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Homogeneous Ricci solitons are algebraic

MICHAEL JABLONSKI

In this short note, we show that homogeneous Ricci solitons are algebraic. As an
application, we see that the generalized Alekseevskii conjecture is equivalent to the
Alekseevskii conjecture.

53C25; 22E25, 53C30

1 Introduction

A Riemannian manifold .M;g/ is said to be a Ricci soliton if it satisfies the equation

(1-1) ricg D cgCLX g

for some c 2R and some smooth vector field X 2X.M /. Such metrics are of interest
as they correspond to self-similar solutions of the Ricci flow

@

@t
g D�2 ricg :

That is, g is the initial value of a solution to the Ricci flow of the form gt D c.t/'�t g ,
where c.t/ 2 R and 't 2 Diff.M /. In this way, Ricci solitons are geometric fixed
points of the flow and so are special metrics.

Homogeneous Ricci solitons arise naturally as limits under the Ricci flow (Lott [15],
Lauret [14]) and, independently, hold a distinguished place apart from other homo-
geneous metrics. For example, nilmanifolds cannot admit Einstein metrics, but do
often admit Ricci solitons (Jensen [9], Jablonski [6]), Ricci solitons on nilmanifolds
are precisely the minima of a natural geometric functional (Lauret [13]), and Ricci
solitons are metrics of maximal symmetry on certain solvmanifolds (Jablonski [5]).

One natural kind of example arises as follows. Consider a homogeneous space
G=K , where K is closed and connected. For every derivation D 2 Der.g/ such
that DW k! k, we have a well-defined map Dg=kW g=k! g=k. Denote such derivations
of g by Der.g=k/. A homogeneous Ricci soliton .G=K;g/ is called G–semialgebraic
if the .1; 1/ Ricci tensor is of the form

(1-2) RicD c IdC1
2

�
Dg=kCDg=k

t
�
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on g=k ' TeG=K , for some c 2 R and some D 2 Der.g=k/. This definition is
motivated by the idea of taking our family of diffeomorphisms f'tg above to come
from automorphisms of the group G which leave K invariant; see Jablonski [7] or
Lafuente and Lauret [12] for more details.

If our semialgebraic Ricci soliton satisfies the seemingly stronger condition that Dg=k

is symmetric, then it is called a G–algebraic Ricci soliton. Up to this point, all
known examples of semialgebraic Ricci solitons were in fact algebraic and isometric
to solvmanifolds. (This follows from [7] together with [11] by Lafuente and Lauret.)
Further, it was known that every homogeneous Ricci soliton must be semialgebraic
relative to its full isometry group [7]. We now present our main result.

Theorem 1 Every G–semialgebraic Ricci soliton is necessarily G–algebraic.

Corollary 2 Let .M;g/ be a homogeneous Ricci soliton. There exists a transitive
group G of isometries such that M DG=K is a G–algebraic Ricci soliton.

The theorem above resolves questions raised by Lafuente and Lauret [12] and He,
Petersen and Wylie [4]. In these works, it was shown that one can always extend a
simply connected, algebraic soliton to an Einstein metric on a larger homogeneous
space. There the goal was to relate the classical Alekseevskii conjecture on Einstein
metrics to a more general version for Ricci solitons. More precisely, they showed that
(among simply connected manifolds) the Alekseevskii conjecture for Einstein metrics
is equivalent to the (a priori) more general conjecture in the case of algebraic Ricci
solitons. We state these conjectures for completeness.

Alekseevskii conjecture Every homogeneous Einstein metric with negative scalar
curvature is isometric to a simply connected solvmanifold.

Generalized Alekseevskii conjecture Every expanding homogeneous Ricci soliton
is isometric to a simply connected solvmanifold.

Until now, it was not clear if these conjectures were equivalent. Applying the results of
Lafuente and Lauret [12] or He, Petersen and Wylie [4] in the simply connected case,
together with those from Jablonski [8] and the results presented here, we now know
the following:

Theorem 3 The generalized Alekseevskii conjecture is equivalent to the Alekseevskii
conjecture.
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Remark It is important to note that the Alekseevskii conjecture stated above is a more
modern, geometric version than that given by Besse in [2]. The version in [2] has the
weaker, topological conclusion that a noncompact, homogeneous, Einstein space is
only diffeomorphic to Rn . It is still an open question whether the classical version
stated in [2] is equivalent to the stronger version we pose above.

