Injectivity radii of hyperbolic integer homology 3-spheres

Jeffrey F Brock
NATHAN M DUNFIELD

Abstract

We construct hyperbolic integer homology 3 -spheres where the injectivity radius is arbitrarily large for nearly all points of the manifold. As a consequence, there exists a sequence of closed hyperbolic 3 -manifolds that Benjamini-Schramm converge to \mathbb{H}^{3} whose normalized Ray-Singer analytic torsions do not converge to the L^{2}-analytic torsion of \mathbb{H}^{3}. This contrasts with the work of Abert et al who showed that BenjaminiSchramm convergence forces convergence of normalized Betti numbers. Our results shed light on a conjecture of Bergeron and Venkatesh on the growth of torsion in the homology of arithmetic hyperbolic 3-manifolds, and we give experimental results which support this and related conjectures.

57M50; 30F40

1 Introduction

By Mostow rigidity, a hyperbolic structure on a closed 3-manifold M is unique up to isometry. While the geometry of M is thus completely determined by its underlying topology, it can be difficult to understand the qualitative and quantitative connections between these two facets of M. Here, we show that a geometric property involving injectivity radii can be varied independently of the homology of the manifold. To state our results, we first need some notation. The injectivity radius $\operatorname{inj}_{x}(M)$ at $x \in M$ is the largest radius for which the ball about x is embedded, and the (lower) injectivity radius of M itself is $\operatorname{inj}(M)=\inf \left\{\operatorname{inj}_{x}(M) \mid x \in M\right\}$. On the topological side, an integer homology 3-sphere is a closed 3 -manifold M where $H_{*}(M ; \mathbb{Z}) \cong H_{*}\left(S^{3} ; \mathbb{Z}\right)$, and the term rational homology 3 -sphere is similarly defined. Our main result here is:

Theorem 1.1 Given positive constants R and ϵ there exists a hyperbolic integer homology 3-sphere M where

$$
\frac{\operatorname{vol}\left(\left\{x \in M \mid \operatorname{inj}_{x}(M)<R\right\}\right)}{\operatorname{vol}(M)}<\epsilon
$$

In fact, we show that the homology of M can be specified arbitrarily (Theorem 2.1). The proof is based on the modern theory of Kleinian groups; before sketching it, we motivate our result in several ways.

1.1 Cooper's question

Starting with any closed hyperbolic 3-manifold, one can make the injectivity radius arbitrarily large everywhere by taking a suitable finite cover. In the context of the virtual Haken conjecture, this motivated Cooper to ask whether there are hyperbolic rational homology 3 -spheres with arbitrarily large injectivity radius. In fact, such manifolds do exist by the work of Calegari and Dunfield [9] and Boston and Ellenberg [5]. However, if one instead considers integer homology 3 -spheres, then the analogous question is open; our Theorem 1.1 answers affirmatively a weakened version of this question. The manifolds of [5; 9] came from a tower of congruence covers of a fixed base manifold, and it seems unlikely this method would work for integer homology 3 -spheres as we now describe.

1.2 Torsion growth

Recently, number theorists have become interested in torsion in the homology of arithmetic groups; see Bergeron and Venkatesh [3] and Calegari and Venkatesh [10]. Specifically, Bergeron and Venkatesh posited the following as part of an intriguing general conjecture for arithmetic lattices in semisimple Lie groups. In the present context of hyperbolic 3-manifolds, Le independently formulated a closely related conjecture; see [14] for details.

Conjecture 1.2 [3] Let M be a closed congruence arithmetic hyperbolic 3-manifold, and $M \leftarrow M_{1} \leftarrow M_{2} \leftarrow M_{3} \leftarrow \cdots$ a tower of congruence covers where inj $\left(M_{n}\right) \rightarrow \infty$. Then the size of the torsion subgroup of $H_{1}\left(M_{n} ; \mathbb{Z}\right)$ grows exponentially in $\operatorname{vol}\left(M_{n}\right)$ and moreover

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \left|H_{1}\left(M_{n} ; \mathbb{Z}\right)_{\text {tors }}\right|}{\operatorname{vol}\left(M_{n}\right)}=\frac{1}{6 \pi} . \tag{1}
\end{equation*}
$$

In particular, if this conjecture holds then the approach of [9;5] which used exactly such a tower to answer Cooper's question cannot be modified to prove Theorem 1.1.

One of two key parts to Conjecture 1.2 is the expected convergence of Ray-Singer analytic torsion in such a tower of covers. More precisely, the logarithm of the analytic torsion of a Riemannian manifold M is

$$
\tau(M)=\frac{1}{2} \sum_{k=0}^{\operatorname{dim} M}(-1)^{k} \cdot k \cdot \log \left(\operatorname{det}^{\prime}\left(\Delta_{k}\right)\right),
$$

where Δ_{k} is the Laplacian on smooth k-forms and det ${ }^{\prime}$ is the zeta-regularized product of nonzero eigenvalues (see Müller [20] for details). Then for covers M_{n} as in

Conjecture 1.2, part of (1) is that one should have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\tau\left(M_{n}\right)}{\operatorname{vol}\left(M_{n}\right)}=\tau^{(2)}\left(\mathbb{H}^{3}\right), \tag{2}
\end{equation*}
$$

where $\tau^{(2)}\left(\mathbb{H}^{3}\right)=1 / 6 \pi$ is the L^{2}-analytic torsion of \mathbb{H}^{3}. A corollary of Theorem 1.1 is that one need not have (2) for a sequence M_{n} of hyperbolic 3-manifolds which Benjamini-Schramm converge to \mathbb{H}^{3}, which is a natural geometric notion of convergence implied by the hypotheses of Conjecture 1.2. As this corollary was the primary motivation for this paper, we now discuss it and its context in detail.

1.3 Benjamini-Schramm convergence

For a manifold M, we define $\operatorname{thin}_{R} M=\left\{x \in M \mid \operatorname{inj}_{x}(M)<R\right\}$. Following Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault and Samet [1], we say that a sequence $\left\{M_{n}\right\}$ of closed hyperbolic 3-manifolds Benjamini-Schramm converge to \mathbb{H}^{3} if for all $R>0$ one has $\operatorname{vol}\left(\operatorname{thin}_{R} M_{n}\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. We emphasize here that the M_{n} may have no relationship with each other beyond being hyperbolic; in particular, they need not be covers of a fixed manifold. Despite this, Abert et al were able to show that this notion of geometric convergence also implies convergence of part of the topology:

Theorem 1.3 [1] Let M_{n} be a sequence of closed hyperbolic 3-manifolds which Benjamini-Schramm converge to \mathbb{H}^{3}. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\operatorname{dim} H_{1}\left(M_{n} ; \mathbb{Q}\right)}{\operatorname{vol}\left(M_{n}\right)}=0 \tag{3}
\end{equation*}
$$

Here, the 0 in the right-hand side of (3) should be interpreted as the first L^{2} Betti number of \mathbb{H}^{3}, and the moral of Theorem 1.3 is that suitable local convergence of the geometry of the M_{n} leads to convergence of their normalized Betti numbers to the corresponding L^{2} Betti number of their common universal cover. Theorem 1.3 generalizes results of Lück [17] and Lott [16] which apply only to M_{n} coming from finite covers of a fixed manifold (as in Conjecture 1.2).

A key consequence of Theorem 1.1 is that Theorem 1.3 does not have an analog for analytic torsion:

Corollary 1.4 There exist closed hyperbolic 3-manifolds M_{n} which BenjaminiSchramm converge to \mathbb{H}^{3} where $\tau\left(M_{n}\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. In particular, the limit is not $\tau^{(2)}\left(\mathbb{H}^{3}\right)=1 / 6 \pi$.

Thus, while the geometric notion of Benjamini-Schramm convergence is enough to control the convergence of (normalized) Betti numbers to the corresponding L^{2} invariant of the limit, the same is not true for torsion.

