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Holomorphic generating functions for invariants
counting coherent sheaves on Calabi–Yau 3–folds

DOMINIC JOYCE

Let X be a Calabi–Yau 3–fold, T DDb.coh.X // the derived category of coherent
sheaves on X , and Stab.T / the complex manifold of Bridgeland stability conditions
on T . It is conjectured that one can define invariants J˛.Z;P/ 2 Q for .Z;P/ 2
Stab.T / and ˛ 2K.T / generalizing Donaldson–Thomas invariants, which “count”
.Z;P/–semistable (complexes of) coherent sheaves on X , and whose transformation
law under change of .Z;P/ is known.

This paper explains how to combine such invariants J˛.Z;P/ , if they exist, into
a family of holomorphic generating functions F˛WStab.T / ! C for ˛ 2 K.T / .
Surprisingly, requiring the F˛ to be continuous and holomorphic determines them
essentially uniquely, and implies they satisfy a p.d.e., which can be interpreted as
the flatness of a connection over Stab.T / with values in an infinite-dimensional Lie
algebra L .

The author believes that underlying this mathematics there should be some new
physics, in String Theory and Mirror Symmetry. String Theorists are invited to work
out and explain this new physics.

14J32; 14D20, 18E30

1 Introduction

To set the scene we start with an analogy, explained by McDuff and Salamon [17].
If .M; !/ is a compact symplectic manifold, one can define the Gromov–Witten
invariants ˆA.˛; ˇ; 
 / of M . For A 2 H2.M;Z/ and ˛; ˇ; 
 2 Heven.M;Z/, to
define ˆA.˛; ˇ; 
 / 2Q we choose an almost complex structure J on M compatible
with ! and cycles C˛;Cˇ;C
 in M representing ˛; ˇ; 
 , and then ˆA.˛; ˇ; 
 / is
roughly speaking the “number” of J –holomorphic rational curves † in M intersect-
ing C˛;Cˇ;C
 , with Œ†� D A in H2.M;Z/. It is independent of the choices of J

and C˛;Cˇ;C
 .

It is natural to encode the Gromov–Witten invariants in a holomorphic generating
function SW H even.M;C/!C called the Gromov–Witten potential, given by a (formal)
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power series with coefficients the ˆA.˛; ˇ; 
 /. Identities on the ˆA.˛; ˇ; 
 / imply that
S satisfies a p.d.e., the WDVV equation. This p.d.e. can be interpreted as the flatness
of a 1–parameter family of connections defined using S , which make H even.M;C/

into a Frobenius manifold.

The goal of this paper (which we do not achieve) is to tell a story with many similar
features. Let X be a Calabi–Yau 3–fold, coh.X / the abelian category of coherent
sheaves on X , and T D Db.coh.X // its bounded derived category. Let K.T / be
the image of the Chern character map K0.T /!H even.X;Q/, a lattice of finite rank.
Define the Euler form x�W K.T /�K.T /! Z byP

k2Z.�1/k dim HomT .U;V Œk�/D x�.ŒU �; ŒV �/ for all U;V 2 T .

Then x� is biadditive, antisymmetric, and nondegenerate.

Following Bridgeland [4] one can define stability conditions .Z;P/ on the triangulated
category T , consisting of a group homomorphism ZW K.T /! C called the central
charge and extra data P encoding the .Z;P/-semistable objects in T . The family of
stability conditions Stab.T / is a finite-dimensional complex manifold, with the map
.Z;P/ 7!Z a local biholomorphism Stab.T /! Hom.K.T /;C/. In String Theory
terms, the “stringy Kähler moduli space” of X should be thought of as a complex
Lagrangian submanifold of Stab.T /, the subset of stability conditions represented by
Super Conformal Field Theories.

We would like to define invariants J˛.Z;P/ 2 Q “counting” .Z;P/–semistable
objects in each class ˛ 2K.T / n f0g, so roughly counting semistable sheaves. In the
final version of the theory these should be extensions of Donaldson–Thomas invariants
[6; 20] and invariant under deformations of X , but for the present we may make do
with the author’s “motivic” invariants defined in [15] for the abelian category case,
which are not invariant under deformations of X .

The important thing about the invariants J˛.Z;P/ is that their transformation laws
under change of stability condition are known completely, and described in the abelian
case in [15]. Basically J˛.Z;P/ is a locally constant function of .Z;P/, except
that when ˛ D ˛1C � � �C˛n for ˛k 2K.T / and .Z;P/ crosses a locus in Stab.T /
where Z.˛1/; : : : ;Z.˛n/ 2 C n f0g all have the same phase, then J˛.Z;P/ jumps by
a multiple of J˛1.Z;P/ � � �J˛n.Z;P/.

This paper studies the problem of how best to combine such invariants J˛.Z;P/ into
generating functions which should be continuous, holomorphic functions of .Z;P/
on Stab.T /, a bit like the Gromov–Witten potential. In fact we shall define a function
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F˛W Stab.T /! C for each ˛ 2K.T / n f0g, given by

F˛.Z;P/D
X

n>1; ˛1;:::;˛n2K.T /nf0gW
˛1C� � �C˛n D ˛, Z.˛k/¤ 0 all k

Fn

�
Z.˛1/; : : : ;Z.˛n/

� nY
iD1

J˛i .Z;P/ �

�
1

2n�1

X
connected, simply connected digraphs �:

vertices f1; : : : ;ng, edge �i !�j implies i < j

Y
edges
�i !�j

in �

x�.˛i ; j̨ /

�
;

(1)

where FnW .C
�/n! C are some functions to be determined, and C� D C n f0g. Here

the sum over graphs comes from the transformation laws (25) below for the J˛.Z;P/,
determined in the abelian case in [15, Section 6.5].

Let us admit at once that there are two very major issues about (1) that this paper does
not even attempt to solve, which is why the goals of the paper are not achieved. The
first is that we do not define the invariants J˛.Z;P/. In the abelian category case
AD coh.X /, for Gieseker type stability conditions .�;T;6/, we do define and study
such invariants J˛.�/ in [15]. But the extension to Bridgeland stability conditions on
Db.coh.X // still requires a lot of work.

The second issue is the convergence of the infinite sum (1) and of other infinite sums
below. I am not at all confident about this: it may be that (1) does not converge at
all, or does so only in special limiting corners of Stab.T /, and I am not going to
conjecture that (1) or other sums converge. Instead, we shall simply treat our sums as
convergent. This means that the results of this paper are rigorous and the sums known
to converge only in rather restricted situations: working with abelian categories A
rather than triangulated categories T , and imposing finiteness conditions on A that
do not hold for coherent sheaves AD coh.X /, but do work for categories of quiver
representations ADmod–KQ .

The question we do actually answer in this paper is the following. Suppose for the
moment that (1) converges in as strong a sense as necessary. What are the conditions
on the functions Fn.z1; : : : ; zn/ for F˛ to be both continuous and holomorphic? Since
the J˛.Z;P/ are not continuous in .Z;P/, to make F˛ continuous the Fn must
have discontinuities chosen so that the jumps in J˛.Z;P/ and Fn exactly cancel. The
simplest example of this is that across the real hypersurface zlC1=zl 2 .0;1/ in .C�/n ,
the function Fn.z1; : : : ; zn/ must jump by Fn�1.z1; : : : ; zl�1; zlCzlC1; zlC2; : : : ; zn/.

We shall show that the condition that F˛ be holomorphic and continuous, plus a
few extra assumptions on the symmetry and growth of the Fn and the normalization
F1 � .2� i/�1 , actually determine the Fn uniquely. Furthermore, on the open subset
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of .C�/n where Fn is continuous it satisfies the p.d.e.

(2) dFn.z1; : : : ; zn/D

n�1X
kD1

Fk.z1; : : : ; zk/Fn�k.zkC1; : : : ; zn/ ��
dzkC1C � � �C dzn

zkC1C � � �C zn
�

dz1C � � �C dzk

z1C � � �C zk

�
:

This in turn implies that the generating functions F˛ satisfy the p.d.e.

(3) dF˛.Z;P/D�
X

ˇ;
2K.T /nf0gW˛DˇC


x�.ˇ; 
 /Fˇ.Z;P/F
 .Z;P/
d.Z.ˇ//

Z.ˇ/
:

It seems remarkable that simply requiring the F˛ to be holomorphic and continuous
implies they must satisfy the p.d.e. (3), which has appeared more-or-less out of nowhere.
In the Gromov–Witten case the generating function S also satisfies a p.d.e., the WDVV
equation. Note however that the WDVV equation holds because of identities upon
Gromov–Witten invariants, but in our case (3) holds because of any identities not on
the J˛.Z;P/ for fixed .Z;P/, but rather because of identities on how the J˛.Z;P/
transform as .Z;P/ changes.

Just as the WDVV equation implies the flatness of a connection constructed using
the Gromov–Witten potential, so we can interpret (3) in terms of flat connections.
Define L to be the C–Lie algebra with basis formal symbols c˛ for ˛ 2K.T / and
Lie bracket Œc˛; cˇ � D x�.˛; ˇ/c˛Cˇ . Ignoring questions of convergence, define an
L–valued connection matrix � on Stab.T / by

�.Z;P/D
X

˛2K.T /nf0g

F˛.Z;P/ c˛˝
d.Z.˛//

Z.˛/
:

Then (3) implies that � is flat, that is, the curvature R� D d�C 1
2
� ^� � 0. But we

do not expect that d� � 0 and � ^� � 0 as happens in the Gromov–Witten case, so
we do not have a 1–parameter family of flat connections and a Frobenius manifold type
structure.

All this cries out for an explanation, but I do not have one. However, I am convinced
that the explanation should be sought in String Theory, and that underlying this is some
new piece of physics to do with Mirror Symmetry, just as the context of the derived
category Db.coh.X // of coherent sheaves on X is the core of the Homological Mirror
Symmetry programme of Kontsevich [16]. I invite any physicists with ideas on its
interpretation to please let me know.

Two possible pointers towards an interpretation are discussed in Section 6. Firstly,
ignoring convergence issues, we show that in the Calabi–Yau 3–fold triangulated
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category case the connection � above induces a flat connection on T Stab.T /, which is
in fact the Levi-Civita connection of a flat holomorphic metric gC on Stab.T /, provided
gC is nondegenerate. Secondly, again ignoring convergence issues, for � 2 C� and
fixed a; b 2 Z define a .0; 1/–form on Stab.T / by

ˆ�.Z;P/D
P
˛2K.T /nf0g �

ae�
bZ.˛/ F˛.Z;P/ d.Z.˛//

Z.˛/
:

Then (3) implies an equation in .0; 2/–forms on Stab.T /:�
x@ˆ�.Z;P/

�
xi xj
D�

1
2
��a�2b.x�/ij

�
@ˆ�.Z;P/

�
ixi

�
@ˆ�.Z;P/

�
j xj
;

using complex tensor index notation, where .x�/ij is the .2; 0/ part of x�. This is a
little similar to the holomorphic anomaly equation of Bershadsky et al [1; 2].

Here is a brief description of the paper. Despite this introduction we mostly work
neither with Calabi–Yau 3–folds, nor with triangulated categories. Instead, we work
with abelian categories A such as quiver representations mod–KQ , and slope stability
conditions .�;R;6/ determined by a morphism ZW K.A/! C. Then we can use the
author’s series [12; 13; 14; 15] on invariants counting �–semistable objects in abelian
categories; the facts we need are summarized in Section 2. Section 3 studies generating
functions f ˛ generalizing F˛ in (1), in the abelian category setting, and expressed in
terms of Lie algebras L following [12; 13; 14; 15].

In Section 3.1 we find conditions on Fn for these f ˛ to be holomorphic and continuous,
including some conditions from the triangulated category case, and show that with a
few extra assumptions any such functions Fn are unique. In Section 3.2 we guess a
p.d.e. generalizing (3) for the f ˛ to satisfy, deduce that it implies (2), and use (2) to
construct a family of functions Fn by induction on n. Then Section 3.3 shows that
these Fn constructed using (2) satisfy all the conditions of Section 3.1, and so are
unique. Section 4 discusses L–valued flat connections � as above, and Section 5 the
extension to triangulated categories. Finally, Section 6 explains how the ideas work
out for Calabi–Yau 3–folds.

Acknowledgements I would like to thank Philip Candelas, Calin Lazaroiu, Balázs
Szendröi, Richard Thomas, and especially Tom Bridgeland for useful conversations,
and a referee for helpful comments. I was supported by an EPSRC Advanced Research
Fellowship whilst writing this paper.

2 Background material

The author has written six long, complicated papers [10; 11; 12; 13; 14; 15] developing
a framework for studying stability conditions .�;T;6/ on an abelian category A, and
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interesting invariants counting � –semistable objects in A, and the transformation laws
of these invariants under change of stability condition. Section 2.1–Section 2.2 explain
only the minimum necessary for this paper; for more detail, see [10; 11; 12; 13; 14; 15].
Section 2.3 discusses the extension to triangulated categories.

2.1 The general set-up of [12; 13; 14; 15]

We start with a very brief summary of parts of the author’s series [12; 13; 14; 15]. Here
[12, Assumptions 7.1 and 8.1] is the data we require.

Assumption 2.1 Let K be an algebraically closed field and A a K –linear noetherian
abelian category with Exti.A;B/ finite-dimensional K –vector spaces for all A;B 2A
and i > 0. Let K.A/ be the quotient of the Grothendieck group K0.A/ by some fixed
subgroup. Suppose that if A 2A with ŒA�D 0 in K.A/ then AŠ 0.

To define moduli stacks of objects or configurations in A, we need some extra data, to
tell us about algebraic families of objects and morphisms in A, parametrized by a base
scheme U . We encode this extra data as a stack in exact categories FA on the category
of K –schemes SchK , made into a site with the étale topology. The K;A;K.A/;FA
must satisfy some complex additional conditions [12, Assumptions 7.1 and 8.1], which
we do not give.

In [12, Section 9–Section 10] we define data A;K.A/;FA satisfying Assumption 2.1
in some large classes of examples, including the abelian category coh.X / of coherent
sheaves on a projective K –scheme X , and the following:

Example 2.2 A quiver Q is a finite directed graph. That is, Q is a quadruple
.Q0;Q1; b; e/, where Q0 is a finite set of vertices, Q1 is a finite set of arrows, and
b; eW Q1!Q0 are maps giving the beginning and end of each arrow.

A representation .V; �/ of Q consists of finite-dimensional K –vector spaces Vv for
each v 2Q0 , and linear maps �aW Vb.a/! Ve.a/ for each a 2Q1 . A morphism of
representations �W .V; �/! .W; �/ consists of K –linear maps �vW Vv!Wv for all
v 2Q0 with �e.a/ ı �a D �a ı�b.a/ for all a 2Q1 . Write mod–KQ for the abelian
category of representations of Q. It is of finite length.

Write NQ0 and ZQ0 for the sets of maps Q0! N and Q0! Z, where N D

f0; 1; 2; : : :g � Z. Define the dimension vector dim.V; �/2NQ0 � ZQ0 of a rep-
resentation .V; �/ 2mod–KQ by dim.V; �/W v 7! dimK Vv . This induces a surjective
group homomorphism dim W K0.mod–KQ/!ZQ0 . Define K.mod–KQ/ to be the
quotient of K0.mod–KQ/ by the kernel of dim . Then K.mod–KQ/ Š ZQ0 , and
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for simplicity we identify K.mod–KQ/ and ZQ0 , so that for .V; �/ 2mod–KQ the
class Œ.V; �/� in K.mod–KQ/ is dim.V; �/. As in [12, Example 10.5] we can define
a stack in exact categories Fmod–KQ so that ADmod–KQ;K.mod–KQ/;Fmod–KQ

satisfy Assumption 2.1.

We will need the following notation [12, Definition 7.3], [14, Definition 3.8]:

Definition 2.3 We work in the situation of Assumption 2.1. Define

(4) C.A/D
˚
ŒU � 2K.A/ W U 2A; U 6Š 0

	
�K.A/;

and xC .A/ D C.A/[ f0g. That is, C.A/ is the set of classes in K.A/ of nonzero
objects U 2A, and xC .A/ the set of classes of objects in A. We think of C.A/ as the
“positive cone” and xC .A/ as the “closed positive cone” in K.A/. In Example 2.2 we
have xC .A/D NQ0 and C.A/D NQ0 n f0g.

A set of A-data is a triple .I;�; �/ such that .I;�/ is a finite partially ordered set
(poset) and �W I ! C.A/ a map. In this paper we will be interested only in the case
when � is a total order, so that .I;�/ is uniquely isomorphic to .f1; : : : ; ng;6/ for
nD jI j. We extend � to the set of subsets of I by defining �.J /D

P
j2J �.j /. Then

�.J / 2 C.A/ for all ∅¤ J � I , as C.A/ is closed under addition.

Then [12, Section 7] defines moduli stacks ObjA of objects in A, and Obj˛A of objects
in A with class ˛ in K.A/, for each ˛ 2 xC .A/. They are Artin K –stacks, locally
of finite type, with Obj˛A an open and closed K –substack of ObjA . The underlying
geometric spaces ObjA.K/;Obj˛A.K/ are the sets of isomorphism classes of objects
U in A, with ŒU �D ˛ for Obj˛A.K/.

In [14, Section 4] we study (weak) stability conditions on A, generalizing Rudakov [19].
The next three definitions are taken from [14, Definitions 4.1–4.3, 4.6 and 4.7].

Definition 2.4 Let Assumption 2.1 hold and C.A/ be as in (4). Suppose .T;6/ is a
totally ordered set, and � W C.A/! T a map. We call .�;T;6/ a stability condition
on A if whenever ˛; ˇ; 
 2 C.A/ with ˇ D ˛C 
 then either �.˛/<�.ˇ/<�.
 /, or
�.˛/>�.ˇ/>�.
 /, or �.˛/D�.ˇ/D�.
 /. We call .�;T;6/ a weak stability condition
on A if whenever ˛; ˇ; 
 2 C.A/ with ˇ D ˛C 
 then either �.˛/6�.ˇ/6�.
 /, or
�.˛/>�.ˇ/>�.
 /.

Definition 2.5 Let .�;T;6/ be a weak stability condition on A;K.A/ as above. Then
we say that a nonzero object U in A is

(i) � -semistable if for all S � U with S 6Š 0;U we have �.ŒS �/6 �.ŒU=S �/;
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(ii) � -stable if for all S � U with S 6Š 0;U we have �.ŒS �/ < �.ŒU=S �/;

(iii) � -unstable if it is not � –semistable.

Definition 2.6 Let Assumption 2.1 hold and .�;T;6/ be a weak stability condition
on A. For ˛ 2 C.A/ define

Obj˛ss.�/D
˚
ŒU � 2Obj˛A.K/ W U is �–semistable

	
�ObjA.K/:

Write ı˛ss.�/W ObjA.K/! f0; 1g for its characteristic function.

We call .�;T;6/ a permissible weak stability condition if

(i) A is � -artinian, that is, there are no chains of subobjects � � ��A2�A1�U in
A with AnC1¤An and �.ŒAnC1�/>�.ŒAn=AnC1�/ for all n;

(ii) Obj˛ss.�/ is a constructible set in ObjA for all ˛ 2 C.A/, using the theory of
constructible sets and functions on Artin K –stacks developed in [10].

Examples of (weak) stability conditions on A D mod–KQ and A D coh.X / are
given in [14, Section 4.3–Section 4.4]. Most of them are permissible. Here is
[14, Example 4.14].

Example 2.7 Let Assumption 2.1 hold, and c; r W K.A/! R be group homomor-
phisms with r.˛/ > 0 for all ˛ 2 C.A/. Define �W C.A/! R by �.˛/D c.˛/=r.˛/

for ˛ 2 C.A/. Then � is called a slope function on K.A/, and .�;R;6/ is a stability
condition on A.

It will be useful later to re-express this as follows. Define the central charge ZW K.A/!
C by Z.˛/ D �c.˛/C i r.˛/. The name will be explained in Section 2.3. Then
Z 2 Hom

�
K.A/;C

�
is a group homomorphism, and maps C.A/ to the upper half

plane H D fxC iy W x 2 R; y > 0g in C.

For ˛ 2 C.A/, the argument arg ıZ.˛/ lies in .0; �/, and �.˛/D� cot ı arg ıZ.˛/,
where cot is the cotangent function. So .�;R;6/ can be recovered from Z . Since
� cotW .0; �/! R is strictly increasing, it fixes orders in R. Thus .arg ıZ;R;6/ is
an equivalent stability condition to .�;R;6/, that is, U 2A is �-(semi)stable if and
only if it is arg ıZ -(semi)stable. Write

(5)
Stab.A/D

˚
Z 2 Hom.K.A/;C/ WZ.C.A//�H , and the stability

condition .�;R;6/ defined by Z is permissible
	
:

In the cases we are interested in Stab.A/ is an open subset of the complex vector space
Hom.K.A/;C/, and so is a complex manifold.
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Such stability conditions can be defined on all the quiver examples of [12, Section 10],
and they are automatically permissible by [14, Corollary 4.13]. In Example 2.2, as
K.A/D ZQ0 and C.A/D NQ0 n f0g we may write c; r as

c.˛/D
P
v2Q0

cv .dim˛/.v/ and r.˛/D
P
v2Q0

rv .dim˛/.v/;

where cv 2 R and rv 2 .0;1/ for all v 2Q0 . Thus Stab.A/DH Q0 � CQ0 .

