
geodesics. Let b0 and b1 be two multifractions in B.P/. Then we have

(1) lim
n!1

fb0; b1gSn
D fb0; b1gW :

The statement of this theorem actually requires some preliminaries in properly defining
the meaning of (1). In a way, this result tells us that the swapping bracket is the
Goldman bracket on the universal solenoid.

The proof relies on the description of special multifractions called elementary functions
(see Section 4.2) as limits of the well-studied functions on the character variety known
as Wilson loops.
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Another result is a precise asymptotic formula, on a fixed surface this time, relating the
Goldman and the swapping brackets. With � as above, let 
 2 � , y 2 P and let 
C

and 
� be respectively the attractive and repulsive fixed points of 
 in @1.�/. Define
the following formal series of cross fractions, reverting to the notation .X;x/ for pairs:

ỳ

 .y/D

1

2
log
�
.
C; 
 .y// � .
�; 
�1.y//

.
C; 
�1.y// � .
�; 
 .y//

�
:

In [16] we show that the period function `
 WD IS . ỳ
 .y//, seen as a function on
the character variety, is independent of y and is a function of the eigenvalues of
the monodromy of 
 . These period functions coincide with the length functions for
classical Teichmüller theory; that is, nD 2.

We now have:

Theorem 4 (bracket of length functions) Let 
 and � be homotopy classes of curves
which as simple curves have at most one intersection point. Then we have

lim
n!1

IS

�
fỳ
n.y/; ỳ�n.y/gW

�
D

1
4
f`
 ; `�gS :

As a tool of the proof of this result we prove the following extension of the Wolpert
formula [32; 31].

Theorem 5 (generalized Wolpert formula) Let 
 and � be two homotopy classes of
curves which as simple curves have exactly one intersection point. Then the Goldman
bracket of the two length functions `
 and `� is

(2) f`
 ; `�gS .b/D �.
; �/
X

";"02f�1;1g

""0:b.
 "; �"
0

; 
�"; ��"
0

/:

This formula has recently been extended using different methods by Bridgeman [3].

1.4 The multifraction algebra and PSLn.R/–opers

We finally relate the multifraction algebra to opers. We recall in Section 10 the definition
of real opers and their interpretation as maps to the projective space P .Rn/ and its dual.
In particular, opers with trivial holonomy can be embedded in the space of smooth
cross ratios. The Drinfel’d–Sokolov reduction allows us to define the Poisson bracket
of pairs of acceptable observables, a subclass of functions on the spaces of opers. We
then show that this Poisson bracket coincides with the swapping bracket.
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Theorem 6 (swapping bracket and opers) Let .X0;x0;Y0;y0;X1;x1;Y1;y1/ be
pairwise distinct points on the circle T . Then the cross fractions ŒX0;x0;Y0;y0� and
ŒX1;x1;Y1;y1� define a pair of acceptable observables whose Poisson bracket with
respect to the Drinfel’d–Sokolov reduction coincides with their Poisson bracket in the
multifraction algebra.

Acknowledgements The research leading to these results has received funding from
the European Research Council under the European Community’s seventh Framework
Programme (FP7/2007–2013)/ERC grant agreement number FP7-246918, as well as
from the ANR program ETTT (ANR-09-BLAN-0116-01).

I thank Martin Bridson, Sergei Fomin, Louis Funar and Bill Goldman for their interest
and help.

2 The swapping bracket

In this section, we first recall the definition and properties of the linking number of two
ordered pairs of points. We then construct the swapping algebra and prove Theorem 1,
which relies on an identity involving the linking numbers of six points.

2.1 Linking number for pairs of points

We recall that if .X;x;Y;y/ is a quadruple of points on the real line, the linking number
of .X;x/ and .Y;y/ is

(3) ŒXx;Yy� WD 1
2

�
Sign.X�x/Sign.X�y/Sign.y�x/

�Sign.X�x/Sign.X�Y /Sign.Y�x/
�
;

where Sign.x/D�1; 0; 1 whenever x < 0, x D 0, x > 0 respectively. By definition,
the linking number is invariant under orientation-preserving homeomorphisms of the
real line. We note that:

(i) When the four points are pairwise distinct, this linking number is also the total
linking number of the curve joining X to x with the curve joining Y to y in
the upper half-plane.

(ii) The equality cases are as follows:
(a) For all points .X;Y;y/ on the circle,

(4) ŒXX;Yy�D 0D ŒXy;Xy�:
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1272 François Labourie

(b) If, up to cyclic permutation, .X;Y;x/ are pairwise distinct points and ori-
ented, then

(5) ŒXx;Yx�D 1
2
:

The first observation shows that we can define the linking number of a quadruple of
points on the oriented circle S1 by choosing a point x0 disjoint from the quadruple and
defining the linking number as the linking number of the quadruple in S1 n fx0g �R.
The linking number so defined does not depend on the choice of x0 and is invariant
under orientation-preserving homeomorphisms.

2.1.1 Properties of the linking number We summarize the useful properties (for us)
of the linking number of pairs of points in the following definition. Let P be any set.

Definition 2.1.1 A linking number of pairs of points of P is a map from P4 to a
commutative ring,

.X;x;Y;y/ 7! ŒXx;Yy�;

such that for all points X;x;Y;y;Z; z ,

ŒXx;Yy�C ŒYy;Xx�D 0 (first antisymmetry);(6)

ŒXx;Yy�C ŒXx;yY �D 0 (second antisymmetry);(7)

Œzy;XY �C Œzy;YZ�C Œzy;ZX �D 0 (cocycle identity);(8)

and moreover, if .X;x;Y;y/ are all pairwise distinct, then

ŒXx;Yy� : ŒXy;Yx�D 0 (linking number alternative):(9)

We illustrate the cocycle identity and the alternative for the standard linking number in
Figure 1.

X y

Y

Z

z X

y

x

Y

Figure 1: Linking number for pairs of points on the circle: the cocycle
identity (left) and linking number alternative (right)

Then we prove:
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Proposition 2.1.2 The canonical linking number for pairs of points of the circle is a
linking number in the sense of the previous definition.

Proof The first two symmetries are checked from the definition. In the case that
fx;yg \ fX;Y;Zg D ∅, Equation (8) follows from the geometric definition of the
linking number. It remains to check different cases of equality. We can assume that
.X;Y;Z/ are pairwise distinct; otherwise the equality follows from the two previous
ones and (4).

� If x D y , the equation is true by (4).

� Assume that x D X and y 62 fX;Y;Zg up to cyclic permutations of .X;Y;Z/.
Then the equality follows from the following remark. Let z and t be points close
enough to x so that .z;x; t/ is oriented. Then when AD Y or ADZ , we have

Œxy;xA�D 1
2
.Œzy;xA�C Œty;xA�/:

� Assume finally that .x;y/D .X;Y /. Then the equality reduces to

ŒXY;ZX �C ŒXY;YZ�D 0;

which is true by (5) and the fact that .X;Y;Z/ and .Y;X;Z/ have opposite orientation.

Equation (9) follows from the geometric definition of linking number.

A linking number also satisfies more complicated relations.

Proposition 2.1.3 Let .X;x;Z; z;Y;y/ be 6 points on the set P equipped with a
linking number Œ � ; � �. Then

(10) ŒXy;Zz�C ŒYx;Zz�D ŒXx;Zz�C ŒYy;Zz�:

Moreover, if fX;xg\ fY;yg\ fZ; zg D∅, then

ŒXx;Yy�ŒXy;Zz�C ŒZz;Xx�ŒZx;Yy�C ŒYy;Zz�ŒYz;Xx�D 0;(11)

ŒXx;Yy�ŒYx;Zz�C ŒZz;Xx�ŒXz;Yy�C ŒYy;Zz�ŒZy;Xx�D 0:(12)

Remarks (i) The hypothesis on the configuration of points is necessary: if X;x;Y;Z

are pairwise distinct, then for .X;x;Y;y;Z; z/D .X;x;Y;x;Z;x/, the left-hand side
in (11) is nonzero in the case of the standard linking number of pairs of points on the
circle.

(ii) A simple way to prove this proposition is to use mathematical computing software;
below we give a mathematical proof.
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Proof Formula (10) follows at once from the cocycle identity (8). We now prove
formulas (11) and (12). Let us define

F.X;x;Y;y;Z; z/ WD ŒXx;Yy�ŒXy;Zz�C ŒZz;Xx�ŒZx;Yy�C ŒYy;Zz�ŒYz;Xx�;

G.X;x;Y;y;Z; z/ WD ŒXx;Yy�ŒYx;Zz�C ŒZz;Xx�ŒXz;Yy�C ŒYy;Zz�ŒZy;Xx�:

We first prove some symmetries of F and G .

Our first observation is that, using the first antisymmetry property (6), we get that

F.X;x;Y;y;Z; z/D�G.Y;y;X;x;Z; z/:(13)

Thus we only need to prove that F D 0.

Step 1 The expression F is invariant under all permutations of the pairs .X;x/,
.Y;y/ and .Z; z/.

Using equations (10) and (6), we obtain that

F.X;x;Y;y;Z; z/CG.X;x;Y;y;Z; z/D ŒXx;Yy�ŒYy;Zz�C ŒXx;Yy�ŒXx;Zz�

C ŒZz;Xx�ŒZz;Yy�C ŒZz;Xx�ŒXx;Yy�

C ŒYy;Zz�ŒYy;Xx�C ŒYy;Zz�ŒZz;Xx�

D 0:

Hence, by (13),

(14) F.X;x;Y;y;Z; z/D F.Y;y;X;x;Z; z/:

By construction F is invariant by cyclic permutations and thus, from the previous
equation, F is invariant by all permutations of the pairs .X;x/, .Y;y/ and .Z; z/.

Step 2 The expression F satisfies a cocycle equation,

(15) F.X;x;Y;y;Z; z/CF.x; t;Y;y;Z; z/D F.X; t;Y;y;Z; z/:

We also have the symmetries

(16) F.X;x;Y;y;Z; z/D�F.x;X;Y;y;Z; z/

D�F.X;x;y;Y;Z; z/

D�F.X;x;Y;y; z;Z/:

The symmetries of equation (16) follow at once from the cocycle equation (15) and the
fact that F.X;X;Y;y;Z; z/D 0.
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Let us prove a cocycle equation for F . We shall only use the cocycle identity (8) and
the previous symmetries for the linking number. By definition,

F.X;x;Y;y;Z; z/CF.x; t;Y;y;Z; z/D ŒXx;Yy�ŒXy;Zz�C Œxt;Yy�Œxy;Zz�

C ŒZz;Xx�ŒZx;Yy�C ŒZz;xt �ŒZt;Yy�

C ŒYy;Zz�ŒYz;Xx�C ŒYy;Zz�ŒYz;xt �:

Using the cocycle identity (8) to expand the first term and regrouping the fifth and sixth
terms of the right-hand side, we get

F.X;x;Y;y;Z; z/CF.x; t;Y;y;Z; z/D ŒXt;Yy�ŒXy;Zz�C Œtx;Yy�ŒXy;Zz�

C Œxt;Yy�Œxy;Zz�C ŒZz;Xx�ŒZx;Yy�

C ŒZz;xt �ŒZt;Yy�C ŒYy;Zz�ŒYz;Xt �:

Using the cocycle identity (8) for regrouping the second and third term of the right-hand
side and rearranging, we get

F.X;x;Y;y;Z; z/CF.x; t;Y;y;Z; z/D ŒXt;Yy�ŒXy;Zz�C ŒZz;Xx�ŒZx;Yy�

C ŒZz;Xx�Œxt;Yy�C ŒZz;xt �ŒZt;Yy�

C ŒYy;Zz�ŒYz;Xt �

D F.X; t;Y;y;Z; z/:

Using the cocycle identity (8) to regroup the second and third terms, then the fourth, of
the right-hand side, we finally get

F.X;x;Y;y;Z; z/CF.x; t;Y;y;Z; z/D ŒXt;Yy�ŒXy;Zz�C ŒZz;Xt �ŒZt;Yy�

C ŒYy;Zz�ŒYz;Xt �

D F.X; t;Y;y;Z; z/:

Step 3 If .X;x;Y;y/ are pairwise distinct, then

F.X;x;Y;y;Y;x/D 0;(17)

F.X;x;X;x;Y;y/D 0:(18)

Let us first prove (17). It follows from the linking number alternative (9) and the
cocycle identity (8) that

F.X;x;Y;y;Y;x/D ŒXx;Yy�ŒXy;Yx�C
�
ŒYx;Xx�ŒYx;Yy�C ŒYy;Yx�ŒYx;Xx�

�
D 0:

This proves formula (17). Similarly, using the cocycle equation (15) for F for the first
equality, symmetries for the second, and our previous formula (17) (for .X;x;y;Y /)
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for the last, we get

F.X;x;X;x;Y;y/D F.X;x;X;y;Y;y/CF.X;x;y;x;Y;y/

D F.X;x;y;x;y;Y /

D F.X;x;y;Y;y;x/

D 0:

Step 4 If .X;x;Y;y;Z/ are pairwise distinct, then

(19) F.X;x;Y;y;Z;x/D 0:

Using the cocycle formula (15) for F and the previous step, we get

F.X;x;Y;y;Z;x/D F.X;x;Y;Z;Z;x/CF.X;x;Z;y;Z;x/

D�F.X;x;Z;Y;Z;x/

D 0:

Final step If .X;x;Y;y;Z; z/ are pairwise distinct, then

(20) F.X;x;Y;y;Z; z/D 0:

Indeed, using the cocycle formula (15) for F for the first equality, symmetries for the
second, and the previous step for the last equality, we get

F.X;x;Y;y;Z; z/D F.X;x;Y;y;Z;Y /CF.X;x;Y;y;Y; z/

D F.y;Y;x;X;Z;Y /�F.y;Y;x;X;y; z;Y /

D 0:

This concludes the proof.

2.2 The swapping algebra

Let P be a set and Œ � ; � � be a linking number with values in an integral domain A.
We represent a pair .X;x/ of points of P by the expression Xx . We consider the
free associative commutative algebra L.P/ generated over A by pairs of points on P,
together with the relation XX D 0 for all X 2 P.

Let ˛ be any element in A. We define the swapping bracket of two pairs of points as
the following element of L.P/:

(21) fXx;Yyg˛ WD ŒXx;Yy�.˛:Xx:YyCXy:Yx/:

We extend the swapping bracket to the whole algebra L.P/ using the Leibniz rule, and
call the resulting algebra L˛.P/ the swapping algebra.
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Theorem 2.2.1 The swapping bracket satisfies the Jacobi identity. Hence, the swap-
ping algebra L˛.P/ is a Poisson algebra.

Proof All we need to check is the Jacobi identity

ffXx;Yyg˛;Zzg˛CffYy;Zzg˛;Xxg˛CffZz;Xxg˛;Yyg˛ D 0

for the generators of the algebra.

We make preliminary computations, omitting the subscript ˛ in the bracket. The triple
bracket ffA;Bg;C g is a polynomial of degree 2 in ˛ and we wish to compute its
coefficients. By definition, using the Leibniz rule for the second equality, we have

(22) ffXx;Yyg;Zzg D ŒXx;Yy�
�
˛fXx:Yy;ZzgC fXy:Yx;Zzg

�
D ˛ŒXx;Yy�

�
fXx;Zzg:YyCfYy;Zzg:Xx

�
C ŒXx;Yy�

�
fXy;Zzg:YxCfYx;Zzg:Xy

�
:

Now we compute two expressions appearing in the right-hand side of the previous
equation. We have

(23) fXx;Zzg:YyCfYy;Zzg:Xx

D ˛.ŒXx;Zz�C ŒYy;Zz�/Xx:Yy:Zz

C.ŒXx;Zz�Xz:Yy:ZxC ŒYy;Zz�Xx:Yz:Zy/:

Similarly,

(24) fXy;Zzg:YxCfYx;Zzg:Xy

D ˛.ŒXy;Zz�C ŒYx;Zz�/Xy:Yx:ZzC ŒXy;Zz�Xz:Yx:Zy

C ŒYx;Zz�Xy:Yz:Zx:

It follows from (23) and (24) that the coefficient of ˛2 in the triple bracket (22) is

(25) P2 WD .ŒXx;Yy�ŒXx;Zz�C ŒXx;Yy�ŒYy;Zz�/Xx:Yy:Zz:

The coefficient of ˛ in the triple bracket (22) is

(26) P1 WD ŒXx;Yy�ŒXx;Zz�Xz:Yy:ZxC ŒXx;Yy�ŒYy;Zz�Xx:Yz:Zy

C .ŒXx;Yy�ŒXy;Zz�C ŒXx;Yy�ŒYx;Zz�/Xy:Yx:Zz:

Finally, the constant coefficient is

(27) P0 WD ŒXx;Yy�ŒXy;Zz�Xz:Yx:ZyC ŒXx;Yy�ŒYx;Zz�Xy:Yz:Zx;
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so that

(28) ffXx;Yyg;Zzg D ˛2P2C˛:P1CP0:

In order to check the Jacobi identity, we have to consider the sums S2 , S1 and S0 over
cyclic permutations of .Xx;Yy;Zz/ of the three terms P2 , P1 and P0 . We consider
successively these three coefficients.

Term of degree 0 We first have

(29) S0 D F.X;x;Y;y;Z; z/.Xz:Yx:Zy �Xy:Yz:Zx/:

Indeed, we have
S0 DA:Xz:Yx:ZyCB:Xy:Yz:Zx;

where

AD ŒXx;Yy�ŒXy;Zz�C ŒZz;Xx�ŒZx;Yy�C ŒYy;Zz�ŒYz;Xx�

D F.X;x;Y;y;Z; z/;

B D ŒXx;Yy�ŒYx;Zz�C ŒZz;Xx�ŒXz;Yy�C ŒYy;Zz�ŒZy;Xx�

DG.X;x;Y;y;Z; z/:

Now (29) follows from (13).

We now prove that S0 D 0. It follows from Proposition 2.1.3 that if

fX;xg\ fY;yg\ fZ; zg D∅;

then F D 0, hence S0 D 0.

Up to cyclic permutations, we just have to consider two cases.

(i) If x D y D z or X D Y DZ , then

Xz:Yx:Zy �Xy:Yz:Zx D 0;

hence S0 D 0.

(ii) If x D y DZ or X D Y D z or the other cases obtained by cyclic permutations,
since aaD 0, we have

Xz:Yx:Zy DXy:Yz:Zx D 0:

Thus S0 D 0.

We have completed the proof that S0 D 0.
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Term of degree 1 Next, we write

P1 DA1.X;x;Y;y;Z; z/Xx:Yz:ZyCA2.X;x;Y;y;Z; z/Xz:Yy:Zx

CA3.X;x;Y;y;Z; z/Xy:Yx:Zz:

Thus
S1 DAx :Xx:Yz:ZxCAy :Xz:Yy:Zx:CAz :Xy:Yx:Zz;

where

Az DA3.X;x;Y;y;Z; z/CA2.Y;y;Z; z;X;x/CA1.Z; z;X;x;Y;y/

D ŒXx;Yy�ŒXy;Zz�C ŒXx;Yy�ŒYx;Zz�C ŒYy;Zz�ŒYy;Xx�

C ŒZz;Xx�ŒXx;Yy�

D ŒXx;Yy�.ŒXy;Zz�C ŒYx;Zz�� ŒYy;Zz�� ŒXx;Zz�/:

By (10), Az D 0. Therefore, Ay D Az D Ax D 0 by cyclic permutations. We have
completed the proof that S1 D 0.

Term of degree 2 Finally, S2 D C:Xx:Yy:Zz , where

C D ŒXx;Yy�ŒXx;Zz�C ŒXx;Yy�ŒYy;Zz�C ŒYy;Zz�ŒYy;Xx�

C ŒYy;Zz�ŒZz;Xx�C ŒZz;Xx�ŒZz;Yy�C ŒZz;Xx�ŒXx;Yy�:

Then C D 0 by the antisymmetry of the linking number. Thus S2 D 0.

Now we have

ffXx;Yyg˛;Zzg˛CffYy;Zzg˛;Xxg˛CffZz;Xxg˛;Yyg˛D˛
2S2C˛S1CS0D0;

concluding the proof of the Jacobi identity.

2.3 The multifraction algebra

The swapping algebra is very easy to define. However, in the sequel we shall need to
consider other Poisson algebras built out of the swapping algebra: these algebras will
be more precisely subalgebras of the fraction algebra of L.P/. We introduce in this
subsection cross fractions, multifractions and the multifraction algebra.

