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Injectivity radii of hyperbolic integer homology 3–spheres

JEFFREY F BROCK

NATHAN M DUNFIELD

We construct hyperbolic integer homology 3–spheres where the injectivity radius is
arbitrarily large for nearly all points of the manifold. As a consequence, there exists a
sequence of closed hyperbolic 3–manifolds that Benjamini–Schramm converge to H3

whose normalized Ray–Singer analytic torsions do not converge to the L2 –analytic
torsion of H3 . This contrasts with the work of Abert et al who showed that Benjamini–
Schramm convergence forces convergence of normalized Betti numbers. Our results
shed light on a conjecture of Bergeron and Venkatesh on the growth of torsion in the
homology of arithmetic hyperbolic 3–manifolds, and we give experimental results
which support this and related conjectures.

57M50; 30F40

1 Introduction

By Mostow rigidity, a hyperbolic structure on a closed 3–manifold M is unique up to
isometry. While the geometry of M is thus completely determined by its underlying
topology, it can be difficult to understand the qualitative and quantitative connections
between these two facets of M . Here, we show that a geometric property involving
injectivity radii can be varied independently of the homology of the manifold. To state
our results, we first need some notation. The injectivity radius injx.M / at x 2M is the
largest radius for which the ball about x is embedded, and the (lower) injectivity radius
of M itself is inj.M /D inffinjx.M / j x 2M g. On the topological side, an integer
homology 3–sphere is a closed 3–manifold M where H�.M IZ/ŠH�.S

3IZ/, and
the term rational homology 3–sphere is similarly defined. Our main result here is:

Theorem 1.1 Given positive constants R and � there exists a hyperbolic integer
homology 3–sphere M where

vol.fx 2M j injx.M / <Rg/

vol.M /
< �:

In fact, we show that the homology of M can be specified arbitrarily (Theorem 2.1).
The proof is based on the modern theory of Kleinian groups; before sketching it, we
motivate our result in several ways.
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1.1 Cooper’s question

Starting with any closed hyperbolic 3–manifold, one can make the injectivity radius
arbitrarily large everywhere by taking a suitable finite cover. In the context of the virtual
Haken conjecture, this motivated Cooper to ask whether there are hyperbolic rational
homology 3–spheres with arbitrarily large injectivity radius. In fact, such manifolds do
exist by the work of Calegari and Dunfield [9] and Boston and Ellenberg [5]. However,
if one instead considers integer homology 3–spheres, then the analogous question is
open; our Theorem 1.1 answers affirmatively a weakened version of this question. The
manifolds of [5; 9] came from a tower of congruence covers of a fixed base manifold,
and it seems unlikely this method would work for integer homology 3–spheres as we
now describe.

1.2 Torsion growth

Recently, number theorists have become interested in torsion in the homology of
arithmetic groups; see Bergeron and Venkatesh [3] and Calegari and Venkatesh [10].
Specifically, Bergeron and Venkatesh posited the following as part of an intriguing
general conjecture for arithmetic lattices in semisimple Lie groups. In the present
context of hyperbolic 3–manifolds, Le independently formulated a closely related
conjecture; see [14] for details.

Conjecture 1.2 [3] Let M be a closed congruence arithmetic hyperbolic 3–manifold,
and M  M1 M2 M3 � � � a tower of congruence covers where inj.Mn/!1.
Then the size of the torsion subgroup of H1.MnIZ/ grows exponentially in vol.Mn/

and moreover

(1) lim
n!1

log jH1.MnIZ/torsj

vol.Mn/
D

1

6�
:

In particular, if this conjecture holds then the approach of [9; 5] which used exactly
such a tower to answer Cooper’s question cannot be modified to prove Theorem 1.1.

One of two key parts to Conjecture 1.2 is the expected convergence of Ray–Singer
analytic torsion in such a tower of covers. More precisely, the logarithm of the analytic
torsion of a Riemannian manifold M is

�.M /D
1

2

dim MX
kD0

.�1/k � k � log.det0.�k//;

where �k is the Laplacian on smooth k –forms and det0 is the zeta-regularized prod-
uct of nonzero eigenvalues (see Müller [20] for details). Then for covers Mn as in
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Conjecture 1.2, part of (1) is that one should have

(2) lim
n!1

�.Mn/

vol.Mn/
D � .2/.H3/;

where � .2/.H3/D 1=6� is the L2 –analytic torsion of H3 . A corollary of Theorem 1.1
is that one need not have (2) for a sequence Mn of hyperbolic 3–manifolds which
Benjamini–Schramm converge to H3 , which is a natural geometric notion of conver-
gence implied by the hypotheses of Conjecture 1.2. As this corollary was the primary
motivation for this paper, we now discuss it and its context in detail.

1.3 Benjamini–Schramm convergence

For a manifold M , we define thinR M D fx 2M j injx.M / <Rg. Following Abert,
Bergeron, Biringer, Gelander, Nikolov, Raimbault and Samet [1], we say that a se-
quence fMng of closed hyperbolic 3–manifolds Benjamini–Schramm converge to H3

if for all R> 0 one has vol.thinR Mn/= vol.Mn/! 0 as n!1. We emphasize here
that the Mn may have no relationship with each other beyond being hyperbolic; in
particular, they need not be covers of a fixed manifold. Despite this, Abert et al were
able to show that this notion of geometric convergence also implies convergence of
part of the topology:

Theorem 1.3 [1] Let Mn be a sequence of closed hyperbolic 3–manifolds which
Benjamini–Schramm converge to H3 . Then

(3) lim
n!1

dim H1.MnIQ/

vol.Mn/
D 0:

Here, the 0 in the right-hand side of (3) should be interpreted as the first L2 Betti
number of H3 , and the moral of Theorem 1.3 is that suitable local convergence of
the geometry of the Mn leads to convergence of their normalized Betti numbers to
the corresponding L2 Betti number of their common universal cover. Theorem 1.3
generalizes results of Lück [17] and Lott [16] which apply only to Mn coming from
finite covers of a fixed manifold (as in Conjecture 1.2).