The usual notion of slope stability on AD coh.X / for X a smooth projective curve
is a slight generalization of the above. We take c.ŒU �/ to be the degree and r.ŒU �/

the rank of U 2 coh.X /. But then for ˛ 2 C.A/ coming from a torsion sheaf U we
have r.˛/D 0 and c.˛/ > 0, so we must allow � to take values in .�1;C1�, with
�.˛/DC1 if r.˛/D 0.

Here [14, Theorem 4.4] is a useful property of weak stability conditions. We call
0DA0�� � ��AnDU in Theorem 2.8 the Harder–Narasimhan filtration of U .

Theorem 2.8 Let .�;T;6/ be a weak stability condition on an abelian category
A. Suppose A is noetherian and � –artinian. Then each U 2 A admits a unique
filtration 0DA0�� � ��AnDU for n > 0, such that SkDAk=Ak�1 is � –semistable
for k D 1; : : : ; n, and �.ŒS1�/ > �.ŒS2�/ > � � �> �.ŒSn�/.

2.2 A framework for discussing counting invariants

Given A;K.A/;FA satisfying Assumption 2.1 and weak stability conditions .�;T;6/;
.z�; zT ;6/ on A, the final paper [15] in the series was mostly concerned with defining
interesting invariants I˛ss.�/;J

˛.�/; : : : which “count” � –semistable objects in class
˛ for all ˛ 2 C.A/, and computing the transformation laws which these invariants
satisfy under changing from .�;T;6/ to .z�; zT ;6/.

These different invariants all share a common structure, involving an algebra and a Lie
algebra. We will now abstract this structure (which was not done in [15]) and express
the various invariants of [15] as examples of this structure. We first explain, using an
example, how transformation between stability conditions can be written in terms of
identities in an algebra.

Example 2.9 Let Assumption 2.1 hold with K of characteristic zero. Write CF.ObjA/

for the vector space of Q–valued constructible functions on ObjA . In [13] we de-
fined an associative, noncommutative multiplication � on CF.ObjA/, such that for
f;g 2 CF.ObjA/ and V 2 A, .f � g/.ŒV �/ is the “integral” over all short exact
sequences 0! U ! V ! W ! 0 in A of f .ŒU �/g.ŒW �/, with respect to a mea-
sure defined using the Euler characteristic of constructible subsets of K –stacks. The
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identity in CF.ObjA/ is 1D ıŒ0� , the characteristic function of Œ0� 2ObjA.K/. Thus,
CF.ObjA/ is a Q-algebra.

Suppose Obj˛A is of finite type for all ˛ 2 C.A/. This holds in Example 2.2, for
instance. Then the set of K –points Obj˛A.K/ of Obj˛A is a constructible set in ObjA .
Write ı˛all 2 CF.ObjA/ for the characteristic function of Obj˛A.K/, that is, ı˛all is the
characteristic function of all objects in class ˛ in A.

Let .�;T;6/ be a weak stability condition on A, and as in Definition 2.6 write ı˛ss.�/

for the characteristic function of Obj˛ss.�/, that is, the characteristic function of all
� –semistable objects in class ˛ in A. As Obj˛A is of finite type and Obj˛ss.�/ is open,
Obj˛ss.�/ is constructible, and so ı˛ss.�/ 2 CF.ObjA/.

We can rewrite Theorem 2.8 as an identity in CF.ObjA/ for ˛ 2 C.A/:

(6) ı˛all D
X

n>1; ˛1;:::;˛n2C.A/W
˛D˛1C���C˛n; �.˛1/>�.˛2/>���>�.˛n/

ı˛1
ss .�/� ı

˛2
ss .�/� � � � � ı

˛n
ss .�/:

Here if U 2A then both sides of (6) are zero at U if ŒU �¤ ˛ in C.A/, and if ŒU �D ˛
then the left hand side of (6) is 1 at U , and exactly one term on the right hand side is
1, coming from the Harder–Narasimhan filtration of U with ˛i D ŒSi � in C.A/, with
all other terms zero.

Suppose now that .�;T;6/ and .z�; zT ;6/ are two different weak stability conditions
on A. To understand the transformation from .�;T;6/ and .z�; zT ;6/ we would like
to characterize z� –semistability in terms of � –semistability, that is, we would like to
write the ı˛ss.z�/ in terms of the ıˇss.�/. Equation (6) suggests an algorithm for doing
this. Following an idea of Markus Reineke, we can recursively solve (6) in the algebra
CF.ObjA/ to write ı˛ss.�/ in terms of the ıˇall , giving

(7) ı˛ss.�/D
X

n>1; ˛1;:::;˛n2C.A/W ˛D˛1C���C˛n;
�.˛1C���C˛i />�.˛iC1C���C˛n/; 16i<n

.�1/n�1ı
˛1

all � ı
˛2

all � � � � � ı
˛n

all :

Then we substitute (6) into (7) with z� in place of � to get an identity

(8) ı˛ss.z�/D
X

n>1; ˛1;:::;˛n2C.A/W
˛D˛1C���C˛n

S.˛1; : : : ; ˛nI �; z�/ ı
˛1
ss .�/� ı

˛2
ss .�/� � � � � ı

˛n
ss .�/;

where S.˛1; : : : ; ˛nI �; z�/ 2 Z are combinatorial coefficients which depend on the
orders of �.˛1/; : : : ; �.˛n/ in T and of z�.˛1C � � �C˛i/ and z�.˛iC1C � � �C˛n/ for
1 6 i < n in zT . In [15] we show that (8) is still valid in many situations in which
Obj˛A is not of finite type, so that (6) and (7) no longer make sense in CF.ObjA/ since
ı˛all is not a constructible function.
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Here [15, Definition 4.2] is a definition of the coefficients S.˛1; : : : ; ˛nI �; z�/ ap-
pearing in (8). But following [15] we instead write S.f1; : : : ; ng;6; �; �; z�/, where
�W f1; : : : ; ng ! C.A/ is defined by �.i/D ˛i . This is because [15] also deals with a
more general situation in which .f1; : : : ; ng;6; �/ is replaced by A-data .I;�; �/, in
the sense of Definition 2.3.

Definition 2.10 Let Assumption 2.1 hold, .�;T;6/; .z�; zT ;6/ be weak stability con-
ditions on A, and .f1; : : : ; ng;6; �/ be A–data. If for all i D 1; : : : ; n� 1 we have
either

(a) � ı �.i/6 � ı �.i C 1/ and z� ı �.f1; : : : ; ig/ > z� ı �.fi C 1; : : : ; ng/ or

(b) � ı �.i/ > � ı �.i C 1/ and z� ı �.f1; : : : ; ig/6 z� ı �.fi C 1; : : : ; ng/,

then define S.f1; : : : ; ng;6; �; �; z�/D .�1/r , where r is the number of iD1; : : : ; n�1

satisfying (a). Otherwise define S.f1; : : : ; ng;6; �; �; z�/D 0.

If .I;�; �/ is A–data with � a total order, there is a unique bijection �W f1; : : : ; ng!
I with n D jI j and ��.6/ D �, and .f1; : : : ; ng;6; � ı �/ is A–data. Define
S.I;�; �; �; z�/D S.f1; : : : ; ng;6; � ı�; �; z�/.

Next we explain, using an example, how the algebra in our problem may contain a much
smaller, interesting Lie algebra, and the algebra elements ı˛ss.�/ may be expressed in
terms of Lie algebra elements �˛ss.�/ by a universal formula.

Example 2.11 Continue in the situation of Example 2.9. Write CFind.ObjA/ for the
vector subspace of constructible functions f 2 CF.ObjA/ supported on indecompos-
ables, that is, f .ŒX �/D 0 unless X 2 A is indecomposable. Then [13, Section 4.4]
shows that CFind.ObjA/ is a Lie subalgebra of CF.ObjA/, under the natural Lie
bracket Œf;g�D f �g�g � f . If for all fixed X;Z 2A there are only finitely many
isomorphism classes of Y 2A fitting into an exact sequence 0! X ! Y !Z! 0,
then [13, Section 4.6] shows that CF.ObjA/ is isomorphic to the universal enveloping
algebra of CFind.ObjA/.

Let .�;T;6/ be a weak stability condition on A. If 0 6Š X 2A then we may write
X uniquely up to order and isomorphism as X ŠX1˚ � � �˚Xn , where 0 6ŠXi 2A
is indecomposable for i D 1; : : : ; n. Furthermore X is � –semistable if and only if
Xi is � –semistable with �.ŒXi �/D �.ŒX �/ for all i D 1; : : : ; n. Using this we show in
[14, Section 7.3] that if we define

(9) �˛ss.�/D
X

n > 1, ˛1; : : : ; ˛n 2C.A/ W
˛D ˛1C� � �C˛n,
�.˛i /D �.˛/, i D 1; : : : ;n

.�1/n�1

n
ı˛1

ss .�/� ı
˛2
ss .�/� � � � � ı

˛n
ss .�/;
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then �˛ss.�/ is supported on indecomposables, that is, �˛ss.�/ lies in the Lie algebra
CFind.ObjA/. Here �˛ss.�/.X /D1 if X is � –stable and lies in class ˛ , and �˛ss.�/.X /D

0 if X is � –unstable or decomposable or does not lie in class ˛ , and �˛ss.�/.X / 2Q

otherwise.

We can also invert (9) to obtain

(10) ı˛ss.�/D
X

n > 1, ˛1; : : : ; ˛n 2C.A/ W
˛D ˛1C� � �C˛n,
�.˛i /D �.˛/, i D 1; : : : ;n

1

n!
�˛1

ss .�/� �
˛2
ss .�/� � � � � �

˛n
ss .�/:

Thus, the �˛ss.�/ are an alternative set of generators for the subalgebra of CF.ObjA/

generated by the ıˇss.�/. Now let .�;T;6/; .z�; zT ;6/ are two different weak stability
conditions on A. By substituting (10) into (8) into (9) with z� in place of � we obtain
a transformation law for the �˛ss.�/, of the form

(11) �˛ss.z�/D
X

n>1; ˛1;:::;˛n2C.A/W
˛D˛1C���C˛n

U.˛1; : : : ; ˛nI �; z�/ �
˛1
ss .�/� �

˛2
ss .�/� � � � � �

˛n
ss .�/;

where U.˛1; : : : ; ˛nI �; z�/ 2 Q are combinatorial coefficients which depend on the
orders of �.˛1/; : : : ; �.˛n/ in T and of z�.˛i/; z�.˛1C� � �C˛i/ and z�.˛iC1C� � �C˛n/

for 1 6 i < n in zT .

Here [15, Definition 4.4] is a definition of the coefficients U.˛1; : : : ; ˛nI �; z�/ ap-
pearing in (11), but following [15] we instead write U.f1; : : : ; ng;6; �; �; z�/, where
�W f1; : : : ; ng ! C.A/ is defined by �.i/D ˛i .

Definition 2.12 Let Assumption 2.1 hold, .�;T;6/; .z�; zT ;6/ be weak stability con-
ditions on A, and .f1; : : : ; ng;6; �/ be A–data. Define

U.f1; : : : ; ng;6; �; �; z�/DX
16l6m6n

X
surjective  W f1; : : : ;ng!f1; : : : ;mg

and �W f1; : : : ;mg!f1; : : : ; lg:
i6j implies  .i/6 .j/, i6j implies �.i/6�.j/.

� ı � � � ı� ı�W I ! T and z� ı�� z�.˛/
where �W f1; : : : ;mg!C.A/ is �.b/D �. �1.b//

and �W f1; : : : ; lg!C.A/ is �.a/D �.��1.a//.

lY
aD1

S.��1.fag/;6; �; �; z�/ �

.�1/l�1

l
�

mY
bD1

1

j �1.b/j!
:

(12)

If .I;�; �/ is A–data with � a total order, there is a unique bijection �W f1; : : : ; ng!
I with n D jI j and ��.6/ D �, and .f1; : : : ; ng;6; � ı �/ is A–data. Define
U.I;�; �; �; z�/D U.f1; : : : ; ng;6; � ı�; �; z�/.
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In Definition 2.10 and Definition 2.12 we call S;U.�; �; z�/ transformation coefficients,
as they are combinatorial factors appearing in transformation laws from .�;T;6/ to
.z�; zT ;6/. Here [15, Definition 5.1] are some finiteness conditions we will need on
changes between stability conditions.

Definition 2.13 Let Assumption 2.1 hold and .�;T;6/; .z�; zT ;6/ be weak stability
conditions on A. We say the change from .�;T;6/ to .z�; zT ;6/ is locally finite
if for all constructible C � ObjA.K/, there are only finitely many sets of A–data
.f1; : : : ; ng;6; �/ for which S.f1; : : : ; ng;6; �; �; z�/¤0 and

C \ � .f1; : : : ; ng/�
�
Mss.f1; : : : ; ng;6; �; �/A

�
¤∅:

We say the change from .�;T;6/ to .z�; zT ;6/ is globally finite if this holds for
C D Obj˛A.K/ (which is not constructible, in general) for all ˛ 2 C.A/. Since
any constructible C �ObjA.K/ is contained in a finite union of Obj˛A.K/, globally
finite implies locally finite.

The following assumption encapsulates the structure common to Example 2.9 and
Example 2.11, and to most of the invariants studied in [15], with some oversimplifica-
tions we discuss in Remark 2.15.

Assumption 2.14 Let Assumption 2.1 hold. Suppose we are given a C–algebra
H with identity 1 and multiplication � (which is associative, but not in general
commutative), with a decomposition into C–vector subspaces HD

L
˛2 xC .A/H

˛ ,
such that 1 2H0 and H˛ �Hˇ �H˛Cˇ for all ˛; ˇ 2 xC .A/.

Suppose we are given a C–Lie subalgebra L of H with Lie bracket Œf;g�Df �g�g�f ,
with a decomposition into C–vector subspaces LD

L
˛2C.A/ L

˛ such that L˛ �H˛

and ŒL˛;Lˇ �� L˛Cˇ for all ˛; ˇ 2 C.A/.

Whenever .�;T;6/ is a permissible weak stability condition on A, let there be given
elements ı˛.�/ 2H˛ and �˛.�/ 2 L˛ for all ˛ 2 C.A/. These satisfy

�˛.�/D
X

A–data .f1; : : : ;ng;6; �/ W
�.f1; : : : ;ng/D ˛, � ı � � �.˛/

.�1/n�1

n
ı�.1/.�/� ı�.2/.�/� � � � � ı�.n/.�/;(13)

ı˛.�/D
X

A–data .f1; : : : ;ng;6; �/ W
�.f1; : : : ;ng/D ˛, � ı � � �.˛/

1

n!
��.1/.�/� ��.2/.�/� � � � � ��.n/.�/;(14)

where there are only finitely many nonzero terms in each sum.
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If .�;T;6/; .z�; zT ;6/ are permissible weak stability conditions on A and the change
from .�;T;6/ to .z�; zT ;6/ is globally finite, for all ˛ 2 C.A/ we haveX

A–data .f1; : : : ;ng;6; �/ W
�.f1; : : : ;ng/D ˛

S.f1; : : : ; ng;6;�; �; z�/ �

ı�.1/.�/� ı�.2/.�/� � � � � ı�.n/.�/D ı˛.z�/;
(15)

X
A–data .f1; : : : ;ng;6; �/ W

�.f1; : : : ;ng/D ˛

U.f1; : : : ; ng;6;�; �; z�/ �

��.1/.�/� ��.2/.�/� � � � � ��.n/.�/D �˛.z�/;
(16)

where there are only finitely many nonzero terms in each sum.

Equation (16) may be rewritten:

(17) �˛.z�/D
X

iso classes
of finite
sets I

1

jI j!

X
�W I!C.A/W
�.I /D˛

" X
total orders � on I .

Write I D fi1; : : : ; ing,
i1�i2� � � ��in

U.I;�; �; �; z�/ �

��.i1/.�/�� � ����.in/.�/

#
:

The term Œ � � � � in (17) is a finite Q–linear combination of multiple commutators of
��.i/ for i 2 I , and so it lies in the Lie algebra L, not just the algebra H . Thus (16)
and (17) can be regarded as identities in L rather than H .

Remark 2.15 (a) ı˛.�/ is an invariant of the moduli space Obj˛ss.�/ of � –semistable
objects in class ˛ , which “counts” such � –semistable objects. Often it is of the form
ı˛.�/Dˆ.ı˛ss.�//, where ı˛ss.�/2CF.ObjA/ is the characteristic function of Obj˛ss.�/,
CF.ObjA/ is the vector space of constructible functions on the Artin K –stack ObjA as
in [10], and ˆW CF.ObjA/!H is a linear map with special multiplicative properties.

(b) The �˛.�/ are an alternative set of generators to the ı˛.�/. Here (14) is the inverse
of (13), and given (12)–(14), equations (15) and (16) are equivalent. Thus, the main
nontrivial claim about the �˛.�/ is that they lie in the Lie algebra L, which may be
much smaller than H . Roughly speaking, the �˛.�/ count � –semistable objects S

in class ˛ weighted by a rational number depending on the factorization of S into
� –stables, which is 1 if U is � –stable. If S is decomposable this weight is 0, so
�˛.�/ counts only indecomposable � –semistables. The Lie algebra L is the part of H
“supported on indecomposables”.

(c) In [15] we worked with (Lie) algebras over Q, not C. But here we complexify, as
we shall be discussing holomorphic functions into H;L.

(d) In parts of [15], equations (15)–(17) are only proved under an extra assump-
tion, the existence of a third weak stability condition .y�; yT ;6/ compatible with
.�;T;6/; .z�; zT ;6/ in certain ways. But we will not worry about this.
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(e) In parts of [15] we relax the assumption that .�;T;6/; .z�; zT ;6/ are permissible
(taking them instead to be � -artinian, or essentially permissible), and we allow the
change from .�;T;6/ to .z�; zT ;6/ to be locally finite rather than globally finite. Then
equations (13)–(17) need no longer have only finitely many nonzero terms, and they
are interpreted using a notion of convergence in H .

(f) The ı˛.�/; �˛.�/ are only the simplest of the invariants studied in [15]—we could
call them “one point invariants”, as they depend on only one class ˛ 2 C.A/. We also
considered systems of “n point invariants” depending on n classes ˛ 2 C.A/, which
will not enter this paper. One thing that makes the one point invariants special is that
their transformation laws (15)–(16) depend only on other one point invariants, not on
n point invariants for all n > 1.

The next six examples explain how various results in [15] fit into the framework of
Assumption 2.14. The first continues Example 2.9 and Example 2.11, but without
supposing the Obj˛A are of finite type.

Example 2.16 Let Assumption 2.1 hold with K of characteristic zero. Take H D
CF.ObjA/˝Q C, the vector space of C–valued constructible functions on ObjA , and
H˛ the subspace of functions supported on Obj˛A . The multiplication � on H , studied
at length in [13], has the following approximate form: for V 2A, .f �g/.ŒV �/ is the
“integral” over all short exact sequences 0!U!V !W !0 in A of f .ŒU �/g.ŒW �/,
with respect to a measure defined using the Euler characteristic of constructible subsets
of K –stacks.

The identity is 1DıŒ0� , the characteristic function of Œ0�2ObjA.K/. The Lie subalgebra
L is CFind.ObjA/˝Q C, functions supported on points ŒU � for U 2A indecomposable,
and ı˛.�/D ı˛ss.�/, the characteristic function of Obj˛ss.�/. Then [13; 14; 15] show
Assumption 2.14 holds, except that (15)–(17) are only proved under extra conditions
as in Remark 2.15(d) above.

We can also replace HD CF.ObjA/˝Q C and LD CFind.ObjA/˝Q C by the much
smaller (Lie) subalgebras Hto

� ˝Q C;Lto
� ˝Q C of [14, Section 7] generated by the ı˛ss.�/

and �˛ss.�/, since by [15, Section 5] these are very often independent of the choice of
permissible weak stability condition .�;T;6/ used to define them.