2.3.1 Cross fractions and multifractions Since L˛.P/ is an integral domain (with
respect to the commutative product) we can consider its algebra of fractions Q˛.P/.

Let .X;Y;x;y/DWQ be a quadruple of points of P such that x 6D Y and y 6DX . The
cross fraction determined by Q is the element of Q˛.P/ defined by

ŒX IY IxIy� WD
Xx:Yy

Xy:Yx
:
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More generally, if X WD .X1; : : : ;Xn/ and x WD .x1; : : :xn/ are two tuples of elements
of P such that xi 6D Xi for all i , and � is a permutation of f1; : : : ; ng, then the
elementary multifraction — defined over P — determined by this data is

ŒX; xI �� WD
Qn

iD1 Xix�.i/Qn
iD1 Xixi

:

2.3.2 The multifraction algebra Now let B.P/ be the vector space generated by
elementary multifractions and let us call any element of B.P/ a multifraction. Then:

Proposition 2.3.1 The vector space B.P/ is a Poisson subalgebra of Q˛.P/. More-
over, it is generated as a Poisson algebra by cross fractions. Finally, the swapping
bracket f � ; � g˛ when restricted to B.P/ does not depend on ˛ .

From now on, we call the Poisson algebra B.P/ the algebra of multifractions.

Proof The proposition follows from two immediate observations:
� Every elementary multifraction is a product of cross fractions.
� If A and B are two cross fractions, then fA;Bg˛ is a multifraction and does

not depend on ˛ .

3 Cross ratios and cross fractions

In this section, we interpret cross fractions, and in general multifractions, as functions
on the space of cross ratios.

3.1 Cross ratios

Recall that a cross ratio on a set P is a map b from

P4�
WD f.X;Y;x;y/ 2 P j y 6DX; x 6D Y g

to a field K, which satisfies some algebraic rules. These rules encode two conditions
which constitute a normalization, and two multiplicative cocycle identities which hold
for different sets of variables:

� normalization
�

b.X;Y;x;y/D 0() x DX or Y D y;

b.X;Y;x;y/D 1() x D y or X D Y;

� cocycle identity
�

b.X;Y;x;y/D b.X;Y;x; z/b.X;Y; z;y/;

b.X;Y;x;y/D b.X;Z;x;y/b.Z;Y;x;y/:

Assume � acts on P. We say the cross ratio b is � –invariant if it is invariant under
the diagonal action.
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Remarks � We have changed convention from our previous articles [16; 17] in order
to be coherent with the formula for the classical projective cross ratio: if b is a cross
ratio with respect to the definition above, and we let b.X;x;Y;y/ WD b.X;Y;x;y/,
then b is a cross ratio using our older convention. Observe that the second normalization
together with the cocycle identities imply the following symmetries:

b.X;Y;x;y/D b.Y;X;x;y/�1
D b.Y;X;y;x/D b.X;Y;y;x/�1:

� Assume � acts on P. Let b be a � –invariant cross ratio. Let 
 2 � , and 
C and

� be two 
 –fixed points in P. Then the quantity

b.
C; 
�; 
y;y/

does not depend on the choice of y . In particular, let S be a closed connected oriented
surface of genus greater than 2, let P be @1�1.S/ equipped with the action of �1.S/.
Let 
C and 
� be, respectively, the attractive and repulsive fixed points of a nontrivial
element 
 of �1.S/, and b a �1.S/–invariant cross ratio. Then

`b.
 / WD
ˇ̌
logjb.
C; 
�; 
 .y/;y/j

ˇ̌
is called the period of 
 .

We finally denote by B.P/ the set of cross ratios on P.

These definitions are closely related to those given by Otal [25; 26], discussions from
various perspectives by Ledrappier [21], and work of Bourdon [2] in the context of
CAT.�1/–spaces.

3.2 Multifractions as functions

To every cross fraction ŒX IY IxIy� we associate a function, denoted by ŒX IY IxIy�,
on B.P/ by the formula

ŒX IY IxIy�.b/ WD b.X;Y;x;y/:

The following proposition follows at once from the definition of cross ratio.

Proposition 3.2.1 The map ŒX IY IxIy�! ŒX IY IxIy� extends uniquely to a mor-
phism of commutative associative algebras from B.P/ to the algebra of functions
on B.P/.

In the sequel, we shall use identical notation for a multifraction and its image in
the space of functions on B.P/. Also, so far we did not (and will not) consider any
topological structure on B.P/ or on P.
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3.3 Multifractions and Hitchin components

In [16], we identified the Hitchin component with a space of cross ratios satisfying
certain identities. Let us recall some notation and definitions.

3.3.1 Hitchin component Let S be a closed oriented connected surface with genus
at least two.

Definition 3.3.1 (Fuchsian and Hitchin homomorphisms) An n–Fuchsian homomor-
phism from �1.S/ to PSLn.R/ is a homomorphism � which factorizes as �D � ı �0 ,
where �0 is a discrete faithful homomorphism with values in PSL2.R/, and � is an
irreducible homomorphism from PSL2.R/ to PSLn.R/.

An n–Hitchin homomorphism from �1.S/ to PSLn.R/ is a homomorphism which
may be deformed into an n–Fuchsian homomorphism.

The Hitchin component H.n;S/ is the space of Hitchin homomorphisms up to conjugacy
by an exterior automorphism of PSLn.R/. All these representations lift to SL.n;R/.
By construction H.n;S/ is identified with a connected component of the character
variety. It is a result by Hitchin [15] that H.n;S/ is homeomorphic to the interior of a
ball of dimension .2g� 2/.n2� 1/.

As a corollary of the main result of [16], we have:

Theorem 3.3.2 If � is Hitchin, and if 
 is a nontrivial element of �1.S/, then �.
 /
has n distinct positive real eigenvalues.

By convention, we write these eigenvalues as �1.�.
 //; : : : ; �n.�.
 // with

�1.�.
 // > � � �> �n.�.
 // > 0:

This allows us to introduce the following definition.

Definition 3.3.3 (girth and width) The width of a nontrivial element 
 of �1.S/

with respect to a Hitchin representation � is

width�.
 / WD log
�ˇ̌̌̌
�1.�.
 //

�n.�.
 //

ˇ̌̌̌�
:

The girth of � is

(30) gh.�/ WD sup
�ˇ̌̌̌
�2.�.
 //

�1.�.
 //

ˇ̌̌̌ ˇ̌̌

 2 �1.S/nfIdg

�
:

The following proposition will be used several times.
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Proposition 3.3.4 Let C be a compact subset of H.n;S/. Then:

(i) For any positive A, the following subset of �1.S/ defined by

SA D

�

 2 �1.S/

ˇ̌̌
9� 2 C such that

ˇ̌̌̌
�2.�.
 //

�1.�.
 //

ˇ̌̌̌
>A

�
contains only finitely many conjugacy classes.

(ii) Moreover,
supfgh.�/ j � 2 C g< 1:

For the proof of this proposition, we first need:

Lemma 3.3.5 Let S be a hyperbolic surface with unit tangent bundle US equipped
with the geodesic flow f�tgt2R . Let �0 be a Hitchin representation in H.n;S/. Then
there exists a neighborhood W of �0 in H.n;S/ such that for every � in W , there
exists a function f�W US !R such that:

� For every closed orbit 
 and x 2 
 ,Z `.
 /

0

f� ı�s.x/ ds D log
ˇ̌̌̌
�1.�.
 //

�2.�.
 //

ˇ̌̌̌
;

where `.
 / is the hyperbolic length of 
 .

� The function � 7! f� is continuous from W to C 0.US;R/, and moreover there
exists a positive constant "0 such that f� > "0 for all � .

Proof of Lemma 3.3.5 This follows from the Anosov property of Hitchin representa-
tions and results in [4]. One could also use results by Guichard and Wienhard [14] or
combine results of Sambarino [28; 27]. Since by [4, Theorem 6.1], the limit maps of a
Hitchin representation depend in an analytic way on the representation, we can find

� a neighborhood D of �0 in H.n;S/,

� a vector bundle E over M WDD �US , smooth along US ,

� a splitting of E DL1˚ � � �˚Ln into line bundles, smooth along the geodesic
flow,

� a continuous lift fˆtgt2R on E of the geodesic flow f�tgt2R on M preserving
this decomposition and smooth along US ,
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such that if 
 is a closed geodesic of hyperbolic length `.
 / and u 2Li jf�g�
 , then

ˆ`.
 /.u/D �i.�.
 //�u:

In this last equation, we identify the closed geodesic with the corresponding conjugacy
class in �1.S/. We now construct metrics !i on Li , smooth along the geodesic flow.
Let us consider the functions gi on M such that gi �!i D

d
dt

ˇ̌
tD0

ˆ�t !i . In particular,
we have

(31) ˆ�t !i.x/D exp
�Z t

0

gi ı�s.x/ ds

�
!i.x/:

Then by construction for x 2 f�g � 
 , we have

� log.�i.�.
 //D

Z `.
 /

0

gi ı�s.x/ ds:

Now let g D g2�g1 ; then

log
�
�1.�.
 //

�2.�.
 //

�
D

Z `.
 /

0

g ı�s.x/ ds:

By the Anosov property, there exists some T > 0 such that the flow ˆT contracts
uniformly on Hom.L1;L2/ along f�0g �US . In a more precise way, if we denote
by !�

1
the dual metric on L�

1
to !1 , then there exists some T such that along f�0g�US

we have

ˆ�T .!
�
1 ˝!2/DH �!�1 ˝!2;

where H is a continuous function on M such that along f�0g �US ,

H < 1
2
:

By the continuity of H , the previous inequality extends to M after possibly restrict-
ing D . As a consequence, we have for x 2M ,Z T

0

g ı�s.x/ ds D� log.H.x// > log.2/:

Now let

f .x/ WD
1

T

Z T

0

g ı�s.x/ ds:

Then by construction,

f .x/ >
1

T
log.2/DW "0;
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and, moreover, for x 2 f�g �US ,Z `.
 /

0

f ı�s.x/ ds D

Z `.
 /

0

g ı�s.x/ ds D log
�
�1.�.
 //

�2.�.
 //

�
:

Proof of Proposition 3.3.4 By compactness, it is enough to prove that every �

in H.n;S/ possesses a neighborhood W so that the properties of the proposition hold
when C is replaced by W . We choose the neighborhood W obtained in the previous
lemma. Let then f� be as in the conclusion of this lemma. Since f� is bounded away
from zero by a positive constant "0 , it follows that

log
�
�1.�.
 //

�2.�.
 //

�
> "0� `.
 /:

The first result immediately follows. Then for the second result, we use the fact that
S1=2 contains only finitely many conjugacy classes and that given 
 , the function

� 7!
�2.�.
 //

�1.�.
 //

is continuous, with values less than 1.

3.3.2 Rank n cross ratios For every integer p , let @1�1.S/
p
� be the set of pairs

.X; x/D
�
.X0;X1; : : : ;Xp/; .x0;x1; : : : ;xp/

�
of .pC1/–tuples of points in @1�1.S/ such that Xj 6DXi 6D x0 and xj 6D xi 6DX0

whenever j > i > 0. Let �p.X; x/ be the multifraction defined by

�p.X; x/ WD det
i;j>0

.ŒXi IX0Ixj Ix0�/:

A cross ratio b has rank n if

� �n.X; x/.b/ 6D 0 for all .X; x/ in @1�1.S/
n
� ,

� �nC1.X; x/.b/D 0 for all .X; x/ in @1�1.S/
nC1
� .

The main result of [18], which used a result by Guichard [13], is the following.

Theorem 3.3.6 There exists a bijection � from the set of n–Hitchin representations
to the set of �1.S/–invariant rank n cross ratios, such that if bD �.�/ then:

(i) For any nontrivial element 
 of �1.S/,

`b.
 /D width�.
 /;

where `b.
 / is the period of 
 given with respect to bD �.�/, and width�.
 /
is the width of 
 with respect to � .
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(ii) If 
1 and 
2 are two nontrivial elements of �1.S/, and if ei .resp. Ei/ is an
eigenvector of �.
i/ .resp. ��.
i// of maximal .resp. minimal/ eigenvalue,
then

(32) b.
C
1
; 
C

2
; 
�2 ; 


�
1 /D

hE2; e1ihE1; e2i

hE1; e1ihE2; e2i
:

In particular, every multifraction defines a function on the Hitchin component.

4 Wilson loops, multifractions and length functions

In this section, we shall relate Wilson loops, which are regular functions on the character
variety, to multifractions. We will also introduce elementary functions, which are limits
of Wilson loops, prove that they generate the multifraction algebra and that they are
smooth functions on the Hitchin component. We finally introduce length functions in
Section 4.4.

4.1 Wilson loops

Let 
 be an element of �1.S/ and � an element of H.n;S/. The Wilson loop associated
to 
 is the function W.
 / on H.n;S/ defined by

W.
 /.�/ WD tr.�.
 //:

Wilson loops only depend on conjugacy classes. We introduce the following definition.

Definition 4.1.1 (class of an element) Let 
 be a nontrivial element of �1.S/. Then
the class Œ
 � of 
 is the oriented pair .
C; 
�/ of points of @1�1.S/, where 
C

and 
� are the attractive and repulsive fixed points of 
 respectively.

Recall that Œ
 �D Œ�� if and only if there exist positive integers m; n such that 
mD �n .

4.1.1 Asymptotics of Wilson loops Let � be a Hitchin representation. Recall that
for any 
 in �1.S/ we can write

�.
 /D
X

16i6n

�i.�.
 //pi.
 /;

where pi.
 / is a projector of trace 1, and �i.�.
 // are real numbers such that

0< j�n.�.
 //j< � � �< j�1.�.
 //j:

Let us write P�.
 / D p1.
 /. We denote by ŒA� the set of eigenvectors of a purely
loxodromic matrix A, and observe that ŒAn� D ŒA�. We choose an auxiliary norm,
denoted by k � k, on Rn . Then we have:
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Proposition 4.1.2 For any 
 in �1.S/ and p 2N , we have

(33)




 �.
p/

W.
p/.�/
� P�.
 /





6 gh.�/pK.Œ�.
 /�/;

where K is a continuous function on the set of n lines in general position.

Proof Let AD �.
 /. Since A is a real diagonalizable matrix,

AD

nX
iD1

�ipi ;

where pi are projectors and the eigenvalues �i satisfy �1 > � � �> �n > 0. Thus

(34)




 Ap

tr.Ap/
� p1





6 1Pn
iD1 �

p
i





 nX
iD2

�
p
i pi �

� nX
iD2

�
p
i

�
p1






6
�
�2

�1

�p �
nkp1kC

nX
iD2

kp2k

�
:

Thus the inequality follows by taking

K.ŒA�/D nkp1kC

nX
iD2

kp2k:

As a corollary, we get:

Corollary 4.1.3 Let 
1; 
2; : : : ; 
q be coprime elements of � and let m1;m2; : : : ;mq

be positive numbers. Then

(35)






Qq
iD1

�.

mi

i /

W
�Qq

iD1



mi

i

�
.�/
�
P�.
1/ P�.
q/

tr. P�.
1/ P�.
q//





6 gh.�/mK;

where m D inf.mi/, and K depends continuously on the eigenvectors of �.
i/ and
their relative configurations.

Proof We restate the previous proposition by saying that

(36) �.
p/DW.
p/.�/ � . P�.
 /C gh.�/p �K.
; �//;

where K.
; �/ is continuous in � and only depends on the eigenvectors of �.
 /. Thus

(37)
qY

iD1

�.

mi

i /D

qY
iD1

W.

mi

i /.�/ �

qY
iD1

. P�.
i/C gh.�/mi �K.
i ; �//

D

qY
iD1

W.

mi

i /.�/ �

� qY
iD1

P�.
i/C gh.�/m �K0.
1; : : : ; 
pI �/

�
;
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where K0.
1; : : : ; 
pI �/ is continuous in � and only depends on the eigenvectors
of �.
i/. Thus

(38)
W
�Qq

iD1



mi

i

�
.�/Qq

iD1
W.


mi

i /.�/
D tr

� qY
iD1

P�.
i/

�
C gh.�/m �K1.
1; : : : ; 
pI �/;

where K1.
1; : : : ; 
pI �/ is continuous in � and only depends on the eigenvectors
of �.
i/. Combining equations (37) and (38), we obtain that

(39)

Qq
iD1

�.

mi

i /

W
�Qq

iD1



mi

i

�
.�/
D

Qq
iD1
P�.
i/

tr
�Qq

iD1
P�.
i/

� C gh.�/m �K2.
1; : : : ; 
pI �/;

where K1.
1; : : : ; 
pI �/ is continuous in � and only depends on the eigenvectors
of �.
i/ and their relative positions. To conclude the proof of the corollary, note that if
A is an endomorphism and p; q are projectors such that tr.pAq/ 6D 0 6D tr.pAq/, then

pAq
tr.pAq/

D
pq

tr.pq/
:

Using this, we get that Qq
iD1
P�.
i/

tr
�Qq

iD1
P�.
i/

� D P�.
1/ P�.
q/

tr. P�.
1/ P�.
q//
:

Combining this last equality with (39) yields the statement of the corollary.

We begin with the following proposition where we consider multifractions as functions
on H.n;S/.

Proposition 4.1.4 Let 
1; : : : ; 
k be nontrivial elements of �1.S/. Then the sequence�
W.


p
1
� � � 


p

k
/

W.

p
1
/ � � �W.


p

k
/

�
p2N

converges uniformly on every compact of H.n;S/ to a multifraction when p goes to
infinity. More precisely,

lim
p!1

�
W.


p
1
� � � 


p

k
/

W.

p
1
/ � � �W.


p

k
/

�
D

Qk
iD1 


C

iC1

�iQk

iD1 

C
i 

�
i

D ŒGC;G�I ��;

where G˙ D .
˙
1
; : : : ; 
˙

k
/ and �.i/D i � 1, using the convention that kC 1D 1.

Proof We first observe that if ei (resp. Ei ) is an eigenvector of �.
i/ (resp. ��.
i/)
of maximal (resp. minimal) eigenvalue, with hEi ; eii D 1, then

tr. P�.
1/ � � � P�.
k//D
Y

i

hEi ; eiC1i:
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By Equation (32), Y
i

hEi ; eiC1i D

�Qp
iD1


C
iC1


�iQk
iD1 


C
i 

�
i

�
.�/:

It thus follows that
tr. P�.
1/ � � � P�.
k//D ŒG

C;G�I ��:

Then the result follows at once from Propositions 4.1.2 and 3.3.4.

4.2 Elementary functions

Proposition 4.1.4 leads us to the following definition.

Definition 4.2.1 The multifraction

(40) T.
1; : : : ; 
p/ WD

Qp
iD1


C
iC1


�iQp
iD1


Ci 

�
i

is an elementary function of order p .

By the previous proposition and its proof, we have the equalities

T.
1; : : : ; 
p/D lim
n!1

W.
 n
1
� � � 
 n

p /

W.
 n
1
/ � � �W.
 n

p /
;(41)

T.
1; : : : ; 
p/D tr. P�.
1/ � � � P�.
p//:(42)

The following formal properties of elementary functions are then easily checked:

Proposition 4.2.2 (i) Cyclic invariance For every cyclic permutation � of the
indexing set f1; : : : ;pg, we have

T.
1; : : : ; 
p/D T.
�.1/; : : : ; 
�.p//:

(ii) Class invariance If Œ�i �D Œ
i �, then

T.
1; : : : 
p/D T.�1; : : : ; �p/:

(iii) If Œ
p �D Œ
p�1�, then

T.
1; : : : 
p/D T.
1; : : : 
p�1/:

(iv) If Œ
p �D Œ
�1
p�1

�, then
T.
1; : : : 
p/D 0:

(v) Relations Assume that Œ
i � 6D Œ
iC1�. Then

T.
1; : : : ; 
p/D
T.
1; 
2/T.
1; 
p/T.
2; 
3; : : : ; 
p/

T.
p; 
2; 
1/
:
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From the last statement we deduce the following corollary.

Corollary 4.2.3 Let P be the set of fixed points in @1�1.S/ of nontrivial elements
of �1.S/. Then every restriction of an elementary multifraction over P is a quotient of
a product of elementary functions of orders 2 and 3.

Proof Let us consider four nontrivial elements a; b; c; d of �1.S/. Then we have

(43)
T.a; b; c/:T.c; d/

T.a; d; c/T.c; b/
D ŒbCI dCI a�I c��:

The result follows.

Recall that in this section we choose P to be the set of fixed points of nontrivial elements
of �1.S/. We now prove:

Proposition 4.2.4 Every multifraction defined over P is a smooth function on H.n;S/.

