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The rational homotopy type of a blow-up in the stable case

PASCAL LAMBRECHTS

DONALD STANLEY

Suppose f W V !W is an embedding of closed oriented manifolds whose normal
bundle has the structure of a complex vector bundle. It is well known in both complex
and symplectic geometry that one can then construct a manifold �W which is the
blow-up of W along V . Assume that dim W � 2 dim V C 3 and that H 1.f / is
injective. We construct an algebraic model of the rational homotopy type of the
blow-up �W from an algebraic model of the embedding and the Chern classes of the
normal bundle. This implies that if the space W is simply connected then the rational
homotopy type of �W depends only on the rational homotopy class of f and on the
Chern classes of the normal bundle.

55P62, 14F35, 53C15, 53D05

1 Introduction

The blow-up construction comes from complex algebraic geometry; Gromov [12] and
McDuff [20] constructed the blow-up for symplectic manifolds. McDuff used it to
construct the first examples of simply connected non-Kähler symplectic manifolds. In
this paper we study the rational homotopy type of the blow-up construction.

It is well known that all Kähler manifolds are symplectic and a fundamental problem
is to find closed symplectic manifolds which cannot be given a Kähler structure. A
non-simply connected example was first found by Thurston [28], but to find simply
connected examples proved more difficult. In fact McDuff introduced the blow-up
construction to resolve this problem. She showed that the blow-up of Thurston’s
example in a complex projective space has an odd third Betti number and is thus not
Kähler. This leads to more precise structural questions.

A space is formal if its rational cohomology algebra serves as a rational model of it. In
particular this implies its cohomology algebra determines its rational homotopy type
and that it has no nontrivial Massey products in its cohomology. Deligne, Griffiths,
Morgan and Sullivan [5] showed that all closed Kähler manifolds are formal. Thurston’s
example was known to be nonformal. By constructing nontrivial Massey products,
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Babenko and Taimanov [1] showed that the McDuff example is not formal. Rudyak and
Tralle [25] extended these results for the blow-ups along many other manifolds. One
of the applications of our model is to prove [17] that the blow-up along a manifold M

symplectically embedded in a large enough CP .n/ is formal if and only if M is formal.

Although McDuff was interested in the blow-up for symplectic manifolds, the construc-
tion is more general. Suppose f W V !W is an embedding of smooth closed oriented
manifolds and that the normal bundle of the embedding has been given the structure
of a complex vector bundle. This is enough data to construct the blow-up �W of W

along V as described by McDuff [20] and outlined in Section 2 below. If f is an
embedding of complex manifolds with the canonical complex structure on the normal
bundle then this blow-up is homeomorphic to the classical blow-up of W along V .

Under some restrictions we give a complete description of the rational homotopy type
of the blow-up �W using only the rational homotopy class of the map f W V !W and
the Chern classes of the normal bundle of V . The rational homotopy type of a space
is defined as long as all the spaces involved are nilpotent (see Section 3.3). Note that
simply connected closed manifolds are always nilpotent.

Theorem 7.8 Let f W V !W be an embedding of closed orientable smooth manifolds
and suppose that the normal bundle � is equipped with the structure of a complex vector
bundle. Assume that dim W � 2 dim V C 3, that W is simply connected and that V is
nilpotent. Then the rational homotopy type of the blow-up of W along V , �W can be
explicitly determined from the rational homotopy type of f and from the Chern classes
ci.�/ 2H 2i.V IQ/.

More generally our description holds as long as V , W and �W are nilpotent, H 1.f IQ/
is injective and dim.W /� 2 dim.V /C3 (Corollary 7.7). It is not so easy to determine
if �W is nilpotent, so the usual case is W simply connected. We also note that without
the dimension restriction, dim.W /� 2 dim.V /C 3, there exist manifolds V and W

and homotopic embeddings V !W with isomorphic complex normal bundles whose
blow-ups are not rationally equivalent by our earlier paper [19]. Thus our dimension
restriction, dim.W /� 2 dim.V /C 3, cannot be discarded.

Sullivan [26] studies rational homotopy using his piecewise linear forms APL. / functor,
which is analogous to the de Rham differential forms functor, ��. /. In particular it
is contravariant and for a topological space X , APL.X / is a commutative differential
graded algebra or CDGA (defined in Section 3.2). Another way to think of APL.X /

is as a commutative version of the cochains on X with coefficients in Q, C �.X IQ/.
A model of X is any CDGA weakly equivalent to APL.X / (see Section 3.1). Sim-
ilarly a model of a map f W X ! Y is any map of CDGAs weakly equivalent to
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APL.f /W APL.Y / ! APL.X /. Under some finiteness conditions any model of X

completely determines the rational homotopy type of X (see Section 3.3). It is in this
sense that we determine the rational homotopy type of �W . In fact we determine the
homotopy type of the CDGA APL. �W / without any finiteness restrictions.

In Section 7.2 and Theorem 7.6 using only a model for f and the Chern classes of
the normal bundle we construct an explicit model for �W . This is our main result and
Theorem 7.8 follows directly from it. There are a number of interesting byproducts
produced along the way to the proof. For example we derive algebraic models for the
compliment of the embedding (see also our paper [18]) and for the projectivization of
a complex bundle.

In the last section of the paper we give a few applications of the model of the blow-up.
First we study the special case of a blow-up of CP .n/, and looking at McDuff’s
example of the blow-up of CP .n/ along the Kodaira–Thurston manifold we prove the
existence of nontrivial Massey products by direct calculation. Our next application
is to calculate the cohomology algebra of the blow-up along f W V !W under our
dimension restrictions (Section 8.4). This is complementary to work of Gitler [10] who
gave a different description of this algebra when H�.f / is surjective. In Section 8.5
we use this calculation to show that there are infinitely many distinct rational homotopy
types of symplectic manifolds that can be constructed as the blow-up of CP .5/ along
CP .1/.

1.1 Contents

The sections break down as follows. Section 1: Introduction, Section 2: Modelling the
blow-up, Section 3: Background and notation, Section 4: Thom class and the shriek
map, Section 5: Model of the complement of a submanifold, Section 6: Model of the
projectivization of a complex bundle, Section 7: The model of the blow-up, Section 8:
Applications.

A more detailed list of contents appears at the beginning of each section.
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2 Modelling the blow-up

In this section we first describe the topology of the blow-up construction and then
describe the model of the blow-up. The precise statement may be found in Theorem
7.6.

Again suppose f W V !W is an embedding of connected closed oriented manifolds
and suppose the normal bundle � of f has been given a complex structure. Let T be
a tubular neighborhood of V in W . Let @T be the boundary of T and B DW nT .
Then T [B DW and T \B D @T . Hence we have a pushout

(1) @T
k //

��

B

��
T // W:

By the Tubular Neighborhood Theorem [22, Theorem 11.1] there is a diffeomorphism
between T and the disc bundle D� that sends V to the zero section of D� and sends
@T to the sphere bundle S� . Since � is a complex bundle we can quotient by the
S1 � C�–action on S� Š @T . We obtain a complex projective bundle P� over V

and a commutative diagram:

@T
q //

��

P�

}}zzzzzzzz

V

Next we can remove T from W and instead of putting it back as in (1) we can replace
it by P� . This gives us a pushout

(2) @T
k //

q

��

B

��
P� // �W :

The space �W is called the blow-up of W along V . This actually only gives us
the homeomorphism type of the blow-up but with slightly more care we can get
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the diffeomorphism type. Since we are only studying the rational homotopy type,
homeomorphism type is more than enough. An important point is that (2) is also a
homotopy pushout.

In the next few paragraphs we analyze Diagram (2) and give an idea of how we construct
the model B.R;Q/ of APL. �W /. We begin with the fact that APL. / takes homotopy
pushouts to homotopy pullbacks. So we are left with analyzing the homotopy pullback
of the diagram

APL.@T / APL.B/
APL.k/oo

APL.P�/

APL.q/

OO

which we get from applying APL. / to Diagram (2). To do this we construct models
of the two “legs” of the diagram, the maps APL.B/! APL.@T / and APL.P�/!

APL.@T /. The pullback of these models should be a model of the pullback of the
diagram. However we need to be careful how the models are “glued” together because
different gluings correspond to homotopy automorphisms of APL.@T / and can lead to
pullbacks that are not homotopy equivalent.

To construct a model of k we make use of our cochain level version of the classical
shriek map f !W H��r .V /!H�.W /, where r is the codimension of V in W . Under
our hypothesis that dim.W /� 2 dim.V /C 3, a model of k can be constructed from
any model of f and so the rational homotopy type of @T and B and the rational
homotopy class of k depend only on the rational homotopy class of f . This is to
be expected since we are in the stable range where homotopic maps are isotopic. We
showed in [18] that without our dimension restriction the rational homotopy class of k

can depend on more than just the rational homotopy type of f , and so it is at this point
that the dimension restriction for the model of the blow-up arises. In [19] we showed
that the blow-up along homotopic embeddings with the same Chern classes on their
normal bundles can have different homotopy types.

Next we more fully describe the model of B . Suppose

�W R!Q

is a model of APL.f /W APL.W / ! APL.T /. We can consider Q as a differential
graded R–module (or R–dgmodule, see Section 3.2). Suppose uV 2 H�.Q/ and
uW 2H�.R/ are orientation classes, where mD dim.V / and nD dim.W /. Let

�!
W s�r Q!R
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be a map of R–dgmodules such that H.�!
�/.uV /D uW , where r D n�m. (Recall

that the suspension operator gives .s�r Q/jCr DQj , so uV 2H n.s�r Q/.) Such a
map will be called a shriek map. A shriek map always exists (Proposition 4.5) and is
unique up to homotopy (Proposition 4.4). Let mD dim V , nD dim W and r D n�m.
We describe a model of kW @T !B , and refer the reader to Lemma 5.8 for the details.

Lemma 2.1 Assume n� 2mC 3. If R�nC1 D 0 and Q�mC2 D 0 then there exists
explicit CDGA structures on R˚ ss�r Q and Q˚ ss�r Q determined by the CDGA
structures on R and Q and by the shriek map �! such that the map

(3) �˚ idW R˚ ss�r Q!Q˚ ss�r Q

is a CDGA model of APL.k/W APL.B/!APL.@T /.

From any model �W R ! Q, one satisfying the degree restrictions can always be
constructed (Proposition 4.5). The differential on R˚ ss�r Q comes from the fact that
it is actually the mapping cone on �! (see Section 3.8) and the CDGA structure is what
we call the semitrivial CDGA structure (see Definition 3.19).

Constructing a model of qW @T ! P� is more straightforward. The cohomology
algebra of the projective bundle can be used to define the Chern classes ci.�/ of
the normal bundle � [2, IV.20]. This description allows us to construct a model of
P� . The free graded commutative algebra on the graded generators ai is denoted by
ƒ.a1; : : : ; an/. Next we describe a model of qW @T ! P� , and refer to Proposition
6.9 for the details.

Theorem 2.2 Assume n � 2mC 3.Let 2k D n�m and let 0 D 1 and i 2Q be
representatives of the Chern classes ci.�/. Suppose jxj D 2 and jzj D 2k � 1. Define
CDGAs .Q˝ƒ.x; z/ID/ by DxD 0 and DzD

Pk�1
iD0 ix

k�i with and .Q˝ƒzI xD/

by xD.z/D 0. Then the projection map

(4) projW Q˝ƒ.x; z/!Q˝ƒz

sending x to 0 is a CDGA model of APL.q/W APL.P�/!APL.@T /.

In the last theorem the dimension restriction n� 2mC 3 arises since we require that
xDz D 0, which represents the Euler class of the bundle, but other than that are not

really needed and probably a similar theorem without the dimension restrictions is
true. Having constructed models for both k and q of Diagram (2) we can use them
to construct a model B.R;Q/ of the pushout �W by taking the pullback of these two
models. It is described precisely in Section 7.2. The form of B.R;Q/ is:

B.R;Q/D
�
R˚Q˝ƒC.x; z/;D

�
:
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As mentioned before, to get B.R;Q/ we have to be careful how the models of k and
q fit together. In the model (3) of k the model of APL.@T / is Q˚ ss�r Q whereas in
the model (4) of q it is Q˝ƒ.z/. These are always isomorphic as Q–modules and
our dimension restrictions imply that they are isomorphic as CDGAs. The problem
is to make sure we pick the correct isomorphism. While we are constructing our
models of k and q , we keep track of the isomorphism with the help of orientation
classes on both of our manifolds and on the normal bundle. In our special situation,
this orientation information together with the Q–dgmodule structures is enough to
determine the isomorphism. Once we have this nailed down it is straightforward to
construct a model of the blow-up from our models of k and q using a pullback.

3 Background and notation

For this paper the ground field and the coefficient ring will be the rational numbers,
unless otherwise stated. For a topological space X , H�.X / refers to its singular
cohomology. We denote also by H. / the functor taking homology of a differential
complex. We will use H n. / to refer both to the n–th singular cohomology group and
to the homology in degree n of any differential graded object.

3.1 Categorical preliminaries

For a small category I and any category D , let DI be the diagram category defined
as follows: the objects of DI are the functors I !D and the morphisms are natural
transformations. We often refer to the objects in such a category as diagrams. For
example our category I can consist of two objects with exactly one nonidentity map
joining them (this category can be depicted as �! �) and each diagram in DI corre-
sponds to a single map in D . Similarly I could be the category: � �oo // �

which corresponds to the data of a pushout in D or its dual � // � �oo (data
for a pullback). We also use squares of objects which correspond to the category

� //

��

�

��
� // �

If AD A1
//

��

A2

��
A3

// A4
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and BD B1
//

��

B2

��
B3

// B4

are squares of objects and
˛i W Ai! Bi

are maps, then �
˛1 ˛2

˛3 ˛4

�
W A! B

denotes the map between the squares that would traditionally be denoted as a commu-
tative cube:

A1

˛1

��

//

  BBBBBBBB
A2

˛2

��

!!CCCCCCCC

A3

˛3

��

// A4

˛4

��

B1
//

  BBBBBBBB
B2

!!CCCCCCCC

B3
// B4:

If D is the category of topological spaces and F;G 2DI then a morphism �W F !G

is a homeomorphism if for each i 2 I , �.i/W F.i/! G.i/ is a homeomorphism for
each element. If D has weak equivalences then � is called a weak equivalence if �.i/
is a weak equivalence for each i 2 I . Two diagrams are weakly equivalent if they are
connected by a chain of weak equivalences. So F;G 2DI would be weakly equivalent
if there exists a diagram in DI as below with all the maps weak equivalences:

F F1
' //'oo F2 � � �

'oo Fn
' //'oo G

Notice that there may not be a direct map between F and G .

3.2 Homotopy theory of CDGA and R–DGMod

A good reference for the categories CDGA and R–DGmod is the book of Felix–
Halperin–Thomas [9]. Next we review the notion of CDGA. Let A D

L1
iD0 Ai be

a graded vector space together with an associative multiplication �W A˝A! A, a
unit 1 2 A0 and a linear map of degree C1, d W A! A, called the differential. We
denote �.a; b/ by ab or sometimes a � b . If a 2 An we write jaj D n and say that
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a has degree n. We require that the multiplication � is graded commutative, that
d2 D 0 and that d is a derivation . In other words we require that jabj D jaj C jbj,
that abD .�1/jajjbjba and that the Leibnitz law d.ab/D .da/bC .�1/jaja.db/ holds.
Such an .A; d/ is called a commutative differential graded algebra or CDGA. Notice
that the multiplication is suppressed. Sometimes we just write A also suppressing the
differential. We call A connected if A0 DQ � 1. Maps between CDGAs are graded
vector space homomorphisms that commute with the multiplication and the differential.
Clearly we get a category which we will also denote CDGA. A special case of CDGA
are Sullivan algebras .ƒV; d/ where ƒV is the free graded commutative algebra on a
graded vector space V and d is a differential on ƒV satisfying a certain nilpotence
condition as described in [9, Part II]. However we will relax their condition that V

should be concentrated in positive degrees and just demand that V be concentrated in
nonnegative degrees. If V DQhai ; bj i is a graded vector space with basis faig[ fbj g

where the ai are homogeneous in even degrees and the bj are homogeneous in odd
degree then as a graded algebra ƒV Š P .ai/˝E.bi/ where P .ai/ is the free graded
polynomial algebra on the ai and E.bi/ is the free graded exterior algebra on the bi .

We can also define a category of differential graded modules over some fixed CDGA.
Let .R; d/ be a CDGA. Let M D

L1
iD�1M i be a differential graded R–module

with structure map �W R˝M !M and differential of degree C1, d 0W M !M .
We require that d 0.rm/D .dr/mC .�1/jr jd 0m. Of course M is an R–module in the
ungraded sense as well and jrmjD jr jCjmj. We call such an object a differential graded
R–module or an R–dgmodule. Maps are R–module maps that preserve the grading
and commute with the differential. The category of R–dgmodules and R–dgmodule
maps is denoted by R–DGmod.

Weakly equivalent diagrams of CDGA or R–dgmodules are referred to as models of
each other. For example let f W X ! Y be a map of spaces. If a diagram �W A!B

of CDGA is weakly equivalent to the diagram APL.f /W APL.Y /!APL.X /, then we
will say that �W A!B is a model of APL.f /. In this case, as is common, we also call
� a model of f . Similarly if A is a model of APL.X / we call A a model of X . The
concept of a CDGA model of a space or a map is well established. Note however that
many authors reserve the term model to refer to free CGDA whereas we use it more
generally. For our purposes we also need models of more general diagrams. In fact
since we will be gluing diagrams together we will sometimes need that the equivalences
between our diagrams preserve certain extra structure.