1.4 Experimental results

Corollary 1.4 limits how much one can broaden Conjecture 1.2, and in this narrow sense could be taken as evidence against Conjecture 1.2. However, we present here computational evidence which strongly supports Conjecture 1.2 as well as certain generalizations to nonarithmetic manifolds. Our experiments complement prior work of Şengün [27; 28; 29] and Page [23]. To frame our results, we need to expand on the connection between Conjecture 1.2 and analytic torsion. For a closed Riemannian 3 -manifold, the Cheeger-Müller theorem [11; 20] implies (see eg [10, Section 5.1])

$$
\begin{equation*}
\tau(M)=\log \left|H_{1}(M ; \mathbb{Z})_{\text {tor }}\right|-\log (\operatorname{vol}(M))+2 \log \left(\text { regulator of } H^{1}(N)\right) \tag{4}
\end{equation*}
$$

Here the regulator of $H^{1}(N)$ is the covolume of the lattice $H^{1}(N ; \mathbb{Z})$ in $H^{1}(N ; \mathbb{R})$, where the latter has the inner product coming from its identification with the set of harmonic forms. The first part of Conjecture 1.2 is that $\tau\left(M_{n}\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow 1 / 6 \pi$ and the second is that $\log \left(\operatorname{reg} H^{1}\left(M_{n}\right)\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow 0$. In Section 4, we provide evidence in favor of a broadening of the first part Conjecture 1.2 to all hyperbolic 3-manifolds:

Conjecture 1.5 Let M_{n} be covers of a fixed closed hyperbolic 3-manifold M which Benjamini-Schramm converge to \mathbb{H}^{3}. Then $\tau\left(M_{n}\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow 1 / 6 \pi$.

In contrast, it is not expected that $\log \left(\operatorname{reg} H^{1}\left(M_{n}\right)\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow 0$ for nonarithmetic manifolds; we give data in support of this; see especially Figure 3. For arithmetic manifolds, experiments of Şengün [28] identified the case of congruence covers of prime-power level as a place where such convergence appears to be slowest, to the point where one hits computational limits before getting convincing evidence for or against Conjecture 1.2. In Section 4, we investigate several families of examples of this type. While some of these remain ambiguous, overall they provide additional evidence that $\log \left(\operatorname{reg} H^{1}\left(M_{n}\right)\right) / \operatorname{vol}\left(M_{n}\right) \rightarrow 0$ even in this case.

1.5 Proof sketch

Given a homeomorphism f of a surface S there are two natural 3-manifolds we can build from it. One is the mapping torus M_{f}, which fibers over the circle. Alternatively, we can identify S with the boundary of a handlebody H and consider the associated Heegaard splitting: $H S_{f}=H \cup_{f} H$. While the natural copies of S in M_{f} and $H S_{f}$
are radically different topologically (the first is incompressible and the other maximally compressible), the philosophy of Kleinian groups, specifically Namazi [21] and Namazi and Souto [22], indicates that in favorable conditions on f, and for large powers n, there are large chunks of the geometry of $M_{f^{n}}$ and $H S_{f^{n}}$ that are nearly isometric.
Here is the basic idea behind the manifolds in Theorem 1.1. Fixing $R>0$, it is easy to construct (S, f) so that M_{f} has $\operatorname{inj}\left(M_{f}\right)>R+1$. Now for M_{f} we have $b_{1}\left(M_{f}\right)>0$, and in particular M_{f} is not a homology sphere. However, we will "photocopy" its geometry onto a Heegaard splitting whose homology we can independently control. Specifically, choose homeomorphisms h and g of S so that $H S_{h}=S^{3}$ and g act trivially on $H_{1}(S ; \mathbb{Z})$. Then define M_{n} to be the Heegaard splitting associated to $h \circ f^{n} \circ g \circ f^{-n}$. This M_{n} is an integral homology sphere since the gluing map acts on $H_{1}(S ; \mathbb{Z})$ precisely as h does. We show that f and g can be chosen so that when n is large, most of the geometry of M_{n} is locally nearly isometric to M_{f} and hence $\operatorname{inj}_{x}\left(M_{n}\right)>R$ on most of M_{n}. Specifically, the volume of $\operatorname{thin}_{R} M_{n}$ is uniformly bounded whereas $\operatorname{vol}\left(M_{n}\right) \rightarrow \infty$; hence we can make the ratio $\operatorname{vol}\left(\operatorname{thin}_{R} M_{n}\right) / \operatorname{vol}\left(M_{n}\right)<\epsilon$, as required by Theorem 1.1.

In realizing this outline, there are several different routes one could take through the machinery of Kleinian groups. We choose one which only uses results about manifolds with incompressible boundary and bounded geometry. Moreover, unlike the corresponding parts of [21], our argument does not rely on Tian [32].

1.6 Open questions

One very natural question is whether there are integral homology 3 -spheres where the injectivity radius is large everywhere. From the point of view in the discussion in Sections 1.2 and 1.3, in fact it would be very interesting if one could add to Theorem 1.1 a uniform lower bound on $\operatorname{inj}(M)$ independent of R and ϵ. The current construction provides no control on $\operatorname{inj}(M)$ as R varies, basically because the genus of S has to change with R; see Remarks 2.3 and 2.6.

The weaker version of Theorem 1.1 where one just requires that $\operatorname{inj}_{x} M>R$ for some x follows from Purcell and Souto [26] by doing $1 / n$ Dehn filling on the knot complements constructed there which also have this property. A natural question is whether there are knots in S^{3} where $\operatorname{inj}_{x} M$ is big most places. We give a possible construction of such knots in Remark 2.7.

1.7 Outline of the rest of the paper

Section 2 gives the precise construction of the manifolds in Theorem 1.1 and proves that result modulo the central Lemma 2.5. Section 3 reviews the needed background in

Kleinian groups and uses it to prove Lemma 2.5. Finally, Section 4 contains the details of the experimental results.

Acknowledgements The authors were partially supported by US NSF grants DMS0906229, DMS-0707136 and DMS-1105476. We are very grateful to Nicolas Bergeron for suggesting this question and explaining its relation to [1], which happened at the conference "Geometry, analysis, and surfaces" in Autrans, France, in March 2011. The computational part of this paper was motivated by a workshop on torsion in the homology of arithmetic groups held in Banff in July 2012. We thank the organizers of both of these excellent events. Finally, we thank the referee for providing very helpful comments on the initial version of this paper.

2 Proof of the main theorem

The main result of this paper is the following.
Theorem 2.1 Given positive constants R and ϵ and a finitely-generated abelian group A, there exists a closed hyperbolic 3-manifold M where

$$
H_{1}(M ; \mathbb{Z})=A \quad \text { and } \quad \frac{\operatorname{vol}\left(\operatorname{thin}_{R} M\right)}{\operatorname{vol}(M)}<\epsilon
$$

We begin by constructing a certain 3 -manifold which fibers over the circle, the mapping torus of a homeomorphism of a surface, which will be used as the geometric model for most of the manifold in Theorem 2.1.

Lemma 2.2 Given $R>0$, there exists a closed hyperbolic 3-manifold M which is a mapping torus where $\operatorname{inj}(M)>R$.

Proof Fix some hyperbolic mapping torus N. Then N contains finitely many closed geodesics of length less than or equal to $2 R$, corresponding to certain conjugacy classes [γ_{i}] of elements of $\pi_{1}(N)$. Since $\pi_{1}(N)$ is residually finite (see eg Long and Reid [15]), there is a finite-index normal subgroup of $\pi_{1}(N)$ which contains no γ_{i}. If M is the corresponding finite cover, then its shortest geodesic has length greater than $2 R$ and hence $\operatorname{inj}(M)>R$. Since the fibration of N over S^{1} pulls back to one of M, we are done.

Remark 2.3 A simple argument using minimal surfaces shows that any mapping torus of a surface of genus g with $\operatorname{inj}(M)=R$ has $\log (g) \geq R-C$, where C is independent of R; thus the genus of the fiber of M in Lemma 2.2 necessarily goes to infinity as R
does. While we have no need for this here, with a little more care the above construction can produce examples where $\log (g) \leq 3 R+C^{\prime}$ as we now describe. Specifically, take the base manifold N to be arithmetic of the simplest type, ie defined by some quadratic form. (There are many such fibered N by Agol [2, Theorem 5.2].) Now consider a tower M_{n} of congruence covers of N. If d_{n} is the degree of $M_{n} \rightarrow N$, by Yeung [33, Lemma 2.2.1] we know there is a constant $C^{\prime \prime}$ so that $\operatorname{inj}\left(M_{n}\right) \geq$ $(1 / 3) \log d_{n}-C^{\prime \prime}$. On the other hand, the genus of the fiber grows at most linearly in d_{n}, and hence satisfies $\log (g) \leq 3 R+C^{\prime}$ for some C^{\prime} independent of R.