Proof Let Hom.n;S/ be the space of Hitchin homomorphisms, and � the submersion

� W Hom.n;S/! H.n;S/D Hom.n;S/=Aut.PSLn.R//:

For every loxodromic element A in PSLn.R/, let pA be the projection on the eigenspace
of maximal eigenvalue with respect to the other eigenspaces. The map A! pA (from
the space of loxodromic elements) is smooth. It follows that for any elements 
1; : : : ; 
k

in �1.S/, the map from Hom.n;S/ to R defined by

‰W �! tr.p�.
1/ � � �p�.
k//

is smooth. We end by observing that ‰ is Aut.PSLn.R//–invariant and that by (42),

‰ D T.
1; : : : ; 
k/ ı�:

Thus every elementary function is smooth and by the previous result every multifraction
is smooth.

4.3 The swapping bracket of elementary functions

For the sequel, we shall need to compute the swapping brackets of elementary functions.
This is given by the following proposition, whose proof follows by an immediate
application of the definition. We first say that two nontrivial elements 
 and � in �1.S/

are coprime if 
 n 6D �m for all nonzero integers m and n.
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Proposition 4.3.1 Let 
0; : : : ; 
p and �0; : : : ; �q be elements of �1.S/ n f1g such
that the pairs .
i ; 
iC1/ and .�j ; �jC1/ are coprime. Let

(44)

ai;j WD Œ

C
i 

�
i ; �

C
j �
�
j �; bi;j WD Œ


C

iC1

�i ; �

C

jC1
��j �;

ci;j WD Œ

C
i 

�
i ; �

C

jC1
��j �; di;j WD Œ


C

iC1

�i ; �

C
j �
�
j �;

T
 WD T.
0; : : : ; 
p/; T� WD T.�0; : : : ; �q/:

Then

(45)
fT
 ;T�g

T
 :T�
D

X
06i6q
06j6p

�
ai;j T.
i ; �j /C bi;j

T.�jC1; �j ; 
iC1; 
i/

T.�j ; �jC1/T.
i ; 
iC1/

�
�

X
06i6q
06j6p

�
ci;j

T.
i ; �jC1; �j /

T.�j ; �jC1/
C di;j

T.�j ; 
iC1; 
i/

T.
i ; 
iC1/

�
:

Proof Using “logarithmic derivatives”, we have

fT
 ;T�g

T
 :T�
D

X
06i6p
06j6q

 �
f
C

iC1

�i ; �

C

jC1
��j g


C
iC1


�i :�
C

jC1
��j
C
f
Ci 


�
i ; �

C
j �
�
j g


Ci 

�
i :�
C
j �
�
j

�

�

�
f
Ci 


�
i ; �

C

jC1
��j g


Ci 

�
i :�
C

jC1
��j
C
f
C

iC1

�i ; �

C
j �
�
j g


C
iC1


�i :�
C
j �
�
j

�!

D

X
06i6q
06j6p

�
bi;j


C
iC1

��j :�
C

jC1

�i


C
iC1


�i :�
C

jC1
��j
C ai;j


Ci �
�
j :�
C
j 

�
i


Ci 

�
i :�
C
j �
�
j

� di;j


C
iC1

��j :�
C
j 

�
i


C
iC1


�i :�
C
j �
�
j

� ci;j


Ci �
�
j :�
C

jC1

�i


Ci 

�
i :�
C

jC1
��j

�
:

From the definition of elementary functions (40), we get that

T.�jC1; �j ; 
iC1; 
i/

T.�j ; �jC1/T.
i ; 
iC1/
D

C

iC1
��j :�

C

jC1

�i


C
iC1


�i :�
C

jC1
��j
; T.
i ; �j /D


Ci �
�
j :�
C
j 

�
i


Ci 

�
i :�
C
j �
�
j

;

T.�j ; 
iC1; 
i/

T.
i ; 
iC1/
D

C

iC1
��j :�

C
j 

�
i


C
iC1


�i :�
C
j �
�
j

;
T.
i ; �jC1; �j /

T.�j ; �jC1/
D

Ci �

�
j :�
C

jC1

�i


Ci 

�
i :�
C

jC1
��j
:

This concludes the proof of the proposition.

4.4 Length functions

In this section we introduce length functions.
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4.4.1 Length functions from the point of view of the multifraction algebra Re-
call first that �1.S/ acts on @1�1.S/ and thus on B.@1�1.S//. For any y2@1�1.S/

and ˇ a nontrivial element in �1.S/, let us introduce the cross fraction

pˇ.y/D
.ˇC; ˇ.y// � .ˇ�; ˇ�1.y//

.ˇC; ˇ�1.y// � .ˇ�; ˇ.y//
;

where for readability we revert to the classical notation .X;x/ for pairs of points, rather
than the concatenated notation Xx . We have, for any ˇ in �1.S/,

pˇ.y/

pˇ.z/
D
.ˇ2/�Fy;z

Fy;z
;

where

Fy;z D
.ˇC; ˇ�1.y// � .ˇ�; ˇ�1.z//

.ˇC; ˇ�1.z// � .ˇ�; ˇ�1.y//
:

In particular, the restriction of pˇ.y/ to the space of �1.S/–invariant cross ratios is
independent of the choice of y .

For the sake of simplicity, we introduce the following formal series of multifractions
and call it a length function:

ỳ
ˇ.y/ WD

1
2

log.pˇ.y//;

extending the bracket by the “log derivative” formulas

(46) fỳˇ.y/; qg WD
fpˇ.y/; qg

2 pˇ.y/
; fỳˇ.y/; ỳ
 .z/g WD

fpˇ.y/;p
 .z/g

4 pˇ.y/:p
 .z/
:

Observe that IS . ỳˇn.y//D n:IS . ỳˇ.y//.

4.4.2 Length functions and the character variety We can further relate these ob-
jects with the period and length defined in Section 3.1. Let

IS W B.@1�1.S//! C1.H.n;S//

denote the restriction of functions from B.@1�1.S// to H.n;S/.

We have for ˇ 2 �1.S/ that
IS . ỳˇ.y//D `ˇ;

where
`ˇ.�/ WD `b.ˇ/;

and `b is the period of ˇ with respect to the cross ratio associated to � ; see Section 3.1.
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5 The Goldman algebra

In this section, we first recall the construction of the Atiyah–Bott–Goldman symplectic
form on the character variety. We then explain the construction of the Goldman algebra,
which allows us to compute the bracket of Wilson loops in terms of a Lie bracket on
the vector space generated by free homotopy classes of loops.

5.1 The Atiyah–Bott–Goldman symplectic form

In [1], Atiyah and Bott introduced a symplectic structure on the character variety of
representations of closed surface groups in compact Lie group, generalizing Poincaré
duality. This was later generalized by Goldman for noncompact groups [9; 8] and
connected to the Weil–Petersson Kähler form. If we identify the tangent space of
H.n;S/ at � with H 1

� .g/, where g is the Lie algebra of PSLn.R/, then the symplectic
form is given by

(47) !S .ŒA�; ŒB�/D

Z
S

tr.A^B/;

where A and B are de Rham representatives of the cohomology classes ŒA� and ŒB�.
We denote by f � ; � gS the associated Poisson bracket, called the Atiyah–Bott–Goldman
(ABG) Poisson bracket in the sequel, and A.S/ the Poisson algebra of smooth functions
on H.n;S/. In the next paragraph, we show how to compute the Atiyah–Bott–Goldman
bracket, in the case of PSLn.R/, for the Wilson loops that we introduced in the previous
section.

5.2 Wilson loops and the Goldman algebra

We describe in this subsection the Goldman algebra and how it helps to compute the
ABG Poisson bracket. Let C be the set of free homotopy classes of closed curves on
an oriented surface S . Let QŒC� be the vector space generated by C over Q. We
linearly extend Wilson loops so that the map 
 7!W.
 / is now a linear map from QŒC�
to C1.H.n;S//.

Goldman [9] introduced a Lie bracket on QŒC�. We define it for two elements 
1 and 
2

of C�QŒC� and then extend it to QŒC� linearly. We choose two curves representing

1 and 
2 , which we denote the same way.

If 
1 and 
2 are two curves from S1 to S , an intersection point is a pair .a; b/
in S1�S1 such that 
1.a/D 
2.b/. By a slight abuse of language, we usually identify
an intersection point .a; b/ with its image x D 
1.a/D 
2.b/. We further assume that

1 and 
2 have transverse intersection points.
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For every intersection point x , let �x be the local intersection number at x , let 
1 ¾x 
2

be the free homotopy class of the curve obtained by composing 
1 and 
2 in �1.S;x/,
and finally let

�.
1; 
2/ WD
X

x2
1\
2

�x

be the global intersection number.

Definition 5.2.1 The Goldman bracket of 
1 and 
2 is the element of QŒC� defined by

(48) f
1; 
2g WD

X
x2
1\
2

�x � 
1 ¾x 
2:

We illustrate in Figure 2 the Goldman bracket of two curves.

x

a

y

b

˛

ˇ

Figure 2: fb; ag D ˛�ˇ : two curves (left) and their Goldman bracket (right)

Goldman [9] proved that this bracket does not depend on the choice of representatives
and is a Lie bracket. This bracket is related to the ABG Poisson bracket as follows.

Theorem 5.2.2 (Goldman) Let 
1 and 
2 be two loops on S . Then the ABG Poisson
bracket of the two corresponding Wilson loops in H.n;S/ is

(49) fW.
1/;W.
2/gS DW.f
1; 
2g/�
�.
1; 
2/

n
W.
1/ �W.
2/:

We just stated Goldman’s theorem for the case of H.n;S/, but the theorem has a
formulation in the general case of character varieties for semisimple groups. A different
proof can also be found in [20].
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6 Vanishing sequences and the main results

In this section, we first recall the definition of the length functions on the character
varieties, then introduce the notion of a vanishing sequence of finite index subgroups of
a surface group and state our main results relating the swapping algebra to the Goldman
algebra. All these results will be proved in Section 9. As usual, let

IS W B.@1�1.S//! C1.H.n;S//

denote the restriction of functions from B.@1�1.S// to H.n;S/.

6.1 Poisson brackets of length functions

We explain in this section our results concerning length functions; see Section 4.4 for
notation and definitions. Our first result relates the Goldman and the swapping Poisson
brackets.

Theorem 6.1.1 Let 
 and � be two geodesics with at most one intersection point.
Then we have

lim
n!1

IS .fỳ
n.y/; ỳ�n.y/g/D 1
4
f`
 ; `�gS :

In the course of the proof of this result, we prove the following result of independent
interest, which is an extension of the Wolpert formula [32; 31].

Theorem 6.1.2 (generalized Wolpert formula) Let 
 and � be two closed geodesics
with a unique intersection point. Then the Goldman bracket of the two length functions
`
 and `� , seen as functions on the Hitchin component, is

(50) f`
 ; `�gS D �.
; �/
X

";"02f�1;1g

""0:T.

":�"

0

/;

where we recall that
T.�; �/.�/D b�.�

C; �C; ��; ��/:

We prove these two results in Section 9.2.

6.2 Poisson brackets of multifractions

We now relate in general the swapping bracket and the Goldman bracket. Our result
can be described by saying that the swapping bracket is an inverse limit (with respect
to sequences of coverings) of the Goldman bracket, or in other words that the swapping
racket is a universal (in genus) Goldman bracket.
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6.2.1 Vanishing sequences We now assume that S is equipped with an auxiliary
hyperbolic metric. Let zS be the universal cover of S so that S D zS=�1.S/. For any 

in �1.S/, we denote by z
 its axis in zS and h
 i the cyclic subgroup that it generates.
Recall that we say that two elements 
 and � of �1.S/ are coprime if h
 i\h�i D f1g.

Let f�mgm2N be a sequence of nested finite index subgroups of �0 WD �1.S/. Then
let Sn WD

zS=�n . For any 
 2 � let h
 in WD h
 i\�n . Finally, let �n be the projection
from zS to Sn and let z
n WD �n.z
 /.

Definition 6.2.1 Let f�mgm2N be a sequence of nested finite index normal subgroups
of �0 WD �1.S/. We say that f�mgm2N is a vanishing sequence if for all 
 and �
in �1.S/, and for any set H which is invariant by left multiplication by 
 and right
multiplication by � and whose projection in h�in�1.S/=h
 i is finite, there exists an n0

such that for all n> n0 , H \�n � h�i:h
 i.

We shall freely use the following immediate consequence.

Proposition 6.2.2 Let f�mgm2N be a vanishing sequence with �0D�1.S/. For any �
and 
 in �1.S/, and for any finite subset H0 of �1.S/ such that H0\ .h�i� h
 i/D∅,
there exists a p0 such that for all p > p0 ,

H0\ .h�i��p � h
 i/D∅:

We prove in the appendix that vanishing sequences exist. This is an immediate conse-
quence of a result by G Niblo [24].

6.2.2 Sequences of subgroups and limits Let P be the subset of @1�1.S/ given by
the end points of periodic geodesics. Let G be the set of pairs of points 
 D .
�; 
C/
in P which correspond to fixed points of an element of the group @1�1.S/. Observe
that given any finite index subgroup � of �1.S/, the set G is in bijection with the set
of primitive elements of � .

In the sequel, we shall freely identify elements of G with primitive elements in �1.S/

or any of its finite index subgroups.

We associate to a sequence � D f�mgm2N of finite index subgroups of �1.S/ the
inverse limit S� of fSm WD

zS=�mgm2N , where zS is the universal cover of S .

Observe that we have a map I from B.P/ to A.S� / which by definition is the projective
limit of fA.Sm/gm2N .
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Definition 6.2.3 Let fgmgm2N be a sequence of functions such that gm 2 A.Sm/.
We say that fgmgm2N converges to the function h in A.S� /, and write

lim
m!1

gm D h;

if for all p ,

lim
n!1

ISp
.gn/D ISp

.h/;

where ISp
is the restriction with values in A.Sp/.

6.2.3 Poisson brackets of multifractions The following result explains that the
algebra of multifractions is an inverse limit of Goldman algebras with respect to
vanishing sequences.

Theorem 6.2.4 Let f�mgm2N be a vanishing sequence of subgroups of �1.S/. Let
P�@1�1.S/ be the set of end points of geodesics. Let b0 and b1 be two multifractions
in B.P/. Then we have

lim
n!1

fI.b0/; I.b1/gSn
D I.fb0; b1gW /:

We prove this result in Section 9.1.

7 Product formulas and bouquets in good position

In this section, we wish to describe the Goldman bracket of curves which are composi-
tions of many arcs. We shall call such a description a product formula and produce
several instances of such formulas. This section is part of the technical core of this
article.

The first formula (see Proposition 7.2.1) deals with a rather general situation computing
the Goldman bracket of curves which are compositions of many arcs. Then, considering
repetition, and using special collections of arcs called bouquets in good positions
(see Definition 7.3.2), we prove a refinement of the product formula in Proposition 7.3.3.
Proposition 7.3.3 is the first key result of this section.

Finally, in Proposition 7.5.2, we explain under which topological conditions we can
find bouquets in good position and compute the various intersection numbers involved
in Proposition 7.3.3. Proposition 7.5.2 is the second key result of this section.
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7.1 An alternative formulation of the Goldman bracket

We first need to give an alternative description of the Goldman bracket.

Let x
1 and x
2 be two arcs passing through a basepoint x0 . For any point x in x
i ,
let ai.x/ be the path along x
i joining x0 to x .

Definition 7.1.1 (intersection loops) Following this notation, for any x 2 x
1 \ x
2 ,
the homotopy class

cx.x
1; x
2/ WD a1.x/:a2.x/
�1
2 �1.S;x0/

is called an intersection loop at x ; see Figure 3.

x

x
2

x
1

x0

cx.x
1; x
2/

Figure 3: Intersection loop

The goal of this subsection is the following proposition.

Proposition 7.1.2 Let 
1 and 
2 be two free homotopy classes of loops represented
by curves x
1 and x
2 passing though x0 . Then the Goldman bracket in QŒC� of the
associated loops is given using intersection loops by

(51) f
1; 
2gS D

X
x2
1\
2

�x x
1� cx � x
2:c
�1
x :

This proposition is an immediate consequence of the following.

Proposition 7.1.3 Let 
1 and 
2 be two loops passing though x0 . Then for every
x 2 
1\ 
2 , we have


1 ¾x 
2 D 
1:cx.
1; 
2/
2:cx.
1; 
2/
�1;

as free homotopy classes of curves.
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Proof As before let ai be the arc along 
i joining x0 to x , and cx D a1:a
�1
2

. Then


1 ¾x 
2 D a�1
1 
1a1a�1

2 
2a2 D a�1
1 
1cx
2a2 D a�1

1 
1cx
2c�1
x a1:

Thus 
1 ¾x 
2 is freely homotopic to 
1cx
2c�1
x .

7.2 The product formula

We need to express the Goldman bracket of Wilson loops of curves consisting of many
arcs. We work with the following data (see Figure 4 for a partial drawing):

� Two tuples of arcs �0; : : : ; �q and �0; : : : ; �q0 such that AD �0 : : : �q and B D

�0 : : : �q are closed curves.

� Assume furthermore that for all pairs .i; j /, the arcs �i and �j have transverse
intersections and do not intersect at their end points.

� For each i and j , arcs ui and vj joining a basepoint x0 to the origins of �i
and �j respectively.

x0

u1

u2
u0

�0

�1

�2

Figure 4: Arcs �i and ui

Let us introduce the following notation:

� c
i;j
x WD cx.ui�i ; vj�j / for every x 2 �i \ �j .

� Ii;j .�/ WD
P

x2�i\�j j�Dc
i;j
x
�.x/ for any � 2 �1.S/.

� Ai WD ui�i�iC1 : : : �i�1u�1
i and Bj WD vj�j�jC1 : : : �j�1v

�1
j .
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Proposition 7.2.1 (product formula) Using the notation and assumptions described
above, we have the following equality in QŒC�:

fA;Bg D
X

06i6q
06j6q0

� X
x2�i\�j

�xAi :c
i;j
x :Bj .c

i;j
x /�1

�
(52)

D

X
06i6q
06j6q0

� X
�2�1.S/

Ii;j .�/Ai :�:Bj�
�1

�
:(53)

We first prove a preliminary proposition and postpone the proof of Proposition 7.2.1
until the next subsection.

7.2.1 A preliminary case We first study the following simple situation:

� Let � and � be two closed curves. Assume that �D �1:�2 and �D �1:�2 . Assume
that for all i and j , �i and �j are closed curves with transverse intersections
that do not intersect at their origin.

� Let ui and vj be arcs from x0 to �i and �j respectively.

� Let z�i WD ui�iu
�1
iC1

, z�j WD vj�jv
�1
jC1

and c
i;j
x WD cx.z�i ; z�j / 2 �1.S;x0/ for

x 2 �i \ �j .

Proposition 7.2.2 We have the following equality in QŒC�:

(54)
X

x2�\�

�x � �¾x � D
X

x2�i\�j
16i;j62

�x � z�i :z�iC1:c
i;j
x :z�j :z�jC1:.c

i;j
x /�1:

Proof First, we observe that for any two pairs of curves .�1; �2/ and .�1; �2/, we have

.�1:�2/\ .�1:�2/D
G
i;j

.�i \ �j /:

Let us denote
cx WD cx.z�1:z�2; z�1:z�2/:

We then have

x 2 �1\ �1 D) cx D c1;1
x ; x 2 �2\ �1 D) cx D

z�1:c
2;1
x ;

x 2 �1\ �2 D) cx D c1;2
x :z��1

1 ; x 2 �2\ �2 D) cx D
z�1:c

2;2
x :z��1

1 :

Thus in all cases, if x 2 �i \ �j , we have the equality of free homotopy classes

z�1z�2cx
z�1z�2 D z�iz�iC1 :c

i;j
x :z�j :z�jC1 :.c

i;j
x /�1:
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Thus we obtain the product formula:

(55)
X

x2.�1�2/\.�1�2/

�x.z�1 :z�2 :cx :z�1 :z�2 :c
�1
x /

D

X
i;j

� X
x2�i\�j

�x
�
z�iz�iC1 :c

i;j
x :z�j :z�jC1 :.c

i;j
x /�1

��
:

This concludes the proof.

Proof of Proposition 7.2.1 Obviously formula (53) is an immediate consequence of
formula (52), so we concentrate on the latter.

First, we observe that the product formula when �i and �j are closed curves follows
by induction from Proposition 7.2.2.