Example 2.17 Let Assumption 2.1 hold. Take HD SFal.ObjA/˝Q C, the algebra
of stack functions on ObjA with algebra stabilizers defined in [13, Section 5], using
the theory of stack functions from [11], a universal generalization of constructible
functions. Let L D SFind

al .ObjA/˝Q C, the subspace of H supported on “virtual
indecomposables’, and let H˛;L˛ be the subspaces of H;L supported on Obj˛A . Set
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ı˛.�/D xı˛ss.�/, in the notation of [14]. Then [13; 14; 15] show Assumption 2.14 holds,
but with (15)–(17) only proved under extra conditions.

This also works with SFal.ObjA/ replaced by one of the “twisted stack function” spaces
xSFal.ObjA; ‡;ƒ/, xSFal.ObjA; ‡;ƒ

ı/, xSFal.ObjA; ‚;�/ of [13].

We can also replace H D SFal.ObjA/ ˝Q C and L D SFind
al .ObjA/ ˝Q C by the

much smaller (Lie) subalgebras xHto
� ˝Q C; xLto

� ˝Q C of [14, Section 8], since by
[15, Section 5] these are very often independent of the choice of permissible weak
stability condition .�;T;6/ used to define them.

Example 2.18 Let Assumption 2.1 hold and �W K.A/�K.A/! Z be biadditive and
satisfy

(18) dimK Hom.U;V /� dimK Ext1.U;V /D �
�
ŒU �; ŒV �

�
for all U;V 2A.

This happens when A D coh.X / with X a smooth projective curve, and for A D
mod–KQ in Example 2.2 with � given by the Ringel form

�.˛; ˇ/D
P
v2Q0

˛.v/ˇ.v/�
P

a2Q1
˛.b.a//ˇ.e.a// for ˛; ˇ 2 ZQ0 .

Define ƒD C.z/, the algebra of rational functions p.z/=q.z/ for polynomials p; q

with coefficients in C and q ¤ 0, and define a special element ` D z2 in ƒ. Define
ƒı to be the subalgebra of p.z/=q.z/ in ƒ for which z ˙ 1 do not divide q . The
facts we need about ƒ;ƒı are that the virtual Poincaré polynomial P .X I z/ of a
K –variety X takes values in ƒı �ƒ, and ` D P .KI z/ for K the affine line, and `
and `k

C `k�1
C � � �C 1 are invertible in ƒı , and ` � 1 is invertible in ƒ.

Let a˛ for ˛ 2 xC .A/ be formal symbols, and define H D A.A; ƒ; �/ to be the ƒ–
module with basis fa˛ W ˛ 2 xC .A/g as in [13, Section 6.2], with the obvious notions
of addition and multiplication by C. Define a multiplication � on H by�P

i2I �i a˛i
�
�
�P

j2J �j a ǰ
�
D
P

i2I

P
j2J �i�j`

��. ǰ ;˛i / a˛iC ǰ :

Then H is a C–algebra, with identity a0 . Define H˛ Dƒ � a˛ for ˛ 2 xC .A/. Define
L˛ D .` � 1/�1ƒı � a˛ �H˛ for ˛ 2 C.A/, and LD

L
˛2C.A/L

˛ . Then L is a Lie
subalgebra of H , as .`��.ˇ;˛/� `��.˛;ˇ//=.` � 1/ 2ƒı .

For .�;T;6/ a permissible weak stability condition on A and ˛ 2 C.A/, define
ı˛.�/D I˛ss.�/a

˛ , where I˛ss.�/ is the virtual Poincaré function of Obj˛ss.�/, as defined
in [11, Section 4.2], where we regard Obj˛ss.�/ as a finite type open K –substack with
affine geometric stabilizers in the Artin K –stack Obj˛A . Define �˛.�/ by (13). Then
�˛.�/ 2H˛ , so we can write �˛.�/D .` � 1/�1J˛.�/a˛ for J˛.�/ 2ƒ. We show in
[15, Theorem 6.8] that J˛.�/ 2ƒı , so �˛.�/ 2 L˛ .
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Then [13, Section 6.2] and [15, Section 6.2] show that Assumption 2.14 holds in its
entirety when ADmod–KQ , and with extra conditions as in Remark 2.15(d) above
in general. It also holds with ƒ replaced by other commutative C–algebras, and
virtual Poincaré polynomials replaced by other ƒ–valued “motivic invariants” ‡ of
K –varieties with ` D ‡.K/; for details see [11; 13; 15].

Example 2.19 Let K be an algebraically closed field and X a smooth projective
surface over K with K�1

X
numerically effective (nef ). Take AD coh.X / with data

K.A/;FA satisfying Assumption 2.1 as in [12, Example 9.1]. Then there is a biadditive
�W K.A/�K.A/! Z such that for all U;V 2A we have

dimK Hom.U;V /� dimK Ext1.U;V /C dimK Ext2.U;V /D �
�
ŒU �; ŒV �

�
:

Define ƒ;H;� and H˛ as in Example 2.18, but set L˛ D H˛ for ˛ 2 C.A/ and
LD

L
˛2C.A/ L

˛ . Then in [15, Section 6.4], for a class of weak stability conditions
.�;T;6/ on A based on Gieseker stability, we define invariants I˛ss.�/;

xJ˛.�/2ƒ such
that Assumption 2.14 holds with ı˛.�/D I˛ss.�/a

˛ and �˛.�/D .` � 1/�1 xJ˛.�/a˛ .
But we do not prove that xJ˛.�/2ƒı , which is why we modify the definitions of L˛;L.

Example 2.18 and Example 2.19 illustrate the relationship between “invariants” I˛ss.�/;

J˛.�/; xJ˛.�/ which “count” � –semistables in class ˛ , and our (Lie) algebra approach.
In this case, the transformation laws (15)–(16) for ı˛.�/; �˛.�/ are equivalent to the
following laws for I˛ss.�/;J

˛.�/, from [15, Theorem 6.8]:

I˛ss.z�/D
X

A–data .f1; : : : ;ng;6; �/ W
�.f1; : : : ;ng/D ˛

S.f1; : : : ; ng;6; �; �; z�/ � `�
P

16i<j6n �.�.j/;�.i//

�
Qn

iD1I�.i/ss .�/;
(19)

J˛.z�/D
X

A–data .f1; : : : ;ng;6; �/ W
�.f1; : : : ;ng/D ˛

U.f1; : : : ; ng;6; �; �; z�/ � `�
P

16i<j6n �.�.j/;�.i//

� .` � 1/1�nQn
iD1J �.i/.�/:

(20)

Observe that (15)–(16) are simpler than (19)–(20), since the powers of ` in (19)–
(20) are packaged in the multiplication � in H . This is more pronounced in our
next two examples, where the formulae for � are much more complicated, so the
transformation laws for invariants are too. One moral is that working in the framework
of Assumption 2.14 is simpler than working with systems of invariants, which is why
we have adopted it.

Example 2.20 Let Assumption 2.1 hold and �W K.A/�K.A/! Z be biadditive and
satisfy (18), and let ƒ;ƒı; ` be as in Example 2.18. Consider pairs .I; �/ with I a
finite set and �W I ! C.A/ a map. Define an equivalence relation � on such .I; �/

Geometry & Topology, Volume 11 (2007)



684 Dominic Joyce

by .I; �/� .I 0; �0/ if there exists a bijection i W I ! I 0 with �0 ı i D � . Write ŒI; ��
for the �–equivalence class of .I; �/. Introduce formal symbols bŒI;�� for all such
equivalence classes ŒI; ��.

As in [13, Section 6.3], let HD B.A; ƒ; �/ be the ƒ–module with basis the bŒI;�� .
Define H˛ D

L
ŒI;��W�.I /D˛ ƒ � bŒI;�� . Define a multiplication � on H by

bŒI;�� � bŒJ ;�� D
X

eq. classes ŒK ; ��

bŒK ;�� �
.` � 1/jK j�jI j�jJ j

jAut.K; �/j
�

� X
iso.

classes
of finite
sets L

.�1/jLj�jK j

jLj!

X
�W I !L,  W J !L and
� W L!K : �q surjective,
�.k/D �..� ı�/�1.k//C

�..� ı /�1.k//, k 2K

Y
k2K

.j��1.k/j�1/!
Y

i2I; j2J W
�.i/D .j/

`��.�.j/;�.i//
�

(21)

extended ƒ–bilinearly. Then H is a C–algebra with identity bŒ∅;∅� .

For ˛ 2 C.A/ define b˛ D bŒf1g;˛0� where ˛0.1/ D ˛ , define L˛ D ƒı � b˛ and
LD

L
˛2C.A/ L

˛ . Equation (21) yields

Œb˛; bˇ �D
`��.ˇ;˛/� `��.˛;ˇ/

` � 1
b˛Cˇ;

and .`��.ˇ;˛/� `��.˛;ˇ//=.` � 1/ 2ƒı , so L is a Lie subalgebra of H .

If .�;T;6/ is a permissible weak stability condition we put �˛.�/ D J˛.�/b˛ for
the same J˛.�/ 2 ƒı as in Example 2.18. We then define ı˛.�/ by (14), giving
a much more complicated answer than in Example 2.18. From [13, Section 6.3]
and [15, Section 6] it follows that Assumption 2.14 holds in its entirety when A D
mod–KQ , and with extra conditions as in Remark 2.15(d) above in general.

In Example 2.18 and Example 2.20 the algebras ƒ;ƒı , the Lie algebra L, and the Lie
algebra elements �˛.�/, are the same, provided we identify the generator .` � 1/�1a˛

of L˛ in Example 2.18 with the generator b˛ of L˛ in Example 2.20. But the algebra
H in Example 2.20 is much larger than that in Example 2.18. If we set ƒıDƒ, then in
Example 2.18 we would have LDH , or at least HDƒ �a0˚L, but in Example 2.20,
H would be the ƒ–universal enveloping algebra of L.

One difference between Example 2.18 and Example 2.20 is that ı˛.�/ records more
information about the moduli space Obj˛ss.�/ in Example 2.20. In Example 2.18,
ı˛.�/ is basically the virtual Poincaré polynomial of Obj˛ss.�/, multiplied by b˛ .
But in Example 2.20, ı˛.�/ is a sum of terms ˇŒI;��bŒI;�� , where roughly speaking
ˇŒI;�� is the virtual Poincaré polynomial of the subspace of X 2 Obj˛ss.�/ admitting a
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decomposition X Š
L

i2I Xi with Xi indecomposable and ŒXi �D �.i/ 2 C.A/ for
all i 2 I . However, since by (13)–(14) knowing all the �˛.�/ is equivalent to knowing
all the ı˛.�/, and the �˛.�/ are the same in Example 2.18 and Example 2.20, the
information in the family of all ı˛.�/ is the same in Example 2.18 and Example 2.20.

Example 2.21 Let Assumption 2.1 hold and x�W K.A/�K.A/!Z be antisymmetric
and biadditive and satisfy�

dimK Hom.U;V /� dimK Ext1.U;V /
�
��

dimK Hom.V;U /� dimK Ext1.V;U /
�
D x�

�
ŒU �; ŒV �

�
for all U;V 2A.

(22)

Note that (18) implies (22) with x�.˛; ˇ/D �.˛; ˇ/��.ˇ; ˛/, so this holds for AD
mod–KQ and A D coh.X / for X a smooth projective curve. But we also show
in [13, Section 6.6] using Serre duality that (22) holds when A D coh.X / for X a
Calabi–Yau 3–fold over K .

As in Example 2.20, introduce symbols cŒI;�� for all equivalence classes ŒI; ��, and let
HD C.A; �; 1

2
x�/ be the C–vector space with basis the cŒI;�� . Furthermore, define

H˛ D
L
ŒI;��W�.I /D˛ C � cŒI;�� . Define a multiplication � on H by

cŒI;�� � cŒJ ;�� D
X

eq. classes ŒK ; ��

cŒK ;�� �
1

jAut.K; �/j

X
�W I!K , �W J!K :

�.k/D �.��1.k//C�.��1.k//� X
simply connected directed graphs �:

vertices I qJ , edges �i !�j , i 2 I , j 2 J ,
conn. components ��1.k/q ��1.k/, k 2K

Y
edges
�i !�j

in �

1
2
x�.�.i/; �.j //

�(23)

extended C–bilinearly. Then H is a C–algebra with identity cŒ∅;∅� . For ˛ 2 C.A/
define c˛ D cŒf1g;˛0� where ˛0.1/ D ˛ , define L˛ D C � c˛ and L D

L
˛2C.A/ L

˛ .
Equation (23) yields Œc˛; cˇ �D x�.˛; ˇ/ c˛Cˇ , so L is a Lie subalgebra.

Then [15, Section 6.5] defines invariants J˛.�/ 2Q for ˛ 2 C.A/, such that if we set
�˛.�/D J˛.�/ c˛ and define ı˛.�/ by (14) then Assumption 2.14 holds, with extra
conditions as in Remark 2.15(d) above. These invariants J˛.�/ are defined using the
Euler characteristic of constructible sets in Artin K –stacks, in a rather subtle way. As
Euler characteristic and virtual Poincaré polynomials are related by �.X /DP .X I �1/,
these are specializations of the virtual Poincaré polynomial invariants of Example 2.18
and Example 2.20.

Note that we cannot define the ı˛.�/ directly, but only reconstruct them from the
�˛.�/. In the notation of Example 2.17, this is because �˛.�/ is defined using a Lie
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algebra morphism ‰W SFind
al .ObjA/!L which does not extend to an algebra morphism

‰W SFal.ObjA/!H , so we cannot define ı˛.�/D‰.xı˛ss.�// as we might hope. The
above also holds with C replaced by other commutative C–algebras �, and Euler
characteristics replaced by other �–valued “motivic invariants” ‚ of K –varieties with
‚.K/D 1; for details see [11; 13; 15].

To rewrite (16) as a transformation law for the J˛.�/ we need to compute c˛1�� � ��c˛n

in H . Actually it is enough to know the projection of this to L. As in [15, Section 6.5],
calculation shows this is given by:

c˛1 � � � � � c˛n D terms in cŒI;��, jI j> 1,

C

�
1

2n�1

X
connected, simply connected digraphs �:

vertices f1; : : : ;ng, edge �i !�j implies i < j

Y
edges
�i !�j

in �

x�.˛i ; j̨ /

�
c˛1C���C˛n :

(24)

Here a digraph is a directed graph.

Let .�;T;6/; .z�; zT ;6/ be weak stability conditions on A, � be a connected, simply
connected digraph with finite vertex set I , and �W I!C.A/. Define V .I; �; �; �; z�/2

Q by

V .I; �; �; �; z�/D
1

2jI j�1jI j!

X
total orders � on I :

edge �i !�j in � implies i�j

U.I;�; �; �; z�/:

Then using �˛.�/ D J˛.�/ c˛ and (24), it turns out [15, Theorem 6.28] that (16) is
equivalent to

(25) J˛.z�/D
X
iso.

classes
of finite
sets I

X
�W I!C.A/W
�.I /D˛

X
connected,
simply connected
digraphs � ,
vertices I

V .I; �; �; �; z�/ �
Y
edges �i !�j in �

x�.�.i/; �.j //

�

Y
i2I

J �.i/.�/:

Example 2.21 is the reason why the title of the paper involves Calabi–Yau 3–folds, why
we believe that the ideas of this paper have to do with Mirror Symmetry and String
Theory, and why we want to bring them to the attention of String Theorists in particular
so that they may explain them in physical terms. In brief, the point is this.

In [15, Section 6.5], as the culmination of a great deal of work in [10; 11; 12; 13; 14; 15],
the author defined invariants J˛.�/ 2 Q “counting” � –semistable sheaves in class
˛ 2K.A/ on a Calabi–Yau 3–fold X , which transform according to a complicated
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transformation law (25) under change of weak stability condition, reminiscent of
Feynman diagrams.

The author expects that some related invariants which extend Donaldson–Thomas
invariants and transform according to the same law (25) should be important in String
Theory, perhaps counting numbers of branes or BPS states. For conjectures on this see
[15, Section 6.5]. This paper will study natural ways of combining these invariants in
holomorphic generating functions; the author expects that these generating functions,
and the equations they satisfy, should also be significant in String Theory.

2.3 Comments on the extension to triangulated categories

The series [12; 13; 14; 15] studied only abelian categories, such as the coherent sheaves
coh.X / on a projective K –scheme X . But for applications to String Theory and
Mirror Symmetry, the whole programme should be extended to triangulated categories,
such as the bounded derived category Db.coh.X // of coherent sheaves on X . The
issues involved in this are discussed in [15, Section 7]. For a recent survey on derived
categories of coherent sheaves on Calabi–Yau m–folds, see Bridgeland [5].

One justification for this is Kontsevich’s Homological Mirror Symmetry proposal [16],
which explains Mirror Symmetry of Calabi–Yau 3–folds X; yX as an equivalence
between Db.coh.X // and the derived Fukaya category Db.F. yX // of yX . This relates
the complex algebraic geometry of X , encoded in Db.coh.X //, to the symplectic
geometry of yX , encoded in Db.F. yX //. Building on Kontsevich’s ideas, triangulated
categories of branes have appeared in String Theory in the work of Douglas, Aspinwall,
Diaconescu, Lazaroiu and others.

The following notion of stability condition on a triangulated category, due to Bridgeland
[4, Section 1.1], will be important in this programme. For background on triangulated
categories, see Gelfand and Manin [7].

Definition 2.22 Let T be a triangulated category, and K.T / the quotient of its
Grothendieck group K0.T / by some fixed subgroup. For instance, if T is of finite type
over a field K we can take K.T / to be the numerical Grothendieck group Knum.T / as
in [4, Section 1.3], and then Bridgeland calls the resulting stability conditions numerical
stability conditions.

A stability condition .Z;P/ on T consists of a group homomorphism ZW K.T /! C

called the central charge, and full subcategories P.�/�T for each � 2R of semistable
objects with phase � , satisfying the following:

(a) If S 2 P.�/ then Z.ŒS �/Dm.ŒS �/ei�� for some m.ŒS �/ 2 .0;1/.
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(b) For all t 2 R, P.t C 1/D P.t/Œ1�.
(c) If t1 > t2 and Sj 2 P.tj / for j D 1; 2 then HomT .S1;S2/D 0.

(d) for 0¤U 2 T there is a finite sequence t1 > t2 > � � �> tn in R and a collection
of distinguished triangles with Sj 2 P.tj / for all j :

(26) 0DA0
// A1

//

�������
A2

//

�������
� � � // An�1

// An D U:

{{wwwwww

S1

bbF
F

F

S2

^^=
=

=

Sn

aaC
C

C

This is the generalization to triangulated categories of the slope function stability
conditions of Example 2.7. In both cases we have a central charge homomorphism
ZW K.A/!C or ZW K.T /!C, and semistability can be expressed in terms of arg ıZ .
In the abelian case arg ıZ takes a unique value in .0; �/, but in the triangulated case
one has to choose a value of arg ıZ and lift phases from R=2�Z to R. This need to
choose phases is why in the abelian case Z determines the stability condition, but
in the triangulated case we also need extra data P . Equation (26) is the analogue of
Theorem 2.8, since both decompose an arbitrary object U 2A or T into semistable
objects S1; : : : ;Sn with phases satisfying �.S1/ > � � �> �.Sn/ or t1 > � � �> tn .

There is also a generalized notion of stability condition on T due to Gorodentscev et al
[9], not involving a central charge, which is closer in spirit to Definition 2.4 above. But
we will not use it. Here is Bridgeland’s main result [4, Theorem 1.2], slightly rewritten:

Theorem 2.23 Let T be a triangulated category and K.T / as in Definition 2.22.
Write Stab.T / for the set of stability conditions .Z;P/ on T . Then Stab.T / has
a natural, Hausdorff topology. Let † be a connected component of Stab.T /. Then
there is a complex vector subspace V† in Hom.K.T /;C/ with a well-defined linear
topology such that the map †! Hom.K.T /;C/ given by .Z;P/ 7! Z is a local
homeomorphism †! V† .

When V† is finite-dimensional, which happens automatically when K.T / has finite
rank, † can be given the structure of a complex manifold uniquely so that .Z;P/ 7!Z

is a local biholomorphism †! V† .

Bridgeland’s stability conditions were motivated by Douglas’ work on Pi-stability,
and are natural objects in String Theory. Suppose we wish to define some kind of
generating function f ˛ encoding invariants “counting” .Z;P/–semistable objects
in class ˛ in T . These invariants will depend on .Z;P/, so the generating function
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f ˛ should be a function on Stab.T / (and perhaps in other variables as well). Now
Theorem 2.23 shows Stab.T / is a complex manifold, so it makes sense to require f ˛

to be a holomorphic function on Stab.T /. We can also try to make f ˛ continuous,
despite the fact that the invariants it encodes will change discontinuously over real
hypersurfaces in Stab.T /.

This problem also makes sense in the abelian setting of Example 2.7, where we can try
to define a generating function f ˛ which is a continuous, holomorphic function on
the complex manifold Stab.A/ of (5). In fact most of the rigorous part of the paper is
about Example 2.7, but we have done it in a way that the author expects will generalize
to the triangulated case when (if ever) the extension of [12; 13; 14; 15] to triangulated
categories has been worked out.

