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Thin buildings

JAN DYMARA

Let X be a building of uniform thickness qC1 . L2 –Betti numbers of X are reinter-
preted as von-Neumann dimensions of weighted L2 –cohomology of the underlying
Coxeter group. The dimension is measured with the help of the Hecke algebra. The
weight depends on the thickness q . The weighted cohomology makes sense for all
real positive values of q , and is computed for small q . If the Davis complex of the
Coxeter group is a manifold, a version of Poincaré duality allows to deduce that
the L2 –cohomology of a building with large thickness is concentrated in the top
dimension.

20F55; 20C08, 58J22, 20E42

Introduction

Let .G;B;N;S/ be a BN –pair, and let X be the associated building (notation as in
Brown [2, Chapter 5]). There are many geometric realizations of X . We consider the
one introduced by Davis in [4]. Then X is a locally finite simplicial complex, acted
upon by G . The action has a fundamental domain with stabiliser B . The standard
choice of such a domain is called the Davis chamber. We can and will assume that G

is a closed subgroup of the group Aut.X / of simplicial automorphisms of X (in the
compact-open topology). If this is not the case, one can pass to the quotient of G by
the kernel of the G–action on X (that quotient is a subgroup of Aut.X /), and then
take its closure in Aut.X /.

Let L2C i.X / be the space of i –cochains on X which are square-summable with
respect to the counting measure on the set X .i/ of i –simplices in X . Then the
coboundary map ıi WL2C i.X /! L2C iC1.X / is a bounded operator. The reduced
L2 –cohomology of X is defined to be L2H i.X /D ker ıi=imıi�1 . This is a Hilbert
space, carrying a unitary G–representation. Using the von Neumann G–dimension
one defines L2bi.X /D dimG L2H i.X /. We are interested in calculating these Betti
numbers. (This problem was considered by Dymara and Januszkiewicz in [8] and by
Davis and Okun in [6].)

The first step is to pass from the cochain complex .L2C �.X /; ı/ to a smaller complex
of B–invariants: .L2C �.X /B; ı/. Now L2C i.X /B can be identified with a space
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of cochains on X=B D†—the Davis complex of the Weyl group W of the building.
However, a simplex � 2† has a preimage in X consisting of qd.�/ simplices, where
qC 1 is the thickness of the building and d.�/ is the distance from � to the chamber
stabilised by B . Therefore a cochain f on † represents a square-summable B–
invariant cochain if and only if it satisfies

P
� jf .�/j

2qd.�/ <1; we denote the space
of such cochains L2

qC �.†/. The complex .L2
qC �.†/; ı/ and its (reduced) cohomology

L2
qH�.†/ are acted upon by the Hecke algebra CŒBnG=B�. A suitable von Neumann

completion of the latter can be used to measure the dimension of L2
qH i.†/, yielding

Betti numbers L2
qbi.†/. It turns out that L2

qbi.†/ D L2bi.X /. In particular, the
L2 –Betti numbers of a building depend only on W and on q .

The good news is that the complex .L2
q.†/; ı/, the Hecke algebra and the Betti numbers

L2
qbi.†/ can be defined for all real q > 0, in a uniform manner which for integer

values of q gives exactly the objects discussed above. It turns out that for small q

(namely for q<�W , where �W is the logarithmic growth rate of W ) the Betti numbers
L2

qbi.†/ are 0 except for i D 0. Since �W � 1, this result says nothing about actual
buildings. However, in Section 6 we prove a version of Poincaré duality, saying that if
† is a manifold of dimension n, then L2

qbi.†/D L2
1=q

bn�i.†/. Thus, if the Davis
complex of the Weyl group of a building (ie, an apartment in the Davis realization
of the building) is an n–manifold, and if q > 1

�W
, then the L2 –Betti numbers of the

building vanish except for L2bn.X /.

Examples of buildings to which our method applies can be constructed from flag
triangulations of spheres. Davis associates a right-angled Coxeter group to any such
triangulation; this right-angled Coxeter group is the Weyl group of a family of buildings
with manifold apartments, parametrised by thickness. Let us mention that the argument
applies also to Euclidean buildings, yielding another calculation of their L2 –Betti
numbers.

In a forthcoming paper (Davis–Dymara–Januszkiewicz–Okun [5]) the L2 –Betti num-
bers of all buildings satisfying q > 1

�W
are calculated.

The definitions, results and arguments of this paper go through, with appropriate reading,
in the multi-parameter case. A detailed account of the multi-parameter setting is given
in [5].

The author thanks Dan Boros, Tadeusz Januszkiewicz, Boris Okun and especially Mike
Davis for useful discussions.

The author was partially supported by KBN grants 5 P03A 035 20 and 2 P03A 017 25,
and by a scholarship of the Foundation for Polish Science.
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0 Integer thickness

Let .W;S/ be a Coxeter system. Let � be a simplex with codimension 1 faces labelled
by elements of S , and let �0 be its first barycentric subdivision. Each T �S generates
a subgroup WT of W called a special subgroup; also, T corresponds to a face �T

of � (the intersection of codimension 1 faces labelled by elements of T ). The Davis
chamber D is the subcomplex of �0 spanned by barycentres of faces �T for which
WT is finite (F will denote the set of subsets T � S such that WT is finite). To every
T � S we assign a face of the Davis chamber: DT DD\�T . The Davis realization
† of the Coxeter complex is W �D= �, where .w;p/ � .u; q/ if and only if for
some T we have p D q 2DT and w�1u 2WT . The action of W on the first factor
descends to an action on †. We denote the image of � under the action of w by w� ,
and the W–orbit of � in † by W� . The images of w�D in † are called chambers.
The action of W on † is simply transitive on the set of chambers.