Let us now make the following observation. Let a, � and � be three arcs, transverse
to a curve � . Assume that �:a:a�1:� is a closed curve. Then we have the following
equalities in QŒC�:

(56) �: a: a�1: � D �: �;X
x2.�:�/\�

�x�: �: cx�: c
�1
x D

X
x2.�:a:a�1:�/\�

�x�: a: a
�1: �: cx�: c

�1
x :

The first equality is obvious. For the second we notice that every intersection point
of a with � appears twice with a different sign.

We can now extend the product formula to arcs. We choose auxiliary arcs ˛i joining x0

to the initial point of �i , similarly auxiliary arcs ˇi joining x0 to the initial point
of �i , and replace �i and �i respectively by the closed curves y�i D ˛i�i˛

�1
iC1

and
y�i D ˇi�iˇ

�1
iC1

. From (56), since the product formula holds for the closed curves y�j
and y�i , it holds for the arcs �j and �i .

7.3 Bouquets in good position and the product formula

We shall need a special case of the product formula when we allow some repetitions in
the arcs.

7.3.1 Bouquets in good position

Definition 7.3.1 (flowers and bouquets) (i) A flower based at .x0; : : : ;xq/ is a
collection of arcs

S WD ..g0; : : : ;gq/; .˛0; : : : ; ˛q//

such that:
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� The gi are closed curves based at xi representing primitive elements in the
fundamental group,

� The ˛i are arcs, called connecting arcs, joining xi to xiC1 .

(ii) A bouquet is a triple
F D .S0;S1;V /;

where S1 and S0 are flowers based at .x0; : : : ;xq/ and .y0; : : : ;yq0/ respectively, and
V is an arc joining x0 and y0 .

(iii) We finally say that the bouquet F represents ..
0; : : : ; 
q/; .�0; : : : ; �q0//, where

i ; �j are elements of �1.S;x0/ defined by 
i D UigiU

�1
i and �j D Vj hj V �1

j , for
Ui WD ˛0 : : : ˛i�1 and Vj WD V: ˇ0 : : : ǰ�1 .

We shall also need bouquets which have especially neat configurations. Let

F D
�
..g0; : : : ;gq/; .˛0; : : : ; ˛q//; ..h0; : : : ; hq0/; .ˇ0; : : : ; ˇq0//;V

�
be a bouquet of flowers based respectively at .x0; : : : ;xq/ and .y0; : : : ;yq0/.

Definition 7.3.2 (good position) We say that:

(i) F is in a good position if

� the arcs ˛i and gi intersect transversely the arcs ǰ and hj at points different
from xi and yj for all i; j ,

� the closed curves ˛0 : : : ˛q and ˇ0 : : : ˇq0 are homotopic to zero.

(ii) F is in a homotopically good position if it is in a good position and if the following
intersection loops are homotopically trivial:

(57)

8̂<̂
:

cx.Ui :˛i ;Vj : ǰ / for x 2 ˛i \ ǰ ;

cx.Ui :˛i ;Vj :hj / for x 2 ˛i \ hj ;

cx.Ui :gi ;Vj : ǰ / for x 2 gi \ ǰ ;

where Ui WD ˛0 : : : ˛i�1 and Vj WD V :ˇ0 : : : ˇi�1 .

In Figure 5, we have represented two flowers, one in blue, the other in red, where the
connecting arcs ˛i and ˇi are dotted. In this figure all intersection loops corresponding
to the four yellow transverse intersection points are drawn in the orange contractible
region. Thus the bouquet is in a homotopically good position.
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Figure 5: Bouquet in good position

7.3.2 Product formula for bouquets Let F be a bouquet as above in good position.
Let us consider the closed curves

F
.p;n/
i

WD Ui :g
n
i : .˛i :g

p
iC1

˛iC1 : : :g
p
i�1
˛i�1/g

p�n
i U�1

i ;

G
.p;n/
i

WD Vi : h
n
i : .ˇi : h

p
iC1

ˇiC1 : : : h
p
i�1
ˇi�1/h

p�n
i V �1

i :

To simplify notation, let us write F .p/ WD F
.p;0/
0

and G .p/ WDG
.p;0/
0

. Let us denote

Hi;j WD fcx.Ui :gi ;Vj :hj / j x 2 gi\hj ; cx.Ui :gi ;Vj :hj / homotopically trivialg;

Ci;j WD fcx.Ui :gi ;Vj :hj / j x 2 gi\hj ; cx.Ui :gi ;Vj :hj / not homotopically trivialg:

Finally let

(58)
fi;j .F/ WD

X
�2Hi;j

Ii;j .�/; mi;j .F/ WD �.gi ; ǰ /;

ni;j .F/ WD �.˛i ; hj /; qi;j .F/ WD �.˛i ; ǰ /;

where we recall that for any � 2 �1.S/, we denote

Ii;j .�/ D
X

x2gi\hj
cx.Ui :gi ;Vj :hj /D�

�x :

We can rewrite the product formula.

Proposition 7.3.3 (product formula in good position) Assuming the bouquet F is
in a homotopically good position and using the above notation, we have the following
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equality in QŒC�:

(59) fF .p/;G .p/
g

D

X
06i6q
06j6q0

� X
16m06p
16m6p

fi;j .F/.F
.p;m0/
i G.p;m/j /C

X
16m6p

mi;j .F/.F
.p;m/
i G

.p;0/
j /

C

X
16m06p

ni;j .F/.F
.p;0/
i G

.p;m0/
j /C qi;j .F/.F

.p;0/
i G

.p;0/
j /

�

C

X
06i6q
06j6q0

X
�2Ci;j

Ii;j .�/

� X
16m06p
16m6p

.F
.p;m0/
i �G

.p;m/
j ��1/

�
:

Proof This will be just another way to write the product formula. We consider the
arcs �i defined by

�i WD

�
gj if i D j:.pC 1/C n with 1 6 n 6 p;

j̨ if i D j:.pC 1/:

Similarly, we consider the arcs �i defined by

�i WD

�
hj if i D j:.pC 1/C n with 1 6 n 6 p;

ǰ if i D j:.pC 1/:

Let us now finally consider the following arcs:�
ui WD Uj D ˛0: : : : j̨ if i D j:.pC 1/C n with 1 6 n 6 p;

vi WD Vj D V:ˇ0: : : : ǰ if i D j:.pC 1/C n with 1 6 n 6 p;

such that ui (resp. vi ) goes from x0 to xj (resp. x0 to yj ).

We now apply formulas (52) and (59) to the arcs �i , ui , �j , vj . Observe that using the
notation of Section 7.2, we have

F .p/
DA; G .p/

D B:

We now have to identify the term on the right-hand sides of formulas (52) and (59),
and in particular understand the arcs Ai , Bj , c

i;j
x that appear in the right-hand side of

formula (59). By definition,

Ai D ui�i�iC1 : : : �i�1u�1
i :

Thus if i D j .pC 1/Cm with 0 6 m 6 p ,

Ai D F
.p;m/

j ;
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and by a similar argument,
Bi DG

.p;m/
j :

By definition if x 2 �i \ �j ,

ci;j
x D cx.ui�i ; vj�j /:

We now observe that

(i) if i D j:.pC 1/, then ui�i D Uj :gj ,

(ii) if i D j:.pC 1/C n with 1 6 m 6 p , then ui�i D Uj : j̨ ,

and similarly

(i) if i D j:.pC 1/, then vi�i D Vj :hj ,

(ii) if i D j:.pC 1/C n with 1 6 m 6 p , then vi�i D Vj : ǰ .

Then the special product formula (59) is a consequence of the product formula (52);
indeed, thanks to the “homotopically good position” hypothesis, many of the intersection
loops c

i;j
x are homotopically trivial.

7.4 Bouquets and covering

Let � W S1! S0 be a finite covering. Let

F D
�
..g0; : : : ;gq/; .˛0; : : : ; ˛q//; ..h0; : : : ; hq0/; .ˇ0; : : : ; ˇq//;V

�
be a bouquet of flowers in S0 based respectively at .x0; : : : ;xq/ and .y0; : : : ;yq0/.
Let yx0 be a lift of x0 in S1 .

Definition 7.4.1 The bouquet of flowers in S1bF D �..yg0; : : : ; ygq/; .y̨0; : : : ; y̨q//; ..yh0; : : : ; yhq0/; . y̌0; : : : ; y̌q//; yV
�

is the lift of F through yx0 if

� all arcs yV , y̨i and y̌i are lifts of the arcs V , ˛i and ˇi ;

� yg0 is based at yx0 ;

� the closed curves ygi and yhj are the primitive lifts of the curves gi and hj , in
other words the primitive curves which are lifts of positive powers of the curves
gi and hj .

Observe that the lift of a bouquet in homotopically good position is itself a bouquet in
homotopically good position.

Geometry & Topology, Volume 22 (2018)



1306 François Labourie

7.5 Finding bouquets in good position

Let S be a closed hyperbolic surface and zS its universal cover. Let G D .
0; : : : ; 
q/

and F D .�0; : : : ; �q0/ be two tuples of primitive elements of �1.S/ such that for all i ,
.
i , 
iC1/ are pairwise coprime, as are .�i ; �iC1/ as well, where the index i lives
in Z=qZ and Z=q0Z respectively. Recall that we denote by z� the axis of the element
� 2 �1.S/.

Definition 7.5.1 We say G and F satisfy the good position hypothesis if there exists
a metric ball B in zS such that:

(i) For all i and j such that 
i and �j are coprime,

(60) z
i \ z�j � B:

(ii) For all � 2 �1.S/ n f1g, we have

(61) B \ �.B/D∅:

(iii) For all � 2 f
0; : : : ; 
q; �0; : : : ; �q0g and for all � 2 �1.S/ n h�i, we have

(62) B \ �.z�/D∅:

(iv) For all � 2 f
0; : : : ; 
q; �0; : : : ; �q0g and for all � 2 �1.S/ n h�i, we have

(63) z� \ �.z�/D∅:

In other words, the closed geodesic corresponding to � is embedded.

Then we have the following result.

Proposition 7.5.2 With the notation above, assume that G , F and �1.S/ satisfy
the good position hypothesis. Then there exist two bouquets FL and FR in S in a
homotopically good position, both representing .G;F /, such that furthermore,

1
2
.fi;j .FL/C fi;j .FR//D Œ


�
i 

C
i ; �

�
j �
C
j �;(64)

1
2
.ni;j .FL/C ni;j .FR//D Œ


�
i 

�
iC1; �

�
j �
C
j �;(65)

1
2
.mi;j .FL/Cmi;j .FR//D Œ


�
i 

C
i ; �

�
j �
�
jC1�;(66)

1
2
.qi;j .FL/C qi;j .FR//D Œ


�
i 

�
iC1; �

�
j �
�
jC1�:(67)

Proof Let G and F be as above and B be a metric ball in zS satisfying the assumptions
(60)–(62). We subdivide the proof into several steps. We denote by � the projection
from zS to S .
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Step 1 (construction of the bouquet in good position) Let z
i be the axis of 
i , let "
be some constant that we shall choose later to be very small, and let z�"j be a curve (with
constant geodesic curvature) at distance " from the axis z�j of �j . (Notice that we have
two such curves, for the moment we arbitrarily choose one of them.) We choose "
small enough that assertions (60) and (62) still hold when the z�j are replaced by z�"j .

For every i , choose xi 2 z
i \B so that

z
i \B � Œxi ; 

C
i Œ;

and similarly choose yj 2 z�
"
j so that

z�"i \B � Œyi ; �
C
i Œ";

where Œa; b�" denotes an arc joining a to b along a curve at a distance " to a geodesic;
see Figure 6.

�C
1

��2


�
2


�
1

��
1

�C
2


C
1


C
2

y1

y2 x2

x1

˛1
ˇ1

B

Figure 6: Finding a bouquet in good position

We now consider geodesic arcs z̨i , žj and zV in zS joining, respectively, xi to xiC1 ,
yj to yjC1 and x0 to y0 . We furthermore choose B (and ") so that all the arcs z̨i ,
z�"j , z
j and žj are transverse. In particular, if

(68)

˛i D �.z̨i/; ˇi D �. ži/; V D �. zV /;

zgi D Œxi ; 
 .xi/�; zhj D Œyj ; �j .yj /�";

gi D �.Œxi ; 
 .xi/�/; hj D �.Œyj ; �j .yj /�"/;

then

F D
�
..g0; : : : ;gq/; .˛0; : : : ; ˛q//; ..h0; : : : ; hq0/; .ˇ0; : : : ; ˇq0//;V

�
is in good position. Observe furthermore that F represents .G;F /.
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Step 2 (homotopically good position) Let us now prove that F is in a homotopically
good position. Let as usual

Ui D ˛0 : : : ˛i�1; Vj D V :ˇ0 : : : ǰ�1;(69)

zUi D z̨0 : : : z̨i�1; zVj D
zV : ž0 : : : žj�1:(70)

Then zUi and zVj are the respective lifts of Ui and Vj , starting respectively from x0

and y0 and ending respectively in xi and yj .

Observe that all the arcs z̨k , žl and zV lie in B . Thus so do the paths zUi and zVj .

Let Wi be equal to ˛i or gi . Let cW j be equal to ǰ or hj . From now on let us fix
x 2Wi \

cW j . Let us introduce some notation.

� Let a (resp. ya) be the path along Wi (resp. cW j ) from �.xi/ (resp. �.yj /) to x .

� Let b (resp. yb ) be the lift of a (resp. ya) in zS , starting from xi (resp. xj ).

� Let z and yz be the endpoints of b and yb , and let � 2 �1.S/ be such that zD �.yz/.

By construction, � is conjugate to the intersection loop cx.UiWi ;Uj
cW j /.

Let us now consider the various possibilities for the positions of z and yz .

(i) Wi D ˛i . Then b � z̨i and thus z belongs to B .

(ii) Wi D gi . Then z 2 Œxi ; 
i.xi/Œ� Œxi ; 

C
i Œ.

(iii) cW j D ǰ . Then, symmetrically, yz D �.z/ belongs to B .

(iv) cW jDhi . Then, symmetrically, bz 2 Œyj ; �
"
j .xj /Œ"� Œyi ; �

C
j Œ" , where the intervals

are subsets of z� "j .

Our goal is now to prove that � D 1 unless, possibly, Wi D gi and cW j D hj .

(a) Wi D ˛i and cW j D ǰ , so by (i) and (iii) above, both z and �.z/ belong to B ,
and thus by (61), � D 1.

(b) Wi D ˛i and cW j D hj , so by assertions (i) and (iv), �.z/ 2 z�"j and z 2 B . Thus
��1.z�"i /\B 6D∅. Then by hypothesis (62), � 2 h�j i. In particular z 2 B \ z�"j , so

(71) z 2 Œyj ; �j .yj /Œ":

Recall that from (iv),

(72) �.z/D yz 2 Œyj ; �i.yj /Œ":

Since �j is primitive and � 2 h�j i, we obtain from (71) and (72) that � D 1.

(c) A symmetric argument proves that when Wi D gi and cW j D ǰ , then � D 1.

This finishes the proof that F is in a homotopically good position.
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Step 3 (computation of the intersection numbers) Recall that for each (oriented)
axis z�j , we had two choices of curves at distance ". Let us denote by z�L

j (resp. z�R
j )

the curve on the left (resp. right) of z�j . Then let FL and FR be the corresponding
collections of arcs.

We have proved that both FL and FR are in homotopically good position. Let us now
compute the intersection numbers. We will do that step by step.

We shall repeat the following observation several times. Let g and h be two curves
in S which pass through a point x0 and intersect transversely at a finite number of
points x1; : : :xn . Let zg and zh be the lifts of these curves in zS which pass through a
point zx0 . Then the projection realizes a bijection between the set of those xi whose
intersection loop is trivial, and the intersection points of zg and zh.

In particular,

(73)
X

x2g\h
cx.g;h/D1

�.x/D
X

z2zg\zh

�.z/:

Proof of (64) If 
i and �j are coprime, then by formula (73) and since two geodesics
have at most one intersection point, we have that

fi;j D Œ

�
i 

C
i ; �

�
j �
C
j �:

If 
i and �j are not coprime, then since gi is embedded by assumption (63), we have

�.gi ; hj /D 0D Œ
�i 

C
i ; �

�
j �
C
j �:

Thus in both cases,

fi;j.FL/D fi;j.FR/D Œ
�i 

C
i ; �

�
j �
C
j �:

Proof of (65) Since all the corresponding intersection loops are trivial, we see that

�.gi ; ǰ /D �.z
i ; žj /:

We know that žj � B . To simplify, let us first consider the case when 
i and �k are
coprime for k D j ; j C 1. Then z
i \ z�

"
k
� B and thus

�
�
z
i ; ��

�
k ;yk �"

�
D 0:

It follows then that

�.gi ; ǰ /D �
�
z
i ; ��

�
j ;yj �[ žj [ �yjC1; �

�
jC1Œ

�
D Œ
�i 


C
i ; �

�
j �
�
jC1�:

We illustrate that situation in Figure 7, on the left.
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�Cj

��j

Ci

��jC1


�i

�C
jC1 yj

ž
jyjC1

�Cj D 

C

j

��j D 

�

j

��
jC1

�C
jC1 yj

yjC1

ž
j

z
R
j

z
L
j

Figure 7: Intersection computations: noncoprime elements (left) and coprime
elements (right)

Let us move to the remaining cases. The purpose of taking the “left and right perturba-
tions” of z�j is to take care of the situation when �j (or �jC1 ) and 
i are not coprime.
So let us assume now that z�j D z
i (the case when z�jC1 D z
i is symmetric).

Then in this case assume that ��
jC1

is on the left of z�j and z
i has the same orientation
as z�j (the other cases being symmetric). It then follows that

mi;j .FL/D �.z
i ; ž
L
j /D 0;(74)

mi;j .FR/D �.z
i ; ž
R
j /D 1:(75)

It follows that

1
2
.mi;j .FL/Cmi;j .FR//D 1

2
D Œ
�i 


C
i ; �

�
j �
�
jC1�:

We illustrate that case in Figure 7, on the right. This finishes the proof of Equation (65).

Proof of (66) and (67) The proof uses the same ideas as the previous ones.

8 Asymptotics

This section is the computational core of this article. Our goal is to compute asymptotic
product formulas; namely, understand the behavior of the special product formula when
the repetition in the arcs becomes infinite. This allows us to describe the limit of certain
Wilson loops as elementary functions; see Proposition 8.2.4.

The goal of this section is to obtain Corollary 8.3.2, which is an asymptotic product
formula for the Goldman bracket of elementary functions.

We first need some facts about vanishing sequences.
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8.1 Properties of vanishing sequences

In this subsection, we shall be given a vanishing sequence f�pgp2N of finite index
subgroups of �1.S/. We need some notation and definitions.

� Let ghp be the function defined on H.n;S/ by

ghp.�/ WD gh.�j�p
/:

� For any positive integer p and primitive element � in �0 , let �.p/ be the positive
integer such that

h��.p/i D h�i \�p:

We write �p D ��.p/ and we denote the associated closed geodesic by z�p .

Definition 8.1.1 (N –nice covering) Let 
 and � be primitive coprime elements of
�0D �1.S/. Let N be a positive integer. We say that �p is N –nice with respect to 

and � if the intersection loop cx.z
p; z�p/ is either trivial or satisfies

�p.cx.z
p; z�p//D 

k1 :��k2 ;

where k1 and k2 satisfy


 .p/�N > k1 >N and �.p/�N > k2 >N:

We need the following properties of vanishing sequences.

Proposition 8.1.2 Let f�pgp2N be a vanishing sequence of finite index subgroups
of �1.S/, and let fSpgp2N be the corresponding sequence of coverings such that
�1.Sp/D �p . Then:

(i) When p goes to infinity, the ghp converge uniformly to 0 on every compact of
H.n;S/.

(ii) For any primitive coprime elements 
 and � and for all N , there exists a p0

such that �p is N –nice with respect to 
 and � for every p > p0 .

(iii) Let G D .
0; : : : ; 
p/ and F D .�0; : : : ; �q/ be tuples of primitive elements of
�1.S/ n f1g such that the pairs .
i ; 
iC1/ and .�j ; �jC1/ are coprime. Then for
q large enough, G and F satisfy the good position hypothesis of Definition 7.5.1
as elements of �1.Sq/.

Proof of Proposition 8.1.2 The proposition will follow from the concatenation of
Propositions 8.1.3, 8.1.5 and 8.1.6, proved next. Proposition 8.1.4 is an intermediate
step in proving Proposition 8.1.6.
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We now fix a vanishing sequence f�pgp2N .

Remember that we identify primitive elements in �1.S/ and in any of its finite index
subgroups.