3 Holomorphic generating functions

Consider the following situation. Let Assumption 2.1 and Assumption 2.14 hold for
A, with K.A/ of finite rank, and suppose Stab.A/ in Example 2.7 is a nonempty
open subset of Hom.K.A/;C/, and so a complex manifold. This works for all
the quiver examples A D mod–KQ; nil–KQ;mod–KQ=I ; nil–KQ=I ;mod–A of
[12, Section 10], with H;L; : : : chosen as in one of Example 2.16–Example 2.21.

Then we have a complex manifold Stab.A/ of central charges Z , each of which defines
a permissible stability condition .�;R;6/. For this � we have invariants ı˛.�/ 2H˛
and �˛.�/ 2 L˛ for all ˛ 2 C.A/. Regarded as functions of Z , these ı˛.�/; �˛.�/
change discontinuously across real hypersurfaces in Stab.A/ where arg ıZ.ˇ/ D
arg ıZ.
 / for ˇ; 
 2 C.A/ according to the transformation laws (15)–(16), and away
from such hypersurfaces are locally constant.

For ˛ 2 C.A/ we shall consider a generating function f ˛W Stab.A/! H˛ of the
following form, where .�;R;6/ is the stability condition induced by Z :

(27) f ˛.Z/D
X

n>1; ˛1;:::;˛n2C.A/W
˛1C���C˛nD˛

Fn

�
Z.˛1/; : : : ;Z.˛n/

�
�˛1.�/� �˛2.�/� � � � � �˛n.�/:

We explain why we chose this form, and what conditions the Fn must satisfy:

Remark 3.1 (a) The general form of (27) is modelled on (13)–(16) above. The
functions Fn should map .C�/n! C, where C� D C n f0g. For the abelian category
case of Example 2.7 we have Z.˛/ 2 H D fxC iy W x 2 R; y > 0g for ˛ 2 C.A/,
so it would be enough to define Fn only on H n . However, for the extension to the
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triangulated category case discussed in Section 2.3 we must allow Z.˛k/ 2 C� , which
is why we chose the domain .C�/n .

(b) We require that the functions Fn satisfy

(28) Fn.�z1; : : : ; �zn/D Fn.z1; : : : ; zn/ for all �; z1; : : : ; zn 2 C� .

The reason is easiest to explain in the triangulated category case. Let T ;K.T / and
.Z;P/ be as in Definition 2.22, and let r > 0 and  2 R. Define a new stability
condition .Z0;P 0/ on T by Z0 D rei Z and P 0.�/D P.� � =�/.

This gives an action of .0;1/ � R on Stab.T /, which does not change the sets
of .Z;P/–semistable objects, but only their phases � . So we expect that in an
appropriate extension of Assumption 2.14 to the triangulated case, the invariants
ı˛.Z;P/; �˛.Z;P/ “counting” .Z;P/–semistable objects in class ˛ should be also
unchanged by this action. Therefore we can try and make f ˛ and each term in (27)
invariant under Z 7! rei Z , which is equivalent to (28).

We can make a similar argument in the abelian case Example 2.7, but we have to
restrict to rei such that rei Z

�
C.A/

�
� H , which makes the argument less per-

suasive. Requiring f ˛ and Fn instead to be homogeneous of degree d 2 Z, so that
Fn.�z1; : : : ; �zn/D �

dFn.z1; : : : ; zn/ for all �; zk , is equivalent to replacing f ˛.Z/
by Z.˛/df ˛.Z/. So we lose nothing by restricting to d D 0.

(c) Equation (28) implies that F1 is constant, say F1 � c . For � 2 C� we may
replace f ˛;Fn; c by �f ˛; �Fn; �c without changing whether f ˛ is holomorphic or
continuous, so all nonzero choices of c are equivalent. We shall take

(29) F1 � .2� i/�1;

as this simplifies formulae in Section 3.2 and the rest of the paper.

Think of (27) as saying f ˛.Z/ D c �˛.�/C “higher order terms”. If �˛.�/ is an
invariant “counting” �–semistables in class ˛ , then so is f ˛.Z/, to leading order.
But �˛.�/ changes discontinuously with Z , whereas f ˛.Z/ includes higher order
correction terms which smooth out these changes and make f ˛ continuous.

(d) Following equations (16) and (17), we may rewrite (27) as:

f ˛.Z/DX
iso classes

of finite
sets I

1

jI j!

X
�W I!C.A/W
�.I /D˛

" X
total orders � on I .

Write I D fi1; : : : ; ing,
i1�i2� � � ��in

FjI j.Z ı �.i1/; : : : ;Z ı �.in// �

��.i1/.�/�� � ����.in/.�/

#
:(30)
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As for (17), we shall require the functions Fn to have the property that the term Œ � � � �

in (30) is a finite C–linear combination of multiple commutators of ��.i/ for i 2 I ,
and so it lies in the Lie algebra L, not just the algebra H . Thus (27) and (30) make
sense in L, and f ˛ actually maps Stab.A/! L˛ .

This is why we choose to write (27) in terms of the �˛.�/ rather than the ı˛.�/. By
substituting (13) into (27) we get another equation of the same form for f ˛ , but with
ı˛i .�/ instead of �˛i .�/, and different functions Fn . But using the �˛i .�/ means
we can work in L rather than H , which is a great simplification if L is much smaller
than H . This happens in Example 2.21, our motivating Calabi–Yau 3–fold example,
when L˛ D C � c˛ so f ˛ is really just a holomorphic function, but H˛ is in general
infinite-dimensional.

Now for jI j > 1, if a C–linear combination of products of ��.i/.�/ for i 2 I is a
sum of multiple commutators, it is easy to see that the sum of the coefficients of the
products must be zero in C. Thus, a necessary condition for Œ � � � � in (30) to be a linear
combination of multiple commutators is that

(31)
P
�2Sn

Fn.z�.1/; : : : ; z�.n//D 0 for all n> 1 and .z1; : : : ; zn/ 2 .C
�/n ,

where Sn is the symmetric group of permutations � of f1; : : : ; ng.

(e) We require that f ˛ be a continuous and holomorphic function on Stab.A/. These
translate to conditions on the functions Fn . In Section 3.1 we will compute the
conditions on Fn for f ˛ to be continuous; it turns out that across real hypersurfaces
arg zl D arg zlC1 , Fn must jump by expressions in Fk for k < n. For f ˛ to be
holomorphic, it is enough that the Fn be holomorphic wherever they are continuous.

Thus, Fn is a branch of a multivalued holomorphic function, except along arg zl D

arg zlC1 where it jumps discontinuously from one branch to another; but the disconti-
nuities in �˛.�/ and Fn.� � � / cancel out to make f ˛ continuous. A simple comparison
is a branch of log z on C� , cut along .0;1/.

(f) We shall ensure uniqueness of the Fn by imposing a growth condition:

(32)
ˇ̌
Fn.z1; : : : ; zn/

ˇ̌
D o

�
jzk j
�1
�

as zk ! 0 with zl fixed, l ¤ k , for all k .

This may assist the convergence of (27) in situations when the sum is infinite.

(g) Equation (27) is an example of a transformation of the general form

(33) b˛ D
X

n>1; ˛1;:::;˛n2C.A/W
˛1C���C˛nD˛

Pn.˛1; : : : ; ˛n/ a˛1 � a˛2 � � � � � a˛n ;
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where
˚
a˛ W ˛ 2 C.A/

	
and

˚
b˛ W ˛ 2 C.A/

	
are generating sets for some subalgebra

of H , and Pn.˛1; : : : ; ˛n/ 2 C. Equations (13)–(16) of Assumption 2.14 are also of
this form. Transformations of type (33) are closed under composition, and invertible
provided P1.˛/¤ 0 for all ˛ 2 C.A/.

For the moment we impose the following extra condition. It implies there are only
finitely many possibilities for n and ˛1; : : : ; ˛n in (27), and so avoids problems with
infinite sums and convergence. It holds for all the quiver examples ADmod–KQ; : : :

of [12, Section 10], but not for AD coh.X / when dim X > 0.

Assumption 3.2 In the situation of Assumption 2.1, for each ˛ 2C.A/ there are only
finitely pairs ˇ; 
 2 C.A/ with ˛ D ˇC 
 .

In the rest of the section we construct functions Fn satisfying the requirements of
Remark 3.1, and show that they are unique, and satisfy interesting partial differential
equations.

3.1 Conditions on the functions Fn for f ˛ to be continuous

Let Assumption 2.1, Assumption 2.14 and Assumption 3.2 hold for A, with K.A/
of finite rank, and suppose Stab.A/ in Example 2.7 is a nonempty open subset of
Hom.K.A/;C/, and so a complex manifold. Let Z; zZ 2 Stab.A/, with associated
stability conditions .�;R;6/ and .z�;R;6/. We think of Z as varying in Stab.A/
and zZ as a fixed base point.

We need some notation for the coefficients S;U.f1; : : : ; ng;6; �; �; z�/ of Section 2.1.
They depend on the 2n complex numbers Z ı �.k/; zZ ı �.k/ for k D 1; : : : ; n in
H DfxCiy Wx 2R; y > 0g, and the definition makes sense for any 2n elements of H .
Thus there are unique functions sn;unW H

2n!Q written sn;un.z1; : : : ; znI zz1; : : : ; zzn/

such that

S.f1; : : : ; ng;6; �; �; z�/D sn.Zı�.1/; : : : ;Zı�.n/I zZı�.1/; : : : ; zZı�.n//;

U.f1; : : : ; ng;6; �; �; z�/D un.Zı�.1/; : : : ;Zı�.n/I zZı�.1/; : : : ; zZı�.n//:
(34)
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Then using (16) with ˛i ; z�;� in place of ˛; �; z� respectively to express �˛i .�/ in (27)
in terms of ��.j/.z�/, using (34) and rewriting, we find that:

(35) f ˛.Z/D
X

n>1; ˛1;:::;˛n2C.A/W
˛1C���C˛nD˛

�˛1.z�/� �˛2.z�/� � � � � �˛n.z�/ �

" X
mD1;:::;n;
0Da0<a1<
���<amDn

Fm

�
Z.˛a0C1C� � �C˛a1

/; : : : ;Z.˛am�1C1C� � �C˛am
/
�

mQ
kD1

uak�ak�1

�
zZ.˛ak�1C1/; : : : ; zZ.˛ak

/IZ.˛ak�1C1/; : : : ;Z.˛ak
/
�
#
:

We get this by decomposing ˛ D ˇ1 C � � � C ˇm in (27), and then decomposing
ˇk D ˛ak�1C1C� � �C˛ak

as part of an expression (16) for �ˇk .�/, for k D 1; : : : ;m.

We rewrite the bottom line Œ � � � � of (35) as

(36) f ˛.Z/D
X

n>1; ˛1;:::;˛n2C.A/W
˛1C���C˛nD˛

Gn

�
Z.˛1/; : : : ;Z.˛n/I zZ.˛1/; : : : ; zZ.˛n/

�
�

�˛1.z�/� �˛2.z�/� � � � � �˛n.z�/;

using a function GnW H
2n! C given by

Gn.z1; : : : ; znI zz1; : : : ; zzn/DX
mD1;:::;n;

0Da0<a1<���<amDn

Fm.za0C1C � � �C za1
; : : : ; zam�1C1C � � �C zam

/Qm
kD1uak�ak�1

.zzak�1C1; : : : ; zzak
I zak�1C1; : : : ; zak

/:

(37)

In (36), the terms �˛1.z�/ � � � � � �˛n.z�/ and zZ.˛1/; : : : ; zZ.˛n/ are constants inde-
pendent of Z . Thus it is clear that f ˛ is continuous, or holomorphic, provided the
function .z1; : : : ; zn/ 7!Gn.z1; : : : ; znI zz1; : : : ; zzn/ is continuous, or holomorphic, for
each fixed .zz1; : : : ; zzn/ 2H n .

We can now substitute (16) with ˛i ; �; z� in place of ˛; �; z� respectively to express
�˛i .z�/ in (36) in terms of ��.j/.�/. Rewriting gives an expression for f ˛.Z/ as
a linear combination of �˛1.�/ � � � � � �˛n.�/, as in (27). In fact the coefficients of
�˛1.�/� � � � � �˛n.�/ in the two expressions must agree; we can prove this either by
using [14, Example 7.10], in which the �˛1.�/�� � ���˛n.�/ are linearly independent in
H for all ˛1; : : : ; ˛n satisfying some conditions, or by using combinatorial properties
of the coefficients U.� � � / from [15, Theorem 4.8].

Equating the two writes Fn

�
Z.˛1/; : : : ;Z.˛n/

�
in terms of the functions Gm and

uk . Since Z.˛k/; zZ.˛k/ can take arbitrary values in H , we deduce an expression for
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Fn.z1; : : : ; zn/ when zk ; zzk 2H , the inverse of (37):

Fn.z1; : : : ; zn/DX
mD1;:::;n;

0Da0<a1<���<amDn

Gm.za0C1C � � �C za1
; : : : ; zam�1C1C � � �C zam

I

zza0C1C � � �C zza1
; : : : ; zzam�1C1C � � �C zzam

/ �Qm
kD1 uak�ak�1

.zak�1C1; : : : ; zak
I zzak�1C1; : : : ; zzak

/:

(38)

Note that although we want Fn to map .C�/n! C, for the moment (38) is defined
only when zk ; zzk 2H , since we have so far defined un and Gn only on H 2n , not on
.C�/2n . Note too that (38) holds for arbitrary zz1; : : : ; zzn 2H .

Here are some conclusions so far.

Proposition 3.3 Suppose Assumption 2.1, Assumption 2.14 and Assumption 3.2
hold for A with K.A/ of finite rank and Stab.A/ is a nonempty open subset of
Hom.K.A/;C/, and let some functions FnW .C

�/n! C be given. Then a sufficient
condition for the function f ˛ of (27) to be continuous, or holomorphic, is that for
fixed .zz1; : : : ; zzn/ 2 H n the function .z1; : : : ; zn/ 7! Gn.z1; : : : ; znI zz1; : : : ; zzn/ is
continuous, or holomorphic. This holds for some .zz1; : : : ; zzn/ 2H n if and only if it
holds for all .zz1; : : : ; zzn/.

This condition is also necessary, for all values of n occurring in (27), if the terms
�˛1.�/� �˛2.�/� � � � � �˛n.�/ occurring in (27) are linearly independent in H . This
happens in the examples of [14, Example 7.10], for arbitrarily large n.

To go further we must understand the functions sn;un.z1; : : : ; znI zz1; : : : ; zzn/ better.
From Example 2.7, Definition 2.10 and Definition 2.12, we see that these depend on
whether the inequalities arg.zaC� � �Czb/>arg.zbC1C� � �Czc/ and arg.zzaC� � �Czzb/>

arg.zzbC1C � � � C zzc/ hold for each choice of 1 6 a 6 b < c 6 n, choosing arg.� � � /
uniquely in .0; �/ as “ � � � ” lies in H .

For each .zz1; : : : ; zzn/ 2H n , define

N.zz1;:::;zzn/ D
˚
.z1; : : : ; zn/2H n

W if arg.zzaC� � �Czzb/>arg.zzbC1C� � �Czzc/

then arg.zaC� � �Czb/>arg.zbC1C� � �Czc/, for all 16a6b<c6n
	
:

(39)

Then N.zz1;:::;zzn/ is an open subset of H n , as it is defined by strict inequalities, and
.zz1; : : : ; zzn/ 2 N.zz1;:::;zzn/ . As in [14, Definition 4.10] we say that .z�;R;6/ domi-
nates .�;R;6/ if z�.˛/ > z�.ˇ/ implies �.˛/ > �.ˇ/ for all ˛; ˇ 2 C.A/. From
[15, Section 5.2], this implies that

(40) S.f1; : : : ; ng;6; �; �; z�/D
(

1; � ı �.1/>� � �>� ı �.n/; z� ı ��z�.˛/;

0; otherwise,
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for all A–data .f1; : : : ; ng;6; �/ with �.f1; : : : ; ng/D ˛ .

If .z1; : : : ; zn/ 2N.zz1;:::;zzn/ then the same argument shows that

sn.z1; : : : ; znI zz1; : : : ; zzn/D

8<:1;
arg.z1/>� � �>arg.zn/ and
arg.zzk/Darg.zz1C � � �C zzn/, all k,

0; otherwise,

since the conditions in (39) play the same role as z�.˛/ > z�.ˇ/ implies �.˛/ > �.ˇ/
does in (40). From (12) we deduce that if .z1; : : : ; zn/ 2N.zz1;:::;zzn/ then:

un.z1; : : : ; znI zz1; : : : ; zzn/D(41) X
16l6m6n

X
surjective  W f1; : : : ;ng!f1; : : : ;mg

and �W f1; : : : ;mg!f1; : : : ; lg:
a6b implies  .a/6 .b/, a6b implies �.a/6�.b/,

arg.zza/Darg.zz1C� � �Czzn/, all a,
 .a/D .b/ implies arg.za/D arg.zb/,

 .a/< .b/ and �ı .a/D�ı .b/ imply arg.za/>arg.zb/

.�1/l�1

l
�

mY
cD1

1

j �1.c/j!
;

un.z1; : : : ; znI zz1; : : : ; zzn/D 0 if arg.zzk/¤ arg.zz1C � � �C zzn/, some kso that

We have been working with zk ; zzk 2H , since sn;un;Gn are, so far, defined only on
H 2n . We shall now restate the conditions of Proposition 3.3 for f ˛ to be continuous,
or holomorphic, in a way which makes sense for zk ; zzk 2 C� .

Condition 3.4 Let some functions FnW .C
�/n! C be given for n > 1. For all n > 1

and .zz1; : : : ; zzn/ 2 .C
�/n there should exist an open neighbourhood N.zz1;:::;zzn/ of

.zz1; : : : ; zzn/ in .C�/n , such that if .z1; : : : ; zn/ 2N.zz1;:::;zzn/ then Re.zkzz
�1
k
/ > 0 for

k D 1; : : : ; n. For .z1; : : : ; zn/ 2N.zz1;:::;zzn/ we must have

Fn.z1; : : : ; zn/D X
mD1;:::;n; 0Da0<a1<���<amDn
and c1; : : : ; cm 2 Œ0;2�/ W

zza2eick .0;1/; ak�1<a6ak ; kD1;:::;m

Gm.za0C1C� � �Cza1
; : : : ; zam�1C1C� � �Czam

I

zza0C1C� � �Czza1
; : : : ; zzam�1C1C� � �Czzam

/ �

mY
kD1

X
1 6 lk 6 mk 6 ak �ak�1

surjective  k W fak�1C1; : : : ;akg!f1; : : : ;mkg

and �k W f1; : : : ;mkg!f1; : : : ; lkg:
a6b implies  k.a/6 k.b/, a6b implies �k.a/6�k.b/,
 k.a/D k.b/ implies arg.za/D arg.zb/,
 k.a/< k.b/ and �kı k.a/D�kı k.b/ imply arg.za/>arg.zb/,
taking arg.za/; arg.zb/ 2 .ck ��=2; ck C�=2/

.�1/lk�1

lk
�

mkY
cD1

1

j �1
k
.c/j!

;
(42)

Geometry & Topology, Volume 11 (2007)



696 Dominic Joyce

where Gm.� � � / are some functions defined on the subsets of .C�/2m required by (42),
such that the maps .z1; : : : ; zm/ 7! Gm.z1; : : : ; zmI zz1; : : : ; zzm/ are continuous (for
f ˛ to be continuous), and holomorphic (for f ˛ to be holomorphic), in their domains.

Here are some remarks on this:

� From (41), for .z1; : : : ; zn/ in an open neighbourhood of .zz1; : : : ; zzn/ we see that
the term uak�ak�1

.zak�1C1; : : : ; zak
I zzak�1C1; : : : ; zzak

/ in (38) is zero unless
arg.zza/ D ck for all ak�1 < a 6 ak and some ck . We have put this in as a
restriction in the first line of (42), expressing it as zza 2 eick .0;1/ rather than
arg.zza/D ck because of the multivalued nature of arg.

� We put in an extra condition Re.zkzz
�1
k
/ > 0 for all k when .z1; : : : ; zn/ 2

N.zz1;:::;zzn/ . The main point of this is in (42) we have that Re
�
e�ick za

�
> 0 for

ak�1 < a 6 ak , so Re
�
e�ick .zak�1C1C� � �C zak

/
�
> 0, and thus the argument

zak�1C1C� � �Czak
in Gm.� � � / in (42) is nonzero. That is, (42) only needs Gm

to be defined on a subset of .C�/2m .
We also use this condition in the second line, as when ak�1 < a; b 6 ak we can
choose arg.za/; arg.zb/ uniquely in .ck ��=2; ck C�=2/.