A key consequence of Theorem 1.1 is that Theorem 1.3 does not have an analog for
analytic torsion:

Corollary 1.4 There exist closed hyperbolic 3–manifolds Mn which Benjamini–
Schramm converge to H3 where �.Mn/= vol.Mn/! 0 as n!1. In particular, the
limit is not � .2/.H3/D 1=6� .
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Thus, while the geometric notion of Benjamini–Schramm convergence is enough
to control the convergence of (normalized) Betti numbers to the corresponding L2

invariant of the limit, the same is not true for torsion.

1.4 Experimental results

Corollary 1.4 limits how much one can broaden Conjecture 1.2, and in this narrow
sense could be taken as evidence against Conjecture 1.2. However, we present here
computational evidence which strongly supports Conjecture 1.2 as well as certain
generalizations to nonarithmetic manifolds. Our experiments complement prior work
of Şengün [27; 28; 29] and Page [23]. To frame our results, we need to expand on
the connection between Conjecture 1.2 and analytic torsion. For a closed Riemannian
3–manifold, the Cheeger–Müller theorem [11; 20] implies (see eg [10, Section 5.1])

(4) �.M /D log jH1.M IZ/torj � log.vol.M //C 2 log.regulator of H 1.N //:

Here the regulator of H 1.N / is the covolume of the lattice H 1.N IZ/ in H 1.N IR/,
where the latter has the inner product coming from its identification with the set of
harmonic forms. The first part of Conjecture 1.2 is that �.Mn/= vol.Mn/! 1=6� and
the second is that log.reg H 1.Mn//= vol.Mn/! 0. In Section 4, we provide evidence
in favor of a broadening of the first part Conjecture 1.2 to all hyperbolic 3–manifolds:

Conjecture 1.5 Let Mn be covers of a fixed closed hyperbolic 3–manifold M which
Benjamini–Schramm converge to H3 . Then �.Mn/= vol.Mn/! 1=6� .

In contrast, it is not expected that log.reg H 1.Mn//= vol.Mn/! 0 for nonarithmetic
manifolds; we give data in support of this; see especially Figure 3. For arithmetic
manifolds, experiments of Şengün [28] identified the case of congruence covers of
prime-power level as a place where such convergence appears to be slowest, to the
point where one hits computational limits before getting convincing evidence for or
against Conjecture 1.2. In Section 4, we investigate several families of examples of this
type. While some of these remain ambiguous, overall they provide additional evidence
that log.reg H 1.Mn//= vol.Mn/! 0 even in this case.

1.5 Proof sketch

Given a homeomorphism f of a surface S there are two natural 3–manifolds we can
build from it. One is the mapping torus Mf , which fibers over the circle. Alternatively,
we can identify S with the boundary of a handlebody H and consider the associated
Heegaard splitting: HSf DH [f H . While the natural copies of S in Mf and HSf
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are radically different topologically (the first is incompressible and the other maximally
compressible), the philosophy of Kleinian groups, specifically Namazi [21] and Namazi
and Souto [22], indicates that in favorable conditions on f , and for large powers n,
there are large chunks of the geometry of Mf n and HSf n that are nearly isometric.

Here is the basic idea behind the manifolds in Theorem 1.1. Fixing R > 0, it is
easy to construct .S; f / so that Mf has inj.Mf / > R C 1. Now for Mf we
have b1.Mf / > 0, and in particular Mf is not a homology sphere. However, we
will “photocopy” its geometry onto a Heegaard splitting whose homology we can
independently control. Specifically, choose homeomorphisms h and g of S so that
HSh D S3 and g act trivially on H1.S IZ/. Then define Mn to be the Heegaard
splitting associated to h ı f n ı g ı f �n . This Mn is an integral homology sphere
since the gluing map acts on H1.S IZ/ precisely as h does. We show that f and g

can be chosen so that when n is large, most of the geometry of Mn is locally nearly
isometric to Mf and hence injx.Mn/ >R on most of Mn . Specifically, the volume
of thinR Mn is uniformly bounded whereas vol.Mn/!1; hence we can make the
ratio vol.thinR Mn/= vol.Mn/ < � , as required by Theorem 1.1.

In realizing this outline, there are several different routes one could take through
the machinery of Kleinian groups. We choose one which only uses results about
manifolds with incompressible boundary and bounded geometry. Moreover, unlike the
corresponding parts of [21], our argument does not rely on Tian [32].

1.6 Open questions

One very natural question is whether there are integral homology 3–spheres where
the injectivity radius is large everywhere. From the point of view in the discussion in
Sections 1.2 and 1.3, in fact it would be very interesting if one could add to Theorem 1.1
a uniform lower bound on inj.M / independent of R and � . The current construction
provides no control on inj.M / as R varies, basically because the genus of S has to
change with R; see Remarks 2.3 and 2.6.

The weaker version of Theorem 1.1 where one just requires that injx M > R for
some x follows from Purcell and Souto [26] by doing 1=n Dehn filling on the knot
complements constructed there which also have this property. A natural question is
whether there are knots in S3 where injx M is big most places. We give a possible
construction of such knots in Remark 2.7.

1.7 Outline of the rest of the paper

Section 2 gives the precise construction of the manifolds in Theorem 1.1 and proves
that result modulo the central Lemma 2.5. Section 3 reviews the needed background in
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Kleinian groups and uses it to prove Lemma 2.5. Finally, Section 4 contains the details
of the experimental results.
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2 Proof of the main theorem

The main result of this paper is the following.