Both CDGA and R–DGMod are closed model categories (see Dwyer and Spaliński [6]
for a review of model categories and Bousfield and Gugenheim [3] for a proof of the
fact that CDGA satisfies the axioms of a closed model category). It is not necessary for
the reader to be familiar with closed model categories since all of the relevant results
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can be proved directly in these categories. In both categories the closed model structure
is determined by the following families of maps:

� fibrations are surjections,

� weak equivalences are quasi-isomorphisms.

We use the terms fibration and surjection interchangeably when working in CDGA or
R–DGMod. By a cellular cofibration we mean:

� in CDGA, a relative Sullivan algebra B!B˝ƒV as defined in [9, Chapter 14]
except that we allow nonnegatively graded V instead of just positively graded
V .

� in R–DGMod, a semifree extension M!M˚R˝V as defined in [8, Section 2].

We will generally deal with cofibrations that are cellular ones. Note that not all
cofibrations are of this form (see Bousfield and Gugenheim [3, Section 4.4]) but at
least all cofibrations between connected CDGA are. A map that is both a cofibration
and a weak equivalence is called an acyclic cofibration. Similarly a map that is both
a fibration and a weak equivalence is called an acyclic fibration. If ∅ denotes the
initial object of the category (it is Q concentrated in dimension 0 in CDGA and 0 in
R–DGMod) then a cellular cofibrant object is an object X such that the map ∅!X

is a cellular cofibration. In CDGA cellular cofibrant objects are the Sullivan algebras
[9, Section 12] and in R–DGMod they are the semifree R–dgmodules [8, Section 2].
Dually if � denotes the terminal object then an object X is called fibrant if X !� is
a fibration. Note that all objects in CDGA and R–DGMod are fibrant.

The following lemma is a slight modification of one of the axioms of a closed model
category.

Lemma 3.1 Suppose A and B are CDGAs such that H 0.A/ D H 0.B/ D 0. Any
CDGA map f W A! B can be factored into a cellular cofibration follow by an acyclic
fibration.

Proof This is proved as part of [13, Theorem 6.1] with the added condition that A is
augmented. However the augmentation is not used to get the result of the lemma.

The analogous result in R–DGmod is also true and follows by standard arguments.

Lemma 3.2 Any map in R–DGmod can be factored into an acyclic cellular cofibration
followed by a fibration and also into a cellular cofibration followed by an acyclic
fibration.
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Homotopies in a closed model category can be defined with the help of a cylinder
object which we describe now. Let

`
denote the coproduct, and r WA

`
A!A

the fold map. Factor r into a cellular cofibration i0C i1W A
`

A! Cyl A followed
by an acyclic fibration. This implies in particular that the maps i0; i1W A! Cyl A are
weak equivalences. The object Cyl A is called the cylinder object of A, it is unique
up to homotopy. Two morphisms f0; f1W A!X are homotopic if there exists a map
H W Cyl A!X such that Hi0 D f0 and Hi1 D f1 . We write f0 ' f1 , or f0 'R f1

if we wish to emphasize the fact that the homotopy is in the category R–DGMod. Then
it is easy to check from the definition of a homotopy in R–DGMod:

Lemma 3.3 Two morphisms f0; f1W A! X in R–DGMod with A cofibrant are
homotopic if there exists an R–module degree �1 morphism

hW A!X

such that dX hC hdA D f0 � f1 . Note that such a homotopy can also be seen as an
R–module degree 0 morphism hW sA!X where s is the suspension (see Definition
3.10).

In CDGA our notion of homotopy is also equivalent to the more traditional one [9,
Chapter 12(b)].

We recall the notion of sets of homotopy classes of maps in CDGA and R–DGmod.
Let X;Y 2 CDGA or R�DGMod. Factor ∅! X as a cofibration followed by an
acyclic fibration ∅! yX !X . We define the set of homotopy classes of maps from
X to Y , ŒX;Y � as the set of equivalence classes of Hom. yX ;Y / under the homotopy
relation in either CDGA or R–DGMod:

ŒX;Y �D Hom. yX ;Y /=' :

We will write ŒX;Y �R if we wish to emphasize we are looking at homotopy classes
of R–dgmodule maps. The Lifting Lemma (Lemma 3.4 below) implies that ŒX;Y � is
independent of the choice of yX (any two choices give naturally isomorphic sets) and
there is an obvious map Hom.X;Y /! ŒX;Y �. Weak equivalences in the range and
domain of Œ ; � induce bijections of sets. To those already familiar with closed model
categories we point out that we don’t have to replace the range by a fibrant object since
all objects in our category are already fibrant.

3.3 The functors APL. / and j j

A connected space X is nilpotent if �1.X / is a nilpotent group and �n.X / is a
nilpotent �1.X /–module for each n� 2 (See Hilton, Mislin and Roitberg [14, II.2]).
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Note that all simply connected spaces are nilpotent. A nilpotent space X is rational
if �n.X / is a rational vector space for each n � 1. A nilpotent space X has finite
Q–type if Hn.X IQ/ is finite dimensional for each n� 1.

Let Top be the category of topological spaces. There are adjoint functors

APLW Top! CDGA

j jW CDGA! Top

introduced by Sullivan [26]. We refer the reader to [9, II 10 and II 17] for their
definitions (see also [3, Section 8] and [26, Section 7 and 8]). These functors induce an
equivalence between the homotopy types of finite type CDGA and of nilpotent rational
topological spaces of finite Q–type (see Bousfield and Gugenheim [3, 9.4] for a more
precise statement). It is in this sense that the homotopy type of APL.X / as a CDGA
determines the rational homotopy type of X . A key property of APL that we will use
repeatedly is the Q–version of the natural algebra de Rham isomorphism

(5) HAPL. /ŠH�. IQ/:

This isomorphism holds for all spaces and will be fixed throughout the paper.

In order to reduce clutter in our equations, for a map f of spaces we will often write
f � for APL.f /.

3.4 Standard abuses of notation

Because of the isomorphism (5), to any cohomology class � 2 H n.X IZ/, using
the change of coefficients morphism H�. ;Z/ ! H�. ;Q/, we can associate a
cohomology class in H n.APL.X //. Abusing notation we also denote this class by
� 2H n.APL.X //.

Also if R is a CDGA model of another CDGA R0 through a fixed chain of weak
equivalences

R
' // : : : R0

'oo

and if � 2 H n.R/ is a cohomology class we will denote the corresponding class
� 2H n.R0/ by the same name. Note that which classes correspond only depends on
which element of ŒR;R0� is represented by the chain of weak equivalences.

We will often abuse “inc” to denote any inclusion map and “proj” to denote any
projection map. The abuse is twofold since not only will we often not explicitly define
our inclusions but also we will have many different maps referred to by the same
notation. We will also sometimes use “ � � // ” to denote cofibrations or inclusions.
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3.5 Closed model category facts

The following result is standard. Let C be a closed model category.

Lemma 3.4 (Lifting Lemma) Suppose the following solid arrow diagram in C is
given:

A
f //

g

��

B

v

��
C u

//

l
>>}

}
}

}
D:

(i) If the diagram is commutative, g is a cofibration, v is a fibration and g or v is a
weak equivalence then there exists a lift l making each triangle commutative. Moreover
such a lift l is unique up to homotopy.

(ii) If the diagram is commutative (respectively, commutative up to homotopy), g is a
cofibration and v is a weak equivalence then there exists a lift l such that l ı g D f

(respectively, l ı g ' f ) and v ı l ' u; that is, the upper triangle is commutative
and the lower triangle is commutative up to homotopy (respectively, both triangles are
commutative up to homotopy.) Moreover such a lift l is unique up to homotopy.

Proof See Félix–Halperin–Thomas [9, Chapter 14] for the CDGA case, and [7, Lemma
A.3] for the special case of AD 0 in R–DGmod. The case for general A follows by
standard techniques.

The following next two lemmas allow us to convert certain homotopy commutative
diagrams into strictly commutative diagrams.

Lemma 3.5 Let C be a closed model category and suppose

yA
f

����������
xf
��

f 0

��????????

B yB
ˇ

oo
ˇ0
// B0

is a homotopy commutative diagram in C . If yA is a cofibrant object and if .ˇ; ˇ0/W yB!
B˚B0 is a fibration (in other words a surjection in CDGA or R–DGMod), then there
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exists a morphism yf W yA! yB such that xf ' yf and the diagram

yA
f

����������
yf
��

f 0

��????????

B yB
ˇ

oo
ˇ0
// B0

is strictly commutative.

Proof Consider the following solid arrow diagram

yA

i0

��

xf // yB

.ˇ;ˇ0/

��
Cyl yA

H
//

G

::v
v

v
v

v

B˚B0

where H is a homotopy between .ˇ; ˇ0/ xf and .f; f 0/. The map i0 is always a weak
equivalence and here is a cofibration since yA is cofibrant. Also .ˇ; ˇ0/ is a fibration
by hypothesis and hence there is a lift G by Lemma 3.4(i). Let yf DGi1 . This makes
the diagram of the conclusion commute since Hi1 D .f; f

0/ and Gi1 'Gi0 D xf .

Lemma 3.6 Suppose in CDGA or R–DGMod that f W A!B is a model of f 0W A0!
B0 . If we are in CDGA then also assume that H 0.A/DH 0.B/DH 0.A0/DH 0.B0/D

Q. Then there exists a cellularly cofibrant yA, a cellular cofibration yf W yA // yB ,
and weak equivalences ˛W yA '

�!A, ˛0W yA '
�!A0 ˇW yB

'
�!B and ˇ0W yB '

�!B0 such
that .ˇ; ˇ0/W yB! B˚B0 and .˛; ˛0/W yA! A˚A0 are surjective and the following
diagram is strictly commutative

A

f

��

yA

yf
��

'

˛oo
'

˛0 // A0

f 0

��
B yB'

ˇoo
'

ˇ0 // B0:

In addition, the two isomorphisms H�.˛0/H�.˛/�1 2 Hom.H�.A/;H�.A0// and
H�.ˇ0/H�.ˇ/�1 2 Hom.H�.B/;H�.B0// are the same as the one determined by the
original string of weak equivalences making f a model of f 0 .

Proof If we let I be the category .�! �/ with two objects and one nonidentity map,
then CI is the category of maps in C . According to [16, Section 5.1] for any model
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category C , CI can be given a model structure such that if A1! B1 and A2! B2

are in CI then a map between them

A1

��

˛ // A2

��
B1

ˇ

// B2

is a weak equivalence if ˛ and ˇ are both weak equivalences and a fibration if both ˛
and ˇ are fibrations.

Since f is a model of f 0 they are connected by a sequence of weak equivalences,

f D f0 g0
' //'oo f1 � � �

'oo gn�1
' //'oo fn D f

0

with each gi ; fi 2 C . We can factor gi! fi˚fiC1 as an acyclic cofibration followed
by a fibration. and therefore we can assume that all of the maps in the sequence are
fibrations (since they are surjections when evaluated at each object of I ). Also if gi

was cofibrant we replaced it with something cofibrant.

Now let yf '�!f0 be a weak equivalence such that yf is cofibrant. Since they are
fibrations, we can lift along the maps of the sequence to get a diagram

f yf
' //'oo f 0:

As before we can assume that the map yf ! f ˚f 0 is a fibration. So we get a diagram

A

f

��

yA

yf
��

'

˛oo
'

˛0 // A0

f 0

��
B yB'

ˇoo
'

ˇ0 // B0:

Since yf ! f ˚ f 0 is a fibration, .˛; ˛0/W yA! A˚A0 and .ˇ; ˇ0/W yB ! B ˚B0

are surjections. Finally, by a diagram chase, the isomorphisms H�.˛0/H�.˛/�1 2

Hom.H�.A/;H�.A0// and H�.ˇ0/H�.ˇ/�1 2Hom.H�.B/;H�.B0// are the same
as the one determined by the original string of weak equivalences making f a model
of f 0 .

3.6 Homotopy pullbacks

Homotopy pullbacks are homotopy invariant versions of pullbacks. They exist in any
closed model category [6, Section 10]. We now give a description that is adapted to our
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categories CDGA and R–DGMod. Let f W D!C be a map in CDGA or R–DGMod
and

D
i // D0

f 0 // C

be a factorization into an acyclic cofibration followed by a fibration. Then the homotopy
pullback of the diagram

B
g // C D

foo

is the pullback of

B
g // C D0:

f 0oo

There is a map induced by idB , idC and i from the pullback to the homotopy pullback.
Both the homotopy pullback and this induced map are unique up to homotopy. A
homotopy pullback in CGDA or RDG-Mod gives rise to a Mayer–Vietoris sequence,
corresponding to the fact that pushouts of spaces have such sequences and APL. /

takes homotopy pushouts to homotopy pullbacks. The following lemma states some
standard facts about homotopy pullbacks.

Lemma 3.7 Let

(6) B1
//

��

C1

��

D1
oo

��
B2

// C2 D2
oo

be a commutative diagram in CDGA or R–DGMod. Let Ei be the pullback of
Bi

// Ci Di
oo and E0i its homotopy pullback.

(i) There is an induced map E0
1
!E0

2
such that the following diagram of induced

maps commutes:
E1

��

// E0
1

��
E2

// E0
2
:

(ii) If the vertical maps in (6) are weak equivalences then the induced map E0
1
!E0

2

is a weak equivalence.

Proof Part (i) follows from the Lifting Lemma and Part (ii) follows from Mayer–
Vietoris.

The following lemma follows directly from Lemma 3.7.
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Lemma 3.8 Suppose that in CDGA or R–DGMod, the diagram

A1! B1! C1 D1

is a model of the diagram
A2! B2! C2 D2:

Let Ei , Fi be the homotopy pullbacks of Ai ! Ci  Di and Bi ! Ci  Di

respectively. Then the induced map E1!F1 is a model of the induced map E2!F2 .

3.7 Making a homotopy commutative diagram strictly commutative

In general if we have a homotopy commutative diagram we cannot always replace it
with a strictly commuting one. However in the following particularly simple case we
can. Recall that weakly equivalent diagrams are connected by a sequence of weak
equivalences and weak equivalences between diagrams are strictly commuting diagrams
(see Section 3.1).

Lemma 3.9 Assume that we have a homotopy commutative diagram in CDGA or
R–DGMod

(7) A0

'

��

f 0 // B0

'

��

C 0

'

��

g0oo D0
h0oo

'

��
A

f

// B Cg
oo D

h

oo

such that all vertical arrows are weak equivalences. Then the diagrams that make up
the top and bottom row of (7) are weakly equivalent.

Proof Replacing the top row by something weakly equivalent we can assume that the
objects in the top row are cofibrant and the middle two vertical arrows are fibrations.
Consider first the left square of Diagram (7):

A0

˛

��

f 0 // B0

ˇ

��
A

f

// B:

Since ˇ is a surjection and A0 is cofibrant the map f ˛ can be lifted through ˇ to get
a new map xf W A0! B0 . Also by Lemma 3.4 there is a homotopy H W Cyl.A0/! B0
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between f 0 and xf . So the following diagram is strictly commutative with all horizontal
arrows weak equivalences:

(8) A0

��

f 0 // B0

D

��
Cyl.A0/

H
// B0

A0

OO

xf

//

˛

��

B0

D

OO

ˇ

��
A

f

// B:

Similarly, we can replace the center and right squares by a strictly commuting diagram

(9) B0

D

��

C 0
g0oo

��

D0
h0oo

��
B0 Cyl.C 0/H 0oo Cyl D0

Cyl h0oo

B0

D

OO

D

��

C 0

OO

D

��

xgoo D0

OO

��

h0
oo

B0 C 0
xgoo Cyl D0

H 00oo

B0

D

OO

ˇ

��

C 0

D

OO

��

xgoo D0
xhoo

OO

��
B Cg
oo D

h

oo

where Cyl h0 is any lift in the following solid arrow diagram:

D0
`

D0

��

// Cyl.C 0/

��
Cyl D0

Cyl h0
99s

s
s

s
s

H 00
// C 0
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Notice that a lift exists since in this diagram the left map is a cofibration and the right
an acyclic fibration. Now glue the bottom of Diagram (8) to the top of Diagram (9) to
get a sequence of weak equivalences connecting the left and right columns of the new
diagram. This completes the proof of the lemma.

3.8 Mapping cones

Definition 3.10 Let k 2 Z. The k –th suspension of an R–dgmodule M is the
R–dgmodule skM defined by:

� .skM /j ŠM kCj as vector spaces for j 2 Z and this isomorphism is denoted
by sk ,

� r � .skx/D .�1/jr jjkjsk.r �x/ for x 2M and r 2R,

� d.skx/D .�1/ksk.dx/ for x 2M .

Definition 3.11 Let R be a CDGA. The mapping cone of an R–dgmodule morphism
f W A! B is the R–dgmodule .B f̊ sA; d/ defined as follows:

� B f̊ sAD B˚ sA as graded R–modules,

� d.b; sa/D .dB.b/Cf .a/;�sdA.a// for a 2A and b 2 B .

Recall that a mapping cone gives rise to a long exact cohomology sequence, therefore
the following two lemmas follow easily from the five lemma.