2.1 Main construction

We now detail the construction of the examples in Theorem 2.1. Throughout, fix $R>0$ and a finitely generated abelian group A. Via Lemma 2.2 , we choose a pseudoAnosov homeomorphism f of a closed surface S so that the mapping torus M_{f} has $\operatorname{inj}\left(M_{f}\right)>R+1$. Let N_{0} be a connected sum of lens spaces and copies of $S^{2} \times S^{1}$ so that $H_{1}\left(N_{0} ; \mathbb{Z}\right)=A$. Let g be the genus of S, and let $H^{+} \cup H^{-}$be a Heegaard splitting of N_{0} of genus g; such a splitting exists provided $g \geq \operatorname{rank}(A)$, and we can always make g bigger if necessary by replacing M_{f} with a suitable finite cover. Now identify the Heegaard surface $\partial H^{+}=\partial H^{-}$with S. Choose a pants decomposition P of S so that the pared manifolds ($H^{ \pm}, P$) are acylindrical; any P at distance at least 3 from the disc sets of H^{+}and H^{-}will do.

Let γ be a separating essential simple closed curve on S so that the pared manifold

$$
U=((S \times[0,2]) \backslash(\gamma \times\{1\}), P \times\{0\} \cup P \times\{2\})
$$

is acylindrical. We now define a family of links in N_{0} which lie in a product neighborhood $S \times[0,6]$ by

$$
L_{n}=P \times\{1\} \cup f^{n}(P) \times\{2\} \cup f^{n}(\gamma) \times\{3\} \cup f^{n}(P) \times\{4\} \cup P \times\{5\}
$$

and consider their complements $N_{n}=N_{0} \backslash L_{n}$. We frame L_{n} by the blackboard framing with respect to the surfaces $S \times\{s\}$ which contains it; that is, a longitude is a parallel copy of the corresponding component in $S \times\{s\}$. Define the closed manifold $N_{n, k}$ to be the following Dehn surgery on L_{n} in N_{0} : do $1 / k$ Dehn surgery on each component which is at heights $\{1,2,3\}$ and $-1 / k$ Dehn surgery on each component at heights $\{4,5\}$. For large n and k, these $N_{n, k}$ will be the examples used to prove Theorem 2.1. To start with, we show this:

Lemma 2.4 The homology $H_{1}\left(N_{n, k} ; \mathbb{Z}\right)=A$ for all n, k.

Proof Doing $1 / k$ Dehn surgery along a single curve η in S is equivalent to changing the gluing of the Heegaard splitting by the $k^{\text {th }}$ power of the Dehn twist on η. Since γ is separating, a Dehn twist on it acts trivially on the homology of S. Thus, homologically, the Dehn twists along the components of L_{n} at heights $\{1,2\}$ precisely cancel out those at heights $\{4,5\}$. Hence $N_{n, k}$ has the same homology as N_{0}.

The key geometric claim is the following, whose proof we defer to Section 3.
Lemma 2.5 Let $\left\{N_{n}\right\}$ be the sequence of manifolds constructed above from the chosen $R>0$. For all large n, the manifold N_{n} has a complete hyperbolic metric of finite volume, and moreover

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{vol}\left(\operatorname{thin}_{R} N_{n}\right)}{\operatorname{vol}\left(N_{n}\right)}=0
$$

Proof of Theorem 2.1 Let $\epsilon>0$ be given. By Lemma 2.5, choose n large enough so that N_{n} is hyperbolic and $\operatorname{vol}\left(\operatorname{thin}_{R} N_{n}\right) / \operatorname{vol}\left(N_{n}\right)<\epsilon / 2$. We now view $N_{n, k}$ as a Dehn filling on the cusped manifold N_{n}. By Thurston's hyperbolic Dehn surgery theorem, for large k the manifold $N_{n, k}$ is hyperbolic; moreover, the geometry of $N_{n, k}$ is arbitrarily close to that of N_{n} outside a set of arbitrarily small volume, which is a neighborhood about the core geodesics of the added solid tori; see Thurston [31] and Petronio and Porti [25]. In particular, we can choose k so that $\operatorname{vol}\left(\operatorname{thin}_{R} N_{n, k}\right) / \operatorname{vol}\left(N_{n, k}\right)<\epsilon$. Since $H_{1}\left(N_{n, k} ; \mathbb{Z}\right)=A$ by Lemma 2.4 we have proved the theorem.

Remark 2.6 For fixed R, the manifolds used to prove Theorem 2.1 can be chosen with minimum injectivity radius bounded below independent of ϵ as we now explain. As shown in Section 3, for large n the manifolds N_{n} constructed have injectivity radius uniformly bounded below outside neighborhoods of the cusps. Moreover, the geometry of said cusps are nearly isometric for large n. The drilling theorem (see Brock and Bromberg [6]) then shows that the choice of k so that $N_{n, k}$ has geometry close to that of N_{n} can be made independent of n, and the added core geodesics in $N_{n, k}$ have length uniformly bounded from below.

Remark 2.7 We chose the construction here to streamline the proof of Lemma 2.5 in Section 3. Here is a combinatorially simpler construction satisfying Lemma 2.5 that relies on work of Namazi in his (as yet unpublished) thesis [21], the relevant results of which will appear in Brock, Minsky, Namazi and Souto [7]; we hew to the published literature in our present treatment. Let f be as before, but if necessary change the identification of S with the Heegaard surface of N_{0} so that the invariant laminations of f are disjoint from the closure in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ of the disk sets of both H^{+}and H^{-} (which can be done by Kerckhoff [13] and Gadre [12]). Once again letting γ be a
separating curve on S, take N_{n}^{\prime} simply to be $N_{0} \backslash f^{n}(\gamma)$. By a bounded geometry model theorem for Heegaard splittings [21; 7] (similar to Minsky's bounded geometry theorem [19] in the I-bundle case), given a sufficiently large k, chosen independent of n, the geometry of a $1 / k$ Dehn filling of N_{n}^{\prime} will be modeled up to bi-Lipschitz distortion by the geometry of that of M_{f} for almost all of its volume. An exactly analogous argument to the one given in the proof of Theorem 3.2 allows us to make the bi-Lipschitz constant arbitrarily close to 1 for almost all of the volume. In our current treatment, the extra pairs of pants used to define N_{n} give us many canonical thrice-punctured spheres which, because of their rigidity, are natural places from which to understand the overall geometry of N_{n} via geometric limits.

3 Proof of the main lemma

The proof of Lemma 2.5 is our point of entry into the modern theory of Kleinian groups. We first isolate the necessary background before turning to the proof itself.

3.1 Kleinian background

Throughout Section 3, we take S to be a closed surface of genus $g>1$. We denote by $\mathrm{AH}(S)$ the set of all complete hyperbolic 3-manifolds $M=\mathbb{H}^{3} / \Gamma$ equipped with markings, or homotopy equivalences $h: S \rightarrow M$, up to marking preserving isometry; precisely,

$$
(h: S \rightarrow M) \sim(g: S \rightarrow N)
$$

if there is an isometry $\phi: M \rightarrow N$, where $\phi \circ h \simeq g$. The mapping class group $\mathcal{M C G}(S)$ of orientation preserving self-homeomorphisms of S up to isotopy acts on $\mathrm{AH}(S)$ by precomposition: given $f \in \mathcal{M C G}(S)$ we let

$$
f \cdot(h: S \rightarrow M)=\left(h \circ f^{-1}: S \rightarrow M\right) .
$$

We refer to this action as remarking the element $(h: S \rightarrow M)$ by f.
A hyperbolic 3-manifold M determines a conjugacy class of Kleinian groups, that is, of discrete subgroups of $\operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)=\mathrm{PSL}_{2} \mathbb{C}$. A specific group is identified by a choosing once and for all a fixed baseframe $\widetilde{\omega}$, that is, an orthonormal frame in the tangent space at a point in \mathbb{H}^{3}, and a baseframe ω in the tangent space at a point in M; the group Γ is then taken so that the derivative of the covering projection

$$
\mathbb{H}^{3} \rightarrow M=\mathbb{H}^{3} / \Gamma
$$

sends $\widetilde{\omega}$ to ω. In practice, we will refer to a baseframe ω as being in M in reference to the underlying basepoint.