Theorem 2.1 Given positive constants R and � and a finitely-generated abelian
group A, there exists a closed hyperbolic 3–manifold M where

H1.M IZ/DA and
vol.thinR M /

vol.M /
< �:

We begin by constructing a certain 3–manifold which fibers over the circle, the mapping
torus of a homeomorphism of a surface, which will be used as the geometric model for
most of the manifold in Theorem 2.1.

Lemma 2.2 Given R> 0, there exists a closed hyperbolic 3–manifold M which is a
mapping torus where inj.M / >R.

Proof Fix some hyperbolic mapping torus N . Then N contains finitely many closed
geodesics of length less than or equal to 2R, corresponding to certain conjugacy
classes Œi � of elements of �1.N /. Since �1.N / is residually finite (see eg Long and
Reid [15]), there is a finite-index normal subgroup of �1.N / which contains no i .
If M is the corresponding finite cover, then its shortest geodesic has length greater
than 2R and hence inj.M / >R. Since the fibration of N over S1 pulls back to one
of M , we are done.

Remark 2.3 A simple argument using minimal surfaces shows that any mapping torus
of a surface of genus g with inj.M /DR has log.g/�R�C , where C is independent
of R; thus the genus of the fiber of M in Lemma 2.2 necessarily goes to infinity as R
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does. While we have no need for this here, with a little more care the above construction
can produce examples where log.g/ � 3RC C 0 as we now describe. Specifically,
take the base manifold N to be arithmetic of the simplest type, ie defined by some
quadratic form. (There are many such fibered N by Agol [2, Theorem 5.2].) Now
consider a tower Mn of congruence covers of N . If dn is the degree of Mn! N ,
by Yeung [33, Lemma 2.2.1] we know there is a constant C 00 so that inj.Mn/ �

.1=3/ log dn �C 00 . On the other hand, the genus of the fiber grows at most linearly
in dn , and hence satisfies log.g/� 3RCC 0 for some C 0 independent of R.

2.1 Main construction

We now detail the construction of the examples in Theorem 2.1. Throughout, fix
R> 0 and a finitely generated abelian group A. Via Lemma 2.2, we choose a pseudo-
Anosov homeomorphism f of a closed surface S so that the mapping torus Mf has
inj.Mf / >RC 1. Let N0 be a connected sum of lens spaces and copies of S2 �S1

so that H1.N0IZ/DA. Let g be the genus of S , and let HC[H� be a Heegaard
splitting of N0 of genus g ; such a splitting exists provided g � rank.A/, and we can
always make g bigger if necessary by replacing Mf with a suitable finite cover. Now
identify the Heegaard surface @HC D @H� with S . Choose a pants decomposition P

of S so that the pared manifolds .H˙;P / are acylindrical; any P at distance at least 3

from the disc sets of HC and H� will do.

Let  be a separating essential simple closed curve on S so that the pared manifold

U D ..S � Œ0; 2�/ n . � f1g/;P � f0g[P � f2g/

is acylindrical. We now define a family of links in N0 which lie in a product neighbor-
hood S � Œ0; 6� by

Ln D P � f1g[f n.P /� f2g[f n. /� f3g[f n.P /� f4g[P � f5g

and consider their complements Nn D N0 nLn . We frame Ln by the blackboard
framing with respect to the surfaces S � fsg which contains it; that is, a longitude
is a parallel copy of the corresponding component in S � fsg. Define the closed
manifold Nn;k to be the following Dehn surgery on Ln in N0 : do 1=k Dehn surgery
on each component which is at heights f1; 2; 3g and �1=k Dehn surgery on each
component at heights f4; 5g. For large n and k , these Nn;k will be the examples used
to prove Theorem 2.1. To start with, we show this:

Lemma 2.4 The homology H1.Nn;k IZ/DA for all n; k .
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Proof Doing 1=k Dehn surgery along a single curve � in S is equivalent to changing
the gluing of the Heegaard splitting by the k th power of the Dehn twist on �. Since  is
separating, a Dehn twist on it acts trivially on the homology of S . Thus, homologically,
the Dehn twists along the components of Ln at heights f1; 2g precisely cancel out
those at heights f4; 5g. Hence Nn;k has the same homology as N0 .

The key geometric claim is the following, whose proof we defer to Section 3.

Lemma 2.5 Let fNng be the sequence of manifolds constructed above from the chosen
R > 0. For all large n, the manifold Nn has a complete hyperbolic metric of finite
volume, and moreover

lim
n!1

vol.thinR Nn/

vol.Nn/
D 0:

Proof of Theorem 2.1 Let � > 0 be given. By Lemma 2.5, choose n large enough so
that Nn is hyperbolic and vol.thinR Nn/= vol.Nn/<�=2. We now view Nn;k as a Dehn
filling on the cusped manifold Nn . By Thurston’s hyperbolic Dehn surgery theorem, for
large k the manifold Nn;k is hyperbolic; moreover, the geometry of Nn;k is arbitrarily
close to that of Nn outside a set of arbitrarily small volume, which is a neighborhood
about the core geodesics of the added solid tori; see Thurston [31] and Petronio and
Porti [25]. In particular, we can choose k so that vol.thinR Nn;k/= vol.Nn;k/ < � .
Since H1.Nn;k IZ/DA by Lemma 2.4 we have proved the theorem.

Remark 2.6 For fixed R, the manifolds used to prove Theorem 2.1 can be chosen
with minimum injectivity radius bounded below independent of � as we now explain.
As shown in Section 3, for large n the manifolds Nn constructed have injectivity radius
uniformly bounded below outside neighborhoods of the cusps. Moreover, the geometry
of said cusps are nearly isometric for large n. The drilling theorem (see Brock and
Bromberg [6]) then shows that the choice of k so that Nn;k has geometry close to
that of Nn can be made independent of n, and the added core geodesics in Nn;k have
length uniformly bounded from below.