Lemma 3.12 Let

0 //A
i //B

p //C //0

be a short exact sequence of R–dgmodules. Then there is a quasi-isomorphism of
R–dgmodules

p˚ 0W B˚i sA
'
�!C:

Lemma 3.13 Let

(10) A
f //

˛

��

B

ˇ
��

A0
f 0 // B0

be a homotopy commutative diagram of R–dgmodules and let

hW sA! B0
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be an R–dgmodule homotopy between f̌ and f 0˛ as in Lemma 3.3. Then there
exists a commutative diagram

0 // B
� � //

ˇ

��

B˚f sA //

ˇ˚hs˛
��

sA //

s˛

��

0

0 // B0
� � // B0˚f 0 sA

0 // sA0 // 0

of R–dgmodules in which each line is a short exact sequence and where ˇ˚h s˛ is
the R–dgmodule morphism defined by

.ˇ˚h s˛/.b; sa/D .ˇ.b/C h.sa/; s˛.a//:

Moreover if ˛ and ˇ are quasi-isomorphisms then so is ˇ˚h s˛ . If the diagram (10)
is strictly commutative then we can take hD 0 and ˇ˚h s˛ D ˇ˚ s˛ .

3.9 Sets of homotopy classes in R–DGMod

Let R be a CDGA and M and N be R–dgmodules with differentials dM and dN

respectively. Forgetting about the differentials we denote by Homi
R.M;N / the vector

space of R–module maps from M to N raising degree by i . We can put a differential
D on HomR.M;N /D

L
i2Z Homi

R.M;N / as follows. For f 2 Homi
R.M;N / and

m 2M define
.Df /.m/D dN .f .m//C .�1/if .dM .m//:

The differential D is of degree C1 and turns HomR.M;N / into a chain complex. It
is easy to check that the cycles are exactly the chain maps. Let

(11) �W H 0.HomR.M;N //! ŒM;N �R

be any map which when restricted to cycles in Hom0.M;N / gives their equivalence
class in ŒM;N �R . Since a map is a cycle if and only if it is a chain map and a boundary
if and only if it is homotopic to 0, if M is cofibrant then � is an isomorphism.

We consider R and H n.R/ as chain complexes with 0 differential, with R concentrated
in degree 0 and H n.R/ concentrated in degree n. Let x�W R! s�nH n.R/ be any
chain map that induces the identity isomorphism after taking H n . In other words such
that x� maps dimension n cocycles to their equivalence classes in cohomology. The
condition that x� is a chain map of course implies that all other dimensions go to 0.
Any such x� gives us a map

(12) �W R! HomQ.R; s
�nH n.R//; r 7! x�.r � /:
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It is straightforward to check that � is a degree 0 map of R–dgmodules. Note that
in the general case where we don’t assume commutativity, for s 2R we would have
�.r/.s/D .�1/jr jjsjx�.sr/. Since we are working in the graded commutative situation
.�1/jr jjsjsr D rs . Thus we get the same formula in our situation but with fewer signs.

Definition 3.14 A connected graded algebra R is a Poincaré duality algebra of formal
dimension n if � is a quasi-isomorphism.

For M a left R–dgmodule, N a right R–dgmodule and L a chain complex, define

(13) �W HomR.M;HomQ.N;L//! HomQ.N ˝R M;L/

by �.f /.n˝m/D .�1/jnjjmjf .m/.n/. Clearly � is a degree 0 isomorphism of chain
complexes.

Lemma 3.15 Let R be a CDGA such that H�.R/ is a Poincaré duality algebra of
formal dimension n. Let P be an R–dgmodule. Then the map

H n
W ŒP;R�R! Hom.H n.P /;H n.R//; Œf � 7!H n.f /:

is an isomorphism of Q–modules.

Proof By the definition of ŒP;R�R we may assume that P is cofibrant. Since
R is a Poincaré duality algebra and P is cofibrant we have a quasi-isomorphism
��W H

0.HomR.P;R//!H 0.HomR.P;HomQ.R; s
�nH n.R// induced by Equation

(12). Also � and � from Equations (11) and (13) are isomorphisms. So we get a string
of isomorphisms:

ŒP;R�R
��1

! H 0.HomR.P;R//
��
! H 0.HomR.P;HomQ.R; s

�nH n.R//

��
! H 0.HomQ.R˝R P; s�nH n.R///

D H 0.HomQ.P; s
�nH n.R///

D HomQ.H
n.P /;H n.R//

It is straightforward to check that the composition of these maps is the same as the
map induced by taking H n .

Lemma 3.16 Let P and X be R–dgmodules. If H<r .P /D 0 and H�r .X /D 0 for
some r 2 Z then ŒP;X �R D 0.

Proof This is a straightforward obstruction argument. See Lemma 3.3.
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3.10 Turning R–dgmodule structure into CDGA structure

Definition 3.17 Let R be a commutative graded algebra (CGA) and let X be a right
R–module. Then, the semitrivial CGA structure on R˚X is the multiplication

�W .R˚X /˝ .R˚X /! .R˚X /

defined, for homogeneous elements r; r 0 2R and x;x0 in X , by:

� �.r ˝ r 0/D r:r 0

� �.x˝ r 0/D .�1/jr
0jjxjr 0 �x

� �.r ˝x0/D r �x0

� �.x˝x0/D 0.

Note that if d is a differential of R�modules on R˚X , it is in general not true that
the multiplication � defined above defines a CDGA structure on .R˚X; d/ because
the Leibnitz rule is not necessarily satisfied. However, we have the following:

Proposition 3.18 Let R be a CDGA, let Q be an R–dgmodule and let f W Q!R

be a morphism of R–dgmodules. If either

(1) f W Q!R is the inclusion of an ideal with the R module structure on Q given
by multiplication in R, or

(2) there exist p 2N such that Qi D 0 for i < p and i � 2p

hold then the semitrivial CGA structure on the mapping cone R f̊ sQ defines a CDGA
structure.

Proof To see that the semitrivial CGA structure defines a CGDA structure we only
have to check that the Leibniz law holds. By definition .r; sq/ �.r 0; sq0/D .rr 0; s.rq0C

.�1/jqjjr
0jr 0q//. Since the product is bilinear and the differential is linear, we can

check Leibniz on terms of the form .r; 0/ � .r 0; 0/, .r; 0/ � .0; sq0/, .0; sq0/ � .r 0; 0/ and
.0; sq/ � .0; sq0/. Since R satisfies Leibniz so do terms of the first type. Since Q is an
R–module and f is an R–dgmodule map, it follows directly from the definition of
the differential that Leibniz is satisfied for terms of the second and third type.

Next consider terms of the fourth type. On one side of the Leibniz equation we have
d Œ.0; sq/ � .0; sq0/�D d.0/D 0. On the other side we have,

d.0; sq/ � .0; sq0/C .�1/jsqj.0; sq/ � d.0; sq0/

D .f .q/;�sdq/ � .0; sq0/C .�1/jqj�1.0; sq/ � .f .q0/;�sdq0/

D f .q/sq0C .�1/jqj�1.�1/jq
0j.jqj�1/f .q0/sq:
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In Case 2 this term is zero for degree reasons. In Case 1 we continue using the fact
that the multiplication is given by that in R,

D .�1/jqjs.qq0/C .�1/jq
0j.�1/jqj�1.�1/jq

0j.jqj�1/s.q0q/

D .�1/jqjs.qq0/C .�1/jqjjq
0j.�1/jq

0j.�1/jqj�1.�1/jq
0j.jqj�1/s.qq0/

D .�1/jqjs.qq0/� .�1/jqjs.qq0/D 0:

So in both cases the product is zero and Leibniz holds.

Definition 3.19 The CDGA structure of the last proposition is called the semitrivial
CDGA structure on the mapping cone R f̊ sQ.

4 Thom class and the shriek map

Throughout this section we fix a connected oriented smooth manifold W of dimension
n and an oriented connected closed smooth submanifold V �W of dimension m and
codimension r D n�m. We denote this embedding by

f W V ,!W;

and the orientation classes by uV 2H m.V IZ/ and uW 2H n.W IZ/.

In this section we introduce the ingredients needed for describing a model of W nV

and we build a first version of such a model. In Section 4.1 we review the description of
the Thom isomorphism and the normal bundle of V in W as a tubular neighborhood T

[22, Chapters 10 and 11]. We also describe W as a pushout (Diagram (14)), for which
we find a rational model in Section 6. We associate a Thom class x� 2H�.T; @T IZ/ to
the normal bundle of the embedding f compatible in a certain way with the orientations
of V and W (Lemma 4.1). In Section 4.2 and Section 4.3 we introduce our chain level
version of the shriek map and prove its existence and uniqueness. Finally in Section
4.4 we give a first CDGA model of Diagram (14) below using mapping cones (Lemma
4.7). This is a very specific model but an intermediate step in constructing the CDGA
model of this diagram based on any model of f , which is done in the Lemma 5.8.

4.1 Thom class and orientations

For this subsection alone our coefficients for cohomology are Z. By the tubular
neighborhood theorem [22, Theorem 11.1] the normal bundle � of the embedding f is
diffeomorphic to some open neighborhood T 0 of V in W . The associated normal disk
bundle D� can be identified with a compact manifold T � T 0 such that the inclusion
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makes V a strong deformation retract of T . Let B WDW nT be the closure of the
complement of T . Then B is a compact manifold with boundary @B D @T D B \T

and B [T DW . In other words we have the following pushout:

(14) @T
� � k //

� _

i
��

B� _

l
��

T
� � j // W

This pushout is also a homotopy pushout since the inclusion @T ! T is a cofibration
[15, Theorem 13.1.10 and Proposition 13.5.4]. It is clear that the projection of the
normal bundle D� on V defines a homotopy inverse

� W T
'
�!V

of the inclusion such that the composition

V � T
j
,!W

is equal to f . Also B 'W nV .

The projection map .T; @T /! V is an orientable .Dr ;Sr�1/–bundle. Let � 2 V be
some point and consider .Dr ;Sr�1/D .T; @T /j� as the restriction of the bundle over
that point. We thus have an associated inclusion incW .Dr ;Sr�1/! .T; @T /. Let �W

and �V be the tangent bundles of W and V respectively. We can write

�W jV Š �V ˚ �

Because W and V are orientable so is � . Let Dm � V be a closed neighborhood of
� with boundary Sm�1 and Dn be a neighborhood of � in W with boundary Sn�1 .
The given orientations uV and uW induce orientations

uDm 2H m.Dm;Sm�1/ŠH m.V;V n �/ŠH m.V /

uDn 2H n.Dn;Sn�1/ŠH n.W;W n �/ŠH n.W /:and

By [22, Lemma 11.6] these correspond to orientations on �W and �V . Suppose an
orientation

(15) uDr 2H r .Dr ;Sr�1/

on � has also been given. We say that uV , uW and uDr are compatible if they satisfy
the formula

(16) uDn D uDm �uDr 2H mCr ..Dm;Sm�1/� .Dr ;Sr�1//DH n.Dn;Sn�1/:
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By [22, Theorem 9.1] there exists a Thom class x� 2H r .T; @T / such that x� j� D uDr ,
in other words such that

(17) inc�.x�/D uDr :

It also induces a Thom isomorphism:

(18) [ x� W H�.T /
Š
!H�Cr .T; @T /:

The following formula summarizes the link between the Thom class x� and the fixed
orientation classes uV and uW .

Lemma 4.1 Suppose that uv , uW and uDr are compatible. Then the following
sequence of arrows sends uV to uW :

H�.V /
Š

��
// H�.T /

_[x� // H�Cr .T; @T / H�Cr .W;B/
Š

restriction
oo // H�Cr .W /:

Proof The lemma follows from Equation (16) and the commutativity of the following
diagram:

H�.T /

��

[x� // H�Cr .T; @T /

��

H�Cr .W;B/

��

//Šoo H�Cr .W /

��
H�.Dm;Sm�1/

�uDr

// H�Cr .Dn;Sn�1/ H�Cr .Dn;Sn�1/ H�Cr .Dn;Sn�1/:

4.2 The shriek map

To construct a CDGA-model of W nV we will need an analogue of the shriek map
(or Gysin map, or transfer map) which we recall now. Let �V 2 Hm.V;Z/ and
�W 2Hn.W;Z/ be homology classes dual to uV and uW . The classical cohomological
shriek map (see Bredon [4, VI.11.2], also called Gysin map, pushforward map or umkehr
map) is a map

f !
W s�r H�.V;Z/ŠH��r .V;Z/!H�.W;Z/:

By [4, VI.14.1] f ! is a morphism of H�.W;Z/–modules and induces an isomorphism
in degree n sending s�r uV to uW . These two facts characterize f ! as can also be
seen using Lemma 3.15.

An important ingredient in our model of W nV will be the following analogue of the
shriek map at the level of models. Following our standard abuse of notation (Section
3.4) denote also by uV 2HAPL.V / and uW 2HAPL.W / the images of the orientation
classes through the isomorphism between HAPL. / and H�. / (Equation (5)).
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Definition 4.2 Let �W R!Q be a CDGA-model of APL.f /W APL.W /!APL.V /.
A shriek map associated to � is any R–dgmodule morphism

�!
W s�r Q!R

such that H n.�!/.s�r uV /D uW .

Proposition 4.3 Let �W R!Q be a CDGA-model of APL.f /W APL.W /!APL.V /.
An R–dgmodule morphism z�W s�r Q!R is a shriek map if and only if

H.z�/W s�r H�.V /ŠH.s�r Q/!H.R/ŠH�.W /

is the classical cohomological shriek map f ! .

Proof Assume that H.z�/ is the cohomological shriek map f ! . We know that
H�.f /.uV \�V /DH�.f /.1/D uW \�W . Thus by [4, VI.14.1] f !.s�r uV /D uW

and so z� is a shriek map.

Next assume that z� is a shriek map, then H n.�!/.s�r uV /D uW by definition. We
also know that the cohomological shriek map f ! satisfies f !.s�r uV /D uW . Letting
.H.R/; 0/ be the CGDA and H�.Q/ the H�.R/–dgmodule in Lemma 3.15 we see
that H r .�!/ ' f ! in the category H�.R/–DGMod. Hence they must be equal on
homology, which completes the proof of the other direction.

4.3 Uniqueness and existence of the shriek map

Proposition 4.4 The shriek map is unique up to homotopy. More precisely let �W R!
Q be a CDGA model of APL.f /W APL.W /! APL.V /. Let �!; x�!W s�r Q! R be
shriek maps associated to � , then �! D x�! in Œs�r Q;R�R .

Proof We know that H n.�!/.s�r uV / D H n.x�!/.s�r uV / since both �! and x�!

are shriek maps. Thus as H n.s�r Q/ is one dimensional, H n.�!/ D H n.x�!/ in
Hom.H n.s�r Q/;H n.R// and so Lemma 3.15 implies that �! D x�! in Œs�r Q;R�R .

The next proposition and its proof show how to associate to any CDGA model of an
embedding f W V !W , a suitable CDGA model together with a shriek map which
will be used in our model for W nV and for the blow-up.

Proposition 4.5 Assume that H 1.f / is injective and that n � m C 2. Suppose
�0W R0 ! Q0 is a CDGA-model of the embedding f W V ,! W . Then we can
construct from �0 another CDGA model �W R!Q of f together with a shriek map
�!W s�r Q!R, such that

Geometry & Topology, Volume 12 (2008)



The rational homotopy type of a blow-up in the stable case 1947

� R and Q are connected, that is, R0 DQ0 DQ,

� R�nC1 D 0, and

� Q�mC2 D 0.

Proof By taking a minimal Sullivan model of R0 , ˇW zRDƒX
'
�!R0 and a minimal

relative Sullivan model z�W zR! zQD zR˝ƒY of the composition �0ˇ we get a new
model z� of f . Since H 0.V /DH 0.W /DQ and H 1.f / is injective, zR and zQ are
connected.

By [9, Lemma 14.1], zQ is a semifree zR–dgmodule and so is s�r zQ, and hence they
are cofibrant. Since H�. zR/ŠH�.W IQ/ is a connected Poincaré duality algebra of
formal dimension n, Lemma 3.15 implies that

Œs�r zQ; zR� zR Š Hom.H n.s�r zQ/;H n. zR//:

From the definition of Œ ; �, Hom.A;B/! ŒA;B� is surjective if A is cofibrant, so
since s�r zQ is cofibrant we can take a representative z�!W s�r zQ! zR of a homotopy
class such that H n.z�!/.uV /D uW . Then z�! is a shriek map associated to z� .

We next adjust this shriek map so that the dimension conditions at the end of the
proposition are satisfied. Set

I D zR�nC1
˚ .a complement of the cocycles in zRn/

J D zQ�mC2
˚ .a complement of the cocycles in zQmC1/:

Since zR is connected, I is an ideal and it is acyclic because H>n. zR/D 0. Similarly
J is an acyclic ideal in zQ. Define R D zR=I and Q D zQ=J . Since n � mC 2, z�
induces a map �W R!Q which is a model of f and since mC 1C r � nC 1, z�!

induces an R–dgmodule morphism �!W s�r Q!R which is a shriek map. Obviously
R and Q are connected and R�nC1 DQ�mC2 D 0.

4.4 Preliminaries with APL

Recall the notation of Diagram (14) at the beginning of the section. Consider the ladder
of maps between short exact sequences of pairs:

APL.W;B/
� //

�

��

APL.W /
l� //

j�

��

APL.B/

k�

��
APL.T; @T /

�0 // APL.T /
i� // APL.@T /
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where � is the kernel of l� and �0 is the kernel of i� . Also � is the induced map which is
well defined since Diagram (14) commutes and APL is a functor. As each is a kernel of
a CDGA map, each is a differential ideal – APL.W;B/ inherits an APL.W /–dgmodule
structure and APL.T; @T / inherits an APL.T /–dgmodule structure. Since j � is an
algebra map, � is an APL.W /–dgmodule map. Note that l W B!W and i W @T ! T

are cofibrations and so l� and i� are surjections [9, Proposition 10.4 and Lemma 10.7].
This will be used later.

Lemma 4.6 The restriction map

�W APL.W;B/!APL.T; @T /

is a surjective weak equivalence of APL.W /–dgmodules.