Proposition 8.1.3 When p goes to infinity, the ghp converge uniformly to 0 on every
compact of H.n;S/.

Proof For all positive numbers K and compact subsets C in H.n;S/, let us consider
the following subset of �1.S/:

ZK WD

�

 2 �1.S/ n fIdg

ˇ̌̌
9� 2 C such that

ˇ̌̌̌
�2.�.
 //

�1.�.
 //

ˇ̌̌̌
>K

�
:

By Proposition 3.3.4, the set of conjugacy classes in ZK is a finite set. Let Z0
K

be
a finite set in �1.S/ of representatives of the conjugacy classes of ZK . From the
definition of vanishing sequences, it follows that there exists a p0 such that for all
p > p0 , we have

Z0
K \�p D∅:

Since �p is normal, it follows that

ZK \�p D∅:

Then by definition, the girth of any representation in C restricted to �p is smaller
than K . Thus the family of functions ghp converges uniformly to zero on C when p

goes to 1.

The following proposition is well known.

Proposition 8.1.4 Let 
 be an element of �0 . Then there exists a p0 such that for all
p > p0 , the geodesics z
p are simple.

Proof Let
yA
 WD f� 2 �0 j �.z
 /\ z
 6D∅g � �0=h
 i:

Observe that yA
 is invariant under right multiplication by 
 and that its projection
in �0=h
 i is a finite set. Thus there exists a p0 such that for every p > p0 ,

A
 \�p � h
 i:

This implies that the projection of z
 in Sp is a simple closed geodesic; indeed the
existence of a self-intersection point implies the existence of an element � in �p such
that �.z
 /\ z
 6D∅.
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We finally need:

Proposition 8.1.5 Let 
 and � be two coprime primitive elements of �0 D �1.S/.
Let N be a positive integer. Then there exists a p0 such that for all p > p0 , the
group �p is N –nice with respect to 
 and �.

Proof We assume using the previous proposition that z
p and z�p are simple.

We shall prove the following assertion:

Step 1 For any N > 0, there exists a p0 such that for any p > p0 , for any integers k

such that 0< k 6 N and for any m,


 k�m
62 �p and 
m��k

62 �p:

This is an immediate application of Proposition 6.2.2. Let H WD f
 k j 0 < k 6 N g.
Since 
 and � are coprime, H \ h�i D∅. Using Proposition 6.2.2, we get that there
exists a p0 such that for all p > p0 ,

H \ .�p :h�i/D∅:

In other words, for all n and k such that 0< k 6 N ,


 k:�n
62 �p:

A symmetric argument concludes the proof.

We now prove:

Step 2 If x 2 
p \ �p , then there exist positive integers k1 and k2 such that the
intersection loop cp.x/ WD cx.z
p; z�p/ satisfies

�p.cp.x//D 

k2 :��k1 ;

where the equality is as homotopy classes in S0 D S .

We may as well assume (using the first step and a shift in p ) that the projection of the
axis of 
 and � are simple geodesics in S0 . Let also

Ap WD f� 2 �p j �.z�/\ z
 6D∅g � �p:

Observe that Ap is invariant under left multiplication by 
 and right multiplication
by �. Let yAp be the projection of Ap in h�pin�p=h�pi. Observe also that we have a
bijection from yAp to

Ip WD �p.z
 /\�p.z�/� Sp;

given by
h
 i :� :h�i ! �p.�.z�/\ z
 /:
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In particular, yAp is finite since Ip is finite. Moreover, if x in Ip comes in this
procedure from an element a in Ap , then a represents the intersection loop of x .

Since yA0 is finite, using the double coset separability property, there exists a p0 such
that for all p > p0 , we have

A0\�p � h
 ih�i:

Since Ap � A0 \ �p; it follows that the projection in S0 of any intersection loop
cx.
p; �p/ is homotopic to 
 n :��m with n and m positive integers.

Conclusion of the proof The proposition follows at once from Steps 1 and 2.

Proposition 8.1.6 Let G D .
0; : : : ; 
p/ and F D .�0; : : : ; �q/ be tuples of primitive
elements of �1.S/nf1g such that the pairs .
i ; 
iC1/ and .�j ; �jC1/ are coprime. Then
for m large enough, G and F satisfy the good position hypothesis of Definition 7.5.1
as elements of �1.Sm/.

Proof Let us check the four conditions of the good position hypothesis. Let G D

.
0; : : : ; 
p/ and F D .�0; : : : ; �q/ be primitive elements of �1.S/ n f1g such that
both .
i ; 
iC1/ and .�j ; �jC1/ are pairwise coprime.

(i) Let B � zS be a ball containing all the intersections z
i \ z�j when 
i and �j are
coprime. Thus condition (i) of the good position hypothesis is satisfied.

(ii) Let
F WD f� 2 �1.S/ j B \ �.B/ 6D∅g:

The set F is finite. Thus, by Proposition 6.2.2 applied to 
 D �D Id, there exists a p0

such that for all p > p0 , we have

F \�p D fIdg:

Thus condition (ii) of the good position hypothesis is satisfied.

(iii) Next, for every � 2 f
0; : : : ; 
p; �0; : : : ; �qg, the set

H� WD f� 2 �=h�i j �.z�/\B 6D∅g

is finite. Thus by Proposition 6.2.2 applied to 
 D Id, �D � , there exists a p0 such
that for all p > p0 , we have

H�h�i \�p D h�i:

Thus condition (iii) of the good position hypothesis is satisfied.

(iv) Finally, condition (iv) of the good position hypothesis is satisfied for p large
enough by Proposition 8.1.4.
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8.2 Asymptotic product formula for Wilson loops

Throughout this subsection, we shall be given a finite index subgroup �k of �0D�1.S/,
corresponding to a covering Sk ! S0 D S . Then, if � is a Hitchin representation
of �1.S/ in PSLn.R/, �k will denote the restriction of � to �k .

Let .
0; : : : ; 
q/ and .�0; : : : ; �q0/ be two tuples of primitive elements of �1.S/. We
assume that .
i ; 
iC1/ as well as .�j ; �jC1/ are all pairwise coprime.

Let then y
i and y�i be the representatives of 
i and �i in �k , and

(76) F .p/
D y


p
1
: : : y
p

q ; G.p/ D y�p
1
: : : y�

p
q0 :

We want to understand the asymptotics when p goes to infinity of the function

Bk
p .
0; : : : ; 
qI �0; : : : ; �q0/W H.n;Sk/!R

defined by

(77) Bk
p .
0; : : : ; 
qI �0; : : : ; �q0/ WD

W.fG .p/;F .p/gSk
/

W.G.p//W.F .p//
:

Let then

(78)
fi;j D Œ


�
i 

C
i ; �

�
j �
C
j �; ni;j D Œ


�
i 

�
iC1; �

�
j �
C
j �;

mi;j D Œ

�
i 

C
i ; �

�
j �
�
jC1�; qi;j D Œ


�
i 

�
iC1; �

�
j �
�
jC1�:

The next subsection is devoted to the proof of the following proposition.

Proposition 8.2.1 (asymptotic product formula) For every compact set U in H.n;S/,
for every positive integer N and for k large enough, we have

(79) Bk
p .
0; : : : ; 
q; �0; : : : ; �q0/.�/

D p2Ri;j T.
i ; �j /CK� .ghk.�/Cgh0.�/
N /

C

X
06i6q
06j6q0

 
.p�1/2fi;j T.
i ; �j /C.p�1/

�
T.
iC1; 
i ; �j /

T.
i ; 
iC1/
.ni;jCfiC1;j /

C
T.
i ; �jC1; �j /

T.�j ; �jC1/
.mi;jCfi;jC1/

�
C

T.
iC1; 
i ; �jC1; �j /

T.
iC1; 
i/T.�j ; �jC1/
.qi;jCni;jC1CmiC1;jCfiC1;jC1/

!
for every � in U , where
� K is bounded on U ;
� ghk.�/D gh.�j

�k
/, where gh.�/ is the girth of � .see Definition 3.3.3/;

� the integers fi;j , mi;j , ni;j and qi;j are defined as in (78);
� Ri;j is an integer that only depends on 
i and �j .
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We will use bouquets to express these asymptotics using our product formula for
bouquets.

8.2.1 Preliminary asymptotics Let � be a representation of �0D�1.S/. For any k ,
let �k WD �j�k

. Let 
0; : : : ; 
q and �0; : : : ; �q0 be primitive elements of �0 , and let
y
0; : : : ; y
q and y�0; : : : ; y�q0 be the corresponding elements in �k given by

(80) y
i D 

Qi

i and y�j D �
Pj
j ;

where Qi and Pj are positive integers. In this proof, K;K0;K1; : : : will be the generic
symbol for a function of � bounded by a continuous function that only depends on
the relative position of the eigenvectors of �.
i/ and �.�i/ and does not depend on k .
Let us define

ygi D �k.y
i/; yhi D �k.y�i/;(81)

gi D �.
i/; hi D �.�i/;(82)

yF
.p;m/
i

WD ygm
i yg

p
iC1

: : : yg
p
i�1
yg

p�m
i ;(83)

yG
.p;m/
i

WD yhm
i
yh

p
iC1

: : : yh
p
i�1
yh

p�m
i ;(84)

F
.p;m/
i

WD gm
i g

p
iC1

: : : g
p
i�1

g
p�m
i ;(85)

G
.p;m/
i

WD hm
i h

p
iC1

: : : h
p
i�1

h
p�m
i :(86)

In this subsection we prove two propositions.

Proposition 8.2.2 For all positive integers p , for all integers m with 0<m< p , and
for any � in a compact set U of H.n;S/, we have

yF
.p;0/
i

tr.yF.p;0/i /
D
Pgi Pgi�1

tr.Pgi Pgi�1/
CK1 : ghk.�/

p;(87)

yF
.p;p/
i

tr.yF.p;0/i /
D
PgiC1 Pgi

tr.Pgi PgiC1/
CK2 : ghk.�/

p;(88)

yF
.p;m/
i

tr.yF.p;0/i /
D Pgi CK3 : ghk.�/

inf.m;p�m/;(89)

where the Ki are locally bounded functions of � .

We recall that Pg is the projector on the eigendirection of the highest eigenvalue of g .

Proof Observe that for all m,

tr.yF.p;m/i /D tr.yF.p;0/i /:

Geometry & Topology, Volume 22 (2018)



Goldman algebra, opers and the swapping algebra 1317

We use Corollary 4.1.3 and get that for all p ,

yF
.p;0/
i

tr.yF.p;0/i /
D
Pgi Pgi�1

tr.Pgi Pgi�1/
CK3 : ghk.�/

p;(90)

yF
.p;p/
i

tr.yF.p;0/i /
D
PgiC1 Pgi

tr.Pgi PgiC1/
CK4 : ghk.�/

p;(91)

yF
.p;m/
i

tr.yF.p;m/i /
D Pgi CK5 : ghk.�/

inf.m;p�m/ for m 62 f0;pg:(92)

We use the same notation as in the beginning of this subsection.

Proposition 8.2.3 Let us fix i and j . Let

� fN1; : : : ;Nr g be a sequence of pairwise distinct integers such that Nl > N and
Qj �Nl > N ,

� fM1; : : : ;Mr g be a sequence of pairwise distinct integers such that Ml > N

and Pj �Ml > N .

Then for any � in a compact set U in H.n;S/, and for any positive integers p , m

and m0 , we have

(93)
X

16l6r

g
�Nl

i
yFi
.p;m/

g
Nl

i :h
�Ml

j
yGj
.p;m0/

g
Ml

i

tr.yF.p;0/i / tr.yG.p;0/j /

D r : Pgi
Phj CK� gh0.�/

MCN
C r gh0.�/

Np;

where K is a locally bounded function of � and

M D inf.Qi.m� 1/;Pj .m
0
� 1/;Qip�Qm0;Mj p�m/ :

Proof In this proof, Ki will as usual denote a locally bounded function of � . For the
purpose of this proof, we define

zF
.p/
i D yg

p
iC1

: : : yg
p
i�1

and zG
.p/
j D yh

p
jC1

: : : yh
p
j�1

:

By definition, if m > 1, m0 > 1, n<Qi and r < Pj ,

g�n
i
yF
.p;m/
i gn

i D g
Qi m�n
i

zF
.p/
i g

Qi .p�m/Cn
i ;

h�r
j
yG
.p;m0/
j hr

j D h
Pjm0�r

j
zG
.p/
j h

Pj .p�m0/Cr

i :

Observe also that

tr.yF.p;0/i /D tr.yF.p;m/i /; tr.yG.p;0/j /D tr.yG.p;m
0/

j /:

Geometry & Topology, Volume 22 (2018)



1318 François Labourie

Thus, using the asymptotics of Corollary 4.1.3, we get that

g
�Nl

i
yF
.p;m/
i g

Nl

i

tr.yF.p;0/i /
D Pgi CK3 : gh0.�/

Rl ;

where Al D inf.Qim�Nl ;Qi.p�m/CNl ;Np/, and we have observed that Qk > N

for all k . Similarly,

h
�Ml

j
yG
.p;m0/
j h

Ml

i

tr.yG.p;0/j /
D Phi CK4 : ghk.�/

M ;

where Bl D inf.Pj m0�Nl ;Pj .p�m0/CNl ;Np/. Thus

X
16l6r

g
�Nl

i
yF
.p;m/
i g

Nl

i :h
�Ml

j
yG
.p;m0/
j h

Ml

i

tr.yF.p;0/i / tr.yG.p;0/j /
D r Pgi

Phj CK0�

� X
16l6r

gh0.�/
Rl

�
;

where

Rl D inf.Qim�Nl ;Qi.p�m/CNl ;Pj m0�Ml ;Pj .p�m0/CMl ;Np//:

To conclude the proof, we will show that

(94)
X

16l6r

gh0.�/
Rl 6 4 gh0.�/

NCM

1� gh0.�/
C r gh0.�/Np:

Let
AD fl jRl DQim�Nlg; B D fl jRl DQip�QmCNlg;

F D fl jRl D Pj m0�Mlg; DD fl jRl D Pj p�Pm0CMlg:

By definition,X
l2A

gh0.�/
Rl D

X
l2A

gh0.�/
Qm�Nl 6

X
n>Qi .m�1/CN

gh0.�/
n 6 gh0.�/

NCQi .m�1/

1� gh0.�/
:

Symmetric arguments show thatX
l2B

gh0.�/
Rl 6 gh0.�/

NCQi .p�m/

1� gh0.�/
;

X
l2F

gh0.�/
Rl 6 gh0.�/

NCPj .m
0�1/

1� gh0.�/
;

X
l2D

gh0.�/
Rl 6 gh0.�/

NCPj .p�m0/

1� gh0.�/
:

Inequality (94), and thus the result, follow.
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8.2.2 Asymptotics and bouquets We use the same notation as in the beginning of
this section: let G D .
0; : : : ; 
q/ and F D .�0; : : : ; �q0/ be two tuples of primitive
elements of �1.S/. We assume that the pairs .
i ; 
iC1/ and .�j ; �jC1/ are all coprime.
We shall use the notation of Section 7.3.2.

Proposition 8.2.4 Assume that G , F and �k satisfy the good position hypothesis.
Assume also that �k is N –nice for all pairs .
i ; �j /. Let C be a bouquet in a good
position representing G and F .

Then for every compact set U in H.n;S/, we have that for every � in U ,

Bk
p .
0; : : : ; 
q; �0; : : : ; �q0/.�/DX

06i6q
06j6q0

 
.p�1/2fi;j .F/T.
i ; �j /C.p�1/

�
T.
iC1; 
i ; �j /

T.
i ; 
iC1/
.ni;j .F/CfiC1;j .F//

C
T.
i ; �jC1; �j /

T.�j ; �jC1/
.mi;j .F/Cfi;jC1.F//

�
C

T.
iC1; 
i ; �jC1; �j /

T.
iC1; 
i/T.�j ; �jC1/
.qi;j .F/Cni;jC1.F/CmiC1;j .F/CfiC1;jC1.F//

!

Cp2

�X
i;j

Ii;j .1/ ].Ci;j /T.
i ; �j /

�
CK� .ghk.�/Cgh0.�/

N /;

where
� K is bounded by a continuous function that only depends on the relative position

of the eigenvectors of �.
i/ and �.�j /;
� gh.�/ is the girth of � as defined in Definition 3.3.3, and ghk.�/D gh.�j

�k
/;

� the integers fi;j .F/, mi;j .F/, ni;j .F/ and qi;j .F/ are as defined in (58).

Proof of Proposition 8.2.4 We now recall the product formula of (59), which we
write using the notation of Section 8.2.1 as

(95) Bp D B0
p C

X
�2Ci;j

Ii;j .�/B
�
p;

where

B0
p WD

1

tr.yF.p;0//: tr.yG.p;0//

�

X
06i6q
06j6q0

� X
16m06p
16m6p

fi;j .F/ tr.yF.p;m
0/

i
yG
.p;m/
j /C

X
16m6p

mi;j .F/ tr.yF.p;m/i
yG
.p;0/
j /

C

X
16m06p

ni;j .F/ tr.yF.p;0/i
yG
.p;m0/
j /C qi;j .F/ tr.yF.p;0/i

yG
.p;0/
j /

�
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and

B�p WD
1

tr.yF.p;0//: tr.yG.p;0//

X
16m06p
16m6p

tr
�
yF
.p;m0/
i �.�/yG

.p;m/
j �.�/�1

�
:

Proposition 8.2.4 will follow from the next two propositions, which treat the term B0
p

and the term involving the B
�
p separately.

Proposition 8.2.5 We have

B0
p.
0; : : : ; 
q; �0; : : : ; �q0/DX

06i6q
06j6q0

 
.p�1/2fi;j .F/T.
i ; �j /C.p�1/

�
T.
iC1; 
i ; �j /

T.
i ; 
iC1/
.ni;j .F/CfiC1;j .F//

C
T.
i ; �jC1; �j /

T.�j ; �jC1/
.mi;j .F/Cfi;jC1.F//

�
C

T.
iC1; 
i ; �jC1; �j /

T.
iC1; 
i/T.�j ; �jC1/
.qi;j .F/Cni;jC1.F/CmiC1;j .F/CfiC1;jC1.F//

!
CK� ghk.�/;

where K only depends on the position of the eigenvectors of �.
i/ and �.�j /.

Proof Using the estimates for yF.p;m/i and yG.p;m/i from Proposition 8.2.2 we get

B0
p DX

i;j

 
fi:j .F/.p�1/2 tr.Pgi : Phj /

Cfi:j .F/
�

tr.Pgi : Pgi�1: Phj : Phj�1/

tr.Pgi : Pgi�1/ tr.Phj : Phj�1/
C.p�1/

�
tr.Pgi : Phj : Phj�1/

tr.Phj : Phj�1/
C

tr.Phj : Pgi : Pgi�1/

tr.Pgi : Pgi�1/

��
Cmi:j .F/

�
.p�1/

tr.Pgi : PhjC1: Phj /

tr.Phj : PhjC1/
C

tr.Pgi : Pgi�1: PhjC1: Phj /

tr.Pgi : Pgi�1/ tr.PhjC1: Phj /

�
Cni:j .F/

�
.p�1/

tr.PgiC1: Pgi : Phj /

tr.PgiC1: Pgi/
C

tr.PgiC1: Pgi : Phj : Phj�1/

tr.Pgi : Pgi�1/ tr.PhjC1: Phj /

�

Cqi:j .F/
tr.PgiC1: Pgi : PhjC1: Phj /

tr.PgiC1: Pgi/ tr.PhjC1: Phj /

!
CK� ghk.�/;

where 0 6 i 6 q and 0 6 j 6 q0 as before. Using the definition of multifractions, and
after reordering terms, we obtain the asymptotics of the proposition.
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Finally we need to understand the last term involving the sum of the terms B
�
p .

Proposition 8.2.6 We have

(96)
X
i;j

X
�2Ci;j

Ii;j .�/B
�
p D p2

�X
i;j

Ii;j .1/ ].Ci;j / tr.Pgi
Phj /

�
CK� gh.�0/

N ;

where K only depends on the position of the eigenvectors of �.
i/ and �.�j /.

Proof We use again the notation set up in the beginning of Section 8.2.1. By definition
of an N –nice covering, any element � 2 Ci;j can be written as

� D 

N�
i �

M�

j ;

where N <N� <Qi �N and N <M� < Pj �N . Since 
m
i 62 �k for 0<m<Qj ,

we obtain that �!N� and �!M� are bijections.