Remark 2.7 We chose the construction here to streamline the proof of Lemma 2.5 in
Section 3. Here is a combinatorially simpler construction satisfying Lemma 2.5 that
relies on work of Namazi in his (as yet unpublished) thesis [21], the relevant results of
which will appear in Brock, Minsky, Namazi and Souto [7]; we hew to the published
literature in our present treatment. Let f be as before, but if necessary change the
identification of S with the Heegaard surface of N0 so that the invariant laminations
of f are disjoint from the closure in PML.S/ of the disk sets of both HC and H�

(which can be done by Kerckhoff [13] and Gadre [12]). Once again letting  be a

Geometry & Topology, Volume 19 (2015)



Injectivity radii of hyperbolic integer homology 3–spheres 505

separating curve on S , take N 0n simply to be N0 n f
n. /. By a bounded geometry

model theorem for Heegaard splittings [21; 7] (similar to Minsky’s bounded geometry
theorem [19] in the I –bundle case), given a sufficiently large k , chosen independent
of n, the geometry of a 1=k Dehn filling of N 0n will be modeled up to bi-Lipschitz
distortion by the geometry of that of Mf for almost all of its volume. An exactly
analogous argument to the one given in the proof of Theorem 3.2 allows us to make
the bi-Lipschitz constant arbitrarily close to 1 for almost all of the volume. In our
current treatment, the extra pairs of pants used to define Nn give us many canonical
thrice-punctured spheres which, because of their rigidity, are natural places from which
to understand the overall geometry of Nn via geometric limits.

3 Proof of the main lemma

The proof of Lemma 2.5 is our point of entry into the modern theory of Kleinian groups.
We first isolate the necessary background before turning to the proof itself.

3.1 Kleinian background

Throughout Section 3, we take S to be a closed surface of genus g > 1. We denote
by AH.S/ the set of all complete hyperbolic 3–manifolds M D H3=� equipped
with markings, or homotopy equivalences hW S ! M , up to marking preserving
isometry; precisely,

.hW S !M /� .gW S !N /

if there is an isometry �W M ! N , where � ı h ' g . The mapping class group
MCG.S/ of orientation preserving self-homeomorphisms of S up to isotopy acts on
AH.S/ by precomposition: given f 2MCG.S/ we let

f � .hW S !M /D .h ıf �1
W S !M /:

We refer to this action as remarking the element .hW S !M / by f .

A hyperbolic 3–manifold M determines a conjugacy class of Kleinian groups, that
is, of discrete subgroups of IsomC.H3/D PSL2C . A specific group is identified by a
choosing once and for all a fixed baseframe z! , that is, an orthonormal frame in the
tangent space at a point in H3 , and a baseframe ! in the tangent space at a point
in M ; the group � is then taken so that the derivative of the covering projection

H3
!M DH3=�

sends z! to ! . In practice, we will refer to a baseframe ! as being in M in reference
to the underlying basepoint.
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The space AH.S/ is readily seen to be the set of conjugacy classes of discrete faithful
representations �W �1.S/! PSL2C , via the association Œ��D h� ; AH.S/ is topolo-
gized by convergence of representatives on generators.

On the level of manifolds, we can reformulate algebraic convergence: a sequence
.hn;Mn/ of elements of AH.S/ converges algebraically to .h;M / if for each compact
subset K�M there are smooth homotopy equivalences 'nW M!Mn with 'nıh'hn

so that for each compact subset K �M the derivatives D'n converge to an isometry
at each point of K . If a baseframe ! in M is chosen so that .M; !/ has corresponding
Kleinian group � , then taking K containing ! , the baseframes !n DD'n.!/ in Mn

determine Kleinian groups �n admitting isomorphisms �nW �1.S/! �n that converge
to a limit �W �1.S/! PSL2C in the sense that �n. /! �. / for all  2 �1.S/; here
�n D .hn/� and �D h� .

Based manifolds .Mn; !n/ converge geometrically to a geometric limit .MG ; !G/ if
their associated Kleinian groups �n converge to the associated Kleinian group � for
.MG ; !G/ in the Hausdorff topology:

(1) For each  2 � there are n 2 �n so that fngn!  .

(2) If  is a limit point in PSL2C of a set f 0ngn with  0n 2 �n , then  lies in � .

By elementary compactness results (see McMullen [18, Proposition 2.1]), any alge-
braically convergent sequence .hn;Mn/! .h;M / has a subsequence with an associ-
ated geometric limit MG ; this geometric limit is obtained by choosing baseframes !n to
obtain convergent representations �n!� and then passing to a convergent subsequence
of the corresponding sequence of based manifolds .Mn; !n/.

Note that we have a locally isometric covering map .M; !/! .MG ; !G/. The se-
quence .hn;Mn/ converges strongly if it converges both algebraically and geometrically
and moreover the locally isometric cover M !MG is an isometry (in particular, a
homeomorphism).

Geometric convergence also has this intrinsic formulation: .Mn; !n/! .MG ; !G/

if for each compact subset K �MG with !G 2 K , there are smooth bi-Lipschitz
embeddings

 nW .K; !G/! .Mn; !n/

for n sufficiently large so that the derivatives of  n converge to isometries at each
point of K . While the limit .MG ; !G/ depends on the choice of baseframes !n , if !0n
lie at a uniformly bounded distance from !n then any limit of the sequence .Mn; !

0
n/

is isometric to MG .
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We adopt the convention that given an algebraically convergent sequence

.hn;Mn/! .h;M /

and a choice of ! in M , that baseframes !n are determined by the associated smooth
homotopy equivalences 'nW M !Mn with via D'n.!/D !n . With this convention,
images 'n ı h.S/ sit at uniformly bounded distance from the baseframes !n .