The space $\mathrm{AH}(S)$ is readily seen to be the set of conjugacy classes of discrete faithful representations $\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C}$, via the association $[\rho]=h_{*} ; \mathrm{AH}(S)$ is topologized by convergence of representatives on generators.

On the level of manifolds, we can reformulate algebraic convergence: a sequence $\left(h_{n}, M_{n}\right)$ of elements of $\mathrm{AH}(S)$ converges algebraically to (h, M) if for each compact subset $K \subset M$ there are smooth homotopy equivalences $\varphi_{n}: M \rightarrow M_{n}$ with $\varphi_{n} \circ h \simeq h_{n}$ so that for each compact subset $K \subset M$ the derivatives $D \varphi_{n}$ converge to an isometry at each point of K. If a baseframe ω in M is chosen so that (M, ω) has corresponding Kleinian group Γ, then taking K containing ω, the baseframes $\omega_{n}=D \varphi_{n}(\omega)$ in M_{n} determine Kleinian groups Γ_{n} admitting isomorphisms $\rho_{n}: \pi_{1}(S) \rightarrow \Gamma_{n}$ that converge to a limit $\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C}$ in the sense that $\rho_{n}(\gamma) \rightarrow \rho(\gamma)$ for all $\gamma \in \pi_{1}(S)$; here $\rho_{n}=\left(h_{n}\right)_{*}$ and $\rho=h_{*}$.

Based manifolds (M_{n}, ω_{n}) converge geometrically to a geometric limit $\left(M_{G}, \omega_{G}\right)$ if their associated Kleinian groups Γ_{n} converge to the associated Kleinian group Γ for (M_{G}, ω_{G}) in the Hausdorff topology:
(1) For each $\gamma \in \Gamma$ there are $\gamma_{n} \in \Gamma_{n}$ so that $\left\{\gamma_{n}\right\}_{n} \rightarrow \gamma$.
(2) If γ is a limit point in $\operatorname{PSL}_{2} \mathbb{C}$ of a set $\left\{\gamma_{n}^{\prime}\right\}_{n}$ with $\gamma_{n}^{\prime} \in \Gamma_{n}$, then γ lies in Γ.

By elementary compactness results (see McMullen [18, Proposition 2.1]), any algebraically convergent sequence $\left(h_{n}, M_{n}\right) \rightarrow(h, M)$ has a subsequence with an associated geometric limit M_{G}; this geometric limit is obtained by choosing baseframes ω_{n} to obtain convergent representations $\rho_{n} \rightarrow \rho$ and then passing to a convergent subsequence of the corresponding sequence of based manifolds $\left(M_{n}, \omega_{n}\right)$.

Note that we have a locally isometric covering map $(M, \omega) \rightarrow\left(M_{G}, \omega_{G}\right)$. The sequence (h_{n}, M_{n}) converges strongly if it converges both algebraically and geometrically and moreover the locally isometric cover $M \rightarrow M_{G}$ is an isometry (in particular, a homeomorphism).

Geometric convergence also has this intrinsic formulation: $\left(M_{n}, \omega_{n}\right) \rightarrow\left(M_{G}, \omega_{G}\right)$ if for each compact subset $K \subset M_{G}$ with $\omega_{G} \in K$, there are smooth bi-Lipschitz embeddings

$$
\psi_{n}:\left(K, \omega_{G}\right) \rightarrow\left(M_{n}, \omega_{n}\right)
$$

for n sufficiently large so that the derivatives of ψ_{n} converge to isometries at each point of K. While the limit $\left(M_{G}, \omega_{G}\right)$ depends on the choice of baseframes ω_{n}, if ω_{n}^{\prime} lie at a uniformly bounded distance from ω_{n} then any limit of the sequence $\left(M_{n}, \omega_{n}^{\prime}\right)$ is isometric to M_{G}.

We adopt the convention that given an algebraically convergent sequence

$$
\left(h_{n}, M_{n}\right) \rightarrow(h, M)
$$

and a choice of ω in M, that baseframes ω_{n} are determined by the associated smooth homotopy equivalences $\varphi_{n}: M \rightarrow M_{n}$ with via $D \varphi_{n}(\omega)=\omega_{n}$. With this convention, images $\varphi_{n} \circ h(S)$ sit at uniformly bounded distance from the baseframes ω_{n}.

3.2 Maximal cusps

If P and Q are sets of simple closed curves giving a pants decomposition of S, denote by $M(P, Q)$ the corresponding pared manifold

$$
(S \times I, P \times\{0\} \cup Q \times\{1\})
$$

We say $M(P, Q)$ is pared acylindrical if no simple closed curve isotopic into P is also isotopic into Q. For pared acylindrical $M(P, Q)$ there is a finite-volume hyperbolic structure on $S \times \mathbb{R}$ so that each free homotopy class represented by the pared locus corresponds to a rank-1 cusp. The hyperbolic structure is unique, and letting S mark $M(P, Q)$ by its inclusion as $S \times\left\{\frac{1}{2}\right\}$, we obtain a boundary point in the deformation space $\mathrm{AH}(S)$ known as a maximal cusp.

The convex core of $M=\mathbb{H}^{3} / \Gamma$, denoted $\operatorname{core}(M)$, is the quotient by Γ of the smallest convex subset of \mathbb{H}^{3} whose closure contains the limit set of Γ, which is the intersection of the closure of an orbit of Γ with $\widehat{\mathbb{C}}=S_{\infty}^{2}$. The pared convex core, written core $^{0}(M)$, is the complement in core (M) of its intersection with the Margulis thin parts of M corresponding to cusps. While core $(M(P, Q))$ has frontier consisting of totally geodesic triply-punctured spheres, the boundary of core ${ }^{0}(M(P, Q))$ consists of a pair of compact surfaces each containing a collection of distinguished annuli representing its intersection with cusps corresponding to P and Q respectively.

Much of the theory of algebraic and geometric limits of quasi-Fuchsian manifolds $Q(X, Y)$ in $\mathrm{AH}(S)$ can be carried out for maximal cusps $M(P, Q)$ by viewing the pair (P, Q) as a combinatorial version of the pair $(X, Y) \in \operatorname{Teich}(S) \times \operatorname{Teich}(S)$ of marked conformal structures determining $Q(X, Y)$. Indeed, as each $M(P, Q)$ is uniquely determined by the choice of P and Q, much of the theory becomes more concrete in this setting.

3.3 Pseudo-Anosov double limits

For a pseudo-Anosov element $f \in \mathcal{M C G}(S)$, we fix a fiber F in the associated mapping torus M_{f}, the corresponding fibration over S^{1} with monodromy f. We define the
block B_{f} of f to be M_{f} split open along F, that is, the closure of $M_{f} \backslash F$ in the path metric. We define \widetilde{M}_{f} to be the infinite-cyclic cover of M_{f} corresponding to $\pi_{1}(F)$. Thurston and McMullen showed that the double iteration $Q\left(f^{-n}(X), f^{n}(X)\right)$ of f on quasi-Fuchsian manifolds converges strongly to \widetilde{M}_{f}. Likewise, McMullen established that the one-sided iteration $Q\left(X, f^{n}(X)\right)$ converges strongly to a limit Q_{f} with one end asymptotically isometric to \widetilde{M}_{f} : there is a bi-Lipschitz diffeomorphism between neighborhoods of the infinite-volume end of core $\left(Q_{f}\right)$ and an end of \widetilde{M}_{f} so that the norm of the derivative converges to 1 . Each of these discussions can be carried out in the setting of maximal cusps:

Proposition 3.1 The maximal cusps $M\left(f^{-m}(P), f^{n}(P)\right)$ for $m, n>0$ converge strongly to \widetilde{M}_{f} as $m, n \rightarrow \infty$. The one-sided iteration $M\left(P, f^{n}(P)\right)$ converges strongly to a manifold M_{A} whose pared convex core contains one compact boundary surface S with parabolic locus P and a degenerate end asymptotically isometric to the positive end of \widetilde{M}_{f}. The analogous statement holds for $M\left(f^{-n}(P), P\right)$, whose limit is denoted M_{C}.