Proof As observed above � is an APL.W /–dgmodule map. It is a weak equivalence
by excision. To see that it is surjective, let ˛ 2APL.T; @T /. Since j is a cofibration
we know by [9, Proposition 10.4 and Lemma 10.7] that j � is a surjection. Let
ˇ 2 APL.W / be such that j �.ˇ/ D �0.˛/. Since i��0 D 0, k�l�.ˇ/ D 0. So we
can extend l�.ˇ/ by 0 on simplices contained in T and arbitrarily to the rest of the
singular simplices in W (the ones whose image is contained in neither B or T ) to get
ˇ0 2 APL.W /. We know that l�.ˇ0/D l�.ˇ/ and j �.ˇ0/D 0. Thus l�.ˇ�ˇ0/D 0

and j �.ˇ�ˇ0/D j �.ˇ/D �0.˛/. So ˇ�ˇ0 lifts to ž2APL.W;B/ such that �. ž/D˛ .
Since ˛ was arbitrary � is surjective.

See Section 3.1 for notation concerning squares.

Lemma 4.7 Consider the following squares:

F0 D APL.W /inc
j� //

��

APL.T /inc

��
APL.W /˚� sAPL.W;B/

j�˚s�// APL.T /˚�0 sAPL.T; @T /

FD APL.W /
j� //

l�

��

APL.T /

i�

��
APL.B/

k� // APL.@T /

(i) With the semitrivial CDGA structure (see Definition 3.19) on the mapping cones,
F0 is a CDGA square.

(ii) ‚6 D

�
id id

l�C 0 i�C 0

�
W F0! F is a weak equivalence of CDGA squares.
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Proof (i) By Proposition 3.18 (i) there are semitrivial CDGA-structures on the
mapping cones:

APL.W /˚� sAPL.W;B/ and APL.T /˚�0 sAPL.T; @T /:

It is then easy to see that F0 is a CDGA squares.

(ii) It is immediate that the following diagram is one in CDGA and is commutative:

(19) APL.W /˚� sAPL.W;B/
j�˚s�//

l�C0
��

APL.T /˚�0 sAPL.T; @T /

i�C0
��

APL.B/
k� // APL.@T /:

We need only to prove that the vertical arrows in Diagram (19) are quasi-isomorphisms.
As noted above Lemma 4.6, l� is surjective. Thus we have a short exact sequence

0 // APL.W;B/
� // APL.W /

l� // APL.B/ // 0:

By Lemma 3.12 this implies that the vertical map l�C 0 is a quasi-isomorphism. The
proof that i�C 0 is a quasi-isomorphism is similar.

Lemma 4.8 Let � 2 Ar
PL.T; @T / \ ker d be a representative of the Thom class x�

chosen in Section 4.1. Then multiplication by � ,

_ � � W s�r APL.T /
'
�!APL.T; @T /

is a quasi-isomorphism of left APL.T /–dgmodules.

Proof This follows from the Thom isomorphism of Equation (18).

Lemma 4.9 The following sequence of arrows

s�r APL.V / // s�r APL.T /
_ � �

'
// APL.T; @T / APL.W;B/

�

'
oo � // APL.W /

induces an isomorphism
H n�r .V /ŠH n.W /

that takes s�r uV to uW .

Proof Apply Lemma 4.1 and the natural equivalence of Equation (5) between H�. /

and H.APL. //.
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5 A model of the complement of a submanifold

As in Section 4 we suppose we are given an embedding of closed manifolds f W V ,!W

as well as orientation classes uV 2H m.V IZ/ and uW 2H n.W IZ/. Again W is of
dimension n and V of dimension m and codimension r D n�m. We also use the
notation from Diagram (14), the CDGA maps �,�0 , and � from Section 4.4 and the
representative � of the Thom class from Lemma 4.8.

Assume that H 1.f / is injective and dim W � 2 dim V C 3. We fix a CDGA-model

�W R!Q

of j �W APL.W / ! APL.T / such that R and Q are connected, R�nC1 D 0 and
Q�mC2 D 0. Notice that � is also a model of APL.f /. By our standard abuse
of notation (see Section 3.4) this determines orientation classes uW 2 H.R/ and
uV 2H.Q/. We suppose also that we have been given an associated shriek map

�!
W s�r Q!R:

Notice that by Proposition 4.5 we can always build such a CDGA model � and shriek
map �! .

Our aim in this section is to describe a CDGA-model of the map kW @T !B using a
CDGA model of the embedding f under the hypotheses that n� 2mC 3. In fact we
will give a CDGA model of the Diagram (14) of the last section (Lemma 5.8) using
only the model � and the shriek map �! . This extra precision is necessary to get the
model of the blow-up.

The section is organized as follows. In Section 5.1 we fix a common model y�W yR! yQ
of � and j � . In Section 5.2 we construct a common model y�! of �! and �. The
common model y� y�! of ��! and j �� comes with a yR–dgmodule structure. In Section
5.3 we show that it is homotopic to a yQ–dgmodule map �. This extension of structure
would not be necessary if we just wanted a model of APL.B/, but it is necessary to
obtain a model of APL.k/. In Section 5.4 (Lemma 5.4) we show that the cone on �! is
a yR–dgmodule model of the cone on � and that the cone on ��! is a yQ–dgmodule
model of the cone on j ��. We already know from the last section (Lemma 4.7) that
the cones on � and j �� are CDGA models of APL.B/ and APL.@T / respectively. We
also construct the maps between our models that we will need. In Section 5.5 (Lemma
5.6) we give conditions under which a map between diagrams with certain dgmodule
structure can be extended to a CDGA map. Next we put everything together and
construct a CDGA model of Diagram (14), (Lemma 5.8). Since we are constructing
the model of the blow-up we also keep track of the weak equivalences connecting the
models.
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5.1 A common model of � and j �

Solely for purposes of the proof we use Lemma 3.6 to fix a commuting diagram of
CDGAs

(20) R

�

��

yR
˛

'
oo ˛0

'
//

y�
��

APL.W /

j�

��
Q yQ

ˇ

'
oo ˇ0

'
// APL.T /

such that ˛; ˛0; ˇ and ˇ0 are quasi-isomorphisms, yR is cellular, y� is a cellular cofibra-
tion and the maps

.˛; ˛0/W yR!R˚APL.W /

.ˇ; ˇ0/W yQ!Q˚APL.T /

are surjective. As a consequence R and APL.W / are yR–dgmodules and Q and
APL.T / are yQ–dgmodules. Notice also that since y� is a cellular cofibration and yR
and yQ are connected, yQ is a semifree yR–dgmodule. By the second part of Lemma 3.6
the homology classes uW 2H.R/ and uV 2H.Q/ corresponding to the orientations
uW 2H�.W /DH.APL.W // and uV 2H�.V /ŠH�.T /DH.APL.T // (where the
isomorphism is �� ) using the quasi-isomorphisms of Diagram (20) are the same as
those given by the original string of weak equivalences that made � a model of j � .

5.2 A common model of �! and �

Next we construct a common model y�! of �! and of �W APL.W;B/!APL.W / defined
in Section 4.4. Recall also from Section 4.4 the definition � and the cocycle �
from Lemma 4.8. We consider the following commutative solid arrow diagram of
yR–dgmodules

(21) s�r APL.T /

'

� �

''OOOOOOOOOOOO

s�r Q

�!

��

s�r yQ
s�rˇ

'
oo  0

'
//___

y�!

���
�
�

s�rˇ0

'

99ssssssssss
APL.W;B/

�

��

�

' // APL.T; @T /

R yR
˛

'
oo ˛0

'
// APL.W /:

In the next lemma we construct yR–dgmodule maps  0 and y�0 making the diagram
commute. Notice that all horizontal and diagonal maps are weak equivalences. Some
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of the maps above are more than just yR–dgmodule maps and this extra structure will be
used when we enhance our yR–dgmodule structure to get a CDGA structure in Section
5.5.

Lemma 5.1 There exists an yR–dgmodule weak equivalence  0W s�r yQ!APL.W;B/

and a yR–dgmodule map y�0W s�r yQ! yR making Diagram (21) above commute.

Proof The quasi-isomorphism  0 is just any lift in the following solid arrow diagram:

APL.W;B/

�'

��
s�r yQ

 0
66llllllll

. � �/s�rˇ0

' // APL.T; @T /:

The Lifting Lemma (Lemma 3.4) implies the lift  0 exists since by Lemma 4.6 � is an
acyclic fibration and s�r yQ is a cofibrant yR–dgmodule.

By the same argument there exists a lift z�! in the solid arrow diagram:

yR

˛0

��
s�r yQ

� 0
//

z�!

::u
u

u
u

u
APL.W /

It follows from Lemma 4.9 that H.˛/H.z�!/H.s�rˇ/�1.s�r uV /D uW . So since by
Proposition 4.4 �! represents the unique homotopy class of maps with that property,
we have that �!s�rˇ ' ˛ z�! . Since .˛; ˛0/W yR!R˚APL.W / is a surjection we can
use Lemma 3.5 to replace z�0 by a map y�!W s�r yQ! yR making Diagram (21) commute
on the nose.

5.3 Replacing y�y�! by a yQ–dgmodule morphism

In this subsection we suppose fixed Diagrams (20) and (21) with the maps  0 and
y�! constructed in Lemma 5.1. Here we show that the yR–dgmodule map y� y�! can be
replaced by a yQ–dgmodule map � which is homotopic to y� y�! in a controlled way.

Lemma 5.2 (i) � 0W s�r yQ!APL.T; @T / is a morphism of yQ–dgmodules.

(ii) ��! D 0 and is thus a morphism of yQ–dgmodules.
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Proof (i) Lemma 5.1 says that  0 makes Diagram (21) commute so we have that

� 0 D . � �/s�r .ˇ0/:

Of course . � �/ is an APL.T /–dgmodule map and hence a yQ–dgmodule map. Also
ˇ0 and thus s�rˇ0 are yQ–dgmodule maps. Hence the composition

. � �/s�rˇ0 D � 0

is a yQ dgmodule map.

(ii) We have assumed that n� 2mC3, hence r D n�m�mC3. Since Q�mC2D 0

the statement follows.

In general y� y�!W s�r yQ ! yQ is not a yQ–dgmodule map but it can be adjusted as
described in the following lemma.

Lemma 5.3 There exists a yQ–dgmodule map �W s�r yQ! yQ and a yR–dgmodule
homotopy hW ss�r yQ ! yQ from � to y� y�! such that ˇh D ˇ0h D 0. In particular
.ˇ; ˇ0/�D .ˇ; ˇ0/y� y�! .

Proof Since n� 2mC3, r D n�m�mC1, so we know that H<r .s�r yQ/D 0 and
H�r .T IQ/�H�mC1.T IQ/DH�mC1.V IQ/D 0. Thus Lemma 3.16 implies that
Œs�r yQ;APL.T /� yQ D 0. Similarly Œs�r yQ;Q� yQ D 0. As s�r yQ is a free yQ–dgmodule
on one generator, it is semifree as a yQ–dgmodule. Thus using Lemma 5.2 we see that
the following diagram is homotopy commutative in the category of yQ–dgmodules

s�r Q

��!

��

s�r yQ
'

s�rˇoo � 0

'
//

0
��

APL.T; @T /

�0

��
Q yQ

'

ˇoo ˇ0

'
// APL.T /:

Since .ˇ; ˇ0/ is surjective, Lemma 3.5 asserts that we can replace the zero-map in the
previous diagram by a yQ–dgmodule morphism �W s�r yQ! yQ making the diagram
strictly commutative, in other words such that .ˇ; ˇ0/�D .ˇ; ˇ0/y� y�! .

Next we construct the homotopy h. Let H 0W Cyl.s�r yQ/!Q˚APL.T / be the map
corresponding to the constant homotopy h0 D 0W ss�r yQ!Q˚APL.T /. We get the
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following commutative solid arrow diagram

s�r yQ˚ s�r yQ
�Cy� y�!

//

i0Ci1

��

yQ

.ˇ;ˇ0/

��
Cyl s�r yQ

H 0
//

H

77nnnnnnnn
Q˚APL.T /:

The map i0 C i1 is a cellular yR–dgmodule cofibration such that H<r .i0 C i1/ is
an isomorphism. Also since n � 2mC 3, r � 1 D n �m � 1 � mC 1 > dim.V /
and so H�r�1.Q˚APL.T //D 0DH�r�1. yQ/. Thus a lift H exists. Our desired
hW ss�r yQ! yQ is the homotopy corresponding to H .

5.4 A dgmodule model of j �˚ s�

Recall from Lemma 4.7 that the map of mapping cones

j �˚ s�W APL.W /˚� sAPL.W;B/!APL.T /˚�0 sAPL.T; @T /

is a CDGA model of k�W APL.B/!APL.@T /. Our aim in this subsection is to give
another model (as dgmodules) of that map.

We consider Diagrams (20) and (21) with the maps y�! and  0 from Lemma 5.1 as well
as the yQ–dgmodule map �W s�r Q! yQ and the yR–dgmodule homotopy hW �' y� y�

from Lemma 5.3. Recall the notation from Lemma 3.13.

Lemma 5.4 The map

y�˚h idW yR˚y�! ss�r yQ! yQ˚� ss�r yQ

is a morphism of yR–dgmodules making the following diagram commutative in the
category of yR–dgmodules:

(22) R˚�! ss�r Q

�˚id
��

yR˚y�! ss�r yQ
˛˚ss�rˇ

'
oo ˛0˚s 0

'
//

y�˚hid
��

APL.W /˚� sAPL.W;B/

j�˚s�

��
Q˚��! ss�r Q yQ˚� ss�r yQ

ˇ˚ss�rˇ

'
oo ˇ0˚s� 0

'
// APL.T /˚�0 sAPL.T; @T /

Moreover the horizontal maps in this diagram are quasi-isomorphisms and the bottom
row consists of yQ–dgmodule maps.
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Proof Since Lemma 5.3 says that ˇhD ˇ0hD 0, the diagram in the statement of the
lemma is commutative.

We see that the horizontal maps of the diagram are quasi-isomorphisms by Lemma
3.13. The fact that the bottom line of the diagram is of yQ–dgmodules follows from
the construction of ˇ , ˇ0 and  0 .

5.5 Extending dgmodule structure to CDGA structure

For this subsection we suppose fixed Diagrams (20) and (21) with the maps  0 and y�!

constructed in Lemma 5.1 and � and h from Lemma 5.3.

Here we use CDGA squares. At first sight this may seem clumsy but it keeps track of
the yR and yQ module structures in a convenient way. Notation concerning squares is
described in Section 3.1.

Lemma 5.5 Assume that r is even. There exists a unique CDGA structure on
yQ˚� ss�r yQ (respectively, Q˚ ss�r Q) extending its yQ–dgmodule (respectively,
Q–dgmodule) structure. Moreover we can find CDGA isomorphisms ye and e , such
that e.z/D ss�r 1, ye.z/D .yq; ss�r 1/ for some q 2 yQr�1 , ejQ D id, yej yQ D id, and
which make the following diagram commute

yQ˝ƒ.z/
ye //

ˇ˝id
��

yQ˚� ss�r yQ

ˇ˚ss�rˇ

��
Q˝ƒ.z/

e
// Q˚ ss�r Q

where jzj D r � 1 and dz D 0.

Proof Recall that ��! D 0 for dimension reasons. The map e is determined by the
conditions that e.z/D ss�r 1, ejQ D id and the fact that it is a Q–module map. It is
clearly an isomorphism. Since �.ss�r 1/ is a cocycle in yQ and since H�r . yQ/D 0,
there exists yq 2 yQr�1 such that d.yq/ D ��.ss�r 1/. For degree reasons ˇ.yq/ D 0.
We see also that .yq; ss�r 1/ is a cocycle in yQ˚� ss�r yQ. Then ye is determined by
the formula ye.z/D .yq; ss�r 1/ and is an isomorphism. Clearly the diagram commutes.
The CDGA structures are unique since all products are determined by .ss�r .1//2

and the yQ and Q module structures and ss�r .1/ must square to 0 since it is in odd
dimension.
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Lemma 5.6 For r even, let D denote the commutative square

DD yR
y� //

� _

��

yQ� _

��
yR˚y�! ss�r yQ

y�˚hid
// yQ˚� ss�r yQ

and let . yQ˝ƒz; dz D 0/ be the relative Sullivan algebra from Lemma 5.5 together
with the CDGA isomorphism yeW yQ˝ƒz! yQ˚� ss�r yQ.