3.2 Maximal cusps

If P and Q are sets of simple closed curves giving a pants decomposition of S , denote
by M.P;Q/ the corresponding pared manifold

.S � I;P � f0g[Q� f1g/:

We say M.P;Q/ is pared acylindrical if no simple closed curve isotopic into P is also
isotopic into Q. For pared acylindrical M.P;Q/ there is a finite-volume hyperbolic
structure on S �R so that each free homotopy class represented by the pared locus
corresponds to a rank-1 cusp. The hyperbolic structure is unique, and letting S mark
M.P;Q/ by its inclusion as S � f1

2
g, we obtain a boundary point in the deformation

space AH.S/ known as a maximal cusp.

The convex core of M D H3=� , denoted core.M /, is the quotient by � of the
smallest convex subset of H3 whose closure contains the limit set of � , which is the
intersection of the closure of an orbit of � with yC D S2

1 . The pared convex core,
written core0.M /, is the complement in core.M / of its intersection with the Margulis
thin parts of M corresponding to cusps. While core.M.P;Q// has frontier consisting
of totally geodesic triply-punctured spheres, the boundary of core0.M.P;Q// consists
of a pair of compact surfaces each containing a collection of distinguished annuli
representing its intersection with cusps corresponding to P and Q respectively.

Much of the theory of algebraic and geometric limits of quasi-Fuchsian manifolds
Q.X;Y / in AH.S/ can be carried out for maximal cusps M.P;Q/ by viewing the
pair .P;Q/ as a combinatorial version of the pair .X;Y / 2 Teich.S/�Teich.S/ of
marked conformal structures determining Q.X;Y /. Indeed, as each M.P;Q/ is
uniquely determined by the choice of P and Q, much of the theory becomes more
concrete in this setting.

3.3 Pseudo-Anosov double limits

For a pseudo-Anosov element f 2MCG.S/, we fix a fiber F in the associated mapping
torus Mf , the corresponding fibration over S1 with monodromy f . We define the
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block Bf of f to be Mf split open along F , that is, the closure of Mf nF in the path
metric. We define �Mf to be the infinite-cyclic cover of Mf corresponding to �1.F /.

Thurston and McMullen showed that the double iteration Q.f �n.X /; f n.X // of f on
quasi-Fuchsian manifolds converges strongly to �Mf . Likewise, McMullen established
that the one-sided iteration Q.X; f n.X // converges strongly to a limit Qf with one
end asymptotically isometric to �Mf : there is a bi-Lipschitz diffeomorphism between
neighborhoods of the infinite-volume end of core.Qf / and an end of �Mf so that the
norm of the derivative converges to 1. Each of these discussions can be carried out in
the setting of maximal cusps:

Proposition 3.1 The maximal cusps M.f �m.P /; f n.P // for m; n > 0 converge
strongly to �Mf as m; n ! 1. The one-sided iteration M.P; f n.P // converges
strongly to a manifold MA whose pared convex core contains one compact boundary
surface S with parabolic locus P and a degenerate end asymptotically isometric to the
positive end of �Mf . The analogous statement holds for M.f �n.P /;P /, whose limit
is denoted MC .

See Figure 1 for schematic pictures of MA and MC .

Proof sketch There are various ways to deduce these results, which follow easily from
variations of the original arguments in Thurston [30] and McMullen [18]. Perhaps the
simplest is the following, where for concreteness we focus on the first claim. Consider
a surface X 2 Teich.S/ where P has very short total length and apply the drilling
theorem of [6] to the short geodesic representatives of f �m.P / and f n.P / in the
quasi-Fuchsian hyperbolic 3–manifold Qm;n D Q.f �m.X /; f n.X //. The drilled
manifold Dm;n has a bi-Lipschitz diffeomorphism between core0.Dm;n/ and a subset
of Qm;n ; this diffeomorphism can be made arbitrarily close to isometric by making
the length of P on X small enough. Now since Dm;n has a cover isometric to
M.f �m.P /; f n.P //, a diagonal argument yields the proposition.

Our main result of this section is this:

Theorem 3.2 Given a pseudo-Anosov f 2MCG.S/ and a pants decomposition P

of S , let YnDM.f �n.P /; f n.P //. For each � > 0 there are finite-volume hyperbolic
3–manifolds A and C so that for all n sufficiently large, core.Yn/ has a decomposition

core.Yn/DAn[Bn[Cn;

where An and Cn are 1C � bi-Lipschitz to A and C and injb.Yn/ > inj.Mf /� � for
every b 2 Bn . Moreover vol.Bn/!1 as n!1.
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�Mf :

core.MA/:

core.MC /:

Yn W

F�2 F�1 F0 F1 F2 F3

A

FA

EA

EC

FC

C

An Bn Cn

Figure 1: The manifolds used in the proof of Theorem 3.2

Remark 3.3 The theory of Kleinian surface groups provides considerable information
about the manifolds Yn ; in particular, Minsky’s bounded geometry theorem [19]
guarantees there is a bi-Lipschitz model for core0.Yn/ which can be described as a
union of finitely many copies of Bf , and the bi-Lipschitz constant depends only on the
genus of the fiber F (we give a more detailed discussion in the proof of Theorem 3.2).
Because we wish to ensure that the injectivity radius on Bn is large, the dependence of
the bi-Lipschitz constant on the genus presents a difficulty, as the lower bound for the
injectivity radius of Mf would then also depend on the genus of F . Nevertheless we
use this bi-Lipschitz control as a starting point.

Before proving Theorem 3.2, we explain its connection to the geometry of the mani-
folds Nn from Section 2.1 and how it proves Lemma 2.5.