See Figure 1 for schematic pictures of M_{A} and M_{C}.
Proof sketch There are various ways to deduce these results, which follow easily from variations of the original arguments in Thurston [30] and McMullen [18]. Perhaps the simplest is the following, where for concreteness we focus on the first claim. Consider a surface $X \in \operatorname{Teich}(S)$ where P has very short total length and apply the drilling theorem of [6] to the short geodesic representatives of $f^{-m}(P)$ and $f^{n}(P)$ in the quasi-Fuchsian hyperbolic 3-manifold $Q_{m, n}=Q\left(f^{-m}(X), f^{n}(X)\right)$. The drilled manifold $D_{m, n}$ has a bi-Lipschitz diffeomorphism between core ${ }^{0}\left(D_{m, n}\right)$ and a subset of $Q_{m, n}$; this diffeomorphism can be made arbitrarily close to isometric by making the length of P on X small enough. Now since $D_{m, n}$ has a cover isometric to $M\left(f^{-m}(P), f^{n}(P)\right)$, a diagonal argument yields the proposition.

Our main result of this section is this:
Theorem 3.2 Given a pseudo-Anosov $f \in \mathcal{M C G}(S)$ and a pants decomposition P of S, let $Y_{n}=M\left(f^{-n}(P), f^{n}(P)\right)$. For each $\epsilon>0$ there are finite-volume hyperbolic 3-manifolds A and C so that for all n sufficiently large, core $\left(Y_{n}\right)$ has a decomposition

$$
\operatorname{core}\left(Y_{n}\right)=A_{n} \cup B_{n} \cup C_{n},
$$

where A_{n} and C_{n} are $1+\epsilon$ bi-Lipschitz to A and C and $\operatorname{inj}_{b}\left(Y_{n}\right)>\operatorname{inj}\left(M_{f}\right)-\epsilon$ for every $b \in B_{n}$. Moreover $\operatorname{vol}\left(B_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Figure 1: The manifolds used in the proof of Theorem 3.2
Remark 3.3 The theory of Kleinian surface groups provides considerable information about the manifolds Y_{n}; in particular, Minsky's bounded geometry theorem [19] guarantees there is a bi-Lipschitz model for core ${ }^{0}\left(Y_{n}\right)$ which can be described as a union of finitely many copies of B_{f}, and the bi-Lipschitz constant depends only on the genus of the fiber F (we give a more detailed discussion in the proof of Theorem 3.2). Because we wish to ensure that the injectivity radius on B_{n} is large, the dependence of the bi-Lipschitz constant on the genus presents a difficulty, as the lower bound for the injectivity radius of M_{f} would then also depend on the genus of F. Nevertheless we use this bi-Lipschitz control as a starting point.

Before proving Theorem 3.2, we explain its connection to the geometry of the manifolds N_{n} from Section 2.1 and how it proves Lemma 2.5.

Proof of Lemma 2.5 We return to the notation from Section 2.1. Let $M^{ \pm}$be the convex cores of the manifolds corresponding to the pared manifolds $\left(H^{ \pm}, P\right)$. Let D
be the convex core of the hyperbolic manifold corresponding to U, and D_{n} be its remarking by f^{n}, ie let D_{n} be the convex core of the pared manifold

$$
U_{n}=\left((S \times I) \backslash\left(f^{n}(\gamma) \times\left\{\frac{1}{2}\right\}\right), f^{n}(P), f^{n}(P)\right) .
$$

Then N_{n} is the union of the following pieces, glued along their totally geodesic surface boundaries (since these are all thrice-punctured spheres there are no moduli issues):

$$
N_{n}=M^{+} \cup \operatorname{core}\left(M\left(P, f^{n}(P)\right)\right) \cup D_{n} \cup \operatorname{core}\left(M\left(f\left(P^{n}\right), P\right)\right) \cup M^{-} .
$$

The geometries of $M^{ \pm}$and D_{n} are fixed, and in particular so are their volumes. The other pieces are remarkings of the manifolds of Theorem 3.2, and hence for large n have injectivity radius at least $\operatorname{inj}\left(M_{f}\right)-\epsilon$ outside a set of uniformly bounded volume. This proves Lemma 2.5.

Proof of Theorem 3.2 The mapping torus M_{f} is defined as $S \times[0,1]$ where $(x, 1) \sim$ $(f(x), 0)$. The cover \widetilde{M}_{f} is thus $S \times \mathbb{R}$ where the deck group is generated by the self-isometry α sending (x, t) to $\left(f^{-1}(x), t+1\right)$. We take our preferred fiber F in M_{f} to be $S \times\{0\}$, and the default marking $h_{0}: S \rightarrow \widetilde{M}_{f}$ to be the inclusion of S as $S \times\{0\}$. Note that the action of f on $\operatorname{AH}(S)$ commutes with the action by α :

$$
\alpha \circ h_{0} \simeq f \cdot h_{0}=h_{0} \circ f^{-1} .
$$

Further, we denote by F_{k} the translate $\alpha^{k}(F)=S \times\{k\}$ of the fiber; compare the top of Figure 1. For $k<k^{\prime}$ we denote by $\left[F_{k}, F_{k^{\prime}}\right]$ the compact submanifold of \widetilde{M}_{f} which is the complement of the open infinite-volume components of $\widetilde{M}_{f} \backslash\left(F_{k} \cup F_{k^{\prime}}\right)$.
We may consider the marking $h_{k}: S \rightarrow \widetilde{M}_{f}$, where

$$
h_{k}=\alpha^{k} \circ h_{0}: S \rightarrow \widetilde{M}_{f} .
$$

Here, $h_{k}(S)$ is F_{k} and as elements of $\mathrm{AH}(S)$ we have

$$
\left(h_{k}, \widetilde{M}_{f}\right)=f^{k}\left(h_{0}, \widetilde{M}_{f}\right) .
$$

By the bounded geometry theorem [19], there is an L depending only on S so that for all large n the manifold core ${ }^{0}\left(Y_{n}\right)$ admits an L-bi-Lipschitz homeomorphism, or model map,

$$
\phi_{n}:\left[F_{-n}, F_{n}\right] \rightarrow \operatorname{core}^{0}\left(Y_{n}\right) .
$$

Since the volume of $\left[F_{-n}, F_{n}\right]$ is $2 n \operatorname{vol}\left(M_{f}\right)$, we have

$$
\operatorname{vol}\left(\operatorname{core}^{0}\left(Y_{n}\right)\right) \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

The homotopy class of ϕ_{n} is chosen so that $\phi_{n} \circ h_{0}$ corresponds to the standard marking on Y_{n}; in other words, as elements of $\operatorname{AH}(S)$ we have

$$
\left(\phi_{n} \circ h_{0}, Y_{n}\right)=M\left(f^{-n}(P), f^{n}(P)\right) .
$$

For each integer k with $|k|<n$, the copy of the fiber F_{k} provides a marking for Y_{n} via the model map ϕ_{n} by taking

$$
\phi_{n} \circ h_{k}: S \rightarrow Y_{n},
$$

marked by the translate F_{k} in $\left[F_{-n}, F_{n}\right]$. Then we have

$$
\left(\phi_{n} \circ h_{k}, Y_{n}\right)=f^{k}\left(\phi_{n} \circ h_{0}, Y_{n}\right) .
$$

Let

$$
g_{n, k}=\phi_{n} \circ h_{k}
$$

denote this marking, and note that $g_{n, 0}$ corresponds to the standard marking of Y_{n}.
We note that for each k with $|k| \leq n$, the manifold $M\left(f^{-n+k}(P), f^{n+k}(P)\right)$ is isometric to $M\left(f^{-n}(P), f^{n}(P)\right)=Y_{n}$. In particular, indexing the one-sided iterations by $M\left(P, f^{2 n}(P)\right)$ and $M\left(f^{-2 n}(P), P\right)$ we obtain manifolds that are isometric to Y_{n} by the isometry α^{n} and α^{-n} respectively.