� When restricted to H n , Condition 3.4 is equivalent to the conditions of Proposi-
tion 3.3 for f ˛ to be continuous, or holomorphic, as the arguments above show.
But Condition 3.4 also makes sense on .C�/n , where we want Fn to be defined
for the extension to the triangulated category case. Calculations by the author
indicate that Condition 3.4 is the correct extension to the triangulated case.

� The point of restricting to neighbourhoods N.zz1;:::;zzn/ is partly because there
we can use the formula (41), but mostly because we do not have a meaning-
ful extension of un from H 2n to all of .C�/2n , so that (37) and (38) do
not make sense. But for any fixed .zz1; : : : ; zzn/ we can use (41) to define
un.z1; : : : ; znI zz1; : : : ; zzn/ for .z1; : : : ; zn/ sufficiently close to .zz1; : : : ; zzn/, and
this is the basis of Condition 3.4.

Now suppose that .zz1; : : : ; zzn/ 2 .C
�/n with zzkC1=zzk … .0;1/ for all 1 6 k < n, and

let .z1; : : : ; zn/2N.zz1;:::;zzn/ . Then in the first sum in (42) we cannot have ak�1 6ak�2

for any k , as then zzak
; zzak�1 2 eick .0;1/, contradicting zzak

=zzak�1 … .0;1/. Thus
the only term in the first sum is mD n and ak D k for 0 6 k 6 n, so the only terms
in the second line are lk Dmk D 1 and fakg

 k
�!f1g

�k
�!f1g, and (38) reduces to

(43) Fn.z1; : : : ; zn/DGn.z1; : : : ; znI zz1; : : : ; zzn/

if zzkC1=zzk … .0;1/ for all k and .z1; : : : ; zn/ 2N.zz1;:::;zzn/.
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Thus Condition 3.4 requires Fn to be continuous, or holomorphic, on N.zz1;:::;zzn/ , an
open neighbourhood of .zz1; : : : ; zzn/. So we deduce:

Proposition 3.5 Condition 3.4 implies that the function Fn must be continuous, and
holomorphic, on the set

(44)
˚
.z1; : : : ; zn/ 2 .C

�/n W zkC1=zk … .0;1/ for all 1 6 k < n
	
:

Similarly, suppose .zz1; : : : ; zzn/2 .C
�/n with zzlC1=zzl 2 .0;1/ for some 1 6 l <n, and

zzkC1=zzk … .0;1/ for all 1 6 k < n, k ¤ l . Then in the first sum there are two terms,
mD n and ak D k for 0 6 k 6 n as before, and mD n�1 and ak D k for 0 6 k < l ,
ak D kC1 for l 6 k < n. Rewriting arg.zl/ > arg.zlC1/ as Im.zlC1=zl/ < 0, and so
on, we find (42) reduces to

Fn.z1; : : : ; zn/DGn.z1; : : : ; znI zz1; : : : ; zzn/

CGn�1.z1; : : : ; zl�1; zl C zlC1; zlC2; : : : ; znI

zz1; : : : ; zzl�1; zzl CzzlC1; zzlC2; : : : ; zzn/
�

8̂<̂
:

1
2
; Im.zlC1=zl/ < 0;

0; Im.zlC1=zl/D 0;

�
1
2
; Im.zlC1=zl/ > 0:

By (43) this Gn�1.� � � / is Fn�1.z1; : : : ; zl�1; zl C zlC1; zlC2; : : : ; zn/, giving:

Proposition 3.6 Condition 3.4 implies that if .zz1; : : : ; zzn/ 2 .C
�/n with zzlC1=zzl 2

.0;1/ for some 1 6 l < n, and zzkC1=zzk … .0;1/ for all 1 6 k < n with k ¤ l , then
for .z1; : : : ; zn/ in an open neighbourhood of .zz1; : : : ; zzn/ in .C�/n , the following
function is continuous, and holomorphic:

Fn.z1; : : : ; zn/�

Fn�1.z1; : : : ; zl�1; zl C zlC1; zlC2; : : : ; zn/ �

8̂<̂
:

1
2
; Im.zlC1=zl/ < 0;

0; Im.zlC1=zl/D 0;

�
1
2
; Im.zlC1=zl/ > 0:

(45)

To summarize: away from the real hypersurfaces zlC1=zl 2 .0;1/ in .C�/n for
1 6 l < n, the Fn must be continuous and holomorphic. As we cross the hyper-
surface zlC1=zl 2 .0;1/ at a generic point, the function Fn.z1; : : : ; zn/ jumps by
Fn�1.z1; : : : ; zl�1; zl C zlC1; zlC2; : : : ; zn/, with the value on the hypersurface being
the average of the limiting values from either side.

Where several of the hypersurfaces zlC1=zl 2 .0;1/ intersect, Fn.z1; : : : ; zn/ satisfies
a more complicated condition. Roughly speaking, this says that several different sectors
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of (44) come together where the hypersurfaces intersect, and on the intersection Fn

should be a weighted average of the limiting values in each of these sectors. We now
show these conditions determine the functions Fn uniquely, provided they exist at all.

Theorem 3.7 There exists at most one family of functions FnW .C
�/n! C satisfying

Condition 3.4 and equations (28), (29), (31), (32) of Remark 3.1.

Proof Suppose Fn and F 0n for n > 1 are two families of functions satisfying all the
conditions, using functions Gm;G

0
m respectively in Condition 3.4. We shall show that

Fn � F 0n for all n, by induction on n. We have F1 � F 0
1
� .2� i/�1 by (29). So let

n > 2, and suppose by induction that Fk � F 0
k

for all k < n. By Condition 3.4 and
induction on k this implies that Gk DG0

k
for k < n. So taking the difference of (38)

for Fn and F 0n gives

f .z1; : : : ; zn/D Fn.z1; : : : ; zn/�F 0n.z1; : : : ; zn/

DGn.z1; : : : ; znI zz1; : : : ; zzn/�G0n.z1; : : : ; znI zz1; : : : ; zzn/

in an open neighbourhood of .zz1; : : : ; zzn/.

As Gn;G
0
n are continuous and holomorphic in the zk , we see f W .C�/n ! C is

holomorphic. By (28), f is the pullback of a holomorphic function zf W
˚
Œz1; : : : ; zn� 2

CPn�1
W zk ¤ 0; k D 1; : : : ; n

	
! C. Taking the difference of (32) for Fn;F

0
n gives

j zf j D o.jzk j
�1/ near points in just one hypersurface zk D 0 in CPn�1 . So by standard

results in complex analysis, zf extends holomorphically over these parts of CPn�1 ,
and so is defined except on intersections of two or more hypersurfaces zk D 0 in
CPn�1 . By Hartog’s theorem zf extends holomorphically to all of CPn�1 , and so
is constant. Since n > 1, equation (31) gives

P
�2Sn

zf
�
Œz�.1/; : : : ; z�.n/�

�
D 0 for

zk 2 C� , forcing zf � 0. Hence f � 0 and Fn � F 0n . The theorem follows by
induction.

Note that we actually prove slightly more than the theorem says: any functions
F1; : : : ;Fn satisfying the conditions up to n are unique.

3.2 Partial differential equations satisfied by f ˛ and Fn

We wish to construct a family of holomorphic generating functions f ˛W Stab.A/!L˛
for ˛ 2 C.A/. Clearly, it would be interesting if this family satisfied some nontrivial
partial differential equations. We are now going to guess a p.d.e. for the f ˛ to satisfy,
and deduce a p.d.e. for the Fn . We will then use this p.d.e. to construct the functions Fn

that we want by induction on n. In Section 3.3 we will prove they satisfy Remark 3.1
and Condition 3.4. Theorem 3.7 then shows these Fn are unique.
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This means that the p.d.e.s that we shall guess for the f ˛ and Fn are actually implied
by the general assumptions Remark 3.1 and Condition 3.4, which seems very surprising,
as these imposed no differential equations other than being holomorphic. One possible
conclusion is that our p.d.e.s are not simply something the author made up, but are
really present in the underlying geometry and combinatorics, and have some meaning
of their own.

To guess the p.d.e. we start by determining the function F2 . Equation (28) implies
we may write F2.z1; z2/D f .z2=z1/ for some f W C�! C, and then Proposition 3.5,
Proposition 3.6 and (29) imply that f is holomorphic in C n Œ0;1/ with the following
continuous over .0;1/:

f .z/�
1

2� i
�

8̂<̂
:

1
2
; Im.z/ < 0;

0; Im.z/D 0;

�
1
2
; Im.z/ > 0:

Since log z cut along .0;1/ jumps by 2� i across .0;1/, the obvious answer is
f .z/D .2� i/�2 log zCC for some constant C , where we define log z on C n Œ0;1/

such that Im log z 2 .0; 2�/. But equation (31) reduces to f .z/C f .z�1/� 0, which
holds provided C D�� i=.2� i/2 . This suggests that

(46) F2.z1; z2/D

8<:
1

.2�i/2

�
log.z2=z1/�� i

�
; z2=z1 … .0;1/;

1

.2�i/2
log.z2=z1/; z2=z1 2 .0;1/;

where log z is defined so that Im log z 2 Œ0; 2�/. It is now easy to check that these
F1;F2 satisfy Condition 3.4 and (28), (29), (31), (32) up to nD 2, so Theorem 3.7
shows (46) is the unique function F2 which does this.

Let us now consider a simple situation in which we are interested only in classes
ˇ; 
; ˇC
 in C.A/, and ˇ; 
 cannot be written as ıC� for ı; � 2C.A/, and the only
ways to write ˇC
 D ıC� for ı; � 2C.A/ are ı; �Dˇ; 
 or ı; �D 
; ˇ . In this case,
from (27), (29) and (46) we see that when Z 2 Stab.A/ with Z.
 /=Z.ˇ/ … .0;1/

we have

f ˇ.Z/D 1
2�i

�ˇ.�/; f 
 .Z/D 1
2�i

�
 .�/;

f ˇC
 .Z/D 1
2� i

�ˇC
 .�/C 1
.2�i/2

�
log

�
Z.
 /
Z.ˇ/

�
�� i

� �
�ˇ.�/��
 .�/��
 .�/��ˇ.�/

�
:
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These satisfy the p.d.e. on Stab.A/, at least for Z.
 /=Z.ˇ/ … .0;1/:

(47) df ˇC
 .Z/D
�
f ˇ.Z/�f 
 .Z/�f 
 .Z/�f ˇ.Z/

�
˝

�
d.Z.
 //

Z.
 /
�

d.Z.ˇ//
Z.ˇ/

�
:

Here f ˇC
 is an L–valued function on Stab.A/, so df ˇC
 is an L–valued 1–form,
that is, a section of L˝C T �

C
Stab.A/. Also Z.
 /;Z.ˇ/ are complex functions on

Stab.A/, so d.Z.
 //=Z.
 /, d.Z.ˇ//=Z.ˇ/ are complex 1–forms on Stab.A/, and
tensoring over C with f ˇ.Z/ � f 
 .Z/� f 
 .Z/ � f ˇ.Z/ also gives an L–valued
1–form on Stab.A/. Note that �ˇ.�/; �
 .�/; �ˇC
 .�/ are locally constant in Z away
from Z.
 /=Z.ˇ/ 2 .0;1/, so there are no terms from differentiating them. Also, by
construction f ˇ; f 
 ; f ˇC
 are continuous and holomorphic over the hypersurface
Z.
 /=Z.ˇ/ 2 .0;1/, so by continuity (47) holds there too.

We now guess that the generating functions f ˛ of (27) should satisfy the p.d.e., for
all ˛ 2 C.A/:

df ˛.Z/D
X

ˇ;
2C.A/W˛DˇC


�
f ˇ.Z/�f 
 .Z/

�
˝

�
d.Z.
 //

Z.
 /
�

d.Z.ˇ//
Z.ˇ/

�

D

X
ˇ;
2C.A/W˛DˇC


�
1
2
Œf ˇ.Z/; f 
 .Z/�

�
˝

�
d.Z.
 //

Z.
 /
�

d.Z.ˇ//
Z.ˇ/

�

D�

X
ˇ;
2C.A/W˛DˇC


�
Œf ˇ.Z/; f 
 .Z/�

�
˝

d.Z.ˇ//
Z.ˇ/

;

(48)

where the three lines are equivalent, noting that we may exchange ˇ; 
 . In the simple
case above this reduces to (47) when ˛ D ˇC 
 .

We can now explain our choice of constant F1 � .2� i/�1 in (29). The 2� i comes
from the jumping of log z over .0;1/ as above. If we had instead set F1 � c for
some c 2 C, then f ˛;Fn and the right hand side of (46) would be multiplied by
2� i c , and the right hand sides of (47)–(48), and (65) below, would be multiplied by
.2� i c/�1 . We picked c D .2� i/�1 to eliminate constant factors in the p.d.e. (48) and
flat connection (65), and so simplify our equations.
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For (48) to hold, it is clearly necessary that the right hand side should be closed. We
check this by applying d to it and using (48), giving:

d
� X
ˇ;
2C.A/W˛DˇC


�
f ˇ.Z/�f 
 .Z/

�
˝

�
d.Z.
 //

Z.
 /
�

d.Z.ˇ//
Z.ˇ/

��
D

X
�;ı2C.A/W˛D�Cı

�
df �.Z/�f ı.Z/

�
^

�
d.Z.ı//

Z.ı/
�

d.Z.�//
Z.�/

�
C

X
ˇ;�2C.A/W˛DˇC�

�
f ˇ.Z/� df �.Z/

�
^

�
d.Z.�//

Z.�/
�

d.Z.ˇ//
Z.ˇ/

�
D

X
ˇ;
;ı2C.A/W˛DˇC
Cı

�
f ˇ.Z/�f 
 .Z/�f ı.Z/

�
˝

h�
d.Z.
 //

Z.
 /
�

d.Z.ˇ//
Z.ˇ/

�
^

�
d.Z.ı//

Z.ı/
�

d.Z.ˇC
//
Z.ˇC
/

�
C

�
d.Z.ı//

Z.ı/
�

d.Z.
 //
Z.
 /

�
^

�
d.Z.
Cı//

Z.
Cı/
�

d.Z.ˇ//
Z.ˇ/

�i
D 0:

(49)

Here expanding the first line gives
P
ˇ;
 df ˇ �f 
 ^ .� � � /C

P
ˇ;
 f

ˇ � df 
 ^ .� � � /,
as the final 1–form is closed. These two terms appear in the second and third lines,
with ˇ; 
 relabelled as �; ı in the second line and ˇ; � in the third. The fourth, fifth
and sixth lines substitute (48) into the second and third lines, with � in place of ˛ for
the second line and �; 
; ı in place of ˛; ˇ; 
 for the third line. The final step holds as
the 2–form Œ � � � � on the fourth and fifth lines is zero.

Thus equation (48) has the attractive property that it implies its own consistency
condition; that is, the condition for (48) to be locally solvable for f ˛ is equation (48)
for ˇ; 
 . We express (48) in terms of the functions Fn and Gn .

Proposition 3.8 Suppose Assumption 2.1, Assumption 2.14 and Assumption 3.2
hold for A with K.A/ of finite rank and Stab.A/ is a nonempty open subset of
Hom.K.A/;C/, and let some functions FnW .C

�/n! C be given. Then a sufficient
condition for the functions f ˛ of (27) to satisfy (48), is that for fixed .zz1; : : : ; zzn/2H n

the functions .z1; : : : ; zn/ 7!Gn.z1; : : : ; znI zz1; : : : ; zzn/ of Section 3.1 should satisfy

dGn.z1; : : : ; znI zz1; : : : ; zzn/D

n�1X
kD1

Gk.z1; : : : ; zk I zz1; : : : ; zzk/ �

Gn�k.zkC1; : : : ; znI zzkC1; : : : ; zzn/

�
dzkC1C� � �Cdzn

zkC1C� � �Czn
�

dz1C� � �Cdzk

z1C� � �Czk

�(50)

in H n . This holds for some .zz1; : : : ; zzn/ in H n if and only if it holds for all
.zz1; : : : ; zzn/ in H n .
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This condition is also necessary, for all values of n occurring in (27), if the terms
�˛1.�/� �˛2.�/� � � � � �˛n.�/ occurring in (27) are linearly independent in H . This
happens in the examples of [14, Example 7.10], for arbitrarily large n.

Now suppose Condition 3.4 holds. Then equation (50) holds for .z1; : : : ; zn/ in
N.zz1;:::;zzn/ for all n > 1 and all fixed .zz1; : : : ; zzn/ 2 .C

�/n if and only if the following
p.d.e. holds on the domain (44) for all n > 1:

(51) dFn.z1; : : : ; zn/D

n�1X
kD1

Fk.z1; : : : ; zk/Fn�k.zkC1; : : : ; zn/ ��
dzkC1C � � �C dzn

zkC1C � � �C zn
�

dz1C � � �C dzk

z1C � � �C zk

�
:

Proof For the first part, substitute (36) in for f ˛; f ˇ and f 
 in the top line of (48).
Then both sides can be rewritten as a sum over ˛1; : : : ; ˛n2C.A/ with ˛1C� � �C˛nD˛

of �˛1.z�/ � � � � � �˛n.z�/ tensored with complex 1–forms. Equating the complex 1–
form coefficients of �˛1.z�/ � � � � � �˛n.z�/ gives (50), evaluated at za D Z.˛a/ and
zza D

zZ.˛a/, where the Gk term comes from f ˇ in (48) with ˇ D ˛1 C � � � C ˛k ,
and the Gn�k term comes from f 
 in (48) with 
 D ˛kC1C � � �C˛n . The first two
paragraphs follow, by the same arguments used to prove Proposition 3.3.

For the final part, let Condition 3.4 hold. If .zz1; : : : ; zzn/2 .C
�/n with zzkC1=zzk … .0;1/

for 1 6 k < n and .z1; : : : ; zn/ 2N.zz1;:::;zzn/ , then the proof of Proposition 3.5 shows
that:

Fn.z1; : : : ; zn/DGn.z1; : : : ; znI zz1; : : : ; zzn/;

Fk.z1; : : : ; zk/DGk.z1; : : : ; zk I zz1; : : : ; zzk/;

Fn�k.zkC1; : : : ; zn/DGn�k.zkC1; : : : ; znI zzkC1; : : : ; zzn/:

Thus (50) is equivalent to (51) in N.zz1;:::;zzn/ , so (50) implies (51) in the domain (44).

For the reverse implication, suppose Condition 3.4 holds and (51) holds in (44).
Then the argument above shows (50) holds for .z1; : : : ; zn/; .zz1; : : : ; zzn/ in (44) with
.z1; : : : ; zn/2N.zz1;:::;zzn/ . But whether (50) holds or not is unaffected by small changes
in .zz1; : : : ; zzn/, and (44) is dense in .C�/n . Thus, (50) holds for all .zz1; : : : ; zzn/ 2

.C�/n and .z1; : : : ; zn/ 2N.zz1;:::;zzn/ with .z1; : : : ; zn/ in (44). Now by Condition 3.4
the functions .z1; : : : ; zm/ 7!Gm.z1; : : : ; zmI zz1; : : : ; zzm/ are continuous and holomor-
phic, so as (44) is open and dense we see that (50) must hold for all .z1; : : : ; zn/ 2

N.zz1;:::;zzn/ , by continuity.
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The proof of Proposition 3.8 conceals a subtlety. One might think that for generic
Z 2 Stab.A/, all terms .Z.˛1/; : : : ;Z.˛n// occurring in (27) will lie in the open
dense domain (44), so that (51) on (44) implies (48) for generic Z in the obvious way,
and so (48) must hold for all Z by continuity. However, this is false. For example,
if ˛1 D ˛2 then Z.˛2/=Z.˛1/� 1 2 .0;1/, so .Z.˛1/; : : : ;Z.˛n// does not lie in
(44) for any Z 2 Stab.A/. So assuming (51) on (44) apparently tells us nothing about
how such terms contribute to (48).

Because of this, for (48) to hold when f ˛ in (27) includes terms with dependencies
such as ˛1D˛2 , we need Fn to satisfy not just (51) on (44), but other more complicated
conditions on the real hypersurfaces zkC1=zk 2 .0;1/ as well. The point of the proof
is that these other conditions are implied by (51) on (44) and Condition 3.4, as we can
express the conditions in terms of the Gn.z1; : : : ; znI zz1; : : : ; zzn/ and use the fact that
they are continuous and holomorphic in .z1; : : : ; zn/ over the hypersurfaces zkC1=zk 2

.0;1/.