Proof of Lemma 2.5 We return to the notation from Section 2.1. Let M˙ be the
convex cores of the manifolds corresponding to the pared manifolds .H˙;P /. Let D
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be the convex core of the hyperbolic manifold corresponding to U , and Dn be its
remarking by f n , ie let Dn be the convex core of the pared manifold

Un D ..S � I/ n .f n. /� f1
2
g/; f n.P /; f n.P //:

Then Nn is the union of the following pieces, glued along their totally geodesic surface
boundaries (since these are all thrice-punctured spheres there are no moduli issues):

Nn DMC
[ core .M.P; f n.P ///[Dn[ core.M.f .Pn/;P //[M�:

The geometries of M˙ and Dn are fixed, and in particular so are their volumes. The
other pieces are remarkings of the manifolds of Theorem 3.2, and hence for large n

have injectivity radius at least inj.Mf /� � outside a set of uniformly bounded volume.
This proves Lemma 2.5.

Proof of Theorem 3.2 The mapping torus Mf is defined as S � Œ0; 1� where .x; 1/�
.f .x/; 0/. The cover �Mf is thus S �R where the deck group is generated by the
self-isometry ˛ sending .x; t/ to .f �1.x/; t C 1/. We take our preferred fiber F

in Mf to be S � f0g, and the default marking h0W S ! �Mf to be the inclusion of S

as S � f0g. Note that the action of f on AH.S/ commutes with the action by ˛ :

˛ ı h0 ' f � h0 D h0 ıf
�1:

Further, we denote by Fk the translate ˛k.F / D S � fkg of the fiber; compare the
top of Figure 1. For k < k 0 we denote by ŒFk ;Fk0 � the compact submanifold of �Mf

which is the complement of the open infinite-volume components of �Mf n .Fk [Fk0/.

We may consider the marking hk W S ! �Mf , where

hk D ˛
k
ı h0W S ! �Mf :

Here, hk.S/ is Fk and as elements of AH.S/ we have

.hk ; �Mf /D f
k.h0; �Mf /:

By the bounded geometry theorem [19], there is an L depending only on S so that
for all large n the manifold core0.Yn/ admits an L–bi-Lipschitz homeomorphism, or
model map,

�nW ŒF�n;Fn�! core0.Yn/:

Since the volume of ŒF�n;Fn� is 2n vol.Mf /, we have

vol.core0.Yn//!1; as n!1.
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The homotopy class of �n is chosen so that �nıh0 corresponds to the standard marking
on Yn ; in other words, as elements of AH.S/ we have

.�n ı h0;Yn/DM.f �n.P /; f n.P //:

For each integer k with jkj< n, the copy of the fiber Fk provides a marking for Yn

via the model map �n by taking

�n ı hk W S ! Yn;

marked by the translate Fk in ŒF�n;Fn�. Then we have

.�n ı hk ;Yn/D f
k.�n ı h0;Yn/:

Let
gn;k D �n ı hk

denote this marking, and note that gn;0 corresponds to the standard marking of Yn .

We note that for each k with jkj � n, the manifold M.f �nCk.P /; f nCk.P // is
isometric to M.f �n.P /; f n.P //DYn . In particular, indexing the one-sided iterations
by M.P; f 2n.P // and M.f �2n.P /;P / we obtain manifolds that are isometric to Yn

by the isometry ˛n and ˛�n respectively.

To prove the theorem, we start by describing An and Cn . By Proposition 3.1, the
sequences fM.P; f 2n.P //g and fM.f �2n.P /; .P //g converge strongly to limits in
AH.S/ with one end asymptotically isometric to the positive end of �Mf and the
negative end of �Mf respectively. The sequence fM.f �n.P /; f n.P //g converges
strongly to �Mf itself.

Let MA in AH.S/ be the strong limit of M.P; f 2n.P //. We now explain the needed
decomposition of MA which is sketched in Figure 1. By Proposition 3.1 there is an
embedded surface FA in core.MA/, homotopic to the marking, so that FA divides
core.MA/ into a component A with bounded volume and an infinite-volume (neighbor-
hood of an) end EA so that EA is 1C�=.2 inj.Mf // bi-Lipschitz to (a neighborhood of)
the positive end of �Mf . The finite-volume submanifold A� core.MA/ has boundary

@AD @ core.MA/tFA:

In particular, A is chosen so that we have

(5) injb.MA/ > inj. �Mf /� �=2 for each b 2EA .

We take C to be the analogous subset of MC , the limit of M.f �2n.P /;P / in AS.S/,
cut off by a surface FC ; see Figure 1.
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Since the intersection A0 D core0.MA/ \ A is compact, the strong convergence
of M.P; f 2n.P // to MA guarantees, for n sufficiently large, smooth bi-Lipschitz
embeddings

 2nW A
0
!M.P; f 2n.P //

converging to isometric embeddings. We let An be the bounded volume submanifold of
M.P; f 2n.P //, which is isometric to Yn , cut off by the image  2n.FA/ and the convex
core boundary components corresponding to the negative end of M.P; f 2n.P //;
compare Figure 1. We define Cn similarly and take

Bn D core.Yn/ n .An[Cn/:

Since vol.core.Yn// goes to infinity whereas vol.An/ and vol.Cn/ are uniformly
bounded, it follows that vol.Bn/ ! 1 as n ! 1, verifying the last sentence of
Theorem 3.2.

We now show that for n sufficiently large we have

inj.Bn/ > inj. �Mf /� �:

Assume otherwise, and let pn be a sequence of points in Bn for which

(6) injpn
.Yn/� inj. �Mf /� �:

By the uniform density of the fibers Fk in ŒF�n;Fn� the L–bi-Lipschitz model map

�nW ŒF�n;Fn�! core0.Yn/

guarantees there is a sequence fkng with jknj< n so that pn lies at distance at most
L � diam.Bf / from the image �n.Fkn

/D gn;kn
.S/.