To prove the theorem, we start by describing A_{n} and C_{n}. By Proposition 3.1, the sequences $\left\{M\left(P, f^{2 n}(P)\right)\right\}$ and $\left\{M\left(f^{-2 n}(P),(P)\right)\right\}$ converge strongly to limits in $\mathrm{AH}(S)$ with one end asymptotically isometric to the positive end of \widetilde{M}_{f} and the negative end of \widetilde{M}_{f} respectively. The sequence $\left\{M\left(f^{-n}(P), f^{n}(P)\right)\right\}$ converges strongly to \widetilde{M}_{f} itself.

Let M_{A} in $\mathrm{AH}(S)$ be the strong limit of $M\left(P, f^{2 n}(P)\right)$. We now explain the needed decomposition of M_{A} which is sketched in Figure 1. By Proposition 3.1 there is an embedded surface F_{A} in core $\left(M_{A}\right)$, homotopic to the marking, so that F_{A} divides core $\left(M_{A}\right)$ into a component A with bounded volume and an infinite-volume (neighborhood of an) end E_{A} so that E_{A} is $1+\epsilon /\left(2 \operatorname{inj}\left(M_{f}\right)\right)$ bi-Lipschitz to (a neighborhood of) the positive end of \widetilde{M}_{f}. The finite-volume submanifold $A \subset \operatorname{core}\left(M_{A}\right)$ has boundary

$$
\partial A=\partial \operatorname{core}\left(M_{A}\right) \sqcup F_{A} .
$$

In particular, A is chosen so that we have

$$
\begin{equation*}
\operatorname{inj}_{b}\left(M_{A}\right)>\operatorname{inj}\left(\widetilde{M}_{f}\right)-\epsilon / 2 \quad \text { for each } b \in E_{A} . \tag{5}
\end{equation*}
$$

We take C to be the analogous subset of M_{C}, the limit of $M\left(f^{-2 n}(P), P\right)$ in $A S(S)$, cut off by a surface F_{C}; see Figure 1 .

Since the intersection $A^{0}=\operatorname{core}^{0}\left(M_{A}\right) \cap A$ is compact, the strong convergence of $M\left(P, f^{2 n}(P)\right)$ to M_{A} guarantees, for n sufficiently large, smooth bi-Lipschitz embeddings

$$
\psi_{2 n}: A^{0} \rightarrow M\left(P, f^{2 n}(P)\right)
$$

converging to isometric embeddings. We let A_{n} be the bounded volume submanifold of $M\left(P, f^{2 n}(P)\right)$, which is isometric to Y_{n}, cut off by the image $\psi_{2 n}\left(F_{A}\right)$ and the convex core boundary components corresponding to the negative end of $M\left(P, f^{2 n}(P)\right)$; compare Figure 1. We define C_{n} similarly and take

$$
B_{n}=\operatorname{core}\left(Y_{n}\right) \backslash\left(A_{n} \cup C_{n}\right) .
$$

Since $\operatorname{vol}\left(\operatorname{core}\left(Y_{n}\right)\right)$ goes to infinity whereas $\operatorname{vol}\left(A_{n}\right)$ and $\operatorname{vol}\left(C_{n}\right)$ are uniformly bounded, it follows that $\operatorname{vol}\left(B_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, verifying the last sentence of Theorem 3.2.

We now show that for n sufficiently large we have

$$
\operatorname{inj}\left(B_{n}\right)>\operatorname{inj}\left(\widetilde{M}_{f}\right)-\epsilon
$$

Assume otherwise, and let p_{n} be a sequence of points in B_{n} for which

$$
\begin{equation*}
\operatorname{inj}_{p_{n}}\left(Y_{n}\right) \leq \operatorname{inj}\left(\widetilde{M}_{f}\right)-\epsilon \tag{6}
\end{equation*}
$$

By the uniform density of the fibers F_{k} in $\left[F_{-n}, F_{n}\right]$ the L-bi-Lipschitz model map

$$
\phi_{n}:\left[F_{-n}, F_{n}\right] \rightarrow \operatorname{core}^{0}\left(Y_{n}\right)
$$

guarantees there is a sequence $\left\{k_{n}\right\}$ with $\left|k_{n}\right|<n$ so that p_{n} lies at distance at most $L \cdot \operatorname{diam}\left(B_{f}\right)$ from the image $\phi_{n}\left(F_{k_{n}}\right)=g_{n, k_{n}}(S)$.
The sequence $\left(g_{n, k_{n}}, Y_{n}\right)$ in $\operatorname{AH}(S)$ is represented by remarking Y_{n} by $f^{k_{n}}$. Said differently, in $\mathrm{AH}(S)$ we have

$$
\left(g_{n, k_{n}}, Y_{n}\right)=f^{k_{n}}\left(g_{n, 0}, Y_{n}\right)
$$

and $\left(g_{n, 0}, Y_{n}\right)$ represents the standard marking for which

$$
\left(g_{n, 0}, Y_{n}\right)=M\left(f^{-n}(P), f^{n}(P)\right)
$$

Since the basepoints p_{n} are distance $L \cdot \operatorname{diam}\left(B_{f}\right)$ from the marking surfaces $g_{n, k_{n}}(S)$, we may study the injectivity radii at p_{n} in terms of the limiting geometry of

$$
\left(g_{n, k_{n}}, Y_{n}\right)=M\left(f^{k_{n}-n}(P), f^{k_{n}+n}(P)\right)
$$

Our analysis breaks into two cases, depending on whether $n-\left|k_{n}\right|$ is bounded.
$\boldsymbol{n}-\left|\boldsymbol{k}_{\boldsymbol{n}}\right|$ is unbounded After passing to a subsequence where $n-\left|k_{n}\right| \rightarrow \infty$, by Proposition 3.1 we have that the sequence $\left(g_{n, k_{n}}, Y_{n}\right)$ converges strongly to \widetilde{M}_{f}. As each p_{n} lies at uniformly bounded distance of the marking $g_{n, k_{n}}(S)$, there is a compact subset $K \subset \widetilde{M}_{f}$ and smooth embeddings $\psi_{n}: K \rightarrow Y_{n}$ converging to an isometry so that $p_{n} \in \psi_{n}(K)$.

It follows that $\operatorname{inj}_{p_{n}}\left(Y_{n}\right)>\operatorname{inj}\left(\widetilde{M}_{f}\right)-\epsilon$ for n sufficiently large contradicting assumption (6).
$\boldsymbol{n}-\left|\boldsymbol{k}_{\boldsymbol{n}}\right|$ is bounded We first pass to a subsequence where one of $n-k_{n}$ and $-n-k_{n}$ is bounded; for notational simplicity we suppose $\left|-n-k_{n}\right|<d$. Then the basepoint p_{n} lies within a uniformly bounded distance, namely $D=d \cdot L \cdot \operatorname{diam}\left(B_{f}\right)$, of the marking surface $g_{n,-n}(S)$.

We now employ the strong convergence of $M\left(P, f^{2 n}(P)\right)$ to M_{A}. Let $K \cong F_{A} \times[-1,1]$ denote a compact product neighborhood of F_{A} in M_{A} containing the ball $B_{2 D}\left(A^{0}\right)$. By strong convergence, we have bi-Lipschitz embeddings $\psi_{n}: K \rightarrow Y_{n}$ that send the neighborhood K of F_{A} to a neighborhood of the image $\psi_{n}\left(F_{A}\right) \subset \partial A_{n}$ by an orientation-preserving diffeomorphism. For n sufficiently large, the embeddings ψ_{n} extend to diffeomorphisms on all of M_{A}; in particular, the preimages $\psi_{n}^{-1}\left(B_{n}\right)$ of the subsets B_{n} lie in the positive end E_{A} of M_{A}.