Equations (50) and (51) apparently have poles on the hypersurfaces z1C � � �C zk D 0

and zkC1 C � � � C zn D 0. So we would expect solutions Gn;Fn to have log-type
singularities along these hypersurfaces; in particular, this suggests that there should
not be single-valued solutions on the domain (44). In fact this is false, and single-
valued, nonsingular solutions can exist across these hypersurfaces. The next proposition
explains why.

Proposition 3.9 For n > 2 the following is a nonempty, connected set in Cn :˚
.z1; : : : ; zn/ 2 .C

�/n W zkC1=zk … .0;1/ for k D 1; : : : ; n� 1

and z1C � � �C zn D 0
	
:

(52)

If Fn satisfies (51) on the domain (44) then Fn � Cn on (52) for some Cn 2 C. If Fn

also satisfies (31) as in Remark 3.1 then CnD 0. In this case we have Fn.z1; : : : ; zn/D

.z1C � � �C zn/Hn.z1; : : : ; zn/ for a holomorphic function Hn defined on the domain
(44), including where z1C � � �C zn � 0. Using these we rewrite (51) as

(53)
dFn.z1; : : : ; zn/D

Pn�1
kD1 Hk.z1; : : : ; zk/Hn�k.zkC1; : : : ; zn/ ��

.z1C� � �Czk/.dzkC1C� � �Cdzn/�.zkC1C� � �Czn/.dz1C� � �Cdzk/
�
:

Note that (53) has no poles on (44).
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Proof Let .z1; : : : ; zn/; .z
0
1
; : : : ; z0n/ lie in (52). We shall construct a path between

them in (52), showing (52) is connected. It is easy to see that˚
w 2 C W.z1; : : : ; zn�2; w; zn�1C zn�w/ lies in (52)

	
D

C n
�
fx.zn�1C zn/ W x 2 Œ0; 1�g[ fxzn�2 W x 2 Œ0;1/g

�
;

(54) ˚
w 2 C W.z01; : : : ; z

0
n�2; w; z

0
n�1C z0n�w/ lies in (52)

	
D

C n
�
fx.z0n�1C z0n/ W x 2 Œ0; 1�g[ fxz0n�2 W x 2 Œ0;1/g

�
;

(55)

which are both connected subsets of C, containing zn�1 and z0
n�1

respectively. Choose
some w0 in both (54) and (55) with jw0j�jzk j; jz

0
k
j for all kD1; : : : ; n. Choose paths

between zn�1 and w0 in (54), and between z0
n�1

and w0 in (55). These induce paths
in (52) between .z1; : : : ; zn/ and .z1; : : : ; zn�2; w0; zn�1 C zn �w0/, and between
.z0

1
; : : : ; z0n/ and .z0

1
; : : : ; z0

n�2
; w0; z

0
n�1
C z0n�w0/.

It remains to find a path in (52) between .z1; : : : ; zn�2; w0; zn�1 C zn � w0/ and
.z0

1
; : : : ; z0

n�2
; w0; z

0
n�1
C z0n �w0/. To do this, choose a path .x1.t/; : : : ;xn�2.t//

for t 2 Œ0; 1� between .z1; : : : ; zn�2/ and .z0
1
; : : : ; z0

n�2
/ in˚

.y1; : : : ;yn�2/ 2 .C
�/n�2

WykC1=yk … .0;1/ for k D 1; : : : ; n� 3

and yn�2=w0 … .0;1/
	
;

which is possible as using ykC1=yk , yn�2=w0 as coordinates we see this domain is
homeomorphic to .CnŒ0;1//n�2 , and thus is connected. Making w0 larger if necessary,
we can also assume that jw0j� jxk.t/j for all kD 1; : : : ; n�2 and t 2 Œ0; 1�. Then it is
easy to see that the path .x1.t/; : : : ;xn�2.t/; w0;�x1.t/�� � ��xn�2.t/�w0/ for t 2

Œ0; 1� links .z1; : : : ; zn�2; w0; zn�1Czn�w0/ and .z0
1
; : : : ; z0

n�2
; w0; z

0
n�1
Cz0n�w0/

in (52). Therefore (52) is connected.

For the second part, observe that on the hypersurface z1 C � � � C zn D 0 we have
zkC1C � � � C zn � �.z1C � � � C zk/, so the 1–form Œ � � � � in (51) restricts to zero on
z1C � � �C zn D 0. Thus the restriction of dFn to (52) is zero, so Fn � Cn on (52) for
some Cn 2C, as (52) is connected. For generic .z1; : : : ; zn/ in (52) all the permutations
.z�.1/; : : : ; z�.n// for � 2 Sn lie in (52) as well, so (31) becomes n!Cn D 0, giving
CnD 0. Thus, the holomorphic function Fn is zero along the nonsingular hypersurface
z1C � � �C zn D 0 in its domain (44). Properties of holomorphic functions imply that
Fn.z1; : : : ; zn/ D .z1 C � � � C zn/Hn.z1; : : : ; zn/ for a unique holomorphic function
Hn on (44). Equation (53) is immediate.

Suppose we are given some holomorphic functions Fn on the domains (44) satisfying
(51). Analytically continue the Fn to multivalued, singular holomorphic functions zFn

on .C�/n , still satisfying (51). The argument above shows that zFn is locally constant

Geometry & Topology, Volume 11 (2007)



Holomorphic generating functions for counting invariants on Calabi–Yau 3–folds 705

along z1C � � � C zn D 0, but it can take a different value on each sheet. So (51) can
have genuine poles along z1C � � �C zk D 0 and zkC1C � � �C zn D 0 when zFk ; zFn�k

are nonzero constants.

Thus zFn will have log-like singularities along z1C� � �CzkD0 and zkC1C� � �CznD0,
and more generally singularities along za C � � � C zb D 0 for 1 6 a 6 b 6 n with
.a; b/¤ .1; n/. One moral is that our functions Fn manage to be single-valued and
nonsingular on (44) for very special reasons, and their analytic continuations have
much worse singularities and branching behaviour.

We now construct functions Fn for n > 1 satisfying (51), by induction on n.

Proposition 3.10 There exists a unique series of holomorphic functions Fn for n > 1

defined on the domain (44) with F1 � .2� i/�1; such that Fn satisfies (51) and is zero
on (52). Also Fn.z1; : : : ; zn/� .z1C� � �Czn/Hn.z1; : : : ; zn/ for a unique holomorphic
function Hn defined on (44), and (53) holds.

Proof Suppose by induction that for some m > 2 we have constructed unique holo-
morphic functions Fn;Hn on the domains (44) for nD 1; : : : ;m� 1 satisfying all the
conditions of the proposition for n <m. For mD 2 this is trivial, as we must have
F1.z/D .2� i/�1 and H1.z/D .2� iz/�1 . We will construct Fm;Hm , and show they
are unique.

Equations (51) and (53) for nDm give equivalent expressions for dFm on (44), with
(53) being manifestly holomorphic on all of (44). Write ˛m for the right hand side of
(51) or (53), so that ˛m is a holomorphic 1–form on (44), and we need to construct
Fm with dFm D ˛m . Following (49), we can compute d˛m by applying d to the r.h.s.
of (51) for nDm, and using (51) for n<m (which holds by induction) to substitute
in for dFk and dFn�k . Then everything cancels giving d˛m D 0, so ˛m is a closed
1–form.

Although (44) is not simply connected, it is the pullback to Cm
n f0g of

(56)
˚
Œz1; : : : ; zm� 2 CPm�1

W zk ¤ 0 and zkC1=zk … .0;1/ for all k
	
;

which is homeomorphic to
�
C n Œ0;1/

�m�1 , and so is simply connected. Now ˛m is
the pullback of a 1–form on (56), which is closed as ˛m is closed, and so is exact as
(56) is simply connected.

Therefore ˛m is an exact holomorphic 1–form on (44), so there exists a holomorphic
function Fm on (44) with dFm D ˛m , which is unique up to addition of a constant,
as (44) is connected. To choose the constant, note that the restriction of ˛m to the
connected set (52) is zero as in Proposition 3.9, so requiring Fm to be zero on (52) fixes
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Fm uniquely. Since Fm is zero along the nonsingular hypersurface z1C� � �C zm D 0,
by properties of holomorphic functions there is a unique holomorphic function Hm on
(44) with Fm.z1; : : : ; zm/� .z1C � � �C zm/Hm.z1; : : : ; zm/. These Fm;Hm satisfy
all the conditions for nDm, and the proposition follows by induction.

3.3 Reconciling the approaches of Section 3.1 and Section 3.2

So far we have given two quite different approaches to the functions Fn used to define
f ˛ in (27). In Section 3.1 we found conditions on the Fn on .C�/n for the f ˛ to be
continuous and holomorphic, and showed such Fn would be unique if they existed. In
Section 3.2 we found different conditions on the Fn on a subdomain (44) of .C�/n

for the f ˛ to satisfy the p.d.e. (51), neglecting the question of whether f ˛ would be
continuous for these Fn , and constructed unique Fn satisfying these second conditions.
There seems no a priori reason why these two sets of conditions on Fn should be
compatible, but we now prove that they are. That is, we show that the Fn on (44)
constructed in Proposition 3.10 extend uniquely to .C�/n so as to satisfy Remark 3.1
and Condition 3.4.

First we show, in effect, that Proposition 3.6 holds for the Fn of Proposition 3.10. For
Fn as in Proposition 3.10, define a function Dl;n for 1 6 l < n by:

Dl;n W
˚
.zz1; : : : ; zzn/ 2 .C

�/n W zzlC1=zzl 2 .0;1/,

zzkC1=zzk … .0;1/ for 1 6 k < n, k ¤ l
	
�! C;

Dl;n.zz1; : : : ; zzn/D lim
.z1; : : : ; zn/! .zz1; : : : ; zzn/ W
.z1; : : : ; zn/ lies in (44),
Im.zlC1=zl / < 0

Fn.z1; : : : ; zn/� lim
.z1; : : : ; zn/! .zz1; : : : ; zzn/ W
.z1; : : : ; zn/ lies in (44),
Im.zlC1=zl / > 0

Fn.z1; : : : ; zn/:(57)

These limits exist and give a continuous function Dl;n , since the proof in Proposition
3.10 that the Fn are continuous and holomorphic in their domains extends locally from
either side over the hypersurface zlC1=zl 2 .0;1/. The next result would follow from
(45) if we knew Proposition 3.6 applied.

Proposition 3.11 We have

Dl;n.z1; : : : ; zn/�Fn�1.z1; : : : ; zl�1; zlCzlC1; zlC2; : : : ; zn/

on the domain of Dl;n; where Fn�1 is as in Proposition 3.10.
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Proof Taking the difference of the limits of (51) from both sides of the hypersurface
zlC1=zl 2 .0;1/ gives an equation in 1–forms on the domain of Dl;n :

dDl;n.z1; : : : ; zn/D(58) Pl�1
kD1 Fk.z1; : : : ; zk/Dl�k;n�k.zkC1; : : : ; zn/ �

h
dzkC1C���Cdzn

zkC1C���Czn
�

dz1C���Cdzk

z1C���Czk

i
CPn�1

kDlC1 Dl;k.z1; : : : ; zk/Fn�k.zkC1; : : : ; zn/ �
h

dzkC1C���Cdzn

zkC1C���Czn
�

dz1C���Cdzk

z1C���Czk

i
:

Here if .z1; : : : ; zn/ lies in the domain of Dl;n and k < l then Fk is defined and
continuous at .z1; : : : ; zk/ but Fn�k is not defined (nor continuous) at .zkC1; : : : ; zn/,
so the difference in limits of Fk.z1; : : : ; zk/Fn�k.zkC1; : : : ; zn/ in (51) is equal to
Fk.z1; : : : ; zk/Dl�k;n�k.zkC1; : : : ; zn/, giving the first term in (58). Similarly, k > l

gives the second term. There is no term k D l in (58), since Fl and Fn�l are both
defined and continuous at .z1; : : : ; zl/ and .zlC1; : : : ; zn/ respectively, so the limits
from each side of zlC1=zl 2 .0;1/ cancel.

As Fn.z1; : : : ; zn/D 0 when z1C � � �C zn D 0, if .zz1; : : : ; zzn/ lies in the domain of
Dl;n with zz1C � � � C zzn D 0 then both limits in (57) are zero, as .zz1; : : : ; zzn/ is the
limit of points .z1; : : : ; zn/ with z1C� � �CznD 0 from both sides of zlC1=zl 2 .0;1/.
Thus

(59) Dl;n.z1; : : : ; zn/D 0 if z1C � � �C zn D 0.

Also, it is easy to verify from Proposition 3.10 that F2 is given by (46) in its domain,
so from properties of logs we see that

(60) D1;2.z1; z2/� .2� i/�1
� F1.z1C z2/:

By induction, suppose Dl;n.z1; : : : ; zn/�Fn�1.z1; : : : ; zl�1; zlCzlC1; zlC2; : : : ; zn/

whenever 1 6 l < n 6 m, for some m > 2. The first case mD 2 is (60). Let nDmC1

and 1 6 l < n. Then comparing (51) and (58) and using the inductive hypothesis shows
that

dDl;n.z1; : : : ; zn/� dFn�1.z1; : : : ; zl�1; zl C zlC1; zlC2; : : : ; zn/:

Thus Dl;n.z1; : : : ; zn/ � Fn�1.z1; : : : ; zl�1; zl C zlC1; zlC2; : : : ; zn/ is constant on
the domain of Dl;n . But this domain is connected and contains .z1; : : : ; zn/ with
z1C � � �C zn D 0 as n > 3, and both Dl;n.� � � / and Fn�1.� � � / are zero at such points
by Proposition 3.10 and (59). So the constant is zero, proving the inductive step and
the proposition.

Using this we extend the Fn of Proposition 3.10 so that Condition 3.4 holds.
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Theorem 3.12 The functions Fn of Proposition 3.10, defined on the domain (44), can
be extended uniquely to FnW .C

�/n! C satisfying Condition 3.4.

Proof The idea of the proof is that by induction on n we shall construct functions
Gn.z1; : : : ; znI zz1; : : : ; zzn/ that for each fixed .zz1; : : : ; zzn/ are continuous and holomor-
phic and satisfy (50) in .z1; : : : ; zn/ on N.zz1;:::;zzn/ , such that (42) holds with Fn as in
Proposition 3.10 whenever .z1; : : : ; zn/ lies in the intersection of (44) and N.zz1;:::;zzn/ .
We then extend Fn uniquely from (44) to .C�/n by requiring (42) to hold on all of
N.zz1;:::;zzn/ , for all .zz1; : : : ; zzn/.

Suppose by induction that for some p > 2 and for all n<p we have found open neigh-
bourhoods N.zz1;:::;zzn/ of .zz1; : : : ; zzn/ in .C�/n for all .zz1; : : : ; zzn/ 2 .C

�/n , and func-
tions Gn , and extensions of Fn in Proposition 3.10 to .C�/n , such that Condition 3.4
holds for n < p and the Gn satisfy (50), and Gn.z1; : : : ; znI zz1; : : : ; zzn/ D 0 if
z1C � � � C zn D 0. The first case p D 2 is trivial, taking F1 � .2� i/�1 � G1 and
N.zz1/ D C� . We shall now construct open neighbourhoods N.zz1;:::;zzp/ , the function
Gp , and an extension of Fp , satisfying all the conditions.

Choose a connected, simply connected open neighbourhood N.zz1;:::;zzp/ of each point
.zz1; : : : ; zzp/ in .C�/p , such that .z1; : : : ; zp/2N.zz1;:::;zzp/ implies that (a) if 16m<p ,
0 D a0 < a1 < � � � < am D p and c1; : : : ; cm 2 Œ0; 2�/ with zza 2 eick .0;1/ for
ak�1 < a 6 ak , then

.za0C1C � � �Cza1
; : : : ; zam�1C1C � � �Czam

/ 2N.zza0C1C���Czza1
;:::;zzam�1C1C���Czzam /

;

and (b) if 1 6 k <p then .z1; : : : ; zk/2N.zz1;:::;zzk/ and .zkC1; : : : ; zp/2N.zzkC1;:::;zzp/ .
This is satisfied if N.zz1;:::;zzp/ is a small enough open ball about .zz1; : : : ; zzp/. The point
is that (a) ensures that all the terms in (42) with nD p and m < p are well-defined
when .z1; : : : ; zp/ 2 N.zz1;:::;zzp/ , and (b) ensures that the right hand side of (50) for
nD p is well-defined when .z1; : : : ; zp/ 2N.zz1;:::;zzp/ .

Now regard .zz1; : : : ; zzp/ as fixed, and consider equation (50) with nDp for .z1; : : : ; zp/

in N.zz1;:::;zzp/ . The left hand side dGp.� � � / has not yet been defined. The right hand
side involves Gk for k<p , which by induction are defined on their domains and satisfy
(50). The choice of N.zz1;:::;zzp/ implies the r.h.s. is a 1–form defined on N.zz1;:::;zzp/ , and
taking d and using (50) for n < p we find this 1–form is closed, as for dFm in the
proof of Proposition 3.10. Also, as for (49) and for Fn in Proposition 3.9, the inductive
assumption Gn.z1; : : : ; znI zz1; : : : ; zzn/D 0 if z1C � � �C zn D 0 ensures that the terms
.z1C � � �C zk/

�1 , .zkC1C � � �C zn/
�1 in (50) do not induce singularities.

This proves that the right hand side of (50) for nD p is a well-defined, closed, holo-
morphic, nonsingular 1–form on the connected, simply connected domain N.zz1;:::;zzp/ .
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Hence there exists a holomorphic function .z1; : : : ; zp/ 7!Gp.z1; : : : ; zpI zz1; : : : ; zzp/

on N.zz1;:::;zzp/ , unique up to addition of a constant, such that (50) holds. Here is how we
fix the constant. Recall that so far Fp has been defined on the open dense domain (44)
in Proposition 3.10, and Fn for n< p has been defined on all of .C�/n . Thus, every
term in (42) with nD p is now defined on the intersection of (44) and N.zz1;:::;zzp/ ; note
that the only term on the r.h.s. of (42) with mD nD p is Gp.z1; : : : ; zpI zz1; : : : ; zzp/.
This intersection is also open and nonempty, as N.zz1;:::;zzp/ is nonempty and (44) is
dense.

We claim that there is a unique function Gp satisfying (50) such that (42) holds on the
intersection of (44) and N.zz1;:::;zzp/ . To see this, note that by Proposition 3.8, equations
(50) and (51) are equivalent when (42) holds. Thus, for any choice of Gp satisfying
(50), applying d to both sides of (42) gives the same thing, so the difference between
the left and right hand sides of (42) is locally constant on the intersection of N.zz1;:::;zzp/

and (44). Fix a connected component C of this intersection. Then we can choose
Gp uniquely such that (42) holds on this connected component, and on every other
connected component the difference between the left and right hand sides of (42) is
constant.

Suppose C 0;C 00 are connected components of the intersection of N.zz1;:::;zzp/ and (44)
which meet along the real hypersurface zlC1=zl 2 .0;1/ for 1 6 l < p . (That is,
the closures of C 0;C 00 must contain a nonempty open subset of this hypersurface).
Then Proposition 3.11 computes how much Fp jumps across this hypersurface, which
by Proposition 3.6 follows from the condition for Gp to be continuous across the
hypersurface. It is not difficult to deduce that the difference between the left and right
hand sides of (42) must take the same constant value on C 0 and C 00 . Since this value
is 0 on one component C , and as N.zz1;:::;zzp/ is open and connected we can get from
C to any other component C 0 by crossing hypersurfaces zlC1=zl 2 .0;1/ one after
the other, the constant is zero for every C 0 . This proves the claim.

We have now defined the functions Gp . If .z1; : : : ; zp/ lies in the intersection of
(44) and N.zz1;:::;zzp/ with z1 C � � � C zp D 0 then (42) holds at .z1; : : : ; zp/. There
is a term Gp.z1; : : : ; zpI zz1; : : : ; zzp/ on the right hand side, and every other term is
zero by Fp.z1; : : : ; zp/ D 0 when z1 C � � � C zp D 0 and the inductive hypothesis.
Hence Gp.z1; : : : ; zpI zz1; : : : ; zzp/D 0. By continuity this extends to all .z1; : : : ; zp/

in N.zz1;:::;zzp/ with z1C � � �C zp D 0, as we have to prove.

By construction, (42) holds on the intersection of N.zz1;:::;zzp/ and the subset (44) where
Fp is already defined by Proposition 3.10. We now extend Fp to .C�/p by requiring
Fp to satisfy (44) with n D p on each domain N.zz1;:::;zzp/ . Since the N.zz1;:::;zzp/

cover .C�/p this defines Fp uniquely, but we must check that given .zz1; : : : ; zzp/ and
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.yz1; : : : ; yzp/, equation (44) for nD p gives the same answer for Fp.z1; : : : ; zp/ with
the zzk and yzk on the intersection N.zz1;:::;zzp/\N.yz1;:::;yzp/ .