Acknowledgments It is our pleasure to thank Ramiro Lafuente for providing useful
comments on a draft of this manuscript. This work was supported in part by NSF grant
DMS-1105647

2 Ricci solitons by type

The analysis of (homogeneous) Ricci solitons varies depending on which of the fol-
lowing categories the metric falls into. A Ricci soliton is called shrinking, steady or
expanding if the cosmological constant c appearing in (1-1) satisfies c > 0, c D 0 or
c < 0, respectively.

Shrinking solitons The simplest example of a non-Einstein, homogeneous, shrinker is
obtained by considering a compact homogeneous Einstein space M 0 (which necessarily
has positive scalar curvature) and taking a product with Rn , ie M DM 0 �Rn . Here
the vector field X 2 X.M / appearing in (1-1) generates a family of diffeomorphisms
which simply dilate the Rn factor. Examples of this type are called trivial Ricci solitons
and a result of Petersen and Wylie [16] says that every homogeneous shrinking Ricci
soliton is finitely covered by a trivial one. Observe that such spaces are algebraic Ricci
solitons.

Steady solitons A homogeneous steady soliton is necessarily flat. This well-known
fact is proved as follows. Along the Ricci flow of any homogeneous manifold, the
scalar curvature sc evolves by the ODE

d

dt
scD 2jRicj2:

As the scalar curvature of a steady soliton does not change along the flow, we see that
the homogeneous, steady solitons are Ricci flat and so flat by [1]. Such spaces are
trivially algebraic Ricci solitons.

Expanding solitons Every homogeneous, expanding Ricci soliton is necessarily non-
compact, nongradient and all known examples of such spaces are isometric to solvable
Lie groups with left-invariant metrics. While there is no characterization in this case
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as nice as in the previous two cases, new structural results have recently appeared in
a paper by Lafuente and Lauret [12]. The results obtained there are essential in our
proof and we briefly recall those which we need.

We first observe that it suffices to prove the theorem for simply connected manifolds.
Now consider a simply connected, expanding, semialgebraic Ricci soliton on G=K .
As G=K is endowed with a G–invariant metric, Ad.K/ is contained in a compact
subgroup of Aut.G/ and so we have a decomposition g D p ˚ k, where p is an
Ad.K/–complement to k. We fix the point p D eK 2 M D G=K and naturally
identify p with TpM by

X 2 p $
d

ds

ˇ̌̌
sD0

exp.sX / �p D d

ds

ˇ̌̌
sD0

exp.sX /K:

Although there is more than one possible choice of p, in the sequel we apply some
results of [12] and so we choose, as they do, to have B.k; p/ D 0, where B is the
Killing form of g.

As G=K admits an expanding Ricci soliton, we know from [12] that the group G

decomposes as N ÌU, where N is the nilradical and U is a reductive subgroup which
contains the stabilizer K . Thus the underlying manifold of M may be considered as
N �U=K and we naturally identify the point pD eK 2G=K with .e; eK/2N �U=K .
The subalgebra u contains a subspace h which is complementary to k, and so we have
TpM ' p D n˚ h. Furthermore, n and h are orthogonal subspaces of TpM . For
more details, see [12].

Denote the restriction of our metric g to p' TeG=K by h � ; � i. Denote by H 2 p the
“mean curvature vector” of G=K defined by

hH;X i D tr.ad X / for all X 2 p:

Observe that H 2 h. It is a useful fact that the subspace h of u is .ad H /–stable [12,
Proposition 4.1]. If D is the soliton derivation appearing in (1-2), then we have

D D� ad H CD1;

where D1 is the derivation which vanishes on u and restricts to the nilsoliton derivation
on n.

In [12, Proposition 4.14], several equivalent conditions are given for when a semialge-
braic Ricci soliton is actually algebraic. One of those conditions is

(2-1) S.ad H jh/D 0;

where S.A/D 1
2
.ACAt /. This is the technical result that we will prove, from which

the theorem follows.
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3 The proof of Theorem 1

The soliton inner product h � ; � i on TpM above gives rise to a natural inner product
on the endomorphisms of TpM given by hA;Bi D tr.ABt /, where Bt denotes the
metric adjoint of B relative to h � ; � i.

Lemma 4 Using the above inner product on endomorphisms we have˝
.0; ad H jh/;Ric

˛
D 0;

where .0; ad H jh/ is the map on TpM defined as 0 on n and ad H jh on h.