Now as each p_{n} lies within distance D of $g_{n,-n}(S)$ and the latter is contained in $\psi_{n}\left(A^{0}\right)$, it follows that p_{n} lies in $\psi_{n}(K)$ for all large n. Our basepoints p_{n} are in B_{n} and hence as discussed we have that $\psi_{n}^{-1}\left(p_{n}\right)$ lies in E_{A}. Now by (5) the injectivity radius of E_{A} is at least $\operatorname{inj}\left(\widetilde{M}_{f}\right)-\epsilon / 2$. Thus for large n we must have $\operatorname{inj}_{p_{n}}\left(Y_{n}\right)>\operatorname{inj}\left(\widetilde{M}_{f}\right)-\epsilon$ which again contradicts assumption (6).

This shows that for sufficiently large n we have $\operatorname{inj}_{b}\left(Y_{n}\right)>\operatorname{inj}\left(M_{f}\right)-\epsilon$ for every $b \in B_{n}$, completing the proof of Theorem 3.2.

4 Experimental results

Recall that Conjecture 1.2 posits that for a suitable tower M_{n} of congruence covers of a fixed arithmetic manifold one has

$$
6 \pi \cdot \frac{\log \left|H_{1}\left(M_{n} ; \mathbb{Z}\right)_{\text {tors }}\right|}{\operatorname{vol}\left(M_{n}\right)} \rightarrow 1
$$

For a finite-volume hyperbolic 3-manifold (or 3-orbifold), define

$$
\operatorname{TorRat}(M)=6 \pi \cdot\left(\frac{\log \left|H_{1}(M ; \mathbb{Z})_{\operatorname{tor}}\right|}{\operatorname{vol}(M)}-\frac{\log (\operatorname{vol}(M))}{\operatorname{vol}(M)}\right) .
$$

Figure 2: Congruence covers of arithmetic twist-knot orbifolds; the blue dots are covers where $b_{1}=0$ and the red dots covers where $b_{1}>0$.

Figure 3: Congruence covers of nonarithmetic twist-knot orbifolds; as before, blue dots indicate $b_{1}=0$ and red dots $b_{1}>0$.

Figure 4: Histogram for $\operatorname{TorRat}(M)$ for arithmetic covers of twist-knot orbifolds with $\operatorname{vol}(M)>15,000$; as before, red is $b_{1}>0$ and blue $b_{1}=0$.

Figure 5: Histograms for covers where $\operatorname{vol}(M)>15,000$; in blue are all the nonarithmetic covers (with two outliers removed), and in green are arithmetic covers with $b_{1}=0$.

Figure 6: The relationship between $\operatorname{TorRat}(M)$ and $b_{1}(M)$ for covers of arithmetic twist-knot orbifolds where $b_{1}(M)>0$; excludes covers of volume less than 5,000.

Figure 7: Covers of nonarithmetic twist-knot orbifolds with $b_{1}>0$

As the second term of $\operatorname{TorRat}(M)$ is asymptotically negligible as $\operatorname{vol}(M) \rightarrow \infty$, Conjecture 1.2 is also equivalent to $\operatorname{TorRat}\left(M_{n}\right) \rightarrow 1$. The second term is included so that when $b_{1}(M)=0$ we have that $\operatorname{TorRat}(M)$ is precisely $6 \pi \cdot \tau(M)$ by the Cheeger-Müller formula (4).

4.1 Twist-knot orbifolds

First, we consider the 34 hyperbolic 3-orbifolds of [9, Section 7]. These are topologically similar in that they are all built from twist-knots, but some are arithmetic and others are not. As in [9], we consider Γ_{0}-type congruence covers of prime level, and explore what happens to $\operatorname{TorRat}(M)$ in these covers.

Let us start with the 11 twist-knot orbifolds which are arithmetic. Going through prime levels of norm in [500, 15,000] gave some 14,990 congruence covers of Γ_{0}-type, which are plotted in Figure 2; as with the experiments of [23; 27], this data is very consistent with Conjecture 1.2. Notice in Figure 2 that the red dots ($b_{1}>0$) appear to be somewhat lower (on average) than the blue dots $\left(b_{1}=0\right)$. To confirm this, we focus on the tail of 2,253 covers where $\operatorname{vol}(M)>15,000$ and plot the distribution of TorRat for both types; see Figure 4. This pattern is expected since when $b_{1}(M)>0$ the analytic torsion $\tau(M)$ gets a contribution from the regulator of $H^{1}(M)$; thus even if $\tau(M) \approx 1$ then $\operatorname{TorRat}(M)$ can be noticeably less than 1 . Figure 6 further explores the effect the size of b_{1} on TorRat.

Next, we consider the 23 twist-knot orbifolds which are nonarithmetic. In this case, there are some 31,391 congruence covers of this type, which are plotted in Figure 3. Two things are worth pointing out here. The first is that when $b_{1}(M)=0$ one continues to have $\operatorname{TorRat}(M) \rightarrow 1$ as $\operatorname{vol}(M) \rightarrow \infty$, which is strong evidence for Conjecture 1.5 and also consistent with the nonarithmetic examples of [29]. Surprisingly, the convergence of $\operatorname{Tor} \operatorname{Rat}(M) \rightarrow 1$ appears to be faster than in the arithmetic case, as shown in Figure 5. The second thing is that when $b_{1}(M)>0$ there are examples where $\operatorname{TorRat}(M)$ is much less than 1 even when the $\operatorname{vol}(M)$ is quite large; this suggests that Conjecture 1.2 cannot be broadened to nonarithmetic manifolds. A more detailed look at the effect of b_{1} on TorRat is given in Figure 7.

4.2 Covers of prime-power level

In the case of Bianchi manifolds, Şengün [28] discovered that for congruence covers of the form $\Gamma_{0}\left(\mathfrak{p}^{n}\right)$ where \mathfrak{p} is a prime of small norm, then TorRat is much smaller than in the prime-level case for covers of similar volume. In particular, one hits a computational wall before getting convincing evidence that TorRat $\rightarrow 1$. Here, we

Figure 8: Regular congruence covers of level \mathfrak{p}^{n} where $N(\mathfrak{p})=2$; the data is the same in both plots, the only difference being whether the volume axis has a log scale.

Figure 9: The base orbifold M is arithmetic of the following form: the field K has defining polynomial $x^{3}+2 x-1$ and the quaternion algebra D is ramified at the real place of K and the unique prime of norm 4. The orbifold M corresponds to elements of norm one in a maximal order in D. Congruence covers of are type $\Gamma_{0}\left(\mathfrak{p}^{n}\right)$ where \mathfrak{p} is the prime of norm 2. The values of TorRat in the tail are less than 1.07 ; compare with Figure 5.
look at several closed arithmetic examples which exhibit the same phenomenon; in one case, we are able find a cover with TorRat ≈ 1 providing further evidence for Conjecture 1.2. Part of the issue here is that these examples can have a lot of $b_{1}(M)$ and hence potentially a large contribution to $\tau(M)$ from the regulator of $H^{1}(M)$.

In order to tease apart the issues here, we start with some families where $b_{1}(M)=0$ for all the covers and hence $\operatorname{TorRat}(M)=6 \pi \cdot \tau(M)$. Section 6.7 of [9] gives 19 closed hyperbolic 3 -manifolds (of which 3 are arithmetic) where there is a prime \mathfrak{p} of norm 2 where the associated quaternion algebra ramifies and moreover where $\pi_{1}(M)$ is 2 -powerful. Consequently, by [9, Theorem 6.3] the congruence covers of level \mathfrak{p}^{n} all have $b_{1}(M)=0$. The data on 68 covers of these manifolds is shown in Figure 8. The convergence of TorRat to 1 seems reasonably convincing; for the 12 covers with volumes greater than 15,000 , the values of TorRat are in [1.000, 1.125]. This is still slower than the convergence observed for covers of prime level, especially considering that most of the manifolds here are nonarithmetic; compare Figure 5. Another arithmetic example whose $\Gamma_{0}\left(\mathfrak{p}^{n}\right)$-covers have $b_{1}=0$ for a prime of norm 2 is given in Figure 9 ; this example has the best convergence of any tower of prime-power level that we found. Some additional data for other arithmetic manifolds and primes of norm 5 where again $b_{1}=0$ is given in Figure 10.