This holds for the same reason that the conditions of Proposition 3.3 hold for some
.zz1; : : : ; zzn/ if and only if they hold for all .zz1; : : : ; zzn/. The point is that the condition
for f ˛ to be continuous is that we can write Fp in the form (44) near .zz1; : : : ; zzp/

for Gk continuous in .z1; : : : ; zk/, and these continuity conditions for the points
.zz1; : : : ; zzp/; .yz1; : : : ; yzp/ must be equivalent in the overlap N.zz1;:::;zzp/ \N.yz1;:::;yzp/ .
We are using (42) to determine how to extend Fp from (44) to .C�/p in a way that
makes the f ˛ continuous, and these continuity conditions are independent of the
choice of .zz1; : : : ; zzp/ or .yz1; : : : ; yzp/. Thus Fp is well defined and satisfies (42). This
completes the inductive step, and the proof of Theorem 3.12.

Our next three results verify the remaining conditions of Remark 3.1.

Theorem 3.13 For n > 1; define An to be the free C–algebra with generators
e1; : : : ; en and multiplication �; and Ln to be the free Lie subalgebra of An gen-
erated by e1; : : : ; en under the Lie bracket Œf;g� D f � g � g � f . Then for any
.z1; : : : ; zn/ 2 .C

�/n the following expression lies in Ln W

(61)
P
�2Sn

Fn.z�.1/; z�.2/; : : : ; z�.n// e�.1/ � e�.2/ � � � � � e�.n/;

where the Fn are as in Theorem 3.12 and Sn is the symmetric group. Also (31) holds,
and f ˛ in (27) maps Stab.A/! L˛; as in Remark 3.1(d).

Proof We shall first prove the first part of the theorem on the domain

(62)
˚
.z1; : : : ; zn/ 2 .C

�/n W zk=zl 62 .0;1/ for all 1 6 k < l 6 n
	
:

The point of this is that if .z1; : : : ; zn/ lies in (62) then .z�.1/; : : : ; z�.n// lies in the
domain (44) where Fn is holomorphic and satisfies (51) for all � 2 Sn .

Suppose by induction that for some m > 2 and all n<m, the expression (61) lies in Ln

for all .z1; : : : ; zn/ in (62). Write Pm for (61) with nDm, regarded as a holomorphic
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function from (62) to Hm . Then we have

dPm.z1; : : : ; zn/

D

X
�2Sm

m�1X
kD1

Fk.z�.1/; : : : ; z�.k// e�.1/�� � ��e�.k/�

Fm�k.z�.kC1/; : : : ; z�.m//e�.kC1/ �� � ��e�.m/

˝

h
dz�.kC1/C���Cdz�.m/
z�.kC1/C���Cz�.m/

�
dz�.1/C���Cdz�.k/
z�.1/C���Cz�.k/

i
D

1
2

X
�2Sm

m�1X
kD1

�
Fk.z�.1/; : : : ; z�.k// e�.1/�� � ��e�.k/;

Fm�k.z�.kC1/; : : : ; z�.m// e�.kC1/�� � ��e�.m/
�

˝

h
dz�.kC1/C���Cdz�.m/
z�.kC1/C���Cz�.m/

�
dz�.1/C���Cdz�.k/
z�.1/C���Cz�.k/

i
D

1
2

X
�2Sm

m�1X
kD1

1

k!.m�k/!

�P
�2Sk

Fk.z�ı�.1/; : : : ; z�ı�.k//e�ı�.1/�� � ��e�ı�.k/;P
�2Sm�k

Fm�k.z�.kC�.1//; : : : ; z�.kC�.m�k///

e�.kC�.1//�� � ��e�.kC�.m�k//

�
˝

h
dz�.kC1/C���Cdz�.m/
z�.kC1/C���Cz�.m/

�
dz�.1/C���Cdz�.k/
z�.1/C���Cz�.k/

i
:

(63)

Here the second step is immediate from (51). The third step is the average of two
copies of the second, one copy as it stands, the other relabelled with m� k in
place of k and indices �.kC1/; : : : ; �.m/; �.1/; : : : ; �.k/ in place of the indices
�.1/; : : : ; �.k/; �.kC1/; : : : ; �.m/ respectively; this is valid because of the sum over
� 2Sm . The fourth and final step uses the fact that symmetrizing over Sm on 1; : : : ;m

is equivalent to first symmetrizing over Sk on 1; : : : ; k and Sm�k on kC 1; : : : ;m,
with factors 1=k!.m� k/!, and then symmetrizing over Sm .

By the inductive hypothesis, as k;m�k <m, the terms
P
�2Sk

� � � and
P
�2Sm�k

� � �

in the final line of (63) lie in Lk with generators e�.1/; : : : ; e�.k/ and Lm�k with
generators e�.kC1/; : : : ; e�.m/ respectively, so they and their commutator in (63) lie in
Lm . Hence dPm is an Lm -valued 1–form on (62), not just an Hm –valued 1–form. As
m > 2 it is easy to show that each connected component of (62) with nDm contains a
point .z1; : : : ; zm/ with z1C� � �CzmD 0. At this point Fm.z�.1/; : : : ; z�.m//D 0 for
all � 2 Sm , so Pm.z1; : : : ; zm/D 0, which lies in Lm . Thus dPm is an Lm –valued
1–form and Pm.z1; : : : ; zm/ lies in Lm at one point in each connected component of
(62), so Pm.z1; : : : ; zm/ lies in Lm at every point of (62), completing the inductive
step.
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It remains to extend this from (62) to .C�/n . We do this using an argument similar
to Theorem 3.12, and facts about the coefficients U.� � � / from [15, Section 5]. The
relationships between the functions Fn;Gn given in (37) and (38) were derived by
using the change of stability condition formula (16) to transform between �˛.�/ and
�ˇ.z�/. By [15, Theorem 5.4], equation (16) can be rewritten as in (17) with the term
Œ � � � � a sum of multiple commutators of ��.i/.�/ for i 2 I , so that it lies in L˛ rather
than just H˛ .

Suppose the open neighbourhoods N.zz1;:::;zzn/ in Theorem 3.12 are chosen so that
.z1; : : : ; zn/ 2 N.zz1;:::;zzn/ if and only if .z�.1/; : : : ; z�.n// 2 N.zz�.1/;:::;zz�.n// for all
� 2 Sn . As we can take the N.zz1;:::;zzn/ to be sufficiently small open balls about
.zz1; : : : ; zzn/, this is clearly possible. Then since the changes (37)–(38) between Fn;Gn

come from Lie algebra transformations, one can show that (61) lies in Ln for all n

and .z1; : : : ; zn/ 2 .C
�/n if and only if the expression

(64)
P
�2Sn

Gn.z�.1/; : : : ; z�.n/I zz�.1/; : : : ; zz�.n// e�.1/ � � � � � e�.n/

lies in Ln for all .zz1; : : : ; zzn/ 2 .C
�/n and .z1; : : : ; zn/ 2N.zz1;:::;zzn/ .

In fact one can prove more than this. For m > 1, write:

.�m/

Suppose (61) lies in Ln for all n<m and .z1; : : : ; zn/ 2 .C
�/n and

(64) lies in Ln for all n<m; .zz1; : : : ; zzn/ 2 .C
�/n and

.z1; : : : ; zn/ 2N.zz1;:::;zzn/:

One can show that if .�m/ holds, .zz1; : : : ; zzm/2 .C
�/m and .z1; : : : ; zm/2N.zz1;:::;zzm/ ,

then (61) with nDm and this .z1; : : : ; zm/ lies in Lm if and only if (64) with nDm

and these .z1; : : : ; zm/; .zz1; : : : ; zzm/ lies in Lm . The point is that (64) is (61) plus
sums of multiple commutators of terms we know lie in Lm by our assumptions for
n<m, and vice versa.

Suppose by induction that .�m/ holds for some m > 1. When mD 1 this is vacuous.
Let .zz1; : : : ; zzm/2 .C

�/m and .z1; : : : ; zm/2N.zz1;:::;zzm/ with .z1; : : : ; zm/ in (62) for
mD n. Then (61) with nDm and this .z1; : : : ; zm/ lies in Lm by the proof above,
so (64) with nDm and these .z1; : : : ; zm/; .zz1; : : : ; zzm/ lies in Lm . As Lm is closed
and Gm.z1; : : : ; zmI zz1; : : : ; zzm/ is continuous in .z1; : : : ; zm/ and the intersection of
N.zz1;:::;zzm/ with (62) for mD n is dense in N.zz1;:::;zzm/ , taking limits shows (64) lies
in Lm for any .z1; : : : ; zm/ 2N.zz1;:::;zzm/ . As this holds for all .zz1; : : : ; zzm/ 2 .C

�/m ,
equation (61) lies in Lm for all .z1; : : : ; zm/2 .C

�/m . Hence by induction .�m/ holds
for all m > 1, which proves the first part of the theorem. The remaining two parts
follow as in Remark 3.1(d).
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Lemma 3.14 If 1 6 k 6 n and z1; : : : ; zk�1; zkC1; : : : ; zn are fixed in C� , the
function Fn of Theorem 3.12 satisfies

ˇ̌
Fn.z1; : : : ; zn/

ˇ̌
6 C.1C j log zk j/

n�1 for all
zk 2 C� , for some C > 0 depending on k; n and z1; : : : ; zk�1; zkC1; : : : ; zn .

Proof For n D 1; 2 the lemma follows from (29) and (46). On the domains (44),
equation (51) gives an expression for @Fn=@zk in terms of Fl for l < n, and it is
easy to use this and induction on n to prove the lemma on (44). To extend from (44)
to .C�/n , we can observe that for .z1; : : : ; zn/ in the complement of (44) in .C�/n ,
Fn.z1; : : : ; zn/ is a weighted average of the limits of Fn.z

0
1
; : : : ; z0n/ as .z0

1
; : : : ; z0n/!

.z1; : : : ; zn/, for .z0
1
; : : : ; z0n/ in the various sectors of (44) meeting at .z1; : : : ; zn/. In

particular, Fn.z1; : : : ; zn/ lies in the convex hull in C of these limits, so estimates on
jFnj on (44) imply the same estimates on .C�/n .

Corollary 3.15 The functions Fn of Theorem 3.12 satisfy Condition 3.4 and equations
(28), (29), (31) and (32) of Remark 3.1. Thus by Theorem 3.7 they are the unique
functions Fn satisfying the conditions of Section 3.1.

Proof Condition 3.4 holds by Theorem 3.12. Given � 2 C� we note that all con-
ditions on Fn;Gn are preserved by replacing Fn.z1; : : : ; zn/ by Fn.�z1; : : : ; �zn/

and Gn.z1; : : : ; znI zz1; : : : ; zzn/ by Gn.�z1; : : : ; �znI�zz1; : : : ; �zzn/. Thus, since these
conditions determine Fn;Gn uniquely (28) must hold. Equation (29) holds by definition,
and (31) and (32) follow from Theorem 3.13 and Lemma 3.14.

Remark 3.16 It is an obvious question whether the functions Fn constructed above
can be written in terms of known special functions. Tom Bridgeland has found a very
nice answer to this, which will be published in [3]. It involves the hyperlogarithms
of Goncharov [8, Section 2], a kind of polylogarithm, which are defined by iterated
integrals and satisfy a p.d.e. reminiscent of (51).

Bridgeland shows that Fn.z1; : : : ; zn/ may be written on the domain (44) as an ex-
plicit sum over rooted trees with n leaves of a product over vertices of the tree of a
hyperlogarithm whose arguments are various sums of z1; : : : ; zn , and a constant factor.
This is interesting, as polylogarithms and hyperlogarithms have many links to other
branches of mathematics such as number theory, Hodge theory and motives, and the
author wonders whether the ideas of this paper will also have such links.

4 Flat connections

We now explain how to define a holomorphic L–valued connection � on Stab.A/
using the generating functions f ˛ , which the p.d.e. (48) implies is flat. Our formulae
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involve infinite sums over all ˛ 2C.A/, so we need a notion of convergence of infinite
sums in L, that is, a topology on L. This also clarifies the meaning of the infinite
direct sum LD

L
˛2C.A/ L

˛ in Assumption 2.14, since we can take L to be the set
of convergent sums

P
˛2C.A/ l˛ with l˛ 2 L˛ .

Here are simple definitions of convergence and the direct sum which go well with
Assumption 3.2, and ensure the formulae below converge in this case. If Assumption 3.2
does not hold, choosing a topology on L to make the formulae below converge may be
difficult or impossible; in this case the sum (27) defining f ˛ may not converge either.
Also, we must consider whether the Lie bracket Œ ; � is defined on all of L�L, and
whether it commutes with limits.

Definition 4.1 In Assumption 2.14, by the direct sum L D
L
˛2C.A/ L

˛ we mean
simply that L is the infinite Cartesian product of the spaces L˛ . That is, elements of L
are just arbitrary families .l˛/˛2C.A/ with l˛ 2 L˛ , with no restriction on how many
l˛ are zero, and no other “smallness conditions” on the l˛ . Write …˛W L! L˛ for
the obvious projection.

A possibly infinite sum
P

i2I li in L is called convergent if for each ˛2C.A/ there are
only finitely many i 2I with …˛.li/ nonzero. The limit lD .l˛/˛2C.A/ in L is defined
uniquely by taking l˛ to be the sum of the nonzero …˛.li/. That is,

P
i2I li D l ifP

i2I …
˛.li/D…

˛.l/ in L˛ for all ˛ 2 C.A/, where the second sum is well-defined
as it has only finitely many nonzero terms. The direct sum H D

L
x̨2C.A/H

˛ and
convergence of sums in H are defined in the same way.

If Assumption 3.2 holds, it is easy to see that the Lie brackets Œ ; �W L˛ �Lˇ! L˛Cˇ
extend to a unique Lie bracket Œ ; �W L�L!L which commutes with limits. Otherwise,
the Lie bracket of two convergent sums can be a nonconvergent sum, so Œ ; � can only
be defined on a subspace of L�L.

In the situation of Section 3, define a section � in C1
�
L˝T �

C
Stab.A/

�
by

(65) �.Z/D
X

˛2C.A/

f ˛.Z/˝
d.Z.˛//

Z.˛/
:

Extended to L˝T �
C

Stab.A/ in the obvious way, this infinite sum is convergent in the
sense of Definition 4.1, since for each ˛ 2 C.A/ there is only one term in the sum
with …˛.� � � / nonzero. Then � is a connection matrix for a holomorphic connection
on the trivial complex Lie algebra bundle L�Stab.A/ over Stab.A/.
By standard differential geometry, the curvature of this connection is the section R�

of the vector bundle L˝ƒ2T �
C

Stab.A/ over Stab.A/ given by

(66) R� D d�C 1
2
� ^�:
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To form � ^� 2 C1
�
L˝ƒ2T �

C
Stab.A/

�
from �˝� 2 C1

�
.L˝T �

C
Stab.A//2

�
,

project L˝L! L using the Lie bracket Œ ; � on L, and using the wedge product ^ to
project T �

C
Stab.A/˝T �

C
Stab.A/!ƒ2T �

C
Stab.A/.

Combining (48), (65) and (66) we find that

R� D

X
˛2C.A/

df ˛.Z/^
d.Z.˛//

Z.˛/
C

1
2

X
ˇ;
2C.A/

Œf ˇ.Z/; f 
 .Z/�˝
d.Z.ˇ//

Z.ˇ/
^

d.Z.
 //
Z.
 /

D

X
˛;ˇ;
2C.A/W
ˇC
D˛

�
1
2
Œf ˇ.Z/; f 
 .Z/�

�
˝

�
d.Z.
 //

Z.
 /
�

d.Z.ˇ//
Z.ˇ/

�
^

d.Z.˛//
Z.˛/

C

X
ˇ;
2C.A/

�
1
2
Œf ˇ.Z/; f 
 .Z/�

�
˝

d.Z.ˇ//
Z.ˇ/

^
d.Z.
 //

Z.
 /

D

X
ˇ;
2C.A/

�
1
2
Œf ˇ.Z/; f 
 .Z/�

�
˝

��
d.Z.
 //

Z.
 /
�

d.Z.ˇ//
Z.ˇ/

�
^

d.Z.ˇ//Cd.Z.
 //
Z.ˇ/CZ.
 /

C
d.Z.ˇ//

Z.ˇ/
^

d.Z.
 //
Z.
 /

�
D 0;

as the term Œ � � � � in the last line is zero. Thus � is a flat connection. If Assumption 3.2
holds, these calculations are all valid as infinite convergent sums in the sense of
Definition 4.1.

If �W L! End.V / is a representation of the Lie algebra L on a complex vector space
V then � induces a flat connection r�.�/ on the trivial vector bundle V � Stab.A/
over Stab.A/, with connection 1–form �.�/ in C1

�
End.V / ˝ T �

C
Stab.A/

�
. If

sW Stab.A/ ! V is a smooth section of this bundle then r�.�/s D ds C �.�/ � s

in C1
�
V ˝T �

C
Stab.A/

�
.

In particular, as the tangent bundle T Stab.A/ is naturally isomorphic to the trivial vec-
tor bundle Hom.K.A/;C/� Stab.A/, if L has a representation � on Hom.K.A/;C/
then r�.�/ is a flat connection on T Stab.A/. We will see in Section 6 that this should
happen in the triangulated category extension of the Calabi–Yau 3–fold invariants in
Example 2.21.

Take V to be L and � the adjoint representation adW L! End.L/. Define a section
sW Stab.A/! L by

(67) s.Z/D
P
˛2C.A/ f

˛.Z/;

Geometry & Topology, Volume 11 (2007)



716 Dominic Joyce

which converges as in Definition 4.1. Then from (48) and (65) we see that

rad.�/s D
X

˛2C.A/

df ˛.Z/C
X
ˇ2C.A/

h
f ˇ.Z/;

P

2C.A/ f


 .z/
i
˝

d.Z.ˇ//
Z.ˇ/

D�

X
˛;ˇ;
2C.A/W
˛DˇC


Œf ˇ.Z/; f 
 .Z/�˝
d.Z.ˇ//

Z.ˇ/
C

X
ˇ;
2C.A/

Œf ˇ.Z/; f 
 .z/�˝
d.Z.ˇ//

Z.ˇ/
D0;

(68)

so that s in (67) is a constant section of L� Stab.A/. If Assumption 3.2 holds then
(68) is valid as infinite convergent sums in the sense of Definition 4.1.

Let P W L! C be smooth and invariant under ad.L/, that is, dP .x/ � Œx;y�D 0 for all
x;y 2 L. Then rad.�/s D 0 implies that P .s/ is constant on Stab.A/. For example,
if �W L! End.V / is a representation of L on a finite-dimensional C–vector space V

then P .x/D det
�
�.x/�� idV

�
has these properties, so the characteristic polynomial

of �.s.Z// is constant on Stab.A/.

In general, for s as in (67) the eigenvalues of s.Z/ in any representation of L should
be constant on Stab.A/. However, the author does not expect this construction to
be useful with the topology on L in Definition 4.1, as it seems likely that the only
finite-dimensional representations for such infinite-dimensional L will be nilpotent,
and so have zero eigenvalues anyway.

The author feels that the topology on L given in Definition 4.1 is rather trivial, and
that if the ideas of this section do have interesting applications in classes of examples
it will be with a more complex topology on L appropriate to the examples. Then
the convergence and validity of equations (65)–(68) would become conjectures to
be (dis)proved in these examples, depending on asymptotic properties of the f ˛ for
large ˛ .

5 Extending all this to triangulated categories

Our programme cannot yet be rigorously extended from abelian categories A to
triangulated categories T , because the material of [12; 13; 14; 15] on which it rests has
not yet been extended. Some remarks on the issues involved are given in [15, Section 7].
The work of Bertrand Toën [22; 21] is likely to be useful here. In particular, [22]
defines a “derived Hall algebra” DH.T / under strong finiteness conditions on T , and
[21, Section 3.3.3] an “absolute Hall algebra” Habs.T / under weaker conditions.

It seems likely that the right way to construct examples of data satisfying a triangulated
version of Assumption 2.14 is to use an algebra morphism ˆW DH.T / or Habs.T /!H .
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Also, [21] provides the tools needed to form moduli Artin 1–stacks of objects and
configurations in triangulated categories with dg-enhancement, which is the main
ingredient needed to extend [12; 13; 14; 15] to the triangulated case. Here are some
issues in extending the ideas of this paper to the triangulated case.

Lifting phases from R=2� iZ to R The ı˛.�/; �˛.�/ of Assumption 2.14 are con-
structed from “characteristic functions” of � –semistable objects in A in class ˛ 2
C.A/. Now in Bridgeland’s stability conditions .Z;P/ on a triangulated category T ,
Definition 2.22, the .Z;P/–semistable objects in class ˛ 2K.T / depend on a choice
of phase for Z.˛/ 2 C� .