Moreover, since the bouquet C is a lift of a bouquet C 0 in S0 ,

Ii;j .�/D Ii;j .1/:

It follows that for any i and j ,

(97)
X
�2Ci;j

Ii;j .�/B
�
p D Ii;j .1/

X
16m06p
16m6p

tr.Bm;m0;i;j
p /

tr.yF.p;0//: tr.yG.p;0//
;

where

Bm;m0;i;j
p D

X
�2Ci;j

g
�N�
i
yF
.p;m/
i g

N�
i :h

�M�

j
yG
.p;m0/
j h

M�

j :

We now apply Proposition 8.2.3 to get

(98)
B

m;m0;i;j
p

tr.yF.p;0//: tr.yG.p;0//

D Ii;j .1/ ].Ci;j /.Pgi
Phj CK0 gh0.�/

NCM.m;m0/
CK0 gh0.�/

Np/;

where M.m;m0/D inf.Qi.p�m/;Qi.m�1/;Pj .p�m0/;Pj .m
0�1//. Observe that

for any � < 1, X
16m06p
16m6p

�M.m;m0/ 6 4
X
n60

�n
D

4

1��
:
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Thus (97) and (98) together yield

(99)
X
i;j

X
�2Ci;j

Ii;j .�/B
�
p D p2

�X
i;j

Ii;j .1/ ].Ci ; j /: tr.Pgi : Phj /

�
CK gh0.�/

N ;

where we have used that p2 gh0.�/
Np 6 K5 gh0.�/

N for some constant K5 only
depending on a compact neighborhood of � . The result finally follows from the fact
that tr.Pgi : Phj /D T.
i ; �j /.

Proof of Proposition 8.2.1 Since G , F and �k satisfy the good position hypothesis,
by Proposition 7.5.2 there exist two bouquets FL and FR in S in a homotopically
good position, both representing G and F and such that furthermore,

1
2
.fi;j .FL/C fi;j .FR//D fi;j ;

1
2
.ni;j .FL/C ni;j .FR//D ni;j ;

1
2
.mi;j .FL/Cmi;j .FR//Dmi;j ;

1
2
.qi;j .FL/C qi;j .FR//D qi;j :

Thus applying Proposition 8.2.4 twice, once for FL and once for FR , and taking the
half sum, we obtain the final result.

8.3 Asymptotics of brackets of multifractions

The setting of this subsection is the same as the previous one: we shall be given a finite
index subgroup �k of �0D �1.S/, corresponding to a covering Sk! S0D S . Then,
if � is a Hitchin representation of �1.S/ in PSLn.R/, �k will denote the restriction
of � to �k .

Let G D .
0; : : : ; 
q/ and F D .�0; : : : ; �q0/ be two tuples of primitive elements
of �1.S/. We assume that the .
i ; 
iC1/ as well as the .�j ; �jC1/ are pairwise
coprime. Observe that there exists an M 2N such that for all i and j , both y
 WD 
M

i

and y� WD �M
j belong to �k .

Then let
Wp.
1; : : : ; 
q/ WD

W.y

p
1
: : : y


p
q /Qq

iD1
W.y


p
i /
;

so that

(100) TD lim
p!1

Wp:

Now let

(101) Ap WD
fWp.
0; : : : ; 
q/;Wp.�0; : : : ; �q0/gS

Wp.
0; : : : ; 
q/:Wp.�0; : : : ; �q0/
:
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Let F D .
1; : : : ; 
q/ and G D .�1; : : : ; �q0/.

Proposition 8.3.1 We have

(102) Ap D Bp.F;G/�
X

i

Bp.
i ;G/�
X

j

Bp.F; �j /C
X
i;j

Bp.
i ; �j /:

From this proposition and Proposition 8.2.4, we will deduce the following important
corollary.

Corollary 8.3.2 Assume that G and F and �0 satisfy the good position hypothesis.
Let k be a positive integer such that �k is N –nice for all pairs .
i ; �j /. Then

fT.
0; : : : 
q/;T.�0; : : : �q0/gSk

T.
0; : : : 
q/:T.�0; : : : �q0/

D

X
i;j

�
.qi;j C ni;jC1CmiC1;j C fiC1;jC1/

T.
iC1
i ; �jC1; �j /

T.
iC1; 
i/T.�j ; �jC1/

� .ni;j C fiC1;j /
T.
iC1
i ; �j /

T.
iC1; 
i/
� .mi;j C fi;jC1/

T.
i ; �jC1; �j /

T.�j ; �jC1/

C fi;j :T.
i ; �j /

�
CK� .ghk.�/C gh0.�/

N /;

where K is bounded by a continuous function that only depends on the relative position
of the eigenvectors of �.
i/ and �.�i/.

We first prove the corollary from the proposition, then prove the proposition.

Proof of Corollary 8.3.2 We study one by one the terms in the right-hand side of the
formula of Proposition 8.3.1 using the asymptotics given by Proposition 8.2.4. Let
"D ghk.�/C gh0.�/

N . First,

Bp.
0; : : : ; 
q; �0; : : : ; �q0/

D

X
i;j

 �
p2Ri;jC.p�1/2fi;j

�
T.
i ; �j /

C.p�1/

�
T.
iC1; 
i ; �j /

T.
i ; 
iC1/
.ni;jCfiC1;j /C

T.
i ; �jC1; �j /

T.�j ; �jC1/
.mi;jCfi;jC1/

�
C

T.
iC1; 
i ; �jC1; �j /

T.
iC1; 
i/T.�j ; �jC1/
.qi;jCni;jC1CmiC1;jCfiC1;jC1/

!
CK":
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We now consider the term Bp.
i ; �0; : : : ; �q0/. Applying the previous formula, using
the fact that in this case qi;j D ni;j D 0, we get

Bp.
i ; �0; : : : ; �q0/

D

X
06j6q0

 �
p2Ri;j C .p� 1/2fi;j

�
T.
i ; �j /

C .p� 1/

�
T.
i ; �j /.fi;j /C

T.
i ; �jC1; �j /

T.�j ; �jC1/
.mi;j C fi;jC1/

�
C

T.
i ; �jC1; �j /

T.�j ; �jC1/
.mi;j C fi;jC1/

!
CK":

Similarly,

Bp.
0; : : : ; 
q; �j /

D

X
06i6q

 
.p2Ri;j C .p� 1/2fi;j /T.
i ; �j /

C .p� 1/

�
T.
iC1; 
i ; �j /

T.
i ; 
iC1/
.ni;j C fiC1;j /CT.
i ; �j /.fi;j /

�
C

T.
iC1; 
i ; �j /

T.
iC1; 
i/
.ni;j C fiC1;j /

!
CK":

Finally,

(103) Bp.
i ; �j /D T.
i ; �j /
�
p2Ri;j C .p� 1/2fi;j C 2.p� 1/C 1

�
CK":

Thus, using Proposition 8.3.1, regrouping the terms that appear in Ap , we obtain that

� the coefficient of T.
i ; �j / is fi;j ,

� the coefficient of T.
iC1; 
i ; �j /=T.
i ; 
iC1/ is �.ni;j C fiC1;j /,

� the coefficient of T.
i ; �jC1; �j /=T.�j ; �jC1/ is �.mi;j C fi;jC1/,

� the coefficient of
T.
iC1; 
i ; �jC1; �j /

T.
iC1; 
i/T.�j ; �jC1/

is qi;j C ni;jC1CmiC1;j C fiC1;jC1 .

Finally, we conclude the proof of the corollary by using (100).
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Proof of Proposition 8.3.1 First we use the “logarithmic derivative formula” for the
Poisson bracket,

ff :g; hgS

fgh
D
ff; hgS

f h
C
fg; hgS

gh
:

We obtain

(104) Ap.F;G/D
fW.


p
0
: : : 


p
q /;W.�

p
0
: : : �

p
q0/gS

W.

p
0
: : : 


p
q /W.�

p
0
: : : �

p
q0/

�

X
i

fW.

p
i /;W.�

p
0
: : : �

p
q0/gS

W.

p
i /W.�

p
0
: : : �

p
q0/

�

X
j

fW.

p
0
: : : 


p
q /;W.�j /gS

W.

p
0
: : : 


p
q /W.�j /

C

X
i;j

fW.

p
i /;W.�

p
j /gS

W.

p
i /W.�

p
j /

:

Then, using the definition of (49) expressing the Goldman Poisson bracket of Wilson
loops in terms of the bracket of loops in the Goldman algebra, we get

fW.

p
0
: : : 


p
q /;W.�

p
0
: : : �

p
q0/gS

W.

p
0
: : : 


p
q /W.�

p
0
: : : �

p
q0/

D Bp.F;G/�
1

n
�.


p
0
: : : 
p

q ; �
p
0
: : : �

p
q0/:

The proposition now follows from the fact that

�.a :b; c/D �.a; c/C �.b; c/;

and thus

(105) �.

p
0
: : : 
p

q ; �
p
0
: : : �

p
q0/

D

X
i

�.
i ; �
p
0
: : : �

p
q0/C

X
j

�.

p
0
: : : 
p

q ; �j /�
X
i;j

�.

p
i ; �

p
j /;

which completes the proof.

9 The Goldman and swapping algebras: proofs of the main
results

We finally prove the results stated in Section 6. In the course of the proof, we prove
the generalized Wolpert formula of Theorem 6.1.2.

9.1 Poisson brackets of elementary functions and proof of Theorem 6.2.4

By Corollary 4.2.3, the algebra B.P/ of multifractions is generated by elementary
functions. Thus it is enough to prove the theorem when b0 and b1 are elementary
functions.
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Let G D .
0; : : : ; 
p/ and F D .�0; : : : �q0/ be primitive elements of �1.S/. We
assume that for all i and j , the pairs .
i ; 
iC1/ and .�j ; �jC1/ are coprime.

Let b0 D T.
0; : : : ; 
q/ and b1 D T.�0; : : : ; �
0
q/.

By Proposition 8.1.6, we can assume that G and F satisfy the good position hypothesis
for Sk when k > k0 for some n0 . Let N be a positive integer; we can further
assume that Sk 7! S0 is N –nice for all pairs .
i ; �j / by Proposition 8.1.5 for k > k0

and k0 large enough.

Recall also, using the notation of Proposition 4.3.1, that

(106)

fi;j D Œ

�
i 

C
i ; �

�
j �
C
j � D ai;j ;

qi;j C ni;jC1CmiC1;j C fiC1;jC1 D Œ

�
i 

C

iC1
; ��j �

C

jC1
�D bi;j ;

fi;jC1Cmi;j D Œ

�
i 

C
i ; �

�
j �
C

jC1
� D ci;j ;

fiC1;j C ni;j D Œ

�
i 

C

iC1
; ��j �

C
j � D di;j :

Thus Corollary 8.3.2 and the computation of the swapping bracket in Proposition 4.3.1
yield

(107)
fT.
0; : : : 
q/;T.�0; : : : �q0/gSk

T.
0; : : : 
q/: T.�0; : : : �q0/

D
fT.
0; : : : 
q/;T.�0; : : : �q0/gW

T.
0; : : : 
q/: T.�0; : : : �q0/
CK� .ghk.�/C gh.�/N /;

where K is a bounded function that only depends on the eigenvectors of �.
i/

and �.�j /. In particular, there exists a real number K0 and a compact neighborhood C

of �0 such that the previous equality holds with K 6 K0 and � in C .

Let " be a positive real number. By the last assertion in Proposition 8.1.3, we may
furthermore choose k0 such that if k > k0 ,

ghk.�/6 "

2K0
:

Since supfgh.�/ j � 2 C g< 1, we may further choose N — and thus k0 — such that
for all � in C ,

gh.�/N 6 "

2K0
:

It follows that for all � in C and all k > k0 , we have

(108)
ˇ̌̌̌
fT.
0; : : : 
q/;T.�0; : : : �q0/gSk

T.
0; : : : 
q/: T.�0; : : : �q0/
�
fT.
0; : : : 
q/;T.�0; : : : �q0/gW

T.
0; : : : 
q/: T.�0; : : : �q0/

ˇ̌̌̌
6 ":

This concludes the proof of Theorem 6.2.4.
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9.2 Poisson brackets of length functions

We shall first prove a result of independent interest, namely the computation of the
value of the Goldman bracket of two length functions of geodesics having exactly one
intersection point.

Given a Hitchin representation � in PSLn.R/, or alternatively a rank n cross ratio b� ,
the period — or length — of a conjugacy class 
 in �1.S/ is given by

(109) `
 .�/D log
�
�max.�.
 //

�min.�.
 //

�
D log

�
b�.


C; 
�; 
 .y/;y/
�

for any y 2 @1�1.S/ different from 
C and 
� , where �max.A/ and �min.A/ denote,
respectively, the eigenvalues of greatest and smallest modulus of the endomorphism A.

9.2.1 A generalized Wolpert formula We have the following extension of the
Wolpert formula for the bracket of length functions.

Theorem 9.2.1 (generalized Wolpert formula) Let 
 and � be two closed geodesics
with a unique intersection point. Then the Goldman bracket of the two length functions
`
 and `� , seen as functions on the Hitchin component, is

(110) f`
 ; `�gS D �.
; �/
X

";"02f�1;1g

""0: T.

"; �"

0

/;

where we recall that
T.�; �/.�/D b�.�

C; �C; ��; ��/:

Proof Let us first remark that

(111) `
 D lim
p!C1

1

p
log
�
tr.�.
p//tr.�.
�p//

�
:

Thus, assuming that 
 and � have a unique intersection point x whose intersection
number is �.
; �/, the product formula (59) gives us, for "i 2 f�1; 1g,

(112) f
 ":p; �"
0:p
g D ""0:p2:�.
; �/
 ":p :�"

0:p:

It follows that

(113)
˚
log.W.
p/W.
�p//; log.W.�p/W.��p//

	
S

D

X
";"02f�1;1g

""0:�.
; �/
fW.
 ":p/;W.�"

0:p/gS

W.
 ":p/:W.�"
0:p/

D

X
";"02f�1;1g

p2:""0:�.
; �/
W.
 ":p :�"

0:p/

W.
 ":p/:W.�"
0:p/
C

1

n
�.
; �/

X
";"02f�1;1g

""0:
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Thus

(114) lim
p!1

n
1

p
log.W.
p/W.
�p//;

1

p
log.W.�p/W.��p//

o
S

D

X
";"02f�1;1g

""0:�.
; �/ lim
p!1

W.
 ":p :�"
0:p/

W.
 ":p/:W.�"
0:p/

D

X
";"02f�1;1g

""0:�.
; �/T.

"; �"

0

/:

This concludes the proof of the theorem.

9.2.2 Proof of Theorem 6.1.1 Recall that we want to prove the following result.

Theorem 9.2.2 Let 
 and � be two geodesics with at most one intersection point.
Then we have

lim
n!1

IS .fỳ
n.y/; ỳ�n.y/g/D 1
4
f`
 ; `�gS :

Proof This will be a consequence of the generalized Wolpert formula. By definition,

ỳ

 .y/D

1
2

log
�
b.
C; 
�; 
 .y/; 
�1.y//

�
:

Thus

(115) fỳ˛.y/; ỳˇ.y/g D
1

4

X
u;u02f�1;1g
v;v02f�1;1g

u :u0
˚
.˛v; ˛�uv.y//; .ˇv

0

; ˇ�u0v0.y//
	

.˛v; ˛�uv.y//:.ˇv
0
; ˇ�u0v0.y//

:

But

(116) f.˛v; ˛�uv.y//; .ˇv
0

; ˇ�u0v0.y//g

D Œ.˛v˛�uv.y//; .ˇv
0

ˇ�u0v0.y//�˛vˇ�u0v0.y/:ˇv
0

˛�uv.y/:

We remark that when n is large enough, for all u; v;u0; v0 we have

(117)

Œ.
 v
 v:n.y//; .�v
0

��u0v0:n.y//�D 0;

Œ.
 v
�uv:n.y//; .�v
0

�v
0:n.y//�D 0;

Œ.
 v
�v:n.y//; .�v
0

��v
0:n.y//�D vv0Œ
C
�; �C���:

Combining the remark in Equation (117) with (116) and (115), we have that for n large
enough,

(118) fỳ
n.y/; ỳ�n.y/g

D
Œ
C
�; �C���

4

X
v;v02f�1;1g

v :v0

 v��v

0:n.y/:�v
0


�v.y/

.
 v
�v:n.y//:.�v
0
��v

0n.y//
:
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Thus, taking the limit when n goes to 1 yields

(119) lim
n!1

ISfỳ
n.y/; ỳ�n.y/g D
Œ
C
�; �C���

4

X
v;v02f�1;1g

v :v0

 v��v

0

:�v
0


�v


 v
�v :�v
0
��v

0

D
Œ
C
�; �C���

4

X
v;v02f�1;1g

v :v0: T.

v; �v

0

/:

The result now follows from this last equation and the generalized Wolpert formula
of (110).

10 Drinfel’d–Sokolov reduction

The purpose of this section is to prove Theorem 10.7.2, which explains the relation of
the multifraction algebra with the Poisson structure on PSLn.R/–opers.

We spend the first three subsections explaining the Poisson structure on PSLn.R/–
opers using the Drinfel’d–Sokolov reduction of the Poisson structure on connections
on the circle. Although this is a classical construction (see [5; 23; 12] and the original
reference [6]) we take some time explaining the main steps in differential geometric
terms, expanding the sketch of the construction given by Graeme Segal [29].

Finally, we relate the swapping algebra and this Poisson structure in Theorem 10.7.2.

10.1 Opers and nonslipping connections

In this subsection, we recall the definition PSLn.R/–opers and show that they can be
interpreted as an equivalence class of “nonslipping” connections on a bundle with a
flag structure.

10.1.1 Opers

Definition 10.1.1 (opers) A PSLn.R/–oper is an nth –order linear differential opera-
tor on the circle T DR=Z of the form

(120) DW  7!
dn 

dtn
C q2

dn�2 

dtn�2
C � � �C qn ;

where the qi are functions.

Observe that this definition of an oper requires the choice of a parametrization of the
circle. Otherwise the qi would instead be i th –order differentials.
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We denote by Xn.T / the space of PSLn.R/–opers on T . Every oper has a natural
holonomy, which reflects the fact that the solutions may not be periodic. We consider
the space Xn.T /0 of opers with trivial holonomy; that is, those opers D for which all
solutions of D D 0 are periodic. A Poisson structure on Xn.T /, whose symplectic
leaves are opers with the same holonomy, was discovered in the context of integrable
systems and Korteweg–de Vries equations; for a precise account of the history, see
Dickey [5]. Later, Drinfel’d and Sokolov [6] interpreted that structure in a more
differential geometric way; we shall now retrace the steps of that construction.

10.1.2 Nonslipping connections Let K be the line bundle of
�
�

1
2

�
–densities over T,

so that TT DK2 , and let P WDJ n�1.Kn�1/ be the rank n vector bundle of .n�1/–jets
of sections of the bundles of

�
�

1
2
.n�1/

�
–densities.

Let Fp be the vector subbundle of P defined by

Fp WD fj
n�1� j j n�p�1� D 0g:

The family fFpg16p6n is a filtration of P : we have Fn D P , Fp�1 � Fp and
dim.Fp/D p . Observe that

Wp WD Fp=Fp�1 D .T
�T /n�p

˝Kn�1
D .K�2/n�p

˝Kn�1
DK2p�n�1:

In particular, Wn�p�1 DW �p and it follows that

det.P /D
nO

pD1

det.Wp/

is canonically isomorphic to R. Thus P carries a canonical volume form.

We say a family of sections fe1; : : : ; eng of P is a basis for the filtration if for every
integer p no greater than n and every x 2 S1 , fe1.x/; : : : ; ep.x/g is a basis of the
fiber of Fp at x .

Definition 10.1.2 (nonslipping connections) A connection r on P is nonslipping if
it satisfies the following conditions:

� rFp � FpC1 for all p .

� If p̨ is the projection from FpC1 to FpC1=Fp , then the map

.X;u/! p̨.rX .u//;

considered as a linear map from K2˝Fp=Fp�1DK2p�nC1 to FpC1=Fp�1D

K2p�nC1 , is the identity.
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We denote by D0 the space of nonslipping connections on P . The first classical
proposition is:

Proposition 10.1.3 Let r be a nonslipping connection. Then there exists a unique
basis fe1; : : : ; eng of determinant 1 for the filtration such that

(121)
�
r@t

ei D�eiC1 for i 6 n� 1;

r@t
en 2 Fn�1;

where @t is the canonical vector field on T .