Remark As has been observed by Lafuente [10], our proof of the lemma holds
more generally. In fact, one simply needs the group to satisfy G D U Ë N with N

nilpotent, U reductive and K<U , and the metric to satisfy N ?U=K at eK , whereas
the element H may be replaced by any Y 2 u satisfying ŒY; k�� k.

Before proving the lemma, we use it to verify that (2-1) holds.

Verification of (2-1) Consider the mean curvature vector H 2 u. As u is reductive,
ad H ju is traceless. Furthermore, since ad H vanishes on the stabilizer k (see [12,
Equation 26]) and u D k˚ h, we see that tr.ad H jh/ D 0. Together with the above
lemma we have

0D h.0; ad H jh/;Rici D h.0; ad H jh/; c Id�S.ad H /CD1i

D had H jh; c Id jh�S.ad H jh/i

D c tr.ad H jh/� tr S.ad H jh/
2
D 0� tr S.ad H jh/

2:

Thus S.ad H jh/D 0, as claimed.

Proof of Lemma 4 We now prove the lemma by considering a certain deformation
of the metric g on M . As ad H vanishes on k and K is connected, the family of
automorphisms ˆt D Cexp.tH / 2 Aut.U / is the identity on K and hence gives rise to
well-defined diffeomorphisms �t on U=K given by

�t .uK/Dˆt .u/K for u 2 U:

Note that .ˆt /�DAd.exp.tH //D et ad H 2Aut.u/. On the manifold M DN �U=K ,
we consider the family of diffeomorphisms given by

't D .id; �t / on N �U=K:

The deformations of g of interest are gt D 't
�g .
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As 't fixes the point p WD eK D .e; eK/ 2M DN �U=K , and scalar curvature is
an invariant, we have

d

dt

ˇ̌̌
tD0

sc.'t
�g/p D 0:

We use this in the equation (which holds for any family of metrics fgtg with variation
hD @

@t
gt ; see [3, Lemma 3.7])

(3-1) @

@t
scD��H C div.div h/� hh; rici;

where in local coordinates we have

�H D gij gkl
rirj hkl ;(3-2)

div.div h/D gij gkl
rirkhjl :(3-3)

Note that at the point p WDeKD .e; eK/ of M we have @
@t

ˇ̌
tD0

.'t /�D .0; ad H jh/ and
hence the lemma follows from (3-1) (evaluated at p ) upon showing the terms �H

and div.div h/ vanish.

Remark Recall that, in local coordinates, we define the metric inverse gij as the
function satisfying ıl

i D gij gjl . By choosing a frame which is g–orthonormal at
every point, one would have that both gij and gij are the identity. We make such a
choice below.

To ease computational burden, we build a frame which is g–orthonormal at every
point and exploits the property that our metric g is G–invariant. We start with an
orthonormal basis of TpM . As TpM D n˚ h, we may choose a basis feig which is
the union of an orthonormal basis of n together with an orthonormal basis of h.

Next, we extend the basis feig to a local frame near p 2 M . To do this, we first
consider a slice S of the right K–action on G through e 2 G . That is, we have a
submanifold S of G containing e such that dimSD dim G=K and the map

s 7! sK; s 2S

is a diffeomorphism of a neighborhood of e 2 S to a neighborhood of eK 2 G=K .
Now, for q 2M near p , there exists s 2S such that q D s �p and we define

ei.q/D s�ei ;

where s� denotes the differential of the translation sW p 7! q . We note that the frame
is well-defined as our choice of s 2S is unique, since S is a slice. Furthermore, our
frame is g–orthonormal as g is G–invariant.
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Using the above choice of frame near p 2M , we now study (3-2) and (3-3). We
begin by computing the variation h of gt D 't

�g in terms of feig. For a point q 2M

near p we have

(3-4) hij .q/D
@

@t

ˇ̌̌
tD0

.gt /ij .q/D
@

@t

ˇ̌̌
tD0

.gt /
�
ei.q/; ej .q/

�
D
@

@t

ˇ̌̌
tD0

g
�
.'t /�ei.q/; .'t /�ej .q/

�
:

Next we compute .'t /�vq for a vector vq 2 TqM .

As G DN U , there exist n 2N and u 2U such that s 2S may be written as s D nu

and q D .nu/ �p . Furthermore, there exists X 2 pD n˚ h such that

vq D .nu/�
d

ds

ˇ̌̌
sD0

exp.sX / �p:

To understand (3-4), we analyze separately the cases when X is an element of n or of h.