(i) There exists a CDGA square

D0 D yR
y� //

��

yQ� _

��
yA

 // yQ˝ƒz

and a weak equivalence between yR–dgmodule squares ‚ D
�

id id
�3 .ye/�1

�
W D! D0:

(ii) Suppose

CD C1
//

��

C2

��
C3

// C4

is another CDGA square and there is a map

‚0 D

�
� 0

1
� 0

2

� 0
3
� 0

4

�
W D! C

such that � 0
1

and � 0
2

are CGDA maps, � 0
3

is a yR–dgmodule map and � 0
4

is a yQ–
dgmodule maps where C3 (respectively, C4 ) has been given the yR–dgmodule (respec-
tively, yQ–dgmodule) induced by � 0

1
(respectively, � 0

2
). If H i.C3/DH i.C4/D 0 for

i � 2r � 3 and C3! C4 is a fibration, then there exists a CDGA map x�3 such that

x‚ D

�
� 0

1
� 0

2
x�3 � 0

4
ye

�
W D0! C
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is a map of CDGA squares making the following diagram commute:

D
‚ //

‚0

��

D0

x‚~~~~~~~~~

C

Proof In view of Lemma 5.5 to construct D0 and ‚ , and prove part (i), it is enough to
construct a relative Sullivan model yR! yA (thus also giving yA a yR–dgmodule struc-
ture), a CDGA map  W yA! yQ˝ƒ.z/ and an yR–dgmodule map �3W

yR˚y�!ss�r yQ! yA

so that the following diagram commutes

yR˚y�! ss�r yQ
�3 //

ye�1.y�˚hid/ &&MMMMMMMMMM
yA

 

��
yQ˝ƒz

and �3 is an equivalence. Since y� is a cellular cofibration of CDGAs, yQD yR˝ƒU

and so ss�r yQD ss�r yR˝ƒU . There is an isomorphism of yR–dgmodules �W ss�r yR˝

ƒU ! yR˝ ss�rƒU given by �.ss�r˛˝ˇ/D .�1/.1�r/j˛j˛˝ ss�rˇ where ˛ 2 yR
and ˇ 2ƒU . Thus ss�r yQŠ yR˝ ss�rƒU as yR–dgmodules and so yR˚y�!ss�r yQŠ
yR˚ yR˝ ss�rƒU . Setting U0 D ss�rƒU , yR˚y�! ss�r yQ is isomorphic as an yR–

dgmodule to yR˝ .Q˚ U0/. The inclusion Q˚ U0 ! ƒU0 induces an inclusion
R˝ .Q˚U0/!R˝ƒU0 . There is a unique differential on R˝ƒU0 satisfying the
Leibniz law such that the inclusion f0W

yR˚y�!ss�r yQŠR˝ .Q˚U0/! yR˝ƒU0 is
an yR–dgmodule map. Clearly then we get a commuting diagram

yR

$$IIIIIIIIIII
// yR˚y�! ss�r yQ

f0

��
yR˝ƒU0:

Moreover any yR–dgmodule map from yR˚y�! ss�r yQ into a CDGA extends uniquely
to a CDGA map out of yR˝ƒU0 . In particular we get a CDGA map g0W

yR˝ƒU0!
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yQ˚� ss�r yQ and a commutative diagram

yR˚y�! ss�r yQ
f0 //

y�˚hid ''OOOOOOOOOOOO
yR˝ƒ.U0/

g0

��
yQ˚� ss�r yQ:

The elements of the cokernel of f0 are elements in ƒU0 of product length at least
two. So they are in degree at least 2r � 2. We add a minimal set of generators U1

of degree at least 2r � 3 to kill the cohomology of the cokernel of f0 . We then get
a CDGA extension h1W

yR˝ƒU0 !
yR˝ƒU0 ˝ƒU1 and an yR–dgmodule map

f1D h1f0W
yR˚y�!ss�r yQ! yR˝ƒU0˝ƒU1 . We have assumed that n� 2mC3 and

r D n�m, so 2r�2D n�mCr�2�mCrC1>mCr�1. Recalling that yQ models
APL.V / and yQ˚� ss�r yQ models APL.@T / we know that yQ˚� ss�r yQ has trivial
cohomology in degrees greater than n�1DmCr�1 and so also in degrees greater than
or equal to 2r�2 where the boundaries of U1 lie. Therefore the map g0 can be extended
over these new elements to a CDGA map g1W

yR˝ƒU0˝ƒU1!
yQ˚� ss�r yQ.

Of course f1 has a new cokernel but since H 0. yR/DQ (of course the homology is 0

in negative degrees) and U1 was chosen minimally the cohomology of this cokernel
is still in degrees greater than 2r � 3. So again we can add generators to kill the
cohomology of the cokernel. We continue this process countably many times to get our
CDGA, yAD yR˝ƒ.˚i�0Ui/ and our map �3 D f1W yR˚y�!ss�r yQ! yA. Since each
element of the cohomology of the cokernel of �3 was killed at the next stage, H.�3/

is surjective. Since 2r � 2 > n, H�2r�2. yR˚y�!ss�r yQ/D 0 and we have not killed
anything in H. yR˚y�!ss�r yQ/; so H.�3/ is injective. Thus �3 is a quasi-isomorphism
of yR–dgmodules. The original map g0 extends to a CDGA map g1W yA! yQ˚�ss�r yQ

since H�2r�2. yQ˚�ss�r yQ/D 0 and so at each stage all obstructions are trivial for
degree reasons. So we can set  D ye�1g1 and we have completed the construction
of D0 and ‚ .

We now proceed to construct the map x‚ and prove part (ii). Any yQ–dgmodule map
out of yQ˚� ss�r yQ is automatically a CDGA map since .ss�r 1/ �.ss�r 1/D 0 because
ss�r 1 is of odd degree. Thus � 0

4
and � 0

4
ye are CDGA maps. So we only have
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to construct a CDGA map x�3W
yA!C3 extending � 0

3
and making the following diagram

commute:

yA
ye //

x�3

��

yQ˚� ss�r yQ

� 0
4

��
C3

// C4:

Clearly the yR–dgmodule map � 0
3

extends uniquely to a CDGA map h0W
yR˝ƒU0!C3

making the following diagram commute:

yR˝ƒU0

h0

��

g0 // yQ˚� ss�r yQ

�4

��
C3

// C4:

Since H i.C3/D 0 for i > 2r � 2, we can further extend to a CDGA map h0
1
W yR˝

ƒU0˝ƒU1! C3 . We show that the following CDGA diagram

yR˝ƒU0˝ƒU1

h0
1

��

g1 // yQ˚� ss�r yQ

�4

��
C3

// C4

commutes up to CDGA homotopy. Indeed it already commutes on yR˝ƒU0 and hence
the two ways of going around differ by an element of ŒƒU1;C4� and this group is 0

since H i.C4/D 0 for i � 2r�3 and U1 has no elements in degrees � 2r�3. Because
C3 ! C4 is a surjection we can replace h0

1
by a map h1W

yR˝ƒU0 ˝ƒU1 ! C3

making the last diagram commute exactly. Using this same method at each stage and
taking the direct limit we get our desired CDGA map x�3W

yA!C3 making the diagram
commute.

The approach taken in the last lemma gives a hint of how to approach the problem of
extending an yR–dgmodule structure to a CDGA structure when there are no dimension
restrictions. At each stage one would have to choose which representatives of the
cokernel to kill. Now we describe a CDGA model of Diagram (14)
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Lemma 5.7 Assume that r is even. With the semitrivial CDGA on the mapping cones,
the square

ED R
� //

� _

��

Q� _

��
R˚�! ss�r Q

�˚id
// Q˚��! ss�r Q:

is a commuting square of CDGAs.

Also there exists a CDGA square

E0 D R
� //

� _

��

Q� _

��
A �

// Q˝ƒ.z/:

such that � is a fibration and there exists a CDGA quasi-isomorphism �W R ˚�!

ss�r Q!A such that

‚1 D

�
id id
� e�1

�
W E! E0

is a weak equivalence of CDGA squares.

Proof That E is a CDGA square follows using Proposition 3.18. To construct E0 and
‚1 we factor the CDGA map �˚ idW R˚�! ss�r Q!Q˚��! ss�r Q as an acyclic
cofibration �W R˚�! ss�r Q!A followed by a fibration �W A!Q˚��! ss�r Q. The
lemma follows easily.

In the next lemma D and D0 are the diagrams of Lemma 5.6, E and E0 are the diagrams
of the previous lemma and F, F0 and ‚6 are the diagrams and map from Lemma 4.7.

Lemma 5.8 Assume that r is even. Let � be the map from Section 4.4,  0 from
Section 5.2, ye from Lemma 5.5 and ‚1 from Lemma 5.7. Set

�0 D .i�C 0/.ˇ0˚ s� 0/ye W yQ˝ƒz!APL.@T /

which is a quasi-isomorphism. There exist two CDGA maps �W yA
'
�!A and

�0W yA
'
�!APL.B/ such that if we set

‚2 D

�
˛ ˇ

� ˇ˝ id

�
and ‚3 D

�
˛0 ˇ0

�0 �0

�
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then we have a chain of quasi-isomorphisms of CDGA squares

E
‚1
��! E0

‚2
��! D0

‚3
��! F:

Proof Set
‚4 D

�
˛ ˇ

˛˚ ss�rˇ ˇ˚h ss�rˇ

�
W D! E

‚5 D

�
˛0 ˇ0

˛0˚ s 0 ˇ0˚ s� 0

�
W D! F0:and

By Lemmas 4.7, 5.4 and 5.7 we have a weak equivalences of yR–dgmodule squares
‚4‚1W D! E0 and ‚6‚5W D! F. Also the maps between the objects in the right
hand column of each square are yQ–dgmodule maps. We can apply Lemma 5.6 to these
maps and get the string of quasi-isomorphisms of squares as stated in the lemma.

6 Model of the projectivization of a complex bundle

In this section we suppose that f W V !W is a smooth embedding of closed manifolds
of codimension 2k . We will assume that k > 1. We also suppose that the normal
bundle � of the embedding has some fixed structure of a complex vector bundle,

�W Ck
!E

�
! V:

Let T be a compact tubular neighborhood of V in W . By the Tubular Neighborhood
Theorem, we can identify T with the disk bundle D� and @T with its sphere bundle
S� in such a way that the zero section of D� corresponds to the inclusion

� W V ! T:

We fix such an identification. We also suppose we have been given some CDGA model
Q of APL.T / and a common model yQ

Q yQ
ˇ0 //ˇoo APL.T /

of Q and APL.V / such that .ˇ; ˇ0/ is surjective and ˇ and ˇ0 are quasi-isomorphisms
as in Section 5.1. Clearly ��ˇ0W yQ!APLV is also a quasi-isomorphism. By Lemma
3.6 such a common model can be constructed from any CDGA model Q of APL.T /.

The aim of this section is to describe the projective bundle P� associated to � and
give a CDGA model for this projective bundle. In Section 6.1 we review the definition
of the projective bundle and of Chern classes and prove the triviality of a certain line
bundle (Lemma 6.1). Next in Section 6.2 we consider the pullback over a point of the
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sphere bundle and of its projectivization. Using orientation information we show that
the models of these pullbacks and the model of the sphere bundle P� can be chosen in
a compatible way (Lemma 6.4 and Lemma 6.6). Then in Section 6.3 we construct a
model of the projectivization of the sphere bundle and use the results from Section 6.2
to show this model is compatible with the model of the boundary of the normal bundle
(Lemma 6.8 and Proposition 6.9).

6.1 The projective bundle and the Chern classes

Next we recall the definition of the Chern classes of a complex bundle using the
associated projective bundle as described in [2, IV.20]. Consider the universal complex
line bundle  1 over CP .1/

C!E 1
!CP .1/

where CP .1/ D fl W l is a C line in C1g and E 1 D f.l; v/ W l 2 CP .1/; v 2 lg.
This complex line bundle can also be viewed as an oriented real vector bundle of rank 2.
Therefore we have an associated Euler class e. 1/ and we set

a1 WD �e. 1/ 2H 2.CP .1/;Z/:

This is our preferred generator of the cohomology algebra H�.CP .1/;Z/. Note that
if j W S2 DCP .1/!CP .1/ is the obvious inclusion then j �.a1/ 2H 2.S2IZ/ is
the orientation class corresponding to the orientation coming from its complex structure.

To any complex vector bundle � we can associate its projective bundle which is defined
as follows (see Bott and Tu [2, page 269]). Set E0 DE n fzero sectiong and consider
the bundle

�0W C
k
n f0g !E0

�0
�! V

Then C� D C n f0g acts on each fibre in E0 by complex multiplication and we can
define the orbit space P� DE0=C

� . In other words,

P� D f.v; `/ W v 2 V; ` is a complex line in the fibre Ev WD �
�1.v/g

and we have the projective bundle

CP .k � 1/
inc
�! P�

� 0

�! V:

Denote by qW E0! P� the quotient map and consider the commutative diagram

(23) E0

q //

�0   BBBBBBBB P�

� 0}}||||||||

V:
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Since the inclusion @T Š S� ,! E0 is a homotopy equivalence, we also use q to
denote the composition @T Š S�!E0

q
!P�:

We now come to the definition of the Chern classes ci.�/ 2 H 2i.V IZ/ in terms of
the projective bundle. The pullback of � along � 0 is a Ck�bundle � 0�.�/ over P�

containing a tautological line bundle defined by

(24) �D f.v; `;x/ W v 2 V; ` is a line in Ev;x 2 `g:

The complex line bundle � is classified by some map ˛W P� ! CP .1/ ' BU.1/,
that is �Š ˛�. 1/. We define the canonical class of � as the cohomology class

(25) aD ˛�.a1/ 2H 2.P�;Z/:

Since the restriction of that class to each fibre CP .k � 1/ of � 0 is a generator of the
cohomology (because the pullback of � to that fibre is the universal line bundle over
CP .k�1/), the Leray–Hirsch Theorem gives an isomorphism of H�.V;Z/–algebras

(26) H�.P�;Z/ŠH�.V;Z/Œa�=

� kX
iD0

ci.�/a
k�i

�
where c0.�/ D 1 and by definition the ci.�/ 2 H 2i.V;Z/ for i > 0 are the Chern
classes. Notice a straightforward calculation shows that

(27) aD�c1.�/:

Lemma 6.1 q�.a/D 0.

Proof Consider the following diagram of vector bundles:

q��

��

// �

""DDDDDDDDD
� � // � 0�.�/ //

��
pullback

�

��
E0

q // P�
� 0 //

˛ ''PPPPPPPPPPPPP V

CP .1/D BU.1/

The cohomology class q�.a/ is the classifying class of the line bundle q�.�/. We will
prove that this bundle is trivial, so that q�.a/D 0.

By (24) we have

q��D f.e; v; `;x/ W e 2E0; v 2 V; v D �0.e/; ` is a line in Ev;x 2 `g

Š f.e;x/ W e 2E0;x 2C:e �E�0.e/g:
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Therefore we have the trivialization

E0 �C
Š
! q�� ; .e; z/ 7! .e; e:z/:

6.2 Orientations

As in Section 4.1 we suppose � 2 V is some fixed point. Consider the map

�W S2k�1
!CP .k � 1/

obtained as the restriction of the map

qW S�! P�

to the fibres over our point � 2 V . The aim of this subsection is to give an explicit
CDGA model of the map �.

First we define some more cohomology classes. Recall the class a 2H 2.P�/ defined
in (25). We also denote by a 2H 2.CP .k � 1// its restriction to the fibre. Notice that
the restriction of � to CP .k � 1/ is the tautological line bundle k�1 and hence by
Equation (27) and the naturality of the Chern classes

(28) aD�c1.k�1/:

Equivalently we can take Equation (28) to be the definition of a 2 H 2.CP .k � 1//.
The fibre D2k of the disk bundle D� over our point � 2 V has a canonical orientation
given by its complex structure D2k �Ck . This determines the cohomology class

(29) uD2k 2H 2k.D2k ;S2k�1
IZ/

of Equation (15) which through the connecting homomorphism

ıW H 2k�1.S2k�1IZ/
Š // H 2k.D2k ;S2k�1IZ/

determines an orientation class

(30) uS 2H 2k�1.S2k�1;Z/:

Next we extend � to some map z�W D2k !CP .k/ and describe CP .k/ as a suitable
pushout. For z D .z1; : : : ; zk/ 2 Ck we set jjzjj2 D .

Pk
iD1 jzi j

2/1=2 . Consider the
disc and the sphere

D2k
D fz 2Ck

W jjzjj2 � 1g

S2k�1
D fz 2Ck

W jjzjj2 D 1g:
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Define a map
z�W D2k

!CP .k/; z 7! Œz1 W � � � W zk W 1� jjzjj2�:

Then �D z�jS2k�1 where CP .k � 1/ is considered as the hyperplane with last coordi-
nate 0.

We need to replace the map � by an equivalent map that is a cofibration. This is done
using the standard mapping cylinder construction. We will describe it explicitly so that
it is easy to see how it is compatible with z�. Define the contraction

�W D2k
!D2k ; z 7! z=2:

Set X D fz�.z/ W z 2D2k ; 1=2� jjzjj2 � 1g �CP .k/

and denote by l W S2k�1!D2k , zl W X !CP .k/ and sW CP .k�1/!X the obvious
inclusions. Then the composite

zhD z��W D2k
!CP .k/

is a homeomorphism onto its image and a cofibration. Also we can think of X as a
tubular neighbourhood of CP .k � 1/ in CP .k/ although we will not use this fact.

We summarize a few facts about these maps in the following lemma. Its proof is
straightforward.

Lemma 6.2 (i) The restriction of zh to S2k�1 induces a cofibration

hW S2k�1
!X:

(ii) There is a pushout:

S2k�1
h //

l
��

X

zl
��

D2k
zh

// CP .k/

(iii) The inclusion map sW CP .k � 1/!X is a homotopy equivalence.

(iv) The following diagram commutes up to homotopy:

S2k�1
h //

� &&MMMMMMMMMM X

CP .k � 1/:

s

OO
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By abuse of notation we also use a 2 H 2.X / to denote the preimage through the
isomorphism s� of the element a 2H 2.CP .k � 1// defined in (28).

Lemma 6.3 Consider the Sullivan algebra .ƒ.x; z/I dx D 0; dz D xk/ with jxj D 2

and jzj D 2k � 1. There exists a homotopy commutative diagram of CDGA

ƒ.x; z/

g0

��

proj // ƒ.z/

f0

��
APL.X /

APL.h/

// APL.S
2k�1/:

such that Œg0.x/�D a (defined in (28)) and Œf0.z/�D�uS (defined in (30)).

Proof Since k > 1, the restriction map

�W H 2.X;S2k�1/!H 2.X /

is an isomorphism and so the class a lifts to a unique class a0 2H 2.X;S2k�1/.