Observe here that the basis depends on the choice of a parametrization of the circle.
From this proposition, it follows that we can associate to a nonslipping connection r
the differential operator D DDr such that

r
�
@t

� nX
iD1

di�1 

dt i�1
!i

�
D .D /!n;

where r� is the dual connection and feig16i6n is the dual basis to the basis f!ig16i6n

associated to r in the previous proposition. One easily checks that

D D
dn 

dtn
C q2

dn�2 

dtn�2
C � � �C qn ;

where the functions qi are given by qi D !n�jC1.r@t
en/.

We now introduce
(i) the flag gauge group as the group N of linear automorphism of the bundle P

defined by

N WD fA 2�0.T ;End.P // jA.Fp/D Fp; AjFp=Fp�1
D Idg;

(ii) the Lie algebra n of the flag gauge group as

n WD fA 2�0.T ;End.P // jA.Fp/� Fp�1g:

We now have:

Proposition 10.1.4 The map r 7! Dr realizes an identification between D0=N

and Xn.T /, and this identification preserves the holonomy.

It is interesting now to observe that the definition of an oper as an element of D0=N

does not depend on a parametrization.

Proof Let r be a nonslipping connection, feig the basis obtained by the previous
proposition and r 0 D n� � r a connection in the N–orbit of r . By definition of N,
r 0ei Drei Cui with ui 2 Fi�1 . The result follows.
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10.2 The Poisson structure on the space of connections

The purpose of Drinfel’d–Sokolov reduction is to identify the space Xn.T /D D0=N of
opers as a symplectic quotient of the space of all connections on T by the group N.

Again, we shall paraphrase Segal, and define in this section, as a first step of the
construction of Drinfel’d–Sokolov reduction, the classical construction of the Poisson
structure on the space of connections.

In general, when we deal with a Fréchet space of sections of a bundle, we have to
specify functionals that we deem observables and for which we can compute a Poisson
bracket. This is done by specifying a subspace of cotangent vectors and describing the
Poisson tensor on that subspace. Observables are then functionals whose differentials
belong to that specific subset. However, the Poisson bracket can be extended to more
general pairs of observables. Rather than describing a general formalism, for which we
could refer to [5], we explain the construction in the case of connections.

10.2.1 Connections and central extensions Let G be the gauge group of the vector
bundle P . The choice of a trivialization of P gives rise to an isomorphism of G with
the loop group of PSLn.R/. We introduce the following definitions:

(i) The Lie algebra g of G is �0.T ;End0.P //, where End0.P / stands for the
vector space of trace free endomorphisms of P . The Lie algebra g is equipped
naturally with a coadjoint action of G.

(ii) The dual Lie algebra gı of G is �1.T ;End0.P //.

(iii) The duality is given by the nondegenerate bilinear mapping from g�gı defined by

(122) h˛; ˇi D

Z
T

tr.˛ �ˇ/:

Let us choose a connection r on P . Let �r be the 2–cocycle on g given by

�r.�; �/D

Z
T

tr.�r�/:

If r and r 0 are two connections on P , then

�r.�; �/��r0.�; �/D ˛.Œ�; ��/;

where
˛.�/D

Z
T

tr
�
.r �r 0/:�

�
:

In particular the cohomology class of the cocycle �r does not depend on the choice
of r . Let bG , whose Lie algebra is yg, be the central extension of G corresponding to
this cocycle, so that

0!R!yg
�
�! g:
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As we noticed, every connection defines a splitting of this sequence; that is, a way to
write yg as R˚ g.

Dually, we consider the vector space ygı defined by the exact sequence

0! gı
i
�! ygı!R;

with the duality with yg such that h
; i.ˇ/i D h�.
 /; ˇi.

It follows that the space D of all PSLn.R/ connections on P can be embedded in the
space of such splittings, which is in turn identified with the affine hyperplane D in ygı

defined by
D WD fˇ 2 ygı j hZ; ˇi D 1g;

where Z 2 yg is the generator of the center. The hyperplane D has gı as a tangent
space. Observe that the embedding D! D is equivariant under the affine action of
�1.T ;End0.P //D gı � ygı as well as the coadjoint action of G itself. In particular,
the above embedding is surjective and we now identify D as the space of all PSLn.R/–
connections on P . The coadjoint orbits of G on D are those connections with the same
holonomy.

10.2.2 The Poisson structure Since we are working in infinite dimension, we are
only going to define the Poisson tensor on certain “cotangent vectors” to D. In our
context we consider the set Dı WD gD�0.T ;End0.P // of cotangent vectors where
the duality is given by formula (122). Using this notation, the Poisson structure is
described in the following way.

Definition 10.2.1 (Poisson structure for connections) � The Hamiltonian mapping
from Dı to D at a connection r is

H W ˛ 7! dr˛:

� The Poisson tensor on Dı at a connection r is

…r.˛; ˇ/ WD h˛;H.ˇ/i D

Z
T

tr.˛ � drˇ/:

� We say a functional F is an observable if its differential drF belongs to Dı for
all r . The Poisson bracket of two observables is

ff;gg WD….df; dg/D hdf;H.dg/i:

Remarks (1) The Poisson bracket can be defined for more general pairs of functionals
than observables. Observe first that the differential of functionals on a Fréchet space

Geometry & Topology, Volume 22 (2018)



1334 François Labourie

of sections of bundles — for instance connections — are distributions. Thus we can
define the Poisson bracket of a general differentiable functional with an observable.
For the purpose of this paper, we shall say that two functionals f and g form an
acceptable pair of observables if their derivatives df and dg are distributions with
disjoint singular support, or equivalently if they can be written as

df D F Cf0; dg DGCg0;

where F and G have disjoint support and f0 , g0 are observables in the previous sense.
In this case, their Poisson bracket is defined as

ff;gg.r/D….f0;g0/ChF;H.g0/i � hG;H.f0/i:

This Poisson bracket agrees with regularizing procedures.

(2) We further observe that if Dr is the space of connections with the same holonomy
as r (that is, the coadjoint orbit of r ), then the tangent space of Dr at r is the
vector space of exact 1–forms dr.�0.T ;End0.P ///, and moreover the Poisson tensor
on Dr is dual to the symplectic form ! defined by

!.dr˛; drˇ/ WD
Z

T
tr.˛ � drˇ/:

Thus the symplectic leaves of this Poisson structure are connections with the same
holonomy. One can furthermore check that this formalism agrees with what we expect
from coadjoint orbits.

10.3 Drinfel’d–Sokolov reduction

We now describe the Drinfel’d–Sokolov reduction. We begin by describing more
precisely the group that we are going to work with in order to perform the reduction.

10.3.1 Dual Lie algebras Let n be the Lie algebra of N as defined above. Let u be
the subspace of gı given by

u WD fA 2�1.T ;End0.P // jA.Fp/� Fpg:

Proposition 10.3.1 We have uD fA 2 ygı j h˛;Ai D 0; 8˛ 2 ng.

Thus if nı WD�1.T ;End0.P //=u; we have a duality nı � n!R given by the map

h˛; ˇi WD

Z
T

tr.˛ˇ/:
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We now give another description of nı more suitable for our purpose. Let us first
consider the natural projections

(123)
�Cp W Hom.Fp;E=Fp/! Hom.Fp;E=FpC1/;

��p W Hom.Fp;E=Fp/! Hom.Fp�1;E=Fp/:

Let

M WD

�
.u1; : : : ;un�1/ 2

n�1M
pD1

Hom.Fp;E=Fp/
ˇ̌̌
�Cp .up/D �

�
pC1.upC1/

�
:

We leave it to the reader to check the following.

Proposition 10.3.2 The map from nı to �1.T ;M / defined by

A! .AjF1
; : : : ;AjFn�1

/

is an isomorphism.

10.3.2 Drinfel’d–Sokolov reduction If r is a connection, we define the slippage
of r , denoted by �.r/, as the element of �1.T ;M /D nı given by

.u1; : : : ;up/;

where up.X; v/D p̨.rX v/ and p̨ is the projection from E to E=Fp .

We are now going to define a canonical section of �1.T ;M /. We have a natural
embedding

ipW Hom.Fp=Fp�1;FpC1=Fp/! Hom.Fp;F=Fp/:

Now observe that

�1.T ;Hom.Fp=Fp�1;FpC1=Fp//D .K
2/�˝ .K2p�n�1/�˝K2p�nC1:

Thus, let
Ip WD ip.Id/ 2 .K2/�˝ .K2p�n�1/�˝K2p�nC1:

Finally, we set
I WD .I1; : : : ; In�1/;

and we observe that I is invariant under the coadjoint action of N.

Theorem 10.3.3 (Drinfel’d–Sokolov reduction) The map � is a moment map for the
action of N. Moreover D0 D �

�1.I/ and we thus obtain a Poisson structure on Xn.T /.
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As a particular case of symplectic reduction, we briefly explain the construction of the
Poisson bracket in our context of opers and nonslipping connections. If f and g are
two functionals on the space of opers, they are observables if their pull-back F and G

on the space of nonslipping connections are observables and then their Poisson bracket
is ff;gg.D/ WD fF;Gg.r/, where D is the oper associated with r .

10.4 Opers and Frenet curves

10.4.1 Curves associated to PSLn.R/–opers We recall that every oper D gives
rise to a curve from R to P .Rn/ which is equivariant under the holonomy; that is, a
curve

�W R! P .Rn/

such that �.t C 1/ D H.�.t//, where H is the holonomy. The construction runs as
follows. The curve � is given in projective coordinates by

� WD Œv1; : : : ; vn�;

where fv1; : : : ; vng are independent solutions of the equation D D 0. The curve � is
well-defined up to the action of PSLn.R/. We call � the curve associated to the oper.

10.4.2 Hitchin opers Let us say an oper is Hitchin if it has trivial holonomy and can
be deformed through opers with trivial holonomy to the trivial oper  7! dn =dtn .
Let us denote by X0

n.T / the space of Hitchin opers, which by the previous section
inherits a Poisson structure.

10.4.3 Frenet curves We say a curve � from T to P .Rn/ is Frenet if there exists a
curve .�1; �2; : : : ; �n�1/ defined on T , called the osculating flag curve, with values in
the flag variety such that �.x/D �1.x/ for every x in T , and moreover:

� For all tuples of pairwise distinct points .x1; : : : ;xl/ in T and positive integers
.n1; : : : ; nl/ such that

lX
iD1

ni 6 n;

the sum
�ni .xi/C � � �C �

nl .xl/

is direct.
� For every x in T and tuple of positive integers .n1; : : : ; nl/ such that

p D

lX
iD1

ni 6 n;
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we have

lim
.y1;:::;yl /!x

yi all distinct

� lM
iD1

�ni .yi/

�
D �p.x/:

We call �� WD �n�1 the osculating hyperplane.

Since the trivial connection is nonslipping with respect to the filtration given by oscu-
lating flags, we have the following obvious remark; see also [7, Section 9.12].

Proposition 10.4.1 Every smooth Frenet curve comes from a PSLn.R/–oper with
trivial holonomy.

Conversely, we now prove:

Proposition 10.4.2 The curve associated to a Hitchin oper is Frenet.

Proof Let us first introduce some notation and definitions. A weighted p–tuple X is
a pair consisting of a p–tuple of pairwise distinct points .x1; : : : ;xp/ in T , called
the support, and a p–tuple of positive integers .j1; : : : ; jp/ such thatX

16k6p

jk D n:

If � is a smooth curve defined on a subinterval I of T with values in Rn n f0g, let

y�.p/.x/ WD �.x/^ P�.x/^ � � � ^ �.p�1/.x/ 2ƒp.Rn/;

where P� and �.k/ denote the derivative and k th derivatives of � respectively. Moreover,
if X is a weighted p–tuple as above with support in I , let

y�.X / WD
V

16k6p

y�.j
k/.xk/ 2ƒn.Rn/DR:

We say that a weighted p–tuple is degenerate with respect to � if y�.X /D 0. Observe
finally that being degenerate only depends on the projection of � as a curve with values
in P .Rn/, and thus makes sense for curves with values in P .Rn/. By definition, a
curve � with values in P .Rn/ is Frenet if it admits no degenerate weighted p–tuple.

Let us work by contradiction and assume that there exists a Hitchin oper whose
associated curve is not Frenet. Let m be the smallest integer such that there exists a
curve � associated to an Hitchin oper which admits a degenerate m–tuple.

Let Om be the set of Hitchin opers whose associate curve admits a degenerate m–tuple.
By our standing assumption, Om is nonempty, and moreover the trivial oper, which
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corresponds to the Veronese embedding, does not belong to Om . We will now prove
that Om is both open and closed, which will yield a contradiction since X0

n.T / is
connected.

Step 1 The set Om is open in X0
n.T /.

Let
X D ..x1; : : : ;xm/; .i1; : : : ; im//

be a degenerate m–tuple for the curve � associated to the oper D . Without loss of gen-
erality we can assume i1 is the greatest integer j such that ..x1; : : : ;xm/; .j ; : : : ; im//

is degenerate. Now let � be a lift of � (with values in Rnnf0g) on an interval containing
the support of X . Let us consider the function fD defined on a neighborhood of x1

by
fD W y 7! y�.X.y//;

where X.y/ WD ..y;x2; : : : ;xm/; .i1; : : : ; im//. We first prove that PfD.x
1/ 6D 0. A

computation yields

PfD.x
1/D

�
y�.i1�2/.x1/^ �

.i1/.x1/
�
^

� V
26j6m

y�ij .xj /
�
:

Let us recall the following elementary fact of linear algebra. Let u, v and e1 : : : ; ek

be vectors in Rn such that

u^ v^ e1 ^ � � � ^ ek�1 6D 0;(124)

u^ e1 ^ � � � ^ ek D 0:(125)

Then

(126) v^ e1 ^ � � � ^ ek 6D 0:

Indeed, by (125), u belongs to the hyperplane H generated by .e1; : : : ; ek/. If (126)
does not hold, then v also belongs to H . Thus the vector space generated by
.u; v; e1; : : : ; ek�1/ also would lie in H , contradicting (124).

By maximality of i1 , we know that y�.Y / 6D 0, where

Y D ..x1; : : : ;xm/; .i1C 1; i2� 1; : : : ; im//:

Since fD.x
1/D 0, the previous remark with uD �.i1�1/ , vD �.i1/ yields PfD.x

1/ 6D 0.

By transversality, it then follows that for D0 close to D there exists a z close to x1

such that fD0.z/D 0, and thus D0 2 Om .
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Step 2 The set Om is closed in X0
n.T /.

Let f�1
ngn2N be a sequence of curves associated to a sequence of opers in Om con-

verging to an oper D associated to the curve � . Let

fXn D ..x
1
n ; : : : ;x

m
n /; .j

1
n ; : : : ; j

m
n //gn2N

be the corresponding sequence of degenerate m–tuples. We can extract a subsequence
such that for every i , the sequence fj i

ngn2N is constant and equal to j i . After
permutation of f1; : : : ;pg and extracting a further subsequence, we can assume that
there exists a p–tuple

Y D ..y1; : : : ;yp/; .i1; : : : ; ip//;

with p 6 m, and integers k1; : : : ; kp such that

(i) 1D k1 6 � � �6 kp Dm,

(ii) for all i with ku 6 i < kuC1 we have limn!1.x
i
n/D yu;

(iii) for all v with 1 6 v 6 p ,

iv D
X

kv6u<kvC1

j u:

As an application of the Taylor formula, we have

y�.p/.x/^ y�.k/.y/D .x�y/p :ky�pCk.x/C o..x�y/k/:

It follows that for all u,

lim
n!1

�� kuC1�1Y
vDku

1

.xvn�yu/Nv

� kuC1�1V
vDku

y�.i
v/.xvn/

�
D y�.iu/.yu/;

where Nv D iv
�Pv�1

wDku
iw
�
. In particular, Y is degenerate for � . Thus p D m by

minimality, and thus D 2 Om .

Finally, let us say a Frenet curve is Hitchin if it can be deformed through Frenet curves
to the Veronese embedding. Then we obtain as a consequence of the two previous
propositions the following statement, which seems to belong to the folklore but for
which we could not find a proper reference.

Theorem 10.4.3 The map which associates to an PSLn.R/–oper its associated curve
is a homeomorphism from the space of Hitchin opers to the space of Hitchin Frenet
curves.
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10.5 Cross ratios and opers

Let � be a Frenet curve and �� be its associated osculating hyperplane curve. The
weak cross ratio associated to this pair of curves is the function on

T4�
WD f.x;y; z; t/ 2 T4

j z 6D y; x 6D tg

defined by

(127) b�;��.x;y; z; t/D
hy�.x/jy��.y/ihy�.z/jy��.t/i

hy�.z/jy��.y/ihy�.x/jy��.t/i
;

where for every u, we choose arbitrary nonzero vectors y�.u/ and y��.u/ in �.u/

and ��.u/ respectively. This weak cross ratio only depends on the oper D , and we
shall denote it by bD .

10.5.1 Coordinate functions As in Section 10.1.2, let K be the line bundle of�
�

1
2

�
–densities over T and P WD J n�1.Kn�1/ be the rank n vector bundle of .n�1/–

jets of sections of the bundle of
�
�

1
2
.n�1/

�
–densities. We choose once and for all

a trivialization of P given by n fiberwise independent sections �1; : : : ; �n of P , so
that Fp is generated by �1; : : : ; �p .

Let r be a connection on P . Let I be an interval in R with extremities Y and y . We
pull back r , P and �i on R using the projection

� W R!R=ZD T :

We denote the pulled back objects by the same symbol. For any y 2 R, let �y the
r–parallel section of P on I characterized by �y.y/ D �1.y/. Similarly let ��

Y

be the r�–parallel section on I of P� characterized by ��
Y
.Y / D ��n .Y /, where

.��
1
; : : : ; ��n / is the dual basis to .�1; : : : ; �n/.

Then the function t 7! h��
Y
.t/; �y.t/i is constant on I .

Definition 10.5.1 (coordinate function) The coordinate function associated to the
points Y and y and the trivialization of P is the function

FY;y W r 7! FY;y.r/D h�
�
Y .t/; �y.t/i for t 2 I;

defined on the space of connections on P .

We shall write ��
Y
˝ �y DW p

Y;y D pY;y.r/ 2�0.R;End0.P //, so that

(128) FY;y.r/D tr.pY;y/:

We then have:
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Proposition 10.5.2 Assume that r has trivial holonomy. Then the coordinate func-
tion FY;y only depends on the projections of Y and y in T . Moreover there exists a
section pY0;y0 2�0.T ;End0.P // such that pY;y is the pullback of pY0;y0 .

Proof Let Y0 and y0 be the respective projections of Y and y . Since r has trivial
holonomy we may find parallel sections �y0

and ��
Y0

such that �y0
.y0/D �1.y0/ and

��
Y0
.Y0/D �1.Y0/. Then �y D �

�.�y0
/ and ��

Y
D ��.�y0

/. Thus

FY;y.r/D h�
�
Y0
.t/; �y0

.t/i:

The first part of the result follows. For the second part, we take pY0;y0 D ��
Y0
˝�y0

.

10.5.2 Differential of coordinate functions Our aim in this subsection is to compute
the differential of FY;y , where Y and y belong to an interval I .

Proposition 10.5.3 Let r be a connection, let y0 be a point in R n I and let ˛ be an
element of �1.T ;End0.P //. Then

(129) hdrFY;y ; ˛i D

Z
R
 Y;y;y0 tr.pY;y��.˛//;

where  Y;y;y0.s/ WD Œy0s;Yy�.

We can observe that the right-hand side of Equation (129) does not depend on the
choice of y0 2R n I . Indeed, by the cocycle identity,  Y;y;x � Y;y;z is constant and
equal to Œxz;Yy�D 0, if x; z 62 I .

Proof Let ˇ be a primitive of ��˛ on I such that ˇ.y/ D 0. Let t 7! rt be a
one-parameter smooth family of connections with r0 Dr such that

d
dt

ˇ̌̌
tD0
r

t
D ˛:

Let Gt be the family of sections of End.P / such that Gt .z/D Id and .Gt /�r D rt .
Then by construction

d
dt

ˇ̌̌
tD0

Gt
D ˇ:

Moreover,
FY;y.r

t /D h��n .Y /;G
t .�y.Y //i:

Thus,

(130) hdrFY;y ; ˛i D h�
�
Y .Y /; ˇ.Y /�y.Y /i:
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Let c.t/ be a curve with values in I such that c.0/D y and c.1/D Y . Let

f .t/D h��Y .c.t//; ˇ.c.t//�
�
y .c.t//i:

Then

(131) hdrFY;y ; ˛i D f .1/�f .0/D

Z 1

0

Pf .s/ ds:

Since ��
Y

and �y are parallel,

Pf .s/D h��Y .c.s//; �
�˛. Pc.s//:�y.c.s//i;

and we have, letting J be the interval whose endpoints are Y and y ,

(132) hdrFY;y ; ˛i D Sign.Y �y/

Z
J

h��Y ; �
�.˛/:�yi

D Sign.Y �y/

Z
J

tr.pY;y :��.˛//:

We finally deduce the result from (132) and the fact that for any y0 62 I we have

Sign.Y �y/

Z
J


 D

Z
R
 Y;y;y0
:

10.6 Poisson brackets on the space of connections

Since FX ;x is not an observable in the sense of Section 10.2.2, we first need to regularize
these functions.