For X 2 n, we have

(3-5) .'t /�vq D .'t /�.nu/�X

D
d

ds

ˇ̌̌
sD0

't

�
nu exp.sX / �p

�
D

d

ds

ˇ̌̌
sD0

't

�
nu exp.sX /u�1u �p

�
D

d

ds

ˇ̌̌
sD0

't

�
nu exp.sX /u�1;uK

�
D

d

ds

ˇ̌̌
sD0

�
n exp.s Adu X /; ˆt .u/K

�
D

d

ds

ˇ̌̌
sD0

�
nˆt .u/ˆt .u/

�1 exp.s Adu X /ˆt .u/K
�

D
d

ds

ˇ̌̌
sD0

�
nˆt .u/ exp.s Adˆt .u/�1 Adu X /K

�
D
�
nˆt .u/

�
�

Adˆt .u/�1u X:

Here we have used that N is normal in G . Note also that Adˆt .u/�1u X 2 n.

In the case when X 2 h� u, we have

(3-6) .'t /�vq D .'t /�.nu/�X D
d

ds

ˇ̌̌
sD0

't

�
nu exp.sX / �p

�
D

d

ds

ˇ̌̌
sD0

't

�
nu exp.sX /K

�
D

d

ds

ˇ̌̌
sD0

�
nˆt

�
u exp.sX /

�
K
�

D
d

ds

ˇ̌̌
sD0

�
nˆt .u/ exp

�
s.ˆt /�X /

�
K
�
D
�
nˆt .u/

�
�
.ˆt /�X:
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Observe that since ad H preserves h [12, Equation 32], .ˆt /�X 2 h and so the last
line is consistent with our identification of pD n˚ h with TpM .

From (3-4), (3-5), and (3-6) we see that:

(i) If ei 2 n and ej 2 h, then we have gij .q/D 0.

(ii) If ei 2 n and ej 2 h, then we have hij .q/D 0.

(iii) If ei ; ej 2 h, then hij .q/ does not depend on n and u, and so is constant in q .

(iv) If ei ; ej 2 n, then hij .q/ does not depend on n, but does depend on u.

Using these observations, we see that the only possibly nonzero terms of

div.div h/D gij gkl
rirkhjl

occur when ej ; el 2 n and ei ; ek 2 h. However, .g˛ˇ/D Id implies .g˛ˇ/D Id and
so gkl D 0. This yields

div.div h/D 0:

Next we study �H D gij gklrirj hkl . As above, the only possibly nonzero terms
occur when ek ; el 2 n and ei ; ej 2 h. Further, as our frame is orthonormal, we have

�H .q/D gii.q/gkk.q/.ririhkk/.q/D
X

i

�
riri

X
k

hkk

�
.q/;

where the first sum is over the frame from h and the second is over the frame from
n. From (3-4) and (3-5) we have

hkk.q/D
@

@t

ˇ̌̌
tD0

g
�
.'t /�ek.q/; .'t /�ek.q/

�
D
@

@t

ˇ̌̌
tD0

˝
Adˆt .u/�1u.ek/;Adˆt .u/�1u.ek/

˛
D 2

D
ek ;

�
d

dt

ˇ̌̌
tD0

Adˆt .u/�1u

�
.ek/

E
D 2

˝
ek ; ad M.ek/

˛
;

where M D
d
dt

ˇ̌
tD0

ˆt .u/
�1u. To see that this last line makes sense, observe that

ˆt .u/
�1u is a curve in U with ˆ0.u/

�1uD e and thus d
dt

ˇ̌
tD0

ˆt .u/
�1u 2 u.

Remark Although M is a function of u, we suppress this detail as it does not impact
the rest of our proof.

We claim that ad M jn is traceless. To see this, we use the fact that U being reductive
and connected implies U D ŒU;U �Z.U /, where Z.U / is the center of U . Thus, we
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may write uD u1u2 where u1 2 ŒU;U � and u2 2Z.U /. As u2 is central and ˆt is
an inner automorphism, ˆt .u2/D u2 and

ˆt .u/
�1uDˆt .u1/

�1u1 2 ŒU;U �:

This gives ad M 2 adŒu; u� from which our claim immediately follows.

Putting the above computations together we get

�H .q/D
X

i

�
riri

X
k

hkk

�
.q/D 2

X
i

riri tr.ad M jn/D 0;

which completes the proof of the lemma.
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