Denote by za 2 H 2.CP .k// the opposite of the first Chern class of the tautological
line bundle k over CP .k/. Since k�1 is the restriction of k over CP .k � 1/,
Equation (28) and the naturality of the Chern classes implies that zl�.za/D a. In view
of the pushout of Lemma 6.2(ii), za lifts to some class za0 2 H 2.CP .k/;D2k/ such
that .zl ; l/�.za0/D a0 .

Let ˛0 2 A2
PL.X;S

2k�1/ \ ker d be a representative of a0 and ˛ be its image in
A2

PL.X / \ ker d . Since ak D 0 in H 2.X /, there exists � 2 A2k�1
PL .X / such that

d� D ˛k . Define

g0W .ƒ.x; z/I dz D xk/!APL.X /

by g0.x/D ˛ and g0.z/D � .

Since h�.˛/D 0, h�.�/ is a cocycle in APL.S
2k�1/ and so we can define

f0W ƒ.z/!APL.S
2k�1/; z 7! h�.�/:

This definition makes the diagram of the lemma commutative.

We proceed to prove that Œh�.�/�D�uS . This will imply that Œf0.z/�D�uS and thus
complete the proof of the lemma.
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Denote the cohomology connecting homomorphisms of the pairs .D2k ;S2k�1/ and
.X;S2k�1/ by ı and ı0 respectively. Consider the following diagram in cohomology:

H 2k�1.S2k�1IZ/

ı0

,,

ı

##

H 2k.X IZ/ H 2k.X;S2k�1IZ/
�oo

H 2k.D2k IZ/ H 2k.CP .k/IZ/
zh�oo

zl�

OO

H 2k.CP .k/;D2k IZ/
z�oo

.zl;l/�

OO

H 2k.D2k ;S2k�1IZ/

OO

H 2k.CP .k/;X IZ/:

z�0

OO

.zh;h/�oo

A diagram chase at the chain level gives us the formula

(31) z�0..zh; h/�/�1ı D�z�..zl ; l/�/�1ı0;

the minus sign corresponding to the fact that in the Mayer–Vietoris sequence there is a
minus sign on one of the maps.

By the definition of the pushout of Lemma 6.2(ii) and the construction of � we have

ı0.Œh���/D Œ˛k �D ak
0 2H 2k.X;S2k�1/:

Since .zl ; l/� and z� are multiplicative we get

(32) z�..zl ; l/�/�1ı0Œh���D zak
2H 2k.CP .k//:

On the other hand since zaD�c1.�/, Milnor and Stasheff [22, page 170] says that the
orientation of CP .k/ induced by its complex structure corresponds to the class

zak
2H 2k.CP .k//:

Since zh preserves the given orientations, we have z�0..zh; h/�/�1uD D za
k , and hence

(33) z�0..zh; h/�/�1ı.uS /D za
k :

Equations (31), (32) and (33) imply that

z�0..zh; h/�/�1ı.uS /D�z�
0..zh; h/�/�1ıŒh���:

Thus since z�0..zh; h/�/�1ıW H 2k�1!H 2kCP .n/ is an isomorphism we deduce that

Œh���D�uS :

This completes the proof of the lemma.
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Lemma 6.4 Let jxj D 2 and jzj D 2k � 1. Suppose we are given a CDGA diagram

.ƒ.x; z/I dz D xk/

g

��

proj // ƒ.z/

f

��
APL.CP .k � 1//

APL.�/

// APL.S
2k�1/:

such that Œg.x/�D a and Œf .z/�D�uS . Then the diagram is homotopy commutative
and f and g are quasi-isomorphisms.

Proof Observe that since H 2k�1.CP .k � 1// D 0 the homotopy class of the map
g is determined by the fact that Œg.x/� D a. This equation also implies that g is a
quasi-isomorphism. Similarly the equation Œf .z/�D�uS determines the homotopy
class of the map and implies that it is a quasi-isomorphism. The lemma then follows
easily from Lemma 6.2 (iii) and (iv) and Lemma 6.3.

Lemma 6.5 Consider the map �0W yQ˝ƒ.z/!APL.@T / from Lemma 5.8.

(i) Consider the connecting homomorphism

ıW H 2k�1.@T /!H 2k.T; @T /

and the Thom class x� from Section 4.1. Then

ıŒ�0.z/�D�x�:

(ii) Let incW S2k�1! @T be the inclusion. Then

inc�Œ�0.z/�D�uS :

Proof By the definition of �0 in Lemma 5.8, the following diagram commutes

yQ˝ƒ.z/

�0

%%LLLLLLLLLLLLLLLLLLLLLLLLLL

ye // yQ˚ ss�2k yQ

ˇ0˚s� 0

��
APL.T /˚�0 sAPL.T; @T /

i�C0
��

APL.@T /:

By the construction of ye in Lemma 5.5 there exists yq 2 yQ2k�1 such that ye.z/ D
.yq; ss�2k1/. By Lemma 5.1 � 0.ss2k.1//D � and we see that

.ˇ0˚ s� 0/.yq; ss�2k1/D .ˇ0.yq/; s�/;
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so it follows that

(34) �0.z/D i�.ˇ0.yq//:

Since z is a cocycle, .ˇ0.yq/; s�/ 2APL.T /˚�0 sAPL.T; @T / is also a cocycle which
implies that in APL.T /

d.ˇ0.yq//D��0.�/:

The definition of the connecting homomorphism then implies that

ıŒi�ˇ0.yq/�D�Œ� �D�x�:

Combining this formula with Equation (34) proves (i).

(ii) This is a consequence of (i), of the fact that uD2k D inc�.x�/ (see Equation (17))
and of the naturality of the connecting homomorphism in the following diagram:

H 2k�1.@T /
ı //

inc�
��

H 2k.T; @T /

inc�
��

H 2k�1.Sr�1/
Š

ı

// H 2k.D2k ;S2k�1/:

Lemma 6.6 The inclusion of the point �2V determines an augmentation on yQ using
the composition

yQ
��ˇ0

! APL.V /!APL.�/DQ:

In turn the augmentation determines the projection map projW yQ ˝ ƒ.z/ ! ƒ.z/.
Suppose f W .ƒ.z/I dzD0/!APL.S

2k�1/ is any CDGA map such that Œf .z/�D�uS .
Then the following diagram commutes up to CDGA homotopy:

yQ˝ƒ.z/
proj //

�0

��

ƒ.z/

f

��
APL.@T /

inc�
// APL.S

2k�1/

Proof In this proof we denote by � an augmentation map followed by a unit map.
For fixed domain and range this composition is unique up to homotopy since all of our
CDGAs are homologically connected. Since projj yQ D �, f projj yQ D �. Also �0j yQ
factors up to homotopy through APL.V / so inc��0j yQ'�. Because dzD0 in yQ˝ƒ.z/
(see Lemma 5.5) the diagram commutes if and only if inc�Œ�0.z/� D Œf proj.z/� in
HAPL.S

2n�1/. Lemma 6.5 says that inc�Œ�0.z/�D�uS and by assumption Œf .z/�D
�uS . Thus the diagram homotopy commutes as required.
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6.3 A model of the projective and the sphere bundles

Recall from the start of Section 6 that V ,!W has codimension 2k and so this is also
the real rank of the normal bundle � , which also has a complex structure of rank k .
Recall also the maps � , ˇ and ˇ0 from the start of Section 6.

We describe the Sullivan models that we will prove are models for the projective bundle
P� . Set 0D 1 and for 1� i � k let i 2Q2i\ker d be representatives of the images
of the Chern classes

ci.�/ 2H 2i.V;Z/!H 2i.V;Q/
.�ˇ0/�

Š H 2i. yQ/
ˇ�

Š H 2i.Q/:

Since ˇ is a surjective quasi-isomorphism there exists yi 2
yQ2i \ ker d such that

ˇ.yi/D i . Also we can take y0D 1. Let jxj D 2 and jzj D 2k�1 and define relative
Sullivan models

(35) .Q˝ƒ.x; z/IDx D 0; Dz D
Pk

iD0 ix
k�i/

and similarly

(36) . yQ˝ƒ.x; z/I yDx D 0; yDz D
Pk

iD0 yix
k�i/:

These models are motivated by Equation (26) for the Chern classes. For the next lemma
recall that � W V ! T corresponds to the inclusion of the zero section. In addition
recall the classes a 2 H 2.P�/ defined in (25) and its restriction to CP .k � 1/ also
denoted by a 2H 2.CP .k � 1//.

Lemma 6.7 Consider the projective bundle associated to �

CP .k � 1/
inc // P�

� 0 // V:

Let yD be the differential given in Equation (36). Suppose gW .ƒ.x; z/I dz D xk/!

APL.CP .k�1// is any map such that Œg.x/�Da. Then there exists a quasi-isomorphism
� 0W . yQ ˝ ƒ.x; z/I yD/ ! APL.P�/ making the following diagram commute up to
homotopy:

yQ

��ˇ0

��

// . yQ˝ƒ.x; z/; yD/

� 0 '

��

proj // .ƒ.x; z/; dz D xk/

g

��
APL.V /

� 0� // APL.P�/
inc� // APL.CP .k � 1//:
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Proof As observed at the start of the section ��ˇ0 is a quasi-isomorphism. Define
� 0j yQ˝ƒ.x/ so that � 0j yQ D .��

0/�ˇ0 and � 0.x/ is any representative of the image of a

under the map.

H�.P�;Z/!H�.P�;Q/ŠH.APL.P�//

Then from the definition of the Chern classes (see Section 6.1),
Pk

iD0 ci.�/a
k�i D 0

in H�.P�;Z/ and so Œ
Pk

iD0�
0���ˇ0.yi/.�

0.x//k�i � D 0 in H.APL.P�//. Thus
an extension over z of � 0j yQ˝ƒ.x/ exists. Let � 0 be any such extension. It is clear
using Equation (26) that � 0 is a quasi-isomorphism and makes the left hand square
of our diagram commute. Since .inc�� 0/j yQ D 0 the right hand square commutes

when restricted to yQ. Since g.x/ represents inc�.a/ we see that the right hand
square commutes up to homotopy when restricted to ƒ.x/. Thus it commutes up
to homotopy when restricted to yQ˝ƒ.x/. We know that Œƒ.z/;APLCP .k � 1/�D

H 2k�1.CP .k�1//D 0. This implies that, up to homotopy, there is a unique extension
of the map yQ˝ƒ.x/! APL.CP .k � 1// over yQ˝ƒ.x; z/. Thus the right hand
square in the diagram commutes up to homotopy and the lemma has been proven.

In this section � 0 yielded a model of APL.P�/. Lemma 6.8 will show that the two are
compatible. This lemma controls the automorphism of the model of APL.@T /. If Q

is our model of APL.T / then the model of APL.@T / is Q˝ƒz . An automorphism
� 2 ŒAPL.@T /;APL.@T /� can be considered as an element of ŒQ˝ƒz;Q˝ƒz� Š

ŒQ;Q˝ƒz�� Œƒz;Q˝ƒz�. We control the first factor by working in the category
of Q–dgmodules. Another way to think of this is that we work with objects together
with maps from Q. To handle the second factor we can observe that for dimension
reasons Œƒz;Q ˝ ƒz� Š Œƒz; ƒz� and in turn we have the general isomorphism
Œƒz; ƒz�Š Hom.H 2k�1@T;H 2k�1@T /. So we only have to control a single element
in homology and this is the reason we have been keeping track of orientation classes.
In the last section �0 gave us a model of APL.@T /.

Recall ˇ from the start of the section, �0 from Lemma 5.8, � 0 from Lemma 6.7,
qW @T ! P� defined in Section 6.1 and the CDGAs Q˝ƒ.x; z/ and yQ˝ƒ.x; z/
defined in Equations (35) and (36).

Lemma 6.8 Assume that 2k � dim.V /C 2.

Geometry & Topology, Volume 12 (2008)



1972 Pascal Lambrechts and Donald Stanley

The following diagram commutes up to homotopy:

(37) Q˝ƒ.x; z/
proj // Q˝ƒ.z/

yQ˝ƒ.x; z/

ˇ˝id

OO

proj //

� 0

��

yQ˝ƒ.z/

ˇ˝id

OO

�0

��
APL.P�/

q�
// APL.@T /

Proof The top square clearly commutes. Since we will be using different inclusions,
to avoid confusion for the rest of the proof set I D inc�W APL.@T /!APL.S

2k�1/. To
avoid too much clutter in the equations we will also sometimes write I instead of I� for
induced maps. Recall the classes a 2H 2.P�/ defined in (25) and also its restriction to
CP .k � 1/ also denoted by a 2H 2.CP .k � 1//. Let gW ƒ.x; z/!APL.CP .k � 1//

be any map such that Œg.x/�D a and f W ƒ.z/!APL.S
2k�1/ be any map such that

Œf .z/�D�uS . Note that these equations determine g and f up to homotopy. To see
that the bottom square of (37) commutes consider the following cube:

yQ˝ƒ.x; z/

� 0

��

proj //

proj ((QQQQQQQQQQQQ
yQ˝ƒ.z/

�0

��

proj

''OOOOOOOOOOO

ƒ.x; z/

g

��

proj // ƒ.z/

f

��

APL.P�/
q�

//

inc� ((QQQQQQQQQQQQQ
APL.@T /

I

''OOOOOOOOOOO

APL.CP .k � 1//
APL.�/

// APL.S
2k�1/:

The back face is the one we wish to show is homotopy commutative. The top and
bottom faces clearly commute. The front, right and left faces are homotopy commutative
by Lemmas 6.4, 6.6 and 6.7. So we get that I�0.proj/ ' Iq�� 0 . Next consider the
coaction sequence [23, Chapter I, Section 3, Proposition 4] associated to the map from
the cofibration sequence of CDGA

ƒ.s�1z/! yQ˝ƒ.x/! yQ˝ƒ.x; z/!ƒ.z/
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into APL.@T /!APL.S
2k�1/. We get a commutative diagram of sets:

Œƒ.z/;APL.@T /�

I�
��

p� // Œ yQ˝ƒ.x; z/;APL.@T /�

I�
��

inc� // Œ yQ˝ƒ.x/;APL.@T /�

I�
��

Œƒ.z/;APL.S
2k�1/�

p�
// Œ yQ˝ƒ.x; z/;APL.S

2k�1/�
inc�
// Œ yQ˝ƒ.x/;APL.S

2k�1/�

By [23, Chapter I, Section 3, Proposition 4’] the rows are exact in the sense that, if
inc�f D inc�g then there exists ˛ 2 Œƒ.z/; � such that ˛ �f D g , where � denotes
the action of the group Œƒ.z/; � on Œ yQ˝ƒ.x; z/; �. Note that our cofibration sequence
is a model of a fibration sequence

S2k�1
Q DK.Q; 2k � 1/! P�Q! VQ �K.Q; 2/!K.Q; 2k/

and at the space level the coaction sequence is the mapping class sequence (see
Switzer [27, Chapter 2]). For any cofibration sequence A!B!C !†A and group
object G in a pointed model category the coaction � W Œ†A;G��ŒC;G�! ŒC;G� from
the cofibration sequence is compatible with the group action �W ŒC;G��ŒC;G�! ŒC;G�

induced by the multiplication on G . In particular for any ˛2 Œ†A;G� and f;g2 ŒC;G�:

(38) ˛ ��.f;g/D �.˛ �f;g/:

Consider the diagram:

yQ

ˇ0

��

� 0j yQ

&&NNNNNNNNNNNNNNNNNNNNNNNNNN

APL.T /
�� //

i�

��

APL.V /
.� 0/� //

.�j@T /
�

yyrrrrrrrrrr
APL.P�/

.qj@T /
�

ttiiiiiiiiiiiiiiiiiii

APL.@T /

The top triangle commutes up to homotopy by Lemma 6.7. The bottom left triangle
commutes up to homotopy since � W V ! T is the zero section of � and the bottom
right triangle commutes since it is APL of Diagram (23). Thus Diagram (37) commutes
up to homotopy when restricted to yQ.

Since � 0.x/ D a and by Lemma 6.1 q�.a/ D 0, Diagram (37) restricted to ƒ.x/

commutes and so restricted to yQ˝ƒ.x/ commutes up to homotopy. Thus as homotopy
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classes inc��0.proj/ D inc�q�� 0 , and there exists ˛ 2 Œƒ.z/;APL.@T /� such that
˛ ��0projDq�� 0 . Since the action is natural in the second variable I˛ �I�0projDIq�� 0 .
As observed above I�0.proj/D Iq�� 0 , so I˛ � I�0.proj/D I�0.proj/ and so

I˛ � 0D I˛ � ..I�0.proj//.I�0.proj//�1/D .I˛ � I�0.proj//.I�0.proj//�1

D .I�0.proj//.I�0.proj//�1
D 0

with the first equality following from Equation (38) since APL.S
2k�1/ is a group

object in CDGA. This implies that p�.I˛/D 0.

Since H 2k. yQ/D 0 by looking at models we get that

�2k�1.S
2k�1/˝Q! �2k�1.P�/˝Q

is injective. Thus p�W Œƒ.z/;APL.S
2k�1/�! Œ yQ˝ƒ.x; z/;APL.S

2k�1/� is injective,
and so I˛ D 0.

Because Q ˝ ƒ.z/ ! ƒ.z/ with dz D 0 models APL.@T / ! APL.S
2k�1/ and

H 2k�1.Q/D 0, I induces an isomorphism on H 2k�1 and so I�W Œƒ.z/;APL.@T /�!

Œƒ.z/;APL.S
2k�1/� is an isomorphism. Thus ˛D0 and so �0projDq�� 0 as homotopy

classes.