The sequence .gn;kn
;Yn/ in AH.S/ is represented by remarking Yn by f kn . Said

differently, in AH.S/ we have

.gn;kn
;Yn/D f

kn.gn;0;Yn/

and .gn;0;Yn/ represents the standard marking for which

.gn;0;Yn/DM.f �n.P /; f n.P //:

Since the basepoints pn are distance L�diam.Bf / from the marking surfaces gn;kn
.S/,

we may study the injectivity radii at pn in terms of the limiting geometry of

.gn;kn
;Yn/DM.f kn�n.P /; f knCn.P //:

Our analysis breaks into two cases, depending on whether n� jknj is bounded.
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n� jknj is unbounded After passing to a subsequence where n� jknj ! 1, by
Proposition 3.1 we have that the sequence .gn;kn

;Yn/ converges strongly to �Mf . As
each pn lies at uniformly bounded distance of the marking gn;kn

.S/, there is a compact
subset K � �Mf and smooth embeddings  nW K! Yn converging to an isometry so
that pn 2  n.K/.

It follows that injpn
.Yn/ > inj. �Mf /� � for n sufficiently large contradicting assump-

tion (6).

n�jknj is bounded We first pass to a subsequence where one of n�kn and �n�kn

is bounded; for notational simplicity we suppose j�n�knj< d . Then the basepoint pn

lies within a uniformly bounded distance, namely DD d �L �diam.Bf /, of the marking
surface gn;�n.S/.

We now employ the strong convergence of M.P; f 2n.P // to MA . Let KŠFA�Œ�1; 1�

denote a compact product neighborhood of FA in MA containing the ball B2D.A
0/.

By strong convergence, we have bi-Lipschitz embeddings  nW K ! Yn that send
the neighborhood K of FA to a neighborhood of the image  n.FA/ � @An by an
orientation-preserving diffeomorphism. For n sufficiently large, the embeddings  n

extend to diffeomorphisms on all of MA ; in particular, the preimages  �1
n .Bn/ of the

subsets Bn lie in the positive end EA of MA .

Now as each pn lies within distance D of gn;�n.S/ and the latter is contained
in  n.A

0/, it follows that pn lies in  n.K/ for all large n. Our basepoints pn

are in Bn and hence as discussed we have that  �1
n .pn/ lies in EA . Now by (5) the

injectivity radius of EA is at least inj. �Mf /� �=2. Thus for large n we must have
injpn

.Yn/ > inj. �Mf /� � which again contradicts assumption (6).

This shows that for sufficiently large n we have injb.Yn/ > inj.Mf / � � for every
b 2 Bn , completing the proof of Theorem 3.2.

4 Experimental results

Recall that Conjecture 1.2 posits that for a suitable tower Mn of congruence covers of
a fixed arithmetic manifold one has

6� �
log jH1.MnIZ/torsj

vol.Mn/
! 1:

For a finite-volume hyperbolic 3–manifold (or 3–orbifold), define

TorRat.M /D 6� �
� log jH1.M IZ/torj

vol.M /
�

log.vol.M //

vol.M /

�
:
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Figure 2: Congruence covers of arithmetic twist-knot orbifolds; the blue dots
are covers where b1 D 0 and the red dots covers where b1 > 0 .

0 10,000 20,000 30,000 40,000

0.2

0.4

0.6

0.8

1

1.2

1.4

vol.M /

TorRat.M /

Figure 3: Congruence covers of nonarithmetic twist-knot orbifolds; as before,
blue dots indicate b1 D 0 and red dots b1 > 0 .
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Figure 4: Histogram for TorRat.M / for arithmetic covers of twist-knot
orbifolds with vol.M / > 15;000; as before, red is b1 > 0 and blue b1 D 0 .
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Figure 5: Histograms for covers where vol.M / > 15;000; in blue are all the
nonarithmetic covers (with two outliers removed), and in green are arithmetic
covers with b1 D 0 .
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Figure 6: The relationship between TorRat.M / and b1.M / for covers of
arithmetic twist-knot orbifolds where b1.M / > 0; excludes covers of volume
less than 5,000.
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Figure 7: Covers of nonarithmetic twist-knot orbifolds with b1 > 0

Geometry & Topology, Volume 19 (2015)



516 Jeffrey F Brock and Nathan M Dunfield

As the second term of TorRat.M / is asymptotically negligible as vol.M / ! 1,
Conjecture 1.2 is also equivalent to TorRat.Mn/! 1. The second term is included
so that when b1.M / D 0 we have that TorRat.M / is precisely 6� � �.M / by the
Cheeger–Müller formula (4).

4.1 Twist-knot orbifolds

First, we consider the 34 hyperbolic 3–orbifolds of [9, Section 7]. These are topolog-
ically similar in that they are all built from twist-knots, but some are arithmetic and
others are not. As in [9], we consider �0 –type congruence covers of prime level, and
explore what happens to TorRat.M / in these covers.

Let us start with the 11 twist-knot orbifolds which are arithmetic. Going through prime
levels of norm in [500, 15,000] gave some 14,990 congruence covers of �0 –type,
which are plotted in Figure 2; as with the experiments of [23; 27], this data is very
consistent with Conjecture 1.2. Notice in Figure 2 that the red dots (b1 > 0) appear
to be somewhat lower (on average) than the blue dots (b1 D 0/. To confirm this, we
focus on the tail of 2,253 covers where vol.M / > 15;000 and plot the distribution of
TorRat for both types; see Figure 4. This pattern is expected since when b1.M / > 0

the analytic torsion �.M / gets a contribution from the regulator of H 1.M /; thus even
if �.M /� 1 then TorRat.M / can be noticeably less than 1. Figure 6 further explores
the effect the size of b1 on TorRat.