Figure 10: Regular congruence covers of level \mathfrak{p}^{n} where $N(\mathfrak{p})=5$; the data is the same in both plots, the only difference being whether the volume axis has a log scale. The base orbifolds come from quaternion algebras over small quartic fields which ramify precisely at the two real places of the base field; all these covers have $b_{1}=0$.

	Defining poly of K	Δ_{K}	$\operatorname{Ram}_{\text {finite }}(D)$	\mathfrak{p}	volume
M_{1}	$x^{4}-x^{3}-3 x^{2}-x+1$	-1323	\varnothing	\mathfrak{q}_{5}	$0.9732 \ldots$
M_{2}	$x^{3}-2 x-2$	-76	$\left\{\mathfrak{q}_{2}\right\}$	\mathfrak{q}_{3}	$0.6617 \ldots$
M_{3}	$x^{4}-2 x^{3}+3 x^{2}-1$	-976	\varnothing	\mathfrak{q}_{5}	$0.5757 \ldots$
M_{4}	$x^{3}-x^{2}+x-2$	-83	$\left\{\mathfrak{q}_{5}\right\}$	\mathfrak{q}_{2}	$2.9435 \ldots$
M_{5}	$x^{2}-7$	-7	$\left\{\mathfrak{q}_{2}, \mathfrak{q}_{7}\right\}$	$\overline{\mathfrak{q}}_{2}$	$5.3334 \ldots$

Figure 11: Covers of the form $\Gamma_{0}\left(\mathfrak{p}^{n}\right)$ of the arithmetic orbifolds M_{n} specified by the data in the table above, specifically the orbifold coming from the elements of norm one in a maximal order of a quaternion algebra D over a field K. Here \mathfrak{q}_{r} denotes a prime in \mathcal{O}_{K} of norm r; this prime is unique in every case except the last example, where \mathfrak{q}_{2} and $\overline{\mathfrak{q}}_{2}$ denote the two primes in $K=\mathbb{Q}(\sqrt{-7})$ of norm 2 .

We turn now to five families of examples where the $\Gamma_{0}\left(\mathfrak{p}^{n}\right)$-covers have $b_{1}>0$ and hence the regulator term of TorRat comes into play. In each case, we start with the arithmetic base orbifold coming from the elements of norm one in a maximal order of a quaternion algebra D over a field K. The quaternion algebra D is ramified at all the real places of K and at finitely many primes of K as specified in Figure 11. That figure shows a marked correlation between the amount of b_{1} and how close TorRat is to 1 . While the data is not completely conclusive, except perhaps in the case of M_{1}, it is consistent with the conjecture that TorRat $\rightarrow 1$.

4.3 Computational notes

The computations here were done with Magma [4]. The code for building the covers of twist-knot orbifolds is available at the website of Calegari and Dunfield [8]. The base orbifolds for Section 4.2 were constructed by Page's program KleinianGroups [24].

References

[1] M Abert, N Bergeron, I Biringer, T Gelander, N Nikolov, J Raimbault, I Samet, On the growth of L^{2}-invariants for sequences of lattices in Lie groups arXiv: 1210. 2961
[2] I Agol, Criteria for virtual fibering, J. Topol. 1 (2008) 269-284 MR2399130
[3] N Bergeron, A Venkatesh, The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12 (2013) 391-447 MR3028790
[4] W Bosma, J Cannon, C Fieker, A Steel, Handbook of MAGMA functions Available at http://magma.maths.usyd.edu.au/
[5] N Boston, J S Ellenberg, Pro-p groups and towers of rational homology spheres, Geom. Topol. 10 (2006) 331-334 MR2224459
[6] J F Brock, K W Bromberg, On the density of geometrically finite Kleinian groups, Acta Math. 192 (2004) 33-93 MR2079598
[7] J F Brock, Y N Minsky, H Namazi, J Souto, Bounded combinatorics and uniform models for hyperbolic 3-manifolds arXiv:1312.2293
[8] F Calegari, N M Dunfield, Data files and Magma programs for 'Automorphic forms and rational homology 3-spheres' Available at http://www.computop.org/ software/twist-congruence/
[9] F Calegari, N M Dunfield, Automorphic forms and rational homology 3-spheres, Geom. Topol. 10 (2006) 295-329 MR2224458
[10] F Calegari, A Venkatesh, A torsion Jacquet-Langlands correspondence arXiv: 1212.3847
[11] J Cheeger, Analytic torsion and the heat equation, Ann. of Math. 109 (1979) 259-322 MR528965
[12] V Gadre, The limit set of the handlebody set has measure zero Appendix to "Are large distance Heegaard splittings generic?" by Lustig and Moriah, J. Reine Angew. Math. 670 (2012) 115-119
[13] S P Kerckhoff, The measure of the limit set of the handlebody group, Topology 29 (1990) 27-40 MR1046623
[14] T T Q Le, Hyperbolic volume, Mahler measure and homology growth Available at http://www.math.columbia.edu/~volconf09/notes/leconf.pdf
[15] D D Long, A W Reid, Simple quotients of hyperbolic 3-manifold groups, Proc. Amer. Math. Soc. 126 (1998) 877-880 MR1459136
[16] J Lott, Heat kernels on covering spaces and topological invariants, J. Differential Geom. 35 (1992) 471-510 MR1158345
[17] W Lück, Approximating L^{2}-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994) 455-481 MR1280122
[18] C T McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Math. Studies 142, Princeton Univ. Press (1996) MR1401347
[19] Y N Minsky, Bounded geometry for Kleinian groups, Invent. Math. 146 (2001) 143-192 MR1859020
[20] W Müller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math. 28 (1978) 233-305 MR498252
[21] H Namazi, Heegaard splittings and hyperbolic geometry, PhD thesis, Yale University (2005) Available at http://search.proquest.com/docview/305372837
[22] H Namazi, J Souto, Heegaard splittings and pseudo-Anosov maps, Geom. Funct. Anal. 19 (2009) 1195-1228 MR2570321
[23] A Page, Algorithms for arithmetic Kleinian groups Available at http:// www.birs.ca/events/2012/5-day-workshops/12w5075/videos
[24] A Page, KleinianGroups, version 1.0 Available at http://www.normalesup.org/ \sim page/Recherche/Logiciels/logiciels-en.html
[25] C Petronio, J Porti, Negatively oriented ideal triangulations and a proof of Thurston's hyperbolic Dehn filling theorem, Expo. Math. 18 (2000) 1-35 MR1751141
[26] J S Purcell, J Souto, Geometric limits of knot complements, J. Topol. 3 (2010) 759-785 MR2746337
[27] M H Şengün, On the integral cohomology of Bianchi groups, Exp. Math. 20 (2011) 487-505 MR2859903
[28] M H Şengün, On the integral cohomology of Bianchi groups (2012) video talk at Torsion in homology of arithmetic groups
[29] M H Şengün, On the torsion homology of nonarithmetic hyperbolic tetrahedral groups, Int. J. Number Theory 8 (2012) 311-320 MR2890481
[30] W P Thurston, Hyperbolic structures on 3-manifolds, II: Surface groups and 3manifolds which fiber over the circle arXiv:math/9801045
[31] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979) Available at http://msri.org/publications/books/ gt3m/
[32] G Tian, A pinching theorem on manifolds with negative curvature, preprint
[33] S-K Yeung, Betti numbers on a tower of coverings, Duke Math. J. 73 (1994) 201-226 MR1257283

Department of Mathematics, Brown University
Box 1917, Providence, RI 02912, USA
Department of Mathematics, University of Illinois
1409 W Green St, Urbana, IL 61801, USA
jeff_brock@brown.edu, nathan@dunfield.info
http://www.math.brown.edu/~brock/, http://dunfield.info

Proposed: Ian Agol
Seconded: John Lott, Dmitri Burago

Received: 4 February 2014
Revised: 7 March 2014