Proposition 6.9 Let �W Ck ! E! V be a complex vector bundle of rank k such
that 2k � dim V C 2 and Q be a CDGA weakly equivalent to APL.V /. Set 0 D 1,
and for 1 � i � k � 1 let i 2 Q2i \ ker d be cocycle representatives of the Chern
classes ci.�/ 2H 2i.V IQ/. Using the same notation as at the beginning of Section 6
the diagram

.Q˝ƒz;Dz D 0/ .Q˝ƒ.x; z/IDx D 0;Dz D
Pk

iD0 ix
k�i/

�oo

QS3

ffMMMMMMMMMMMMM ' �

44iiiiiiiiiiiiiiiiiiii

with �jQ D inc, �.x/D 0, �.z/D z , jxj D 2 and jzj D 2k � 1 is a CDGA model of
the diagram

E0

q //

�0   BBBBBBBB P�

� 0}}||||||||

V:

Proof Observe that Lemma 3.9 also works in the case that f and f 0 are identity
maps. Thus the proposition follows from Lemma 6.8 by applying Lemma 3.9 twice.
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Notice that since 2k � dim V C 2, k D 0, and so Dz D
Pk�1

iD0 ix
k�i . Note that in

this section we never used the hypothesis that V is a manifold; only paracompactness
is needed to define the classifying map of the tautological bundle � and we also had
some dimension restrictions.

7 The model of the blow-up

For all this section we have the following assumptions and notation. Let f W V ,!W be
an embedding of connected closed manifolds of codimension 2k with a fixed complex
structure on its normal bundle � . Set nD dim.W / and mD dim.V / as before and
r D n�mD 2k . Assume that n� 2mC3 and that H 1.f / is injective. Let �W R!Q

be a CDGA-model of the embedding f such that R�nC1 D 0 and Q�mC2 D 0.
Suppose we have fixed some shriek map �!W s�2kQ!R of R–dgmodules. Recall
that all this can be done using Proposition 4.5. Set 0 D 1 and for 1� i � k � 1 let
i 2Q2i \ ker d be representatives of the Chern classes ci.�/ 2H 2i.V IZ/. We will
also use the notation of Diagram (39) of Section 7.1 below.

In this section we pull together what we have done up to now and give our model of
the blow-up. In Section 7.1 we recall a definition of the blow-up �W and of the map
z� W �W !W which are suitable for studying homotopy theoretic questions. In Section
7.2 we define a CDGA model B.R;Q/ which depends on the model �W R!Q of
the embedding f W V !W , the shriek map �!W s�2kQ!R and the representatives
i of the Chern classes. In Section 7.3 we prove the equivalence of two diagrams of
CDGAs (Lemma 7.3). The first is constructed from our models R and Q, � , �! and
the i and the second comes from taking APL of Diagram (39). In Section 7.4 we take
pullbacks derived from the equivalent diagrams of Lemma 7.3 and show that they are
equivalent to B.R;Q/ (Lemma 7.4) and APL. �W /(Lemma 7.5). Putting these together
we prove our main theorem (Theorem 7.6) that B.R;Q/ is a model for APL. �W /.
Under a certain nilpotence condition this also implies that the rational homotopy type
of the blow-up along f W V !W depends only on the rational homotopy class of the
map f and the Chern classes of the normal bundle of V in W (Corollary 7.7).

7.1 The homotopy type of the blow-up

Consider the following cubical diagram (39) with a triangle added to the bottom face.
As in Section 5, T is a tubular neighborhood of V in W and B D W nT . The
projective bundle P� was defined in Section 6.1 as were the projection maps q , �0

and � 0 . The maps i , k , l and � were first seen in Section 4.1. So we have come

Geometry & Topology, Volume 12 (2008)



1976 Pascal Lambrechts and Donald Stanley

across all the maps in the diagram except z� . The space �W is defined as the pushout
of the top face.

(39) @T
k //

q

!!DDDDDDDD B

  AAAAAAAAA

P� //

� 0

��

�W
z�

��

@T� _

i
��

k //

�0 !!DDDDDDDD B
l

  AAAAAAAA

T �
// V

f // W

We know that when we replace f � by j the outside bottom quadrilateral is a pushout
(see Section 4.1). In fact the bottom face of the cube is also a pushout since � is a
deformation retraction. However the map between these pushouts induced by � is a
homotopy equivalence and not a homeomorphism.

Definition 7.1 The blow-up of W along V is the pushout �W and the map z� W �W !W

is the map induced by � 0 between pushouts comprising the top and bottom faces of
the above cube.

This definition of blow-up is equivalent to those of Griffiths and Harris [11] and McDuff
and Salamon [21, 7.1].

7.2 Description of the model B.R;Q/ for the blow-up

We now construct a CDGA, B.R;Q/, which will be a CDGA model of the blow-up �W
of W along V . We also define a morphism �.R;Q/W R! B.R;Q/ that will model
the projection z� W �W !W .

Let x and z be generators such that jxj D 2 and jzj D 2k�1 and denote by ƒC.x; z/
the augmentation ideal of the free graded commutative algebra ƒ.x; z/. The CDGA
B.R;Q/ is of the form:

B.R;Q/D
�
R˚Q˝ƒC.x; z/;D

�
:

The graded commutative algebra structure on B.R;Q/ is induced by the multiplications
on R and Q˝ƒC.x; z/, and by the R–module structure on the free Q–module

Geometry & Topology, Volume 12 (2008)



The rational homotopy type of a blow-up in the stable case 1977

Q˝ƒC.x; z/ induced by the algebra map �W R! Q. More explicitly for r 2 R,
q 2Q and w 2ƒC.x; z/,

r � .q˝w/D .�.r/ � q/˝w;

.q˝w/ � r D .�1/.jwjCjqj/jr j.�.r/ � q/˝w:

Let dR and dQ denote the differentials on R and Q respectively, r 2R and q 2Q.
The differential D on B.R;Q/ is determined by the Leibnitz law and the formulas

D.r/D dRr

D.q˝x/D dQq˝x

D.q˝ z/D dQq˝ zC .�1/jqj
�
�!.s�2kq/C

k�1X
iD0

.q � i/˝xk�i

�
:

There is an obvious inclusion morphism

�.R;Q/W R! B.R;Q/:

Notice that B.R;Q/ actually depends not only on R and Q but also on the i , � and
�! . These are implicit and not included in the notation.

Lemma 7.2 B.R;Q/ is a CDGA and �.R;Q/W R!B.R;Q/ is a CDGA morphism.

Proof For q; q0 2Q we have .q˝z/ �.q0˝z/D 0, therefore we need to check that the
Leibnitz law applied to D..q˝z/�.q0˝z// gives zero. This follows because, for degree
reasons, �!� D 0. To check the rest of the definition of CDGA is straightforward.

7.3 Two equivalent diagrams

Lemma 7.3 Consider the map e from Lemma 5.5 and the relative Sullivan algebra
.Q˝ƒ.x; z/;D/ from Equation (35). The CDGA diagram

Q
inc // Q˝ƒ.x; z/

eproj // Q˚ ss�r Q R˚�! ss�r Q
�˚idoo

is weakly equivalent to the diagram

APL.V /
.� 0/� // APL.P�/

q� // APL.@T / APL.B/:
k�oo

Proof We begin by fixing a common model y�W yR! yQ as in Section 5.1. All the
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notation is given in the lemmas we refer to. Lemma 5.8 gives us a commutative diagram
of CDGAs

(40) Q˚ ss�r Q

e�1

��

R˚�! ss�r Q
�˚idoo

�

��
Q˝ƒ.z/ A

�oo

yQ˝ƒ.z/

ˇ˝id

OO

�0

��

yA

�

OO

�0

��

 oo

APL.@T / APL.B/
k�oo

with all vertical arrows being weak equivalences. Choose representatives yi 2
yQ of

ci.�/ such that ˇ.yi/ D i . This can be done since ˇ is an acyclic fibration. Next
Lemma 6.7 and Lemma 6.8 imply that we have a homotopy commutative diagram of
CDGA

(41) Q

D

��

inc // Q˝ƒ.x; z/

D

��

eproj // Q˚��! ss�r Q

e�1

��
Q

inc // Q˝ƒ.x; z/
proj // Q˝ƒ.z/

yQ

ˇ

OO

inc //

��ˇ0

��

yQ˝ƒ.x; z/

ˇ˝id

OO

proj //

� 0

��

yQ˝ƒ.z/

�0

��

ˇ˝id

OO

APL.V /
.� 0/�

// APL.P�/
q�

// APL.@T /

with all vertical arrows being weak equivalences. Note that Q˚��! ss�r Q DQ˚

ss�r Q since Q�mC2 D 0 entails ��! D 0, so we can glue Diagram (40) to the right
of Diagram (41) and apply Lemma 3.9 three times to get the desired result.
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7.4 Two pairs of pullbacks and the proof the main theorem

Lemma 7.4 In CDGA, the pullback of

(42) Q

inc
��

R˚�! ss�r Q
�˚id

// Q˚ ss�r Q

is R and the pullback of

(43) Q˝ƒ.x; z/

eproj
��

R˚�! ss�r Q
�˚id

// Q˚ ss�r Q

is B.R;Q/.

The map between the pullbacks induced by the inclusion Q ! Q ˝ ƒ.x; z/ is
�.R;Q/W R! B.R;Q/. For both of the diagrams above the map from the homo-
topy pullback to the pullback is a weak equivalence. Thus the map between the
homotopy pullbacks induced by the inclusion Q ! Q ˝ ƒ.x; z/ is equivalent to
�.R;Q/W R! B.R;Q/.

Proof Consider the maps

gW B.R;Q/!R˚�! ss�2kQ

determined by the equations

g.r; 0/D .r; 0/

g.0; q˝ z/D .0; .�1/jqjss�2kq/

g.0; q˝xi
˝ z�/D .0; 0/ if i > 0

g0W B.R;Q/!Q˝ƒ.x; z/and

.r; q˝xi
˝ z�/ 7! �.r/C q˝xi

˝ z�:

Since .�˚ id/g D e.proj/g0 , g and g0 determine a map

hW B.R;Q/! pullback of Diagram .43/:
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Because the forgetful functor from CDGA to graded modules commutes with taking
pullbacks it is easy to check that h is an isomorphism. Similarly R is the pullback of
Diagram (42) and �.R;Q/W R! B.R;Q/ is the induced map between the pullbacks.

Next we will show that these pullbacks are indeed homotopy pullbacks. The short
exact sequence of differential graded modules

0!R!Q˚ .R˚�! ss�r Q/!Q˚ ss�r Q! 0

gives rise to a Mayer–Vietoris long exact sequence on homology. This maps into the
corresponding long exact sequence for the homotopy pullback. Thus the map from
R to the homotopy pullback of Diagram (42) is an equivalence by the five lemma.
The map from B.R;Q/ into the homotopy pullback of Diagram (43) is similarly a
weak equivalence. The fact that the induced map between the homotopy pullbacks is
equivalent to �.R;Q/W R! B.R;Q/ follows by naturality.

Lemma 7.5 Recalling the cube (39), the homotopy pullback of

(44) APL.V /

.� i/�

��
APL.B/

k�
// APL.@T /

is quasi-isomorphic to APL.W / and the homotopy pullback of

(45) APL.P�/

q�

��
APL.B/

k�
// APL.@T /

is quasi-isomorphic to APL. �W /. The map between the homotopy pullbacks induced by
� 0
�
W APL.V /!APL.P�/ is weakly equivalent to z��W APL.W /!APL. �W /.
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Proof Recall (39) the following cube in which the bottom and the top faces are
pushouts :

@T //

q

!!DDDDDDDD B

  AAAAAAAAA

P� //

� 0

��

�W
z�

��

@T //

�0 !!DDDDDDDD B

  AAAAAAAA

V // W

Let U be the homotopy pullback of (44) and f W APL.W /! U be the induced map.
We have maps between Mayer–Vietoris sequences

H��1.APL.@T //
//

D

��

H�.APL.W //

H .f /

��

// H�.APL.V //˚H�.APL.B//

D

��

// H�.APL.@T //

D

��
H��1.APL.@T //

// H�.U / // H�.APL.V //˚H�.APL.B// // H�.APL.@T //;

hence f is a weak equivalence by the five lemma. Similarly APL. zW / is weakly
equivalent to the homotopy pullback of (45). The fact that the induced map is weakly
equivalent to z�� follows by naturality.

7.5 Proof of main theorem

Here is the main result of the paper.

Theorem 7.6 Let f W V ,! W be an embedding of connected closed manifolds of
codimension 2k with a fixed complex structure on its normal bundle � . Set n D

dim.W / and mD dim.V / as before and r D n�mD 2k . Assume that n � 2mC 3

and that H 1.f / is injective. Let �W R! Q be a CDGA-model of the embedding
f such that R�nC1 D 0 and Q�mC2 D 0. Let �!W s�2kQ! R be a shriek map of
R–dgmodules. Set 0D 1 and for 1� i � k�1 let i 2Q2i\ker d be representatives
of the Chern classes ci.�/ 2H 2i.V IZ/.

The CDGA
B.R;Q/D

�
R˚Q˝ƒC.x; z/;D

�
defined in Section 7.2 is a CDGA model of APL. �W / where �W is the blow-up of W

along V . Also �.R;Q/W R ,! B.R;Q/ is a CDGA model of APL.z�/W APL.W /!

APL. �W /.
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Proof The theorem follows directly from Lemmas 3.8, 7.3, 7.4 and 7.5.

Note that if n� 2mC 3 and H 1.f / is injective, by Proposition 4.5 any model of f
can be replaced by one satisfying the hypotheses of the theorem.

Corollary 7.7 With the hypotheses of Theorem 7.6, if we assume that V , W and the
blow-up �W are nilpotent spaces then the rational homotopy type of �W is determined by
the rational homotopy class of f and by the rational Chern classes ci.�/ 2H 2i.V IQ/
of the normal bundle.

Proof This is an immediate application of Sullivan’s theory [26] to Theorem 7.6.
In particular (see [3, Section 9]) since V and W are nilpotent if f;gW V ! W

are rationally homotopic then APL.f / and APL.g/ have the same models R! Q.
Since the Chern classes are also the same, B.R;Q/ will model APL. �W / along both
embeddings. Since �W is nilpotent APL. �W / determines the rational homotopy type
of �W .

We have a homotopy pushout
P�

��

// �W
��

V // W

and so by the Van Kampen theorem �1. �W / ! �1.W / is an isomorphism. So if
W is nilpotent then �1. �W / D �1.W / is a nilpotent group but the action of �1 on
the homotopy groups of the universal cover of �W may not be nilpotent. In certain
cases Rao [24] has determined when a homotopy pushout is nilpotent, however it
seems difficult to see if they apply in our situation. However notice that the nilpotence
condition in the corollary is automatically satisfied if V is nilpotent and W is simply
connected because then �W is also simply connected. Hence we have proved our first
theorem from the introduction:

Theorem 7.8 Let f W V !W be an embedding of smooth closed orientable manifolds
such that W is simply connected and V is nilpotent and oriented. Suppose that the
normal bundle � is equipped with the structure of a complex vector bundle and assume
that dim W � 2 dim V C 3. Then the rational homotopy type of the blow-up of W

along V , �W can be explicitly determined from the rational homotopy type of f and
from the Chern classes ci.�/ 2H 2i.V IQ/.

Even without the nilpotence condition we can still determine a model for APL. �W /.
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Corollary 7.9 With the hypotheses in the first paragraph of Section 7, a CDGA model
of APL. �W / is determined by any model APL.f / and by the rational Chern classes
ci.�/ 2H 2i.V IQ/ of the normal bundle.

As we will see in the next section this is enough to determine H�. �W / (Theorem 8.6).

8 Applications

In this section we apply our model of the blow-up to three situations. First, after some
preliminaries in Section 8.1 we describe in Section 8.2 the model of the blow-up of
CP .n/ along a submanifold. This is somewhat simpler than our general model since
here the shriek map is more easily described. Secondly, Section 8.3 examines the
model of the example of McDuff of the blow-up of CP .n/ along the Kodaira–Thurston
manifold. We recover directly the Babenko–Taimanov result that this eCP .n/ has a
nontrivial Massey product and is thus nonformal. Finally in Section 8.4 we describe the
cohomology algebra of certain blow-ups. Some other special cases have been studied
by Gitler [10]. In Section 8.5 we calculate the rational homotopy type of blow-ups of
CP .5/ along CP .1/. It turns out that there are infinitely many rationally inequivalent
ones.

8.1 Preliminaries on symplectic manifolds

A symplectic form on a 2n–dimensional manifold M is a nondegenerate closed differ-
ential 2–form ! . Thus !n is a volume form. The pair .M; !/ is called a symplectic
manifold (see McDuff and Salamon [21]). The form ! is called integral if it belongs to
the image H 2.M;Z/!H 2.M;R/ŠH 2.��.M // where ��.M / is the de Rham
complex of differential forms.

It is well known that to any symplectic form ! we can associate an almost complex
structure on the tangent bundle of M . This almost complex structure in turn induces a
preferred orientation on M and hence a generator uM 2H 2n.M;Z/.

Definition 8.1 Define the real number lM by the equation

Œ!n�D lM �uM 2H 2n.M IR/:

Since !n is a volume form and uM is induced from the almost complex structure
associated to ! we know that lM is a positive real number. If ! is integral then lM is
a positive integer. We cannot always choose an integral ! so that lM D 1. For example
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if Œ!� 2H 2.S2 �S2;Z/ then Œ!�2 2H 4.S2 �S2;Z/ is always divisible by 2. The
number lM will appear in the formula when we blow-up of CP .n/ along M .