10.6.1 Regularization Let � and � be two C1 measures compactly supported in
a bounded interval �a; bŒ of R. Let us consider the function

F�;� WD

Z
R2

FX ;x d� � d�.X;x/:

We consider this function as defined on the space of connections over the bundle
P ! T . We obviously have:

Proposition 10.6.1 Let f.�n; �n/gn2N be two sequences of measures weakly con-
verging to .�; �/. Then fF�n;�n

gn2N converges uniformly on every compact to F�;� .

We say the sequence f.�n; �n/gn2N is regularizing for the pair .X;x/ if �n; �n are
smooth measures weakly converging to the Dirac measures supported at X and x

respectively.
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10.6.2 Poisson brackets of regularization We now have:

Proposition 10.6.2 For any pair of smooth measures .�; �/ with compact support,
F�;� is an observable. Let .�; �/ and .x�; x�/ be two pairs of C1 measures on R.
Then the Poisson bracket fF�;� ;Fx�;x�g is equal to

(133)
X
m2Z

Z
R4

Œm.Y /m.y/;Xx�
�
FX ;yFY;x �

1

n2
FX ;xFY;y

�
dƒ.X;x;Y;y/;

where m.u/ D uCm and ƒ D �˝ � ˝ x�˝ x� . In particular, if all measures are
supported on Œ0; 1�, then the bracket fF�;� ;Fx�;x�g is equal to

(134)
Z
Œ0;1�4

ŒYy;Xx�
�
FX ;yFY;x �

1

n2
FX ;xFY;y

�
dƒ.X;x;Y;y/:

Proof By Proposition 10.5.3, we have that if a does not belong to the union K of the
supports of � and � ,

hdF�;� ; ˛i D

Z
R2

 X ;x;a tr.pX ;x��˛/ d� � d�.X;x/:

Let us denote by C0 WD C� 1
n

tr.C/ Id the trace-free part of the endomorphism C. For
any s in R, let

(135) ƒ�;�.s/ WD

Z
R2

 X ;x;a.s/ p
X ;x
0

.s/ d� � d�.X;x/:

Observe that ƒ�;� 2�0.R;End0.P // and the support of ƒ�;� is included in K . Let
us trivialize P using the connection r . Then let

G�;�.s/ WD
X
m2Z

ƒ�;�.sCm/:

Then G�;�.s/ is periodic and thus of the form ��ˇ , with ˇ 2�0.T ;P /. Moreover,

(136)
Z

T
tr.ˇ :˛/D

Z 1

0

tr.��ˇ:��˛/D
Z

R
tr.ƒ�;� :��˛/D hdF�;� ; ˛i:

It follows by (136) that

(137) dF�;�.s/D ˇ 2 gD D0:

In particular, according to Definition 10.2.1, F�;� is an observable. From (135) we
have

ƒ�;�.s/D�

Z s

�1

Z 1
s

p
X ;x
0

.s/ d� � d�.X;x/C
Z 1

s

Z s

�1

p
X ;x
0

.s/ d� � d�.X;x/:
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For any smooth probability measure � let us write d� D P� d�, where � is the Lebesgue
measure. Then, since pX ;x is parallel, we have

r@t
ƒ�;�.s/D� P�.s/

Z 1
s

p
s;x
0
.s/ d�.x/C P�.s/

Z s

�1

p
X ;s
0
.s/ d�.X /

� P�.s/

Z s

�1

p
s;x
0
.s/ d�.x/C P�.s/

Z 1
s

p
X ;s
0
.s/ d�.X /

D P�.s/

Z
R
p

X ;s
0

d�.X /� P�.s/
Z

R
p

s;x
0

d�.x/:

It follows that

(138) tr.ƒ�;�.sCm/r@t
ƒx�;x�.s//

D Px�.s/

Z
R3

 X ;x;a.sCm/ tr.pY;s
0

p
X ;x
0

/ d� � d� � dx�.X;x;Y /

� Px�.s/

Z
R3

 X ;x;a.sCm/ tr.ps;y
0

p
X ;x
0

/ d� � d� � dx�.X;x;y/:

We can now compute the Poisson bracket as defined in Definition 10.2.1:

(139) fF�;� ;Fx�;x�g D

Z
R

tr
�
ƒ�;�.s/�

�.r@t
dFx�;x�.s//

�
d�.s/

D

X
m2Z

Z
R

tr
�
ƒ�;�.s/r@t

ƒx�;x�.sCm/
�

d�.s/

D

X
m2Z

Z
R

tr
�
ƒ�;�.sCm/r@t

ƒx�;x�.s/
�

d�.s/:

Using (138), we get that

(140) fF�;� ;Fx�;x�g D
X
m2Z

Z
R4

 X ;x;a.sCm/ tr.pY;s
0

p
X ;x
0

/ dƒ.X;x;Y; s/

�

X
m2Z

Z
R4

 X ;x;a.sCm/ tr.ps;y
0

p
X ;x
0

/ dƒ.X;x; s;y/:

Using the dummy changes of variable sDy on line one and sDY on line two of (140),
we finally get

(141) fF�;� ;Fx�;x�g

D

X
m2Z

Z
R4

. X ;x;a.yCm/� X ;x;a.Y Cm// tr.pY;y
0

p
X ;x
0

/ d�.X;x;Y;y/

D

X
m2Z

Z
R4

Œ.Y Cm/.yCm/;Xx� tr.pY;y
0

p
X ;x
0

/ dƒ.X;x;Y;y/:
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We conclude the proof of the proposition by remarking that

tr.pX ;xpY;y/D tr.pX ;y/ tr.pY;x/;

and thus

(142) tr.pX ;x
0

p
Y;y
0
/D tr.pX ;y/ tr.pY;x/�

1

n2
tr.pX ;x/ tr.pY;y/:

Combining equations (141) and (142) yields the result.

As corollaries, we obtain:

Corollary 10.6.3 Let .�n; �n/ and .x�n; x�n/ be regularizing sequences for .X;x/ and
.Y;y/ respectively. Assume that fX;x;Y;yg � �0; 1Œ. Then

lim
n!1

fF�n;�n
;Fx�n;x�n

g D ŒYy;Xx�
�
FX ;yFY;x �

1
n2 FX ;xFY;y

�
:

Corollary 10.6.4 Let .X;x;Y;y/ be a quadruple of pairwise distinct points. Then
.FX ;x;FY;y/ is a pair of acceptable observables. Moreover,

fFX ;x;FY;yg D ŒYy;Xx�
�
FX ;yFY;x �

1
n2 FX ;xFY;y

�
:

This last corollary interprets the swapping algebra as an algebra of “observables” on
the space of connections.

10.7 Drinfel’d–Sokolov reduction and the multifraction algebra

We introduced in Section 10.5.1 functions of connections depending on the choice of a
trivialization of P . We now introduce functions that only depend on the associated
oper and do not rely on the choice of trivialization of P .

We first relate cross ratios to our previously defined coordinate functions.

10.7.1 Cross ratios The following proposition follows at once from the definitions.

Proposition 10.7.1 Let D be a Hitchin oper associated to the connection r with
trivial holonomy. Let X;x;Y;y be a quadruple of pairwise distinct points of T . Let
zX ; zx; zY ; zy be lifts of X;x;Y;y in R. Then

bD.X;x;Y;y/D
F zX ;zy.r/:F zY ;zx.r/

F zX ;zx.r/:F zY ;zy.r/
:

10.7.2 The main theorem We can now prove our main theorem, which relates the
Poisson structure on the space of opers and the multifraction algebra.
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Theorem 10.7.2 Let .X0;x0;Y0;y0;X1;x1;Y1;y1/ be pairwise distinct points. Then
the cross fractions ŒX0Ix0IY0Iy0� and ŒX1Ix1IY1Iy1� define a pair of acceptable
observables whose Poisson bracket with respect to the Drinfel’d–Sokolov reduction
coincides with their Poisson bracket in the multifraction algebra.

Proof This is an immediate consequence of Proposition 10.7.1 and Corollary 10.6.4,
as well as the definition of the Poisson structure coming from the symplectic reduction
in Theorem 10.3.3.

Appendix: Existence of vanishing sequences

We prove the existence of vanishing sequences.

Definition A.1.1 (separability in groups) Let G be a group.

� We say G is subgroup separable if given any finitely generated subgroup H in G ,
any g 2G and any h 62Hg , there exists a finite index subgroup G0 in G such that if
� is the projection of G onto G=G0 , then �.h/ 62 �.Hg/.

� We say G is double coset separable if given any finitely generated subgroups H

and K in G , any g 2 G and any h 62HgK , there exists a finite index subgroup G0

in G such that if � is the projection of G onto G=G0 , then �.h/ 62 �.HgK/:

Observe that a double coset separable group is then subgroup separable and residually
finite. G Niblo [24] proved:

Theorem A.1.2 A surface group is double coset separable.

As an immediate consequence, since �1.S/ is countable, we have:

Corollary A.1.3 Vanishing sequences exist.

References
[1] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans.

Roy. Soc. London Ser. A 308 (1983) 523–615 MR

[2] M Bourdon, Sur le birapport au bord des CAT.�1/–espaces, Inst. Hautes Études Sci.
Publ. Math. 83 (1996) 95–104 MR

[3] M J Bridgeman, The Poisson bracket of length functions in the Hitchin component,
preprint (2015) arXiv

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.1098/rsta.1983.0017
http://msp.org/idx/mr/702806
http://www.numdam.org/item?id=PMIHES_1996__83__95_0
http://msp.org/idx/mr/1423021
http://msp.org/idx/arx/1502.05975v1


Goldman algebra, opers and the swapping algebra 1347

[4] M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov
representations, Geom. Funct. Anal. 25 (2015) 1089–1179 MR

[5] L A Dickey, Lectures on classical W –algebras, Acta Appl. Math. 47 (1997) 243–321
MR

[6] V G Drinfel’d, V V Sokolov, Equations of Korteweg–de Vries type, and simple Lie
algebras, Dokl. Akad. Nauk SSSR 258 (1981) 11–16 MR In Russian; translated in
Soviet Math. Dokl. 23 (1981) 457–462

[7] V Fock, A Goncharov, Moduli spaces of local systems and higher Teichmüller theory,
Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211 MR

[8] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in
Math. 54 (1984) 200–225 MR

[9] W M Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface
group representations, Invent. Math. 85 (1986) 263–302 MR

[10] S Govindarajan, Higher-dimensional uniformisation and W –geometry, Nuclear Phys.
B 457 (1995) 357–374 MR

[11] S Govindarajan, T Jayaraman, A proposal for the geometry of Wn –gravity, Phys.
Lett. B 345 (1995) 211–219 MR

[12] P Guha, Euler–Poincaré flows on sln opers and integrability, Acta Appl. Math. 95
(2007) 1–30 MR

[13] O Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de
surface, J. Differential Geom. 80 (2008) 391–431 MR

[14] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and
applications, Invent. Math. 190 (2012) 357–438 MR

[15] N J Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449–473 MR

[16] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math.
165 (2006) 51–114 MR

[17] F Labourie, Cross ratios, surface groups, PSL.n;R/ and diffeomorphisms of the circle,
Publ. Math. Inst. Hautes Études Sci. 106 (2007) 139–213 MR

[18] F Labourie, Cross ratios, Anosov representations and the energy functional on Teich-
müller space, Ann. Sci. Éc. Norm. Supér. 41 (2008) 437–469 MR

[19] F Labourie, An algebra of observables for cross ratios, C. R. Math. Acad. Sci. Paris
348 (2010) 503–507 MR

[20] F Labourie, Lectures on representations of surface groups, Eur. Math. Soc., Zürich
(2013) MR

[21] F Ledrappier, Structure au bord des variétés à courbure négative, Sémin. Théor. Spectr.
Géom. 13 (1995) 97–122 MR

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.1007/s00039-015-0333-8
http://dx.doi.org/10.1007/s00039-015-0333-8
http://msp.org/idx/mr/3385630
http://dx.doi.org/10.1023/A:1017903416906
http://msp.org/idx/mr/1459226
http://msp.org/idx/mr/615463
http://dx.doi.org/10.1007/s10240-006-0039-4
http://msp.org/idx/mr/2233852
http://dx.doi.org/10.1016/0001-8708(84)90040-9
http://msp.org/idx/mr/762512
http://dx.doi.org/10.1007/BF01389091
http://dx.doi.org/10.1007/BF01389091
http://msp.org/idx/mr/846929
http://dx.doi.org/10.1016/0550-3213(95)00527-7
http://msp.org/idx/mr/1366395
http://dx.doi.org/10.1016/0370-2693(94)01639-T
http://msp.org/idx/mr/1314786
http://dx.doi.org/10.1007/s10440-006-9078-6
http://msp.org/idx/mr/2303210
http://projecteuclid.org/euclid.jdg/1226090482
http://projecteuclid.org/euclid.jdg/1226090482
http://msp.org/idx/mr/2472478
http://dx.doi.org/10.1007/s00222-012-0382-7
http://dx.doi.org/10.1007/s00222-012-0382-7
http://msp.org/idx/mr/2981818
http://dx.doi.org/10.1016/0040-9383(92)90044-I
http://msp.org/idx/mr/1174252
http://dx.doi.org/10.1007/s00222-005-0487-3
http://msp.org/idx/mr/2221137
http://dx.doi.org/10.1007/s10240-007-0009-5
http://msp.org/idx/mr/2373231
http://dx.doi.org/10.24033/asens.2072
http://dx.doi.org/10.24033/asens.2072
http://msp.org/idx/mr/2482204
http://dx.doi.org/10.1016/j.crma.2010.03.012
http://msp.org/idx/mr/2645161
http://dx.doi.org/10.4171/127
http://msp.org/idx/mr/3155540
http://dx.doi.org/10.5802/tsg.155
http://msp.org/idx/mr/1715960


1348 François Labourie

[22] F Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19
(1978) 1156–1162 MR

[23] P van Moerbeke, Algèbres W et équations non-linéaires, from “Séminaire Bourbaki,
1997/1998”, Astérisque 252 (1998) exposé 839, 105–129 MR

[24] G A Niblo, Separability properties of free groups and surface groups, J. Pure Appl.
Algebra 78 (1992) 77–84 MR

[25] J-P Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of
Math. 131 (1990) 151–162 MR

[26] J-P Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété à
courbure négative, Rev. Mat. Iberoamericana 8 (1992) 441–456 MR

[27] A Sambarino, Hyperconvex representations and exponential growth, Ergodic Theory
Dynam. Systems 34 (2014) 986–1010 MR

[28] A Sambarino, Quantitative properties of convex representations, Comment. Math.
Helv. 89 (2014) 443–488 MR

[29] G Segal, The geometry of the KdV equation, Internat. J. Modern Phys. A 6 (1991)
2859–2869 MR

[30] E Witten, Surprises with topological field theories, from “Strings ’90: proceedings of
the 4th International Superstring Workshop” (R L Arnowitt, R Bryan, M J Duff, D V
Nanopoulos, C N Pope, E Sezgin, editors), World Scientific, Singapore (1991) 50–61

[31] S Wolpert, The Fenchel–Nielsen deformation, Ann. of Math. 115 (1982) 501–528 MR

[32] S Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann.
of Math. 117 (1983) 207–234 MR

Laboratoire Jean-Alexandre Dieudonné, CNRS, Université Côte d’Azur
Nice, France

francois.labourie@unice.fr

http://math.unice.fr/~labourie/

Proposed: Danny Calegari Received: 25 July 2014
Seconded: Leonid Polterovich, Jean-Pierre Otal Revised: 25 October 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1063/1.523777
http://msp.org/idx/mr/488516
https://eudml.org/doc/110241
http://msp.org/idx/mr/1685581
http://dx.doi.org/10.1016/0022-4049(92)90019-C
http://msp.org/idx/mr/1154898
http://dx.doi.org/10.2307/1971511
http://msp.org/idx/mr/1038361
http://dx.doi.org/10.4171/RMI/130
http://dx.doi.org/10.4171/RMI/130
http://msp.org/idx/mr/1202417
http://dx.doi.org/10.1017/etds.2012.170
http://msp.org/idx/mr/3199802
http://dx.doi.org/10.4171/CMH/324
http://msp.org/idx/mr/3229035
http://dx.doi.org/10.1142/S0217751X91001416
http://msp.org/idx/mr/1117753
http://dx.doi.org/10.1142/9789814439299_0004
http://dx.doi.org/10.2307/2007011
http://msp.org/idx/mr/657237
http://dx.doi.org/10.2307/2007075
http://msp.org/idx/mr/690844
mailto:francois.labourie@unice.fr
http://math.unice.fr/~labourie/
http://msp.org
http://msp.org

	1. Introduction
	1.1. The swapping algebra
	1.2. Cross ratios and the multifraction algebra
	1.3. The multifraction algebra as a ``universal'' Goldman algebra
	1.4. The multifraction algebra and PSL_n(R)–opers

	2. The swapping bracket
	2.1. Linking number for pairs of points
	2.1.1. Properties of the linking number

	2.2. The swapping algebra
	2.3. The multifraction algebra
	2.3.1. Cross fractions and multifractions
	2.3.2. The multifraction algebra


	3. Cross ratios and cross fractions
	3.1. Cross ratios
	3.2. Multifractions as functions
	3.3. Multifractions and Hitchin components
	3.3.1. Hitchin component
	3.3.2. Rank n cross ratios


	4. Wilson loops, multifractions and length functions
	4.1. Wilson loops
	4.1.1. Asymptotics of Wilson loops

	4.2. Elementary functions
	4.3. The swapping bracket of elementary functions
	4.4. Length functions
	4.4.1. Length functions from the point of view of the multifraction algebra
	4.4.2. Length functions and the character variety


	5. The Goldman algebra
	5.1. The Atiyah–Bott–Goldman symplectic form
	5.2. Wilson loops and the Goldman algebra

	6. Vanishing sequences and the main results
	6.1. Poisson brackets of length functions
	6.2. Poisson brackets of multifractions
	6.2.1. Vanishing sequences
	6.2.2. Sequences of subgroups and limits
	6.2.3. Poisson brackets of multifractions


	7. Product formulas and bouquets in good position
	7.1. An alternative formulation of the Goldman bracket
	7.2. The product formula
	7.2.1. A preliminary case

	7.3. Bouquets in good position and the product formula
	7.3.1. Bouquets in good position
	7.3.2. Product formula for bouquets

	7.4. Bouquets and covering
	7.5. Finding bouquets in good position

	8. Asymptotics
	8.1. Properties of vanishing sequences
	8.2. Asymptotic product formula for Wilson loops
	8.2.1. Preliminary asymptotics
	8.2.2. Asymptotics and bouquets

	8.3. Asymptotics of brackets of multifractions

	9. The Goldman and swapping algebras: proofs of the main results
	9.1. Poisson brackets of elementary functions and proof of Theorem 6.2.4
	9.2. Poisson brackets of length functions
	9.2.1. A generalized Wolpert formula
	9.2.2. Proof of Theorem 6.1.1


	10. Drinfel'd–Sokolov reduction
	10.1. Opers and nonslipping connections
	10.1.1. Opers
	10.1.2. Nonslipping connections

	10.2. The Poisson structure on the space of connections
	10.2.1. Connections and central extensions
	10.2.2. The Poisson structure

	10.3. Drinfel'd–Sokolov reduction
	10.3.1. Dual Lie algebras
	10.3.2. Drinfel'd–Sokolov reduction

	10.4. Opers and Frenet curves
	10.4.1. Curves associated to PSLn(R)–opers
	10.4.2. Hitchin opers
	10.4.3. Frenet curves

	10.5. Cross ratios and opers
	10.5.1. Coordinate functions
	10.5.2. Differential of coordinate functions

	10.6. Poisson brackets on the space of connections
	10.6.1. Regularization
	10.6.2. Poisson brackets of regularization

	10.7. Drinfel'd–Sokolov reduction and the multifraction algebra
	10.7.1. Cross ratios
	10.7.2. The main theorem


	Appendix: Existence of vanishing sequences
	References