That is, if we write Z.˛/D rei�� for � 2 R, then the .Z;P/–semistable objects in
class ˛ with phase � are the objects U in P.�/ with class ˛ 2K.T /. Replacing �
by �C2n for n 2 Z replaces P.�/ by P.�C2n/DP.�/Œ2n�, so replaces objects U

by U Œ2n�, that is, applying the translation functor to the power 2n. Note that replacing
U by U Œ2n� fixes the class ˛ of U in K.T /.

It is natural to ask whether the triangulated analogues ı˛.Z;P/; �˛.Z;P/ should also
depend on a choice of phase � for Z.˛/. The author’s view is that for the purposes of
this paper, they should not depend on choice of phase. Effectively this means working
in a Hall-type algebra in which the translation squared operator ŒC2� is the identity.

The reason is that if ı˛.Z;P/; �˛.Z;P/ depended on phase then f ˛.Z;P/ should
also depend on a choice of phase for Z.˛/, and Fn.z1; : : : ; zn/ on choices of phase
for z1; : : : ; zn . That is, Fn should be a function of .log z1; : : : ; log zn/ 2 Cn rather
than .z1; : : : ; zn/ 2 .C

�/n . Allowing this would invalidate nearly all of Section 3. In
particular, the uniqueness result Theorem 3.7 would fail, and the p.d.e. (48) would no
longer make sense, as for a given choice of phase for Z.˛/ there does not seem to be
a natural way to choose phases for Z.ˇ/;Z.
 / in the sum.

Replacing C.A/ by
˚
˛ 2 K.T / W Z.˛/ ¤ 0

	
What should be the analogue of the

positive cone C.A/ in a triangulated category T ? Replacing A by T in (4) will give
C.T / D K.T /, as for nonzero T every element of K.T / will be represented by a
nonzero object. However, the sums over ˛ 2 C.A/ in Section 3 do not make sense
when replaced by ˛ 2 K.T /, because of problems when Z.˛/ D 0. For instance,
Fn.Z.˛1/; : : : ;Z.˛n// in (27) is undefined if any Z.˛k/D 0, and (48) is undefined
if any Z.ˇ/D 0 or Z.
 /D 0.

The author proposes that the right answer is to replace sums over ˛ 2C.A/ in Section 3
involving �˛.�/, such as (27), by sums over all ˛ 2K.T / with Z.˛/¤ 0. For generic
Z this amounts to summing over ˛ 2 K.T / n f0g. Sums over ˛ 2 C.A/ involving
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f ˛.Z/ need a more subtle approach we describe below. We now explain two neat
coincidences meaning that arguments in Section 3 still work with this replacement,
although one might have expected them to fail.

First, note that if .Z;P/ 2 Stab.T / and ˛ 2 K.T / with Z.˛/ D 0 then we must
have ı˛.Z;P/D �˛.Z;P/D 0. This is because ı˛.Z;P/; �˛.Z;P/ are constructed
from .Z;P/–semistable objects in class ˛ , but there are no such objects if Z.˛/D 0

by Definition 2.22. We also expect ı˛.Z0;P 0/ D �˛.Z0;P 0/ D 0 for .Z0;P 0/ in a
small open neighbourhood of .Z;P/ in Stab.T /. This means that omitting terms in
�˛i .Z;P/ in (27) when Z.˛i/D 0 does not cause discontinuities on the hypersurface
Z.˛i/D 0 in Stab.T /, since the omitted terms are zero near there anyway.

Second, note that f ˛.Z;P/ D 0 when Z.˛/ D 0, since (27) now involves terms
in ˛1; : : : ; ˛n with Z.˛k/ ¤ 0 but Z.˛1/ C � � � C Z.˛n/ D Z.˛/ D 0. Hence
Fn.Z.˛1/; : : : ;Z.˛n// D 0, and every term in (27) is zero. However, for ˛ ¤ 0

we do not expect f ˛.Z0;P 0/ � 0 for .Z0;P 0/ near .Z;P/. So in sums such as
(65) involving f ˛.Z/=Z.˛/, giving 0=0 when Z.˛/D 0, it is not right to just omit
˛ when Z.˛/ D 0, for ˛ ¤ 0. Instead, since f ˛.Z;P/ is holomorphic and zero
when Z.˛/ D 0, as for the functions Hn in Section 3.2, the holomorphic function
h˛.Z;P/ D f ˛.Z;P/=Z.˛/ on Z.˛/ ¤ 0 extends uniquely over Z.˛/ D 0, so in
(27), (29), (31) we replace terms f ˛.Z;P/=Z.˛/ by h˛.Z;P/.

Convergence of sums Once we replace sums over ˛ 2C.A/ by sums over ˛ 2K.T /
with Z.˛/¤ 0, most of the equations in Section 3–Section 4 become infinite sums,
and the question of whether they converge at all in any sense becomes acute. There
seems to be no triangulated analogue of Assumption 3.2 that makes the sums finite,
nor can the author find any way to make the sums converge in a formal power series
sense. Here are two comments which may help.

Firstly, suppose the Lie algebra L is nilpotent. That is, define ideals LDL1�L2� � � �

by L1DL, LnC1D ŒL;Ln�, and suppose
T

n>1 LnDf0g. Then Theorem 3.13 implies
that the sum of terms with fixed n in (27) lie in Ln . Hence, projecting (27) to L=Lk

eliminates all terms with n > k . If we use a notion of convergence such that a sum
converges in L if its projections to L=Lk converge for all k > 1, then we only have to
show the sum (27) for n< k converges in L=Lk , which may be easier.

Secondly, even if the sum (27) defining f ˛ does not make sense, the p.d.e. (48)
upon the f ˛ might still converge in the triangulated case, as it is a much simpler
sum. For example, if g D nC ˚ h˚ n� is a Kac–Moody Lie algebra, it is known
[13, Section 4.9] how to use Ringel–Hall algebras of abelian categories of quiver
representations ADmod–KQ to realize HD U.nC/ and LD nC in examples, and
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people have hoped to use triangulated categories to obtain HD U.g/ and LD g. If
we could do this with g a finite-dimensional semisimple Lie algebra, then ˛; ˇ; 
 in
(48) would take values in the set of roots of g, with L˛ being the root space g˛ , and
(48) would become a finite sum, so trivially convergent. However, (27) would still be
an infinite sum.

Intuitively, what is going on is as follows. The functions Fn are related to certain finite-
dimensional nilpotent Lie algebras Nn for n > 1. In a similar way to Ramakrishnan
[18] for the higher logarithms lnk , one can use the Fk for k 6 n to write down a
nontrivial flat holomorphic Nn –valued connection on˚

.z1; : : : ; zn/ 2 Cn
W zaC � � �C zb ¤ 0 for all 1 6 a 6 b 6 n, .a; b/¤ .1; n/

	
:

In the Ringel–Hall case HD U.nC/, LD nC above, equation (27) is about building
the nilpotent Lie algebra nC , and the flat nC–valued connection � of Section 4, out
of the standard family of nilpotent Lie algebras Nn , and standard flat Nn –valued
connections.

However, it may not be possible to build semisimple Lie algebras g and their flat
connections from standard nilpotent building blocks Nn , which is why (27) may not
converge. But (48) has to do with general Lie algebras, not just nilpotent Lie algebras,
and so may make sense in a more general setting.

The remarks above suggest a shift in point of view, in which rather than starting with
invariants ı˛.Z/ or �˛.Z/ and constructing functions f ˛.Z/ as in Section 3, we
instead regard the f ˛.Z/ or f ˛.Z;P/ and the p.d.e. (48) as primary, and first try
to solve (48) to find the f ˛.Z/, and then reconstruct the ı˛.Z/ and �˛.Z/ from
the f ˛.Z/.

The most naive way to do this would be to attempt to solve (48) recursively, say in the
abelian category case, by a form of induction on ˛ , in which at the inductive step the
r.h.s. of (48) is known, giving df ˛ , and we integrate this to obtain f ˛ . However, this
only determines f ˛ up to an additive constant, which is basically �˛.Z0/ for some
base stability condition Z0 .

Therefore the uncertainty in solving (48) inductively for all ˛ is exactly �˛.Z0/ for
all ˛ , so we cannot hope to determine the ı˛.Z/; �˛.Z/ in this naı̈ve way. But it is
conceivable that by using more nontrivial global information (for instance, equivariance
under monodromy transformations) about the moduli space Stab.T /, say in the trian-
gulated case, one might be able to determine solutions of (48); this would be similar
to the method of Bershadsky et al [1; 2] for calculating higher genus Gromov–Witten
invariants of Calabi–Yau 3–folds.
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6 The Calabi–Yau 3–fold case

Finally we discuss and elaborate the ideas of Section 3–Section 5 in the Calabi–Yau 3–
fold case of Example 2.21. We use the notation of this example and Section 3–Section 5
throughout.

6.1 Holomorphic functions F ˛;H ˛ and their p.d.e.s

We begin with the abelian category case. Since by Theorem 3.13 f ˛ maps Stab.A/
to L˛ , and L˛ D C � c˛ we may write f ˛ D F˛c˛ for a holomorphic function
F˛W Stab.A/ ! C, for ˛ 2 C.A/. Also �˛.�/ D J˛.�/c˛ for J˛.�/ 2 Q, so
combining (24) and (27) we find that

F˛.Z/D
X

n>1; ˛1;:::;˛n2C.A/W
˛1C���C˛nD˛

Fn

�
Z.˛1/; : : : ;Z.˛n/

� nY
iD1

J˛i .�/ �

�
1

2n�1

X
connected, simply connected digraphs �:

vertices f1; : : : ;ng, edge �i !�j implies i < j

Y
edges
�i !�j

in �

x�.˛i ; j̨ /

�
;

(69)

where � is the slope function associated to Z . We also have F˛ � Z.˛/H˛ for a
holomorphic function H˛W Stab.A/! C given by

H˛.Z/D
X

n>1; ˛1;:::;˛n2C.A/W
˛1C���C˛nD˛

Hn

�
Z.˛1/; : : : ;Z.˛n/

� nY
iD1

J˛i .�/ �

�
1

2n�1

X
connected, simply connected digraphs �:

vertices f1; : : : ;ng, edge �i !�j implies i < j

Y
edges
�i !�j

in �

x�.˛i ; j̨ /

�
:

(70)

The p.d.e. (48) becomes

dF˛.Z/D�
X

ˇ;
2C.A/W˛DˇC


x�.ˇ; 
 /Fˇ.Z/F
 .Z/
d.Z.ˇ//

Z.ˇ/

D�

X
ˇ;
2C.A/W˛DˇC


x�.ˇ; 
 /Hˇ.Z/H 
 .Z/Z.
 /d.Z.ˇ//;
(71)

and the flat connection � of (65) is

(72) �.Z/D
X

˛2C.A/

F˛.Z/ c˛˝
d.Z.˛//

Z.˛/
D

X
˛2C.A/

H˛.Z/ c˛˝ d.Z.˛//:
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In the triangulated category case we replace F˛;H˛.Z/ and J˛.�/ by F˛;H˛;

J˛.Z;P/, and replace sums over C.A/ by sums over K.T / n f0g in (69)–(72), and
also omit terms involving ˛i with Z.˛i/D 0 in (69)–(70).

In the triangulated case, the Lie algebra L is LD hc˛ W ˛ 2K.T /iC , with Œc˛; cˇ �D
x�.˛; ˇ/c˛Cˇ . Suppose K.T / is a lattice of finite rank, and �W K.T /�K.T /! Z is
nondegenerate. Then we can interpret L as a Lie algebra of complex functions on the
real torus TT D Hom.K.T /;R/=Hom.K.T /;Z/ by identifying c˛ with the function

C ˛
W Hom.K.T /;R/=Hom.K.T /;Z/!C; C ˛

W xCHom.K.T /;Z/ 7!e2�ix.˛/:

Now .2� i/�2x� induces a section of ƒ2T .TT /˝R C yielding a Poisson bracket f ; g
on smooth complex functions on TT , with fC ˛;C ˇg D x�.˛; ˇ/C ˛Cˇ .

Thus the map c˛ 7! C ˛ induces an injective Lie algebra morphism from L to a Lie
algebra of complex functions on TT with Poisson bracket f ; g. It is not clear which
class of functions on TT we should consider. For instance, smooth functions C1.TT /C

or real analytic functions C!.TT /C both give well behaved Lie algebras of functions
on TT . These also come with natural topologies, and so yield notions of convergence
of infinite sums in L, as discussed in Section 4. However, the author expects that these
notions of convergence will be too strict to make the sums of Section 3–Section 5
converge in interesting examples, and some much weaker convergence criterion than
smoothness or real analyticity is required.

6.2 A flat connection on T Stab.T / in the triangulated case

In the triangulated category case, the invariants J˛.Z;P/ 2 Q “counting” .Z;P/–
semistable objects in class ˛ 2K.T / should satisfy J�˛.Z;P/D J˛.Z;P/, since
the translation operator ŒC1� induces a bijection between .Z;P/–semistable objects
in classes ˛ and �˛ . Thus we expect F�˛ � F˛ for all ˛ 2K.T / n f0g. Hence �
in (72) is actually an L0–valued connection, where L0 D hc˛C c�˛ W ˛ 2K.T /iC is a
Lie subalgebra of L with

(73) Œc˛C c�˛; cˇC c�ˇ �D x�.˛; ˇ/
�
.c˛CˇC c�˛�ˇ/� .c˛�ˇC c�˛Cˇ/

�
:

Regarded as a Lie algebra of functions on TT , the functions in L0 are invariant
under �1W TT ! TT acting by xCHom.K.T /;Z/!�xCHom.K.T /;Z/, so the
Hamiltonian vector fields of functions in L0 all vanish at 0 2 TT . Therefore they have
a Lie algebra action on T0TT Š Hom.K.T /;C/, and on its dual K.T /˝Z C. That is,
we have found a Lie algebra representation �W L0! End

�
K.T /˝Z C

�
, which is given

explicitly on the generators c˛C c�˛ of L0 by

(74) �.c˛C c�˛/W 
 7�! 2x�.˛; 
 /˛:
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Comparing (73) and (74) shows � is a Lie algebra morphism. Note that � does not
extend to a Lie algebra morphism L! End

�
K.T /˝Z C

�
.

Now there is a natural isomorphism K.T /˝ZCŠT � Stab.T /. Thus in the Calabi–Yau
3–fold triangulated category case, if all the relevant sums converge in End

�
K.T /˝Z C

�
(which seems rather unlikely), then applying � to the flat connection � of Section
4 induces a flat connection r�.�/ on the tangent bundle T Stab.T / and cotangent
bundle T � Stab.T / of Stab.T /. This connection is easily seen to be torsion-free: the
connection on T Stab.T / is a sum over ˛ 2K.T /n f0g of a term linear in ˛˝˛˝˛ ,
and the torsion vanishes because of a symmetry in exchanging two copies of ˛ . It also
preserves the symplectic form on Stab.T / induced by x�. Integrating r�.�/ should
give new, interesting flat local coordinate systems on Stab.T /.

Ignoring convergence issues, define a section gC of S2T � Stab.T / by

(75) gC.Z;P/D
P
˛2K.T /nf0g F

˛.Z;P/ dZ.˛/˝ dZ.˛/:

In a calculation related to (68), differentiating using r�.�/ gives

r�.�/gC D

X
˛2K.T /nf0g

dF˛.Z;P/˝ dZ.˛/˝ dZ.˛/C

X
ˇ;
2K.T /nf0g

x�.ˇ; 
 /Fˇ.Z;P/F
 .Z;P/
d.Z.ˇ//

Z.ˇ/
˝

�
dZ.ˇ/˝ dZ.
 /C

dZ.
 /˝ dZ.ˇ/
�

D

X
ˇ;
2K.T /nf0g

x�.ˇ; 
 /Fˇ.Z;P/F
 .Z;P/
d.Z.ˇ//

Z.ˇ/
˝

�
�
�
dZ.ˇ/CdZ.
 /

�
˝
�
dZ.ˇ/CdZ.
 /

�
CdZ.ˇ/˝ dZ.
 /CdZ.
 /˝ dZ.ˇ/

�
D�

X
ˇ;
2K.T /nf0g

x�.ˇ; 
 /Fˇ.Z;P/F
 .Z;P/
d.Z.ˇ//

Z.ˇ/
˝

�
dZ.ˇ/˝ dZ.ˇ/C

dZ.
 /˝ dZ.
 /
�

D 0:

(76)

Here the second line applies �.�/ to gC , where we replace ˛ in the sum (72) defining
� by ˇ , and ˛ in the sum (75) defining gC by 
 , and use the fact that

�.cˇC c�ˇ/
�
dZ.
 /˝ dZ.
 /

�
D 2x�.ˇ; 
 /

�
dZ.ˇ/˝ dZ.
 /C dZ.
 /˝ dZ.ˇ/

�
:

The third and fourth lines of (76) substitute (71) into the first line and set ˛ D ˇC 
 ,
and for the final step we note that as F�
 .Z;P/D F
 .Z;P/, pairing terms in the
fifth line with ˇ; 
 and ˇ;�
 shows that everything cancels.

Suppose now that gC is a nondegenerate section of S2T � Stab.T /. (If it is nondegen-
erate at one point in Stab.T / it is degenerate everywhere in this connected component,
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as it is constant under r�.�/ by (76).) Then gC is a holomorphic metric on Stab.T /.
Since r�.�/ is torsion-free with r�.�/gC D 0, we see that r�.�/ is the Levi-Civita
connection of gC , and thus gC is flat as r�.�/ is flat. Note that Frobenius manifolds
also have flat holomorphic metrics.

6.3 A variant of the holomorphic anomaly equation

Several people have commented to the author that the p.d.e. (51) on Fn resembles the
holomorphic anomaly equation of Bershadsky, Cecotti, Ooguri and Vafa [1; 2], which
is interpreted by Witten [23]. This equation is [2, Equation (3.6)]

(77) x@xiFg D
1
2
xCxi xj xke2K Gj xj Gk xk

�
@j@kFg�1C

Pg�1
rD1

@j Fr@kFg�r

�
;

which can be repackaged as a linear equation on exp
�P1

gD1 �
2g�2Fg

�
. It is beyond the

author’s competence to properly explain (77). Very roughly, Fg is a complex-valued
generating function which “counts” numbers of genus g holomorphic curves in a
Calabi–Yau 3–fold X —just as our generating functions F˛ “count” coherent sheaves
on X . It is not holomorphic, but is nearly so, in that (77) expresses x@Fg in terms of
@Fr for r < g .

For � 2 C� and fixed a; b 2 Z define a .0; 1/–form on Stab.A/ by

(78) ˆ�.Z/D
P
˛2C.A/ �

ae�
bZ.˛/H˛.Z/ d.Z.˛//:

The idea here is that we have taken the complex conjugate of (72), and then replaced
the Lie algebra element c˛ by the holomorphic function �ae�

bZ.˛/ . In the abelian
category case, as Im Z.˛/ > 0 for ˛ 2 C.A/, if Im.�b/� 0 then e�

bZ.˛/ is small,
and it seems plausible that (78) may actually converge. In the triangulated case, when
C.A/ in (78) is replaced by K.T / n f0g, convergence seems less likely.

The .1; 1/–form @ˆ� and the .0; 2/–form x@ˆ� on Stab.A/ are given by

@ˆ�.Z/D �
aCb P

˛2C.A/ e�
bZ.˛/H˛.Z/ d.Z.˛//^ d.Z.˛//;

x@ˆ�.Z/D�
1
2
�aP

ˇ;
2C.A/ e�
bZ.ˇ/Hˇ.Z/ e�

bZ.
 /H 
 .Z/ �

x�.ˇ; 
 / d.Z.ˇ//^ d.Z.
 //;

where in the latter equation we have used H˛ �Z.˛/�1F˛ and substituted in (71).
Using index notation for complex tensors as in (77), so that i; j are type .1; 0/ tensor
indices and xi ; xj type .0; 1/ tensor indices, we see these satisfy

(79)
�
x@ˆ�.Z/

�
xi xj
D�

1
2
��a�2b.x�/ij

�
@ˆ�.Z/

�
ixi

�
@ˆ�.Z/

�
j xj
:
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Here .x�/ij is the .2; 0/ part of x�, regarded as a constant tensor in ƒ2T Stab.A/
Dƒ2 Hom.K.A/;C/. Equation (79) is formally similar to the p.d.e. satisfied by
W� D

P1
gD1 �

2g�2Fg in the holomorphic anomaly case above, of the form

x@W� D �
2
�
linear term in @2W�C @W�˝ @W�

�
.

Note too that there are no convergence issues for (79), it always makes sense as an
equation on .0; 1/–forms ˆ� on Stab.A/ or Stab.T /. The author has no idea whether
all this is relevant to String Theory.
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