An example of a symplectic manifold is given by the complex projective space CP .n/

equipped with the 2–form !0 associated to the Fubini–Study metric [21, Example
4.21; 11, page 31]. It is classical (see for example Griffiths and Harris [11, pages 30–32
and 144–150]) that

Œ!0�D�c1.
1/ 2H 2.CP .n/IZ/:

In particular !0 is integral and lCP.n/ D 1.

8.2 Blow-ups of CP .n/

Let .M; !/ be a symplectic manifold. By a symplectic embedding

(46) f W .M; !/! .CP .n/; !0/

we mean a smooth embedding such that f �.!0/D! . It can be proved that f respects
the almost complex structures associated to ! and !0 , therefore the normal bundle of f
admits a natural complex structure and we can consider the blow-up eCP .n/ of CP .n/

along M . Notice also that, since !0 is integral, if a symplectic manifold .M; !/

symplectically embeds in .CP .n/; !0/ then ! is integral. Moreover the converse is
almost true thanks to a theorem of Tischler [29] and Gromov [12]: if M is a manifold
equipped with an integral symplectic form ! then, for n large enough, there exists a
symplectic embedding as in Equation (46).

The first application of our model is to the blow-up of CP .n/ along a symplectically
embedded submanifold. To simplify the description we will use:

Lemma 8.2 Let Q be a CDGA-model of some closed symplectic manifold of di-
mension 2m with symplectic form ! 2Q2 \ ker d and suppose that Q�2mC2 D 0.
Consider the .ƒ.!/=.!mC1/; 0/–dgmodule structure on Q induced by multiplica-
tion by ! . Then there exists a sub–.ƒ.!/=.!mC1/; 0/–dgmodule I � Q such that
QDI˚ƒ.!/=.!mC1/ as .ƒ.!/=.!mC1/; 0/–dgmodules. Moreover if Q2mDQ�!m

then this sub–.ƒ.!/=.!mC1/; 0/–dgmodule is unique.

Proof Take a complementary vector subspace S of Q�!m˚dQ2m�1 in Q2m and set
I.2m/ D S ˚Q2mC1 . We know I.2m/ is a sub–.ƒ.!/=.!mC1/; 0/–dgmodule of Q

since Q�2mC2D 0. Suppose that for some k �m and for each j > k we have already
defined a differential submodule I.2j/�Q such that Q�2j DQf!j ; !jC1; : : : ; !mg˚

I.2j/ . We define I.2k/ as follows. Consider the morphism

�k W Q
2k �!
!Q2kC2 pr

!Q2kC2=I.2kC2/ ŠQ �!kC1:
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Set I.2k/D ker.�k/˚Q2kC1˚I.2kC2/ . Since ˛ 2 ker�k implies that ˛ �! 2 I.2kC2/ ,
it is straightforward to check that I.2k/ is a sub–

�
ƒ.!/=.!mC1/; 0

�
–dgmodule of Q

such that Q�2j D Qf!j ; !jC1; : : : ; !mg ˚ I.2j/ . Finally I D I.0/ is the desired
submodule of Q.

If Q D I ˚ƒ.!/=.!mC1/ as .ƒ.!/=.!mC1/; 0/–dgmodules then ker�j must be
included in I . Since Q�2mC2 D 0, we must have that I.2m/ D S ˚Q2mC2 and then
we can show by induction that I�2k D I.2k/ D ker.�k/˚Q2kC1 ˚ I2kC2 for all
k <m. This implies that I is completely determined by the choice of S . Therefore
when Q2m DQ �!m the ideal I is unique.

Let .M; !/ be a symplectic manifold of dimension 2m, f W M !CP .n/ be a sym-
plectic embedding and � be the normal bundle of the embedding. Let .Q; d/ be a
CDGA-model of M such that Q�2mC2 D 0. Let ! 2Q2\ ker d be a representative
of the symplectic form and i 2Q2i \ ker d be representatives of the Chern classes
ci.�/ 2H 2i.M / of the normal bundle of M in CP .n/. Then RD .ƒ.a/=.anC1/; 0/

is a CDGA model of CP .n/ with Œa� D Œ!0� 2 H 2.CP .n// and an represents the
orientation class of CP .n/. A model of the embedding f W M � CP .n/ is given by
the map �W R!Q defined by �.aj /D !j which is indeed a CDGA morphism since
Q�2mC2 D 0. This induces an R–dgmodule structure on Q. Let I be a differential
submodule of Q complementary to the image of � which exists by Lemma 8.2. Let
2k D 2n� 2m, the codimension of M inside CP .n/.

Lemma 8.3 The map �!W s�2kQ!R defined by

�!.!j /D lM ajCk and �!.I/D 0

is a shriek map, where lM is given by !m D lM uM for the orientation class uM

determined by the almost complex structure. (See Definition 8.1.)

Proof This follows directly from the definition of a shriek map (Definition 4.2).

From Section 7.2 we get

(47) B.ƒ.a/=.anC1/;Q/D

�
ƒ.a/

.anC1/
˚Q˝ƒC.x; z/;D

�
a CDGA with jxj D 2, jzj D 2k�1. The algebra structure extends the algebra structure
on Q and the ƒ.a/=.anC1/�module structure and the differential is determined by
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the Leibnitz law and the following equations

D.a/D 0

D.q˝xj /D dq˝xj

D.q˝ z/D dq˝ zC .�1/jqj
�
�!.s�2kq/C

k�1X
iD0

qi ˝xk�i

�
:

Notice that taking the product of a with an element of Q gives multiplication by ! .
Note that for the next theorem our standard dimension hypothesis would be 2n�4mC3

or n� 2nC 3=2 but since n is an integer this is equivalent to n� 2mC 2.

Theorem 8.4 Let .M; !/ be a symplectic manifold of dimension 2m and suppose
we have been given a symplectic embedding f W .M; !/ ! .CP .n/; !0/. Let Q

be a CDGA model of M such that Q is connected and Q�2mC1 D 0. Let ! 2
Q2\ ker d be a representative of the symplectic form. If n� 2mC 2 then the CDGA
B.ƒ.a/=.anC1/;Q/ of Equation (47) is a model of the blow-up eCP .n/.

Proof Since R D ƒ.a/=.anC1/ and Q�2nC1 D 0, � defined above is the only
homotopy class of a CDGA-morphism such that �.a/D ! .

Therefore it is a model of the embedding f . The morphism �! is clearly a shriek map.
Therefore all the hypotheses of Theorem 7.6 are fulfilled and the theorem follows.

8.3 McDuff’s example

Next we look at the model of the example of McDuff [20; 21, Exercise 6.55] that
we now review. We start with the Kodaira–Thurston manifold (see Thurston [28] or
Oprea and Tralle [30, Example II.2.1] ) which is a closed symplectic nilmanifold V of
dimension 4 and is defined as the product of the circle S1 with the orbit space R3=�

where � is the uniform lattice of the integral upper triangular 3� 3�matrices in the
Heisenberg group. A CDGA-model of that manifold is given by the following exterior
algebra on four generators of degree 1 (see Oprea and Tralle [30, Example II.1.7 (2)]):

.Q; d/D .ƒ.u1;y1; v1; t1/; duD dy D dt D 0; dv D uy/:

The symplectic form is represented in this model by ! D uvCyt . By the symplectic
embedding theorem of Tischler [29] and Gromov [12, 3.4.2] for n� 5 there exists a
symplectic embedding f W V ,!CP .n/ such that f �.a/D Œ!�. To fulfill the hypotheses
of Theorem 8.4 we will suppose that n � 6. Then m D 2 and k D n� 2 � 4. In
[20, page 271] we see that the Chern classes of V are trivial and [22, Theorem 14.10]
the Chern classes of CP .n/ are c.CP .n//D

Pn
iD0 ci.CP .n//D .1C a/nC1 where
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a 2 H 2.CP .n/;Z/ represents the form !0 described in Section 8.1. Therefore the
Chern classes of the normal bundle � of the embedding are given by the equation
c.�/ � c.V /D f �.c.CP .n/// which yields

c.�/D 1C .nC 1/!C
n.nC 1/

2
!2:

The morphism �!W s4�2nQ!ƒ.a/=.anC1/ is characterized by Lemma 8.3 and satis-
fies, �!.s4�2n1/D2an�2 , �!.s4�2nuv/D�!.s4�2nyt/Dan�1 , �!.s4�2nuvyt/Dan ,
and �!.s4�2n�/D 0 for any other monomial � in QDƒ.u;y; v; t/. Using these data
in the definition of the CDGA

B D B.ƒ.a/=.anC1/;Q/D
�
ƒ.a/=.anC1/˚ƒ.u;y; v; t ˝ƒC.x; z/;D

�
above gives a model of the McDuff example.

From this CDGA-model of the McDuff example we recover the Babenko–Taimanov [1]
result.

Theorem 8.5 There exist nontrivial Massey products in eCP .n/.

Proof In B we have D.v˝x2/D .u˝x/�.y˝x/ and .y˝x/�.y˝x/D0, so D.0/D

.y˝x/�.y˝x/. Thus vy˝x3 is in the triple Massey product hŒu˝x�; Œy˝x�; Œy˝x�i.
Also Œvy˝x3� is not in the ideal of H�.eCP .n// generated by Œu˝x� and Œy˝x� so
0 62 hŒu˝x�; Œy˝x�; Œy˝x�i.

In this example the Massey product hu;y;yi in V became hŒu˝x�; Œy˝x�; Œy˝x�i

in eCP .n/. This is the general way in which Massey products propagate to the blow-up.
More generally we show in [17] that any obstruction to formality in any manifold
propagates to an obstruction in its blow-up in CP .n/.

8.4 The cohomology algebra of a blow-up

In the next theorem f ! is the classical cohomological shriek map (see Section 4.2).
Also the algebra structure on H�.W /˚H�.V /˝ƒC.x/ is determined by the formula
on basic tensors

.w; v˝xi/ � .w0; v0˝xj /D .ww0; wv0˝xj
C .�1/jw

0jjvjw0v˝xi
C vv0˝xiCj /

where w;w0 2H�.W / and v; v0 2H�.V /.
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Theorem 8.6 Let f W V ! W be an embedding of closed oriented manifolds of
codimension 2k with a fixed complex structure on the normal bundle � . Assume that
dim W � 2 dim V C 3. Let ci.�/ 2H 2i.V / be the Chern classes. Let I be the ideal
in H�.W /˚H�.V /˝ƒC.x/ generated by the set

ff !.v/C
P

_i D 0k�1v � ci.�/˝xk�i W v 2H�.V /g:

Then we have an isomorphism of algebras

H�. �W /Š .H�.W /˚H�.V /˝ƒC.x//=I:

Proof Recall the model of APL. �W / obtained in Theorem 7.6:

B D B.R;Q/D
�
R˚Q˝ƒC.x; z/;D

�
We define an increasing filtration on that CDGA by

F0B DR˚Q˝ƒC.x/

FpB D B for p � 1:

This filtration is compatible with the CDGA structure. The E1�term of the associated
spectral sequence is

E
0;�
1
DH.R/˚H.Q/˝ƒC.x/

E
1;�
1
DH.Q/˝ƒ.x/ � z

E
p;�
1
D 0 for p 6D 0; 1

and the d1�differential is nontrivial only on E
1;�
1

, being there

d1.Œq�˝xr
˝ z/D .�1/jqj

�
f !.Œq�/C

k�1X
iD0

Œq� � ci.�/˝xrCk�i

�
d1.Œq�˝xr

˝ z/D˙Œq�˝xrCk
C .terms with lower powers of x/:hence

Thus d1 is injective and therefore

E2 DH.E1; d1/D
H.R/˚H.Q/˝ .ƒC.x//

im d1

with im d1 D

�
ff !.v/C

k�1X
iD0

v � ci.�/˝xk�i
W v 2H�.V /g

�
:
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The E2�term is concentrated in column p D 0, so the spectral sequence collapses at
E2 where E2 DE0;� as algebras. Therefore there is no possibility for extensions and
H�. �W /ŠE1 DE2 as algebras.

Theorem 8.6 determines the algebra structure of the cohomology of the blow-up under
the “stable” condition: dim.W / � 2 dim.V /C 3. This result is complementary to a
theorem of Gitler [10, Theorem 3.11] that determines the cohomology algebra H�. �W /

under the hypothesis that f �W H�.W /!H�.V / is surjective.

8.5 A simple example

As noted in Section 8.1 the Fubini–Study metric !0 2 H 2.CP .n// is an integral
symplectic form. Thus for any l 2 Z with l > 0, l!0 2H 2.CP .n// is also one. So
by [29] there exists a symplectic embedding

fl W CP .1/!CP .5/

such that f �
l
.!0/D l!00 , where !0 denotes the Fubini–Study metric in H 2.CP .5//

and !0
0

denotes it in H 2.CP .1//. Identifying a with !0 2H 2.CP .5// and a0 with
!0 2H 2.CP .1//, we get isomorphisms H�.CP .5//Šƒ.a/=.a6/ and H�.CP .1//Š

ƒ.a0/=..a0/2/. Also f �
l
.a/D la0 and

f !
l W s
�8ƒ.a0/=..a0/2/!ƒ.a/=.a6/

is given by the formulas

�!.s�81/D la4

�!.s�8a0/D a5:

Next we calculate c1.�/, the first Chern class of the normal bundle. Using the following
three formulas

f �.c.CP .5//D 1C 6f �.a/D 1C 6la0

c.CP .1//D 1C 2a0

c.�/c.CP .1//D f �.c.CP .5/// 2H�.CP .1//;and

a simple calculation gives us that

c.�/D 1C .6l � 2/a0

c1.�/D .6l � 2/a0:and hence
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Theorem 8.6 tells us that the cohomology of the blow-up eCP l.5/ of CP .5/ along fl

is

(48) H�.eCP l.5//

Š
�
ƒ.a/=.a6/˚ .ƒ.a0/=..a0/2/˝ƒC.x//

�
=
�
la4
C .6l � 2/a0x3

Cx4
�
:

Since fl.a/D la0 , a � .1˝x/D la0˝x so we can write axD la0x or .1= l/axD a0x .
Thus a2x D l2.a0/2x D 0, and also la4C .6l � 2/a0x3C x4 D .1= l/.l2a4C .6l �

2/ax3C lx4/. So it is straightforward to check that we also get an isomorphism

(49) H�.eCP l.5//Šƒ.a;x/=
�
a6; a2x; l2a4

C .6l � 2/ax3
C lx4

�
with the isomorphism in (49) realized by mapping a to a and x to x on the right hand
side of (48).

Proposition 8.7 If eCP l.5/ and eCP r .5/ are rationally homotopy equivalent then
l D r .

Proof We have just seen that

H�.eCP l.5//Šƒ.a;x/=
�
a6; a2x; l2a4

C .6l � 2/ax3
C lx4

�
H�.eCP r .5//Šƒ.b;y/=

�
b6; b2y; r2b4

C .6r � 2/by3
C ry4

�
and

Assume that eCP l.5/ and eCP r .5/ are rationally homotopy equivalent. So there is an
isomorphism

gW H�.eCP l.5//!H�.eCP r .5//:

g.a/D ˛1bCˇ1yWrite

g.x/D ˛2bCˇ2y:

We will first show that ˇ1 D ˛2 D 0. We know that a2x D 0 in H�.eCP l.5//, so
g.a2x/ D 0. This implies that ˛2

1
˛2 D 0, ˇ2

1
ˇ2 D 0 and 2˛1ˇ1ˇ2 C ˛2ˇ

2
1
D 0.

Since g is an isomorphism it is straightforward to check that the only possibility is
ˇ1 D 0D ˛2 .

We know that l2a4 C .6l � 2/ax3 C lx4 D 0 2 H�.eCP l.5//. So looking at the
coefficients of b4 , by3 and y4 in g.l2a4C .6l � 2/ax3C lx4/D 0 we get that for
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some fixed ı 2Q,

l2˛4
1 D ır

2 so ı D
l2

r2
˛4

1(50)

.6l � 2/˛1ˇ
3
2 D ı.6r � 2/(51)

lˇ4
2 D ır:(52)

Observe that none of l , r , ı , ˇ2 and ˛1 can be 0 so we can divide by them at will.
Equations (50) and (52) imply that

(53)
l

r
D

�
ˇ2

˛1

�4

:

Subbing (50) into (51), taking fourth powers and gathering ˛1 to one side we get

.6l � 2/4
�
ˇ2

˛1

�12

D
l8

r8
.6r � 2/4

so using (53) we get

(54)
.6l � 2/4

l5
D
.6r � 2/4

r5
:

Let h.x/D .6x � 2/4=x5 . Calculus tells us that h.x/ is decreasing for x � 2, also
h.1/ 6D h.2/, h.1/ 6D h.3/ and h.1/ > h.4/. Together these imply that h.x/ takes
distinct values on each positive integer. Thus we must have r D l as required.

Since all of the eCP l.5/ are not rationally homotopy equivalent they are not integrally
homotopy equivalent and hence not diffeomorphic. Using the H�.CP .5/IZ/ module
structure on H�.eCP l.5/IZ/ gives another way to see that all of the eCP l.5/ are not
integrally homotopy equivalent. If we look at blow-ups of CP .1/ in CP .4/ we would
have difficulty proving the last theorem because two of the relations in the cohomology
algebra would be in the same degree. This leads to some interesting algebraic equations
which seem difficult to solve. However it can still be shown using the module structure
that the blow-ups have different integral homotopy type. This leads us to the following
question which seems more likely to have a positive answer if the codimension is large.

Question Let .M; !/ be an integral symplectic manifold, l a positive integer and
fl W M !CP .n/ be an embedding such that f �

l
.!0/D l! . Let eCP l.n/ be the blowup

along fl . Are all of the eCP l.n/ rationally inequivalent?
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