A Tits building XT its with Weyl group W is a set with a W–valued distance function
d , satisfying certain conditions (see Ronan [11]). Its Davis incarnation is X DXT its�

D= �, where .x;p/ � .y; q/ if and only if for some T we have p D q 2 DT and
d.x;y/ 2WT . The images of x �D in X are called chambers.

We will consider only buildings of uniformly bounded thickness, ie, such that for some
constant N > 0, any s 2 S and any x 2 XT its there are no more than N elements
y 2 XT its satisfying d.x;y/ D s . If this number of s–neighbours of x is equal to
q for all pairs .x; s/, then we say that the building has uniform thickness qC 1. We
denote such building X.q/ (for a right-angled Coxeter group it is unique).

Uniformly bounded thickness is equivalent to X being uniformly locally finite. Thus
we can consider (reduced) L2 –(co)homology of X . This is obtained from the complex
of L2 (co)chains on X with the usual (co)boundary operators @, ı . These operators are
in fact adjoint to each other, so that the (co)homology can be identified with L2H�.X /,
the space of harmonic (co)chains (“reduced” means that we divide the kernel by the
closure of the image).

Assume now that XT its comes from a BN –pair in a group G . Then G acts by
simplicial automorphisms on X . We can assume that G acts faithfully and is locally
compact (possibly taking the closure of its image in Aut.X / in the compact-open
topology). We use G to measure the size of L2Hi.X / via the von Neumann dimension.
To do this, we first express L2C i.X / as ˚� i�DL2.G� i/. Then we notice that
L2.G� i/ is naturally isomorphic to L2.G/G�i (where G� i is the stabiliser of � i in
G ). It is convenient to multiply this isomorphism by a suitable scalar factor in order
to make it isometric. Then the space L2.G/G�i is embedded into L2.G/, giving us
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670 Jan Dymara

finally an embedding of left G–modules L2C i.X / ,!˚� i�DL2.G/. In particular,
L2Hi.X / is now embedded as a left G –module in ˚� i�DL2.G/; we can consider the
orthogonal projection onto this subspace, and define L2bi.X / to be the von Neumann
trace of that projection. Let B be the stabiliser of D in G . For each � i �D we have a
vector 1� in ˚� i�DL2.G/, having � th component 1B and other components 0. The
projection onto L2Hi.X / is given by a matrix whose � th row gives the projection
of 1� on L2Hi.X /, expressed as an element of ˚� i�DL2.G/ (while applying this
matrix we understand multiplication as convolution). Notice that both 1� and the space
L2Hi.X / are B –invariant; so therefore will be the projection of 1� on L2Hi.X /.

1 Real thickness

For a w 2W we denote by d.w/ the length of a shortest word in the generators S

representing w . For a chamber cDw�D of † we put d.c/Dd.w/. For every simplex
� �† there is a unique chamber c � � with smallest d.c/; we put d.�/D d.c/.

For a real number t > 0 we equip the set †.i/ of i –simplices in † with the measure
�t .�/D td.�/ . We also pick (arbitrarily) orientations of simplices in D , and extend
them W–equivariantly to orientations of all simplices in †. This allows us to identify
chains and cochains with functions. We put

L2
t C i.†/DL2

t Ci.†/DL2.†.i/; �t /:

We now define ıi WL2
t C i.†/!L2

t C iC1.†/ by

ıi.f /.� iC1/D
X

� i�� iC1

Œ� W ��f .�/

and @t
i WL

2
t Ci.†/!L2

t Ci�1.†/ by

@t
i.f /.�

i�1/D
X

� i��i�1

Œ� W ��td.�/�d.�/f .�/

(here Œ˛ W ˇ�D˙1 tells us whether orientations of ˛ and ˇ agree or not). We have

hıi.f /;git D
X
� iC1

� X
� i�� iC1

Œ� W ��f .�/g.�/td.�/
�

D

X
� i

f .�/
� X
� iC1�� i

Œ� W ��td.�/�d.�/g.�/
�
td.�/

D hf; @t
i.g/it :
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That is, ı� D @t as operators on L2
t C �.†/. It follows that .@t /2 D 0 (since ı2 D 0),

and we can consider (reduced) L2
t –(co)homology:

L2
t H i.†/D ker ıi=im ıi�1; L2

t Hi.†/D ker @t
i=im @t

iC1

Since ı� D @t , .@t /� D ı we have L2
t C i.†/ D ker @t

i ˚ im ıi�1 D ker ıi ˚ im @t
iC1

(orthogonal direct sums). It follows that

L2
t H i.†/'L2

tHi.†/'L2
t Hi.†/;

where L2
tHi.†/ is the space ker ıi \ ker @t

i of harmonic i –cochains.

Remark Suppose that X.q/ is a building associated to a BN –pair, with Weyl group
W . Then the B –invariant part of the L2 cochain complex of X.q/ is isomorphic to
L2

qC �.†/.

2 Hecke algebra

We deform the usual scalar product on CŒW � into h ; it :

(2–1) h

X
w2W

awıw;
X
w2W

bwıwit D
X
w2W

awbwtd.w/:

We also correspondingly deform the multiplication into the following Hecke t –multi-
plication: for w 2W , s 2 S we put

(2–2) ıwıs D

(
ıws if d.ws/ > d.w/;

tıwsC .t � 1/ıw if d.ws/ < d.w/.

This extends to a C–bilinear associative multiplication on CŒW � (see Bourbaki [1]).
Using (2–2) and induction on d.v/ one easily shows

(2–3) ıwıv D ıwv if d.wv/D d.w/C d.v/.

We keep the involution on CŒW � independent of t :

(2–4)
�X
w2W

awıw

��
D

X
w2W

aw�1ıw:

Proposition 2.1 The above scalar product, multiplication and involution define a
Hilbert algebra structure on CŒW � (in the sense of Dixmier [7, A.54]); we use the
notation Ct ŒW � to indicate this structure.
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Proof We begin with involutivity: .xy/� D y�x� . One checks it using (2–2) and
(2–3) for xD ıw , yD ıs considering two cases: d.ws/< d.w/, d.ws/> d.w/. Then
one checks it for x D ıw , y D ıu by induction on d.u/. Finally, by C–bilinearity
of multiplication, the result extends to general x;y . From involutivity and (2–2) we
immediately get

(2–5) ısıw D

(
ısw if d.sw/ > d.w/;

tıswC .t � 1/ıw if d.sw/ < d.w/.

We now recall and prove the conditions (i)–(iv) of [7] defining a Hilbert algebra.

(i) hx;yit D hy�;x�it .

This is a straightforward calculation (using d.w/D d.w�1/).

(ii) hxy; zit D hy;x
�zit .

Due to linearity it is enough to check (ii) in the case yD ıw , zD ıu , xD ıv . First one
treats the case v D s 2 S , directly using (2–5); this requires four sub-cases, depending
on comparison of d.sw/ with d.w/ and d.su/ with d.u/. Then one performs an easy
induction on d.v/.

(iii) For every x 2 Ct ŒW � the map Ct ŒW � 3 y 7! xy 2 Ct ŒW � is continuous.

One checks first that y 7! ısy is continuous, directly using (2–5). Continuity of y 7!xy

for arbitrary x 2 Ct ŒW � follows, because compositions and linear combinations of
continuous maps are continuous.

(iv) The set fxy j x;y 2 Ct ŒW �g is dense in Ct ŒW �.

This is immediate, since we have a unit element ı1 in Ct ŒW �.

Corollary 2.2 The coefficient of ı1 in ab is equal to ha; b�it .

Proof That coefficient is equal to hab; ı1it , which by (ii) and (i) is hb; a�itDha; b�it .

As in [7, A.54], we get two von Neumann algebras Ut , Vt : they are weak closures of
Ct ŒW � acting on its completion L2

t by left (respectively right) multiplication.

As in [7, A.57], we put Ct ŒW �0 to be the algebra of all bounded elements of L2
t ;

bounded means that left (or, equivalently, right) multiplication by the element is
bounded on Ct ŒW � (so, extends to a bounded operator on L2

t and defines an element
of Ut or Vt ).
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As in [7, A.60], we have natural traces tr on Ut , Vt : if B 2 Ut (or B 2 Vt ) is self-
adjoint and positive, we ask whether B

1
2 D a� (resp. B

1
2 D �a) for an a 2 Ct ŒW �0 . If

it is so, we put tr B D kak2t ; otherwise we put tr B DC1. The aD
P
w2W awıw

we are asking for is self-adjoint: aw D aw�1 , so that by Corollary 2.2 kak2t is equal to
the coefficient of ı1 in a2 . Thus B is the multiplication by the bounded self-adjoint
element b D a2 , and tr B is equal to the coefficient of ı1 in b .

Suppose now that we are given a closed subspace Z of ˚l
iD1

L2
t , such that the

orthogonal projection PZ onto Z is an element of Ml�l ˝ Vt . To calculate the
trace of this projection we first need to identify PZ as a matrix. So, we take the
standard basis feig of ˚l

iD1
L2

t (ei has ı1 as the i th coordinate, and other coordinates
0), and apply PZ to it. We expand the results in the basis feig: let a

j
i 2 L2

t be the
j th coordinate of PZ .ei/. Then we take the coefficient of ı1 in ai

i and sum over i .
The number we get is the trace of PZ .

3 L2
t –Betti numbers

It will be convenient to identify L2
t with L2.W; �t /, where �t .w/D td.w/ . For any

Coxeter group � (we have W as well as its subgroups WT in mind) the generating
function of � is defined by �.x/D

P

2� xd.
 / . For a finite � it is a polynomial, in

general it is a rational function. We denote by �� the radius of convergence of the
series defining �.x/.

As in the case of buildings (Section 0), we have L2
t C i.†/D

L
� i�D L2.W� i ; �t /.

Now L2.W� i ; �t / can be identified with L2.W; �t /
WT .�/ (where T .�/ is the largest

subset of S such that ��DT .�/ ) via the map � given by �.f /.w/D 1p
WT .�/.t/

f .w�/

(we distorted the natural map by the factor 1p
WT .�/.t/

in order to make it isometric).

Finally, L2.W; �t /
WT .�/ is a subspace of L2.W; �t /DL2

t , so that we get an isometric
embedding

ˆWL2
t C i.†/ ,!

M
� i�D

L2
t D C i.D/˝L2

t :

Let L denote the algebra Ut acting diagonally on the left on ˚��DL2
t DC �.D/˝L2

t ;
let R be End .C �.D//˝Vt acting on the same space on the right. The von Neumann
algebras L and R are commutants of each other.
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Lemma 3.1 The projection of L2
t onto L2.W�; �t /DL2.W; �t /

WT .�/ is given by
the right Hecke t –multiplication by

(3–1) pT .�/ D
1

WT .�/.t/

X
w2WT .�/

ıw:

Proof Put T D T .�/. The subspace onto which we project consists of those elements
of L2

t which are right WT –invariant; this is equivalent to being invariant under right
Hecke t –multiplication by 1

1Ct
.ı1 C ıs/ for all s 2 T (to check this one splits W

into pairs fw;wsg, and calculates for each pair separately using (2–2)). As a result,
this subspace is L–invariant, so that the projection PT onto it is an element of R. It
follows that PT is given by right Hecke t –multiplication by PT .ı1/. The latter is
clearly of the form C

P
w2WT

ıw , where C is a constant such that

hı1�C
X
w2WT

ıw;C
X
w2WT

ıwit D 0:

This gives C D k
P
w2WT

ıwk
�2
t D

�P
w2WT

td.w/
��1
D

1
WT .t/

.

Lemma 3.2 L preserves the subspace L2
t C i.†/� C �.D/˝L2

t and commutes with
ı and @t .

Proof The first claim follows from Lemma 3.1 (and actually was a step in the proof of
that lemma). To prove the second part notice that ı is an element of R: the matrix with
Vt –coefficients describing ı has non-zero �� –entry if and only if � is a codimension

1 face of � ; the entry is then
q

WT .�/.t/

WT .�/.t/
ı1 . It follows that ı commutes with L. So

therefore does its adjoint @t .

Corollary 3.3 L2
t C i.†/, L2

tHi.†/, ker ıi , ker @t
i , im ıi , im @i

t are L–invariant;
therefore, orthogonal projections onto these spaces belong to R.

We use tr to denote the tensor product of the usual matrix trace on End .C �.D// and
the von Neumann trace on Vt as described in Section 2. We put

bi
t DL2

t bi.†/D tr
�

projection onto L2
tHi.†/

�
(3–2)

ci
t DL2

t ci.†/D tr
�

projection onto L2
t C i.†/

�
(3–3)

�t D

X
i

.�1/ibi
t D

X
i

.�1/ici
t :(3–4)
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The sums in (3–4) give the same value by the standard algebraic topology argument.
It follows from Lemma 3.1 that ci

t D
P
� i�D

1
WT .�/.t/

. Grouping together simplices
� with the same T .�/ and using formula (5) from Charney–Davis [3] we obtain the
following result (see Serre [12]).

Corollary 3.4

�t D
1

W .t/

Theorem 3.5 Suppose that X.q/ is a building associated to a BN –pair, with Weyl
group W . Then L2bi.X.q//D bi

q .

Proof For t D q , L2
t C i.†/ coincides with the space of B–invariant elements of

L2C i.X.q//. By the concluding remarks of Section 0, the matrix of the projection
onto L2Hi.X.q// has B –invariant entries—so that it coincides with the one we use
to define bi

t . Hence the conclusion.

Suppose now that the pair .D; @D DD\@�/ is a generalised homology n–disc (ie, it
is a homology manifold with boundary, with relative homology groups the same as
those of an n–disc modulo its boundary). Then each DT DD\�T is also a homology
.n� jT j/–disc (for T 2 F ). We can now use wDT , w 2W , T 2 F , as a homology
cellular structure on † (denoted †ghd ). The cell DT has the form of an oT –centred
cone; we put d.wDT /D d.woT /, and define �t , (co)chain complexes, the embedding
ˆ, the Ut –module structure and the numbers bi

t .†ghd / in essentially the same way
as for the original triangulation of †.

4 Dual cells

So far we used the triangulation of † which originated from the barycentric subdivision
of a simplex. We will use notation †st to remind that we have this standard triangulation
in mind. In this section we will describe another cell structure on †. It will make our
discussion of Poincaré duality in Section 6 look pretty standard.

To each T 2 F we associate a face �T of �, whose barycentre oT is a vertex of
the Davis chamber D . We define hT i as the union of all simplices � � † such
that � \DT D oT (recall that DT DD \�T ). As a simplicial complex, hT i is an
oT –centred cone over †T ; since T is such that WT is finite, †T is a sphere and
hT i is a disc of dimension jT j. The boundary of hT i is cellulated by whU i, for all
possible T �U � S , w 2WT . The complex † cellulated by whT i, over all w 2W ,
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T 2 F , is a cellular complex that we denote †d . The cells of †d will be called dual
cells. The name Coxeter blocks is also used (Davis [4]).

We now put d.whT i/ D d.woT /, and define the measures �t on the set †.i/
d

of
i –dimensional cells of †d by �t .hai/D td.hai/ . Then

L2
t C i.†d /DL2

t Ci.†d /'L2.†
.i/

d
; �t /;

We now define ıi WL2
t C i.†d /!L2

t C iC1.†d / by

ıi.f /.h�iiC1/D
X

h�ii�h�iiC1

Œh�i W h�i�f .h�i/

and @t
i WL

2
t Ci.†d /!L2

t Ci�1.†d / by

@t
i.f /.h�i

i�1/D
X

h�ii�h�ii�1

Œh�i W h�i�td.h�i/�d.h�i/f .h�i/:

The discussion from Section 1 can be continued, and supplies us with L2
tHi.†d /. Now

we wish to bring in the Hecke algebra. We pick (arbitrarily) orientations of the cells
hT i (T 2 F ), and extend these to orientations of all cells in †d as follows: whT i is
the oriented cell which is the image of the oriented cell hT i by w , with orientation
changed by a factor of .�1/d.w/ . Using these orientations, we identify L2

t C �.†d / with
˚T2FL2.W hT i; �t /. For every T 2 F we define a map  T WL

2.W hT i; �t /!L2
t

by the formula

(4–1)  T .f /D
X
w2W T

f .whT i/.�1/d.w/
q

WT .t�1/ ıwhT ;

where W T D fw 2W j 8u2WT ; d.wu/ � d.w/g (the set of T –reduced elements),
and

(4–2) hT D
1

WT .t�1/

X
u2WT

.�t/�d.u/ıu:

Putting together these maps we get a map ‰WL2
t C �.†d /!˚T2FL2

t .

Lemma 4.1 (1) For all s 2 T we have ıshT D�hT .

(2) For all u 2WT we have ıuhT D .�1/d.u/hT .

(3) For all U � T we have hU hT D hT .
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Proof (1) Let w 2W be such that d.sw/> d.w/. Then ısıw D ısw (by (2–3)). We
then have

ıs.ıw �
1

t
ısw/D ısw �

1

t
.ısıs/ıw D ısw �

1

t
.tı1C .t � 1/ıs/ıw

D .1�
t � 1

t
/ısw � ıw D�.ıw �

1

t
ısw/

Since hT is a linear combination of expressions of the form ıw �
1
t
ısw , (1) follows.

(2) Follows from (1) by induction on d.u/.

(3) hU hT D
1

WU .t�1/

X
u2WU

.�t/�d.u/ıuhT

D
1

WU .t�1/

X
u2WU

.�t/�d.u/.�1/d.u/hT

D
1

WU .t�1/

0@ X
u2WU

t�d.u/

1A hT D hT

Lemma 4.2 (1) For every T 2 F the map  T is an isometric embedding.

(2) The orthogonal projection of L2
t onto the image of  T is given by right Hecke

t –multiplication by hT .

Proof (1) The squared norm of a summand from the right hand side of (4–1) is

kf .whT i/.�1/d.w/
q

WT .t�1/ ıwhT k
2
t D jf .whT i/j

2WT .t
�1/kıwhT k

2
t :

Since w is T –reduced, we have ıwıu D ıwu for all u 2WT . Therefore

kıwhT k
2
t D







 1

WT .t�1/

X
u2WT

.�t/�d.u/ıwu








2

t

D

ˇ̌̌̌
1

WT .t�1/

ˇ̌̌̌2 X
u2WT

j � t j�2d.u/td.wu/

D td.w/ 1

WT .t�1/2

X
u2WT

t�d.u/
D td.w/ 1

WT .t�1/
:

(2) Due to hT hT D hT and h�
T
D hT , right Hecke t –multiplication by hT is an

orthogonal projection. Let w 2W ; write w D vu where u 2WT and v is T –reduced.
Then ıwhT D ıvıuhT D .�1/d.u/ıvhT . This shows that image of the space of finitely
supported functions (on W hT i) under  T is equal to the image of the space of finitely
supported functions (on W ) under right Hecke t –multiplication by hT . Since  T is
isometric, the L2

t –completions of these images also coincide.
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Denote by L the algebra Ut acting diagonally on the left on ˚T2FL2
t , and by R

its commutant MjF j.C/˝ Vt (acting on the right). It follows from Lemma 4.2 that
the image of ‰ is L–invariant. In other words, we have a Ut –module structure on
L2

t C �.†d /, defined by the condition that the isometric embedding ‰WL2
t C �.†d /!

˚L2
t is a morphism of Ut –modules. Thus, we think of L2

t C �.†d / as of a submodule
of ˚T2FL2

t .

Lemma 4.3 The map ıWL2
t C �.†d /!L2

t C �.†d / is (a restriction of) an element of
R. For U � T 2 F satisfying jT j D jU jC 1, the U T –entry of this element is

ŒhT i W hU i�

s
WT .t�1/

WU .t�1/
hT

Proof Consider a pair of cells whU i, whT i. We have ŒwhT i W whU i�D ŒhT i W hU i�.
We can assume that w is U –reduced, and write it as vu, where v is T –reduced and
u 2WT . Let f 2L2

t C dimhU i.†d /. The summand in  U .f / corresponding to the cell
whU i is

f .whU i/.�1/d.w/
q

WU .t�1/ ıwhU :

The summand in  T .ıf / corresponding to the contribution of f .whU i/ to
.ıf /.whT i/ is

ŒhT i W hU i�f .whU i/.�1/d.v/
q

WT .t�1/ ıvhT :

Now ıwhU hT D ıwhT D ıvıuhT D .�1/d.u/ıvhT , and the lemma follows.

Corollary 4.4 The subspaces L2
t C i.†d /, L2

tHi.†d /, ker ıi , ker @t
i , im ıi and im @i

t

of ˚T2FL2
t are L–invariant; therefore, orthogonal projections onto these spaces are

elements of R.

5 Invariance

In this section we prove that L2
t H�.†d /'L2

t H�.†st / ('L2
t H�.†ghd /, if the latter

exists) as Ut –modules. It will be convenient for us to work with homology rather than
cohomology; since both are isomorphic to the Ut –module of harmonic cochains, it
makes no difference.

We start by fixing orientation conventions. Let us pick arbitrary orientations of the
dual cells hT i for all T 2 F . We extend these orientations to all dual cells as in
Section 4 (whT i is oriented by .�1/d.w/ times the orientation of hT i pushed forward
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by w ). For T 2 F of cardinality k , let hT i \D.k/ be the set of all k –simplices of
†st contained in hT i\D . We orient every element of hT i\D.k/ by the restriction of
the chosen orientation of hT i. We then extend these orientations W–equivariantly (to a
part of †st ), and put arbitrary equivariant orientations on the rest of †st . Notice that if
a k –simplex � is contained in whT i (where T has cardinality k ), then the orientation
of � agrees with .�1/d.�/ times that of whT i. Orientations being chosen, we treat
(co)chains as functions on the set of cells/simplices.

We define a topological embedding of Hilbert spaces � WL2
t C �.†d /!L2

t C �.†st /.

Definition Let f 2L2
t C k.†d /, � 2†

.k/
st .

(1) If there exists h˛i 2†.k/
d

such that � � h˛i (there is at most one such h˛i), then

�f .�/D .�1/d.�/td.h˛i/�d.�/f .h˛i/:

(2) If there is no h˛i as in (1), we put �f .�/D 0.

Lemma 5.1
@t� D �@t :

Proof We will show that for all f 2 L2
t C k.†d /, � 2 †

.k/
st we have @t�f .�/ D

�@tf .�/. There are two cases to consider.

(1) Suppose that there exists h˛i 2†.k/
d

such that � � h˛i. Then

�@tf .�/D .�1/d.�/td.h˛i/�d.�/@tf .h˛i/

D .�1/d.�/td.h˛i/�d.�/
X

hˇikC1�h˛i

Œhˇi W h˛i�td.hˇi/�d.h˛i/f .hˇi/

D .�1/d.�/
X

hˇikC1�h˛i

Œhˇi W h˛i�td.hˇi/�d.�/f .hˇi/:(5–1)

On the other hand,

(5–2) @t�f .�/D
X

�kC1��

Œ� W ��td.�/�d.�/�f .�/:

Notice that if �f .�/¤ 0 then there exists a dual cell hˇikC1 � � . Such hˇi is unique
and h�i is the only .kC 1/–simplex in hˇi with face h�i. Therefore (5–2) equalsX

hˇikC1�h˛i

Œ� W ��td.�/�d.�/.�1/d.�/td.hˇi/�d.�/f .hˇi/
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D

X
hˇikC1�h˛i

Œ� W ��.�1/d.�/td.hˇi/�d.�/f .hˇi/:(5–3)

Now (5–3) and (5–1) are equal because Œ� W ��D .�1/d.�/.�1/d.�/Œhˇi W h˛i�.

(2) The smallest dual cell h˛i containing � is of dimension m>k . Then �@tf .�/D0.
On the other hand,

@t�f .�/D
X

�kC1��

Œ� W ��td.�/�d.�/�f .�/:

Let �kC1 � � , and let hˇi � h˛i be the smallest dual cell containing � . If �f .�/¤ 0,
then dim hˇi D k C 1, which forces hˇi D h˛i and m D dim h˛i D k C 1. Thus,
we are reduced to the case m D k C 1. In this case, there are exactly two simplices
�˙ 2 †

.kC1/
st , �˙ � h˛i, �˙ � � . Since �˙ is oriented by .�1/d.�˙/ times the

orientation of h˛i, we have

(5–4) .�1/d.�C/Œ�C W ��D�.�1/d.��/Œ�� W ��:

Therefore

@t�f .�/D Œ�C W ��t
d.�C/�d.�/�f .�C/C Œ�� W ��t

d.��/�d.�/�f .��/

D Œ�C W ��t
d.�C/�d.�/.�1/d.�C/td.h˛i/�d.�C/f .h˛i/

CŒ�� W ��t
d.��/�d.�/.�1/d.��/td.h˛i/�d.��/f .h˛i/

D ..�1/d.�C/Œ�C W ��C .�1/d.��/Œ�� W ��/t
d.h˛i/f .h˛i/

D 0:(5–5)

Lemma 5.2 � is a morphism of Ut –modules.

Proof The Ut –module structures on L2
t C k.†d / and on L2

t C k.†st / are defined via
embeddings ‰ and ˆ. We will compare ‰ and ˆ ı � . Let f 2L2

t C k.†d /; ‰.f / is
a collection of  T .f /, where

(5–6)  T .f /D
X
w2W T

f .whT i/.�1/d.w/
q

WT .t�1/ ıwhT :

The part of �f corresponding to  T .f / is supported by the set of W–translates of
simplices � 2 hT i\D.k/ , and is mapped by ˆ into ˚�2hT i\D.k/L2

t . The component
indexed by � is

P
w2W �f .w�/ıw (notice that the stabiliser of � is trivial), ie,

(5–7)
X
w2W

.�1/d.whT i/td.whT i/�d.w�/f .whT i/ıw:
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Comparing (5–6) and (5–7) with the help of (4–2), we get that  T .f / agrees with
(every component of) the corresponding part of ˆ.�f /, up to a multiplicative factor ofp

WT .t�1/. This implies the lemma.

Theorem 5.3 The map � induces an isomorphism of Ut –modules L2
t H�.†d / '

L2
t H�.†st /.

Proof Lemmas 5.1 and 5.2 imply that � induces a morphism of Ut –modules on
homology. We have to check that it is an isomorphism of vector spaces.

Let K� be the image of � . It is a subcomplex of .L2
t C�.†st /; @

t /. A k –chain
c 2L2

t C�.†st / is in K� if and only if the following two conditions hold:

(1) c is supported by the union of k –dimensional dual cells:
S
†
.k/

d
;

(2) if �k ; �k � h˛ik , then c.�/D .�t/d.�/�d.�/c.�/.

We need to show that the inclusion K� ,! L2
t C�.†st / induces an isomorphism on

(reduced) homology.

Let mt WL
2
t C�.†st /!L2

t�1C�.†st / be the isomorphism (of Hilbert spaces) mtf .�/

D td.�/f .�/. Instead of working directly with K� , L2
t C�.†st / and @t , we will work

with L�Dmt .K�/, E�DL2
t�1C�.†st /Dmt .L

2
t C�.†st // and @Dmt@

tm�1
t . The

advantage is that

@g.�/Dmt@
tm�1

t g.�/D td.�/@tm�1
t g.�/

D td.�/
X

�kC1��

Œ� W ��td.�/�d.�/m�1
t g.�/(5–8)

D

X
�kC1��

Œ� W ��td.�/t�d.�/g.�/D
X

�kC1��

Œ� W ��g.�/:

To check whether c 2E� is in L� we use (1) and the following version of (2):

.20/ if �k ; �k � h˛ik , then c.�/D .�1/d.�/�d.�/c.�/.

Lemma 5.4 Let c 2 Ek . If @c 2 L� , then there exists a d 2 EkC1 such that
c� @d 2L� . Moreover, there is a constant C depending only on W and t such that d

can be chosen so that kdk � Ckck.

Proof Each dual cell h˛i is a disc; we denote by inth˛i its interior, and by bdh˛i its
boundary. We construct, by descending induction on m (m� k ), cochains dm 2EkC1

such that c � @dm is supported by the union of dual cells of dimensions at most m.
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For m � dim† we put dm D 0. Suppose that dm is already constructed, where
m > k . For every dual m–cell h˛i, let c˛ be the restriction of c � @dm to h˛i (ie, if
c�@dmD

P
a�� , then c˛ D

P
��h˛i a�� ). Let �k \ inth˛i ¤∅. Then � appears in

@c˛ and in @c D @.c� @d/ with the same coefficient, due to the inductive assumption.
But, since @c 2 L� , this coefficient is 0. As a result, c˛ 2 Zk.h˛i; bdh˛i/. Since
Hk.h˛i; bdh˛i/ D 0 (recall that m D dim h˛i > k ), we can find d˛ 2 CkC1.h˛i/

such that c˛ � @d˛ 2 Ck.bdh˛i/. Moreover, we can choose d˛ so that kd˛k �
C1kc˛k, for some constant C1 depending only on W and t . Due to uniform local
finiteness of †, we deduce k

P
h˛i d˛k � C2kck for some constant C2 . We put

dm�1 D dmC
P
h˛i2†

.m/

d

d˛ , and d D dk .

The estimate kdk � Ckck clearly follows from the construction. The chain c� @d DP
b�� is supported by the union of dual cells of dimensions at most k . Let us check

that it satisfies the condition .20/. Suppose that �k�1\ inth˛ik ¤∅. There are exactly
two k –simplices �˙ � h˛i such that � � �˙ . The coefficient of � in @.c � @d/D @c
is 0 (because @c 2L� ), and, on the other hand, is equal to Œ�C W ��b�C C Œ�� W ��b�� .
Using (5–4) we get b�C D .�1/d.�C/�d.��/b�� . This holds for all �k�1 satisfying
�k�1 \ inth˛ik ¤ ∅, which implies that c � @d satisfies .20/. Hence c � @d 2 L� .
The lemma is proved.

We are ready to check that the inclusion �WL� ,!E� induces an isomorphism �� on
(reduced) homology. To show that �� is surjective, suppose that c 2 E� is closed:
@cD 0. Then @c 2L� , and, by Lemma 5.4, there exists d 2E� such that c�@d 2L� .
We get Œc�D ��Œc � @d �.

To show that �� is 1–1, suppose that l 2L� , @l D 0 and ��Œl �D 0, ie, l D lim @en for
some sequence of en 2 E� . Applying Lemma 5.4 to c D l � @en , we get that there
exist fn 2 E� , fn! 0 such that l � @en � @fn 2 L� . But, since l 2 L� , we deduce
that @.enCfn/ 2L� . Now we apply Lemma 5.4 to c D enCfn to get gn 2E� such
that hn D enCfn� @gn 2L� . We have

@hn D @enC @fn� @@gn:

The last term is 0, the middle term converges to 0 since @ is bounded and fn! 0, so
that, finally,

lim @hn D lim @en D l:

This means that Œl �D 0 in H�.L�/.

We have shown that .L�; @/ ,! .E�; @/ induces an isomorphism on homology. There-
fore so does the inclusion .K�; @t / ,! .L2

t C�.†st /; @
t /. The theorem follows.
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Let us now assume that D is a generalised homology disc. Then, along the same lines
as above, one shows L2

t H�.†st /'L2
t H�.†ghd / (as Ut –modules). More precisely,

one defines � WL2
t H�.†ghd /! L2

t H�.†st / by �f .�/D f .˛/ if �k � ˛k 2 †
.k/

ghd
,

and �f .�/ D 0 if no such ˛k exists. The proof of @t� D �@t is similar to that of
Lemma 5.1, and it is clear that � is a Ut –morphism. A chain c 2L2

t Ck.†st / is in the
image K� of � if and only if

(1) c is supported by
S
†
.k/

ghd
;

(2) if �k ; �k � ˛k 2†
.k/

ghd
, then c.�/D c.�/.

These conditions do not change under mt , and the rest of the proof of Theorem 5.3 can
be repeated with dual cells replaced by cells of †ghd (the only other change will be
Œ�C W ��D�Œ�� W �� instead of the more complicated (5–4)). We get

Theorem 5.5 Let .D; @D/ be a generalised homology disc. Then we have the
following isomorphisms of (graded) Ut –modules: L2

t H�.†ghd / ' L2
t H�.†st / '

L2
t H�.†d /.

6 Poincaré Duality

Let us define a map DWL2
t !L2

t�1 by

(6–1) D.
X

awıw/D
X

.�t/d.w/awıw:

Direct calculation shows that D is an isometric isomorphism of Hilbert spaces. Notice
that D maps Ct ŒW � onto Ct�1 ŒW �. It is easy to check that D preserves the relations
defining Hecke multiplication: if d.ws/ > d.w/, then

D.ıwıs/DD.ıws/D .�t/d.ws/ıws D .�t/d.w/ıw.�tıs/DD.ıw/D.ıs/I

if d.ws/ < d.w/, then

D.ıwıs/DD.tıwsC .t � 1/ıw/D t.�t/d.ws/ıwsC .t � 1/.�t/d.w/ıw

D .�t/d.w/C1t�1ıwsC .�t/d.w/C1.t�1
� 1/ıw D .�t/d.w/ıw.�t/ıs

DD.ıw/D.ıs/:

Hence, D restricts to an isometric isomorphism of Hilbert algebras Ct ŒW � and
Ct�1 ŒW �. In particular, D preserves products: for all x;y 2 Ct ŒW �, we have
D.xy/ D D.x/D.y/. Passing to limits with y in the norm k � kt , we deduce that
the map DWL2

t ! L2
t�1 is a morphism of left modules over the algebra morphism
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DWCt ŒW �! Ct�1 ŒW �. Then passing to limits with x in the weak operator topology,
we deduce that DWL2

t !L2
t�1 is a morphism of left modules over the von Neumann

algebra isomorphism DWUt ! Ut�1 . Analogous statements hold for the right module
structures. Finally, since D preserves the coefficient of ı1 , it preserves dimensions of
(left) submodules of L2

t .

Theorem 6.1 Suppose that the pair .D; @D/ is a generalised homology n–disc. Then
bi

t D bn�i
t�1 .

Proof There is a bijection DT $ hT i, where T 2 F ; it can be unambiguously
extended to wDT $whT i, a natural bijection between i –cells of †ghd and .n� i/–
cells of †d . When w and T are not specified we write simply � $ h�i. A property
of this bijection which is crucial for us is: the codimension 1 faces of h� i�1i are
h� ii, for � � � . Let us pick orientations of all faces DT of D , and extend them
equivariantly to orientations of all cells � in †ghd . Then we orient each dual cell h�i
dually to the chosen orientation of � (dually with respect to a chosen orientation of †).
These orientations are of the kind considered in Section 4. With these choices we have
Œh�i W h�i�D˙Œ� W ��, with the sign depending only on the dimensions of � , � (and on
n, which is fixed in our discussion).

We define the duality map DWL2
t C �.†ghd /!L2

t�1C n��.†d / by

(6–2) Df .h�i/D td.�/f .�/:

The map D is an isometry of Hilbert spaces. We will now check that ın�iDD˙D@t
i

(the sign depending only on i , n):

ı.Df /.h� i�1
i/D

X
� i�� i�1

Œh�i W h�i�.Df /.h�i/D˙
X

� i�� i�1

Œ� W ��td.�/f .�/

while

D.@tf /.h� i�1
i/D td.�/.@tf /.� i�1/D td.�/

X
� i�� i�1

Œ� W ��td.�/�d.�/f .�/

which proves what we wanted. It follows that D intertwines also the adjoint operators;
consequently, it restricts to an isomorphism DWL2

tH�.†ghd /!L2
t�1Hn��.†d /.

We still have to check that the Hecke dimensions of these spaces are the same.

To this end, let us now consider L2
t C �.†ghd / as a subspace of ˚T2FL2

t via the
embedding ˆt (see Section 3), and L2

t�1C n��.†d / as a subspace of ˚T2FL2
t�1 via

the embedding ‰t�1 (see Section 4). We will check that D can be regarded as the
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restriction of the map D (applied componentwise in ˚T2FL2
t ); it will follow that D

preserves dimensions. Let f 2L2.WDT ; �t / be a part of a cochain on †ghd . Then

�T .f /D
p

WT .t/
X
w2W T

f .wDT /ıwpT .t/;

where pT .t/D
1

WT .t/

P
u2WT

ıu . Since

D.pT .t//D
1

WT .t/

X
u2WT

.�t/d.u/ıu

D
1

WT ..t�1/�1/

X
u2WT

.�t�1/�d.u/ıu D hT .t
�1/;

we have

(6–3) D.�T .f //D
X
w2W T

f .wDT /
p

WT .t/.�t/d.w/ıwhT .t
�1/:

On the other hand, .Df /.whT i/D td.whT i/f .wDT /, and

(6–4)  T .Df /D
X
w2W T

td.whT i/f .wDT /.�1/d.w/
p

WT .t/ ıwhT .t
�1/:

Since for w 2W T we have d.whT i/D d.w/, (6–3) and (6–4) are equal.

Remark The above proof shows that D is an isomorphism of the Ut –module
L2

tH�.†ghd / and the Ut�1 –module L2
t�1Hn��.†