Next, we consider the 23 twist-knot orbifolds which are nonarithmetic. In this case,
there are some 31,391 congruence covers of this type, which are plotted in Figure 3. Two
things are worth pointing out here. The first is that when b1.M /D 0 one continues to
have TorRat.M /!1 as vol.M /!1, which is strong evidence for Conjecture 1.5 and
also consistent with the nonarithmetic examples of [29]. Surprisingly, the convergence
of TorRat.M /!1 appears to be faster than in the arithmetic case, as shown in Figure 5.
The second thing is that when b1.M / > 0 there are examples where TorRat.M / is
much less than 1 even when the vol.M / is quite large; this suggests that Conjecture 1.2
cannot be broadened to nonarithmetic manifolds. A more detailed look at the effect
of b1 on TorRat is given in Figure 7.

4.2 Covers of prime-power level

In the case of Bianchi manifolds, Şengün [28] discovered that for congruence covers
of the form �0.p

n/ where p is a prime of small norm, then TorRat is much smaller
than in the prime-level case for covers of similar volume. In particular, one hits a
computational wall before getting convincing evidence that TorRat! 1. Here, we
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Figure 8: Regular congruence covers of level pn where N.p/D 2; the data
is the same in both plots, the only difference being whether the volume axis
has a log scale.
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Figure 9: The base orbifold M is arithmetic of the following form: the
field K has defining polynomial x3C 2x� 1 and the quaternion algebra D

is ramified at the real place of K and the unique prime of norm 4 . The
orbifold M corresponds to elements of norm one in a maximal order in D .
Congruence covers of are type �0.p

n/ where p is the prime of norm 2 . The
values of TorRat in the tail are less than 1:07; compare with Figure 5.

look at several closed arithmetic examples which exhibit the same phenomenon; in
one case, we are able find a cover with TorRat � 1 providing further evidence for
Conjecture 1.2. Part of the issue here is that these examples can have a lot of b1.M /

and hence potentially a large contribution to �.M / from the regulator of H 1.M /.

In order to tease apart the issues here, we start with some families where b1.M /D 0

for all the covers and hence TorRat.M / D 6� � �.M /. Section 6.7 of [9] gives 19
closed hyperbolic 3–manifolds (of which 3 are arithmetic) where there is a prime p of
norm 2 where the associated quaternion algebra ramifies and moreover where �1.M /

is 2–powerful. Consequently, by [9, Theorem 6.3] the congruence covers of level pn

all have b1.M /D 0. The data on 68 covers of these manifolds is shown in Figure 8.
The convergence of TorRat to 1 seems reasonably convincing; for the 12 covers with
volumes greater than 15,000, the values of TorRat are in Œ1:000; 1:125�. This is still
slower than the convergence observed for covers of prime level, especially considering
that most of the manifolds here are nonarithmetic; compare Figure 5. Another arithmetic
example whose �0.p

n/–covers have b1D 0 for a prime of norm 2 is given in Figure 9;
this example has the best convergence of any tower of prime-power level that we found.
Some additional data for other arithmetic manifolds and primes of norm 5 where again
b1 D 0 is given in Figure 10.

Geometry & Topology, Volume 19 (2015)



Injectivity radii of hyperbolic integer homology 3–spheres 519

0 5000 10000 15000 20000
Volume

0.0

0.5

1.0

1.5

2.0

T
o
rR

a
t

vol.M /

0 5,000 10,000 15,000 20,000

TorRat.M /

0.0

0.5

1.0

1.5

2.0

100 101 102 103 104 105

Volume

0.0

0.5

1.0

1.5

2.0

T
o
rR

a
t

vol.M /
100 101 102 103 104 105

TorRat.M /

0.0

0.5

1.0

1.5

2.0

Figure 10: Regular congruence covers of level pn where N.p/D 5; the data
is the same in both plots, the only difference being whether the volume axis
has a log scale. The base orbifolds come from quaternion algebras over small
quartic fields which ramify precisely at the two real places of the base field;
all these covers have b1 D 0 .
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M1 x4�x3� 3x2�xC 1 �1323 ∅ q5 0:9732 : : :

M2 x3� 2x� 2 �76 fq2g q3 0:6617 : : :

M3 x4� 2x3C 3x2� 1 �976 ∅ q5 0:5757 : : :

M4 x3�x2Cx� 2 �83 fq5g q2 2:9435 : : :

M5 x2� 7 �7 fq2; q7g xq2 5:3334 : : :

Figure 11: Covers of the form �0.p
n/ of the arithmetic orbifolds Mn speci-

fied by the data in the table above, specifically the orbifold coming from the
elements of norm one in a maximal order of a quaternion algebra D over a
field K . Here qr denotes a prime in OK of norm r ; this prime is unique in
every case except the last example, where q2 and xq2 denote the two primes
in K DQ.

p
�7/ of norm 2 .
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We turn now to five families of examples where the �0.p
n/–covers have b1 > 0 and

hence the regulator term of TorRat comes into play. In each case, we start with the
arithmetic base orbifold coming from the elements of norm one in a maximal order of
a quaternion algebra D over a field K . The quaternion algebra D is ramified at all
the real places of K and at finitely many primes of K as specified in Figure 11. That
figure shows a marked correlation between the amount of b1 and how close TorRat is
to 1. While the data is not completely conclusive, except perhaps in the case of M1 , it
is consistent with the conjecture that TorRat! 1.

4.3 Computational notes

The computations here were done with Magma [4]. The code for building the covers of
twist-knot orbifolds is available at the website of Calegari and Dunfield [8]. The base
orbifolds for Section 4.2 were constructed by Page’s program KleinianGroups [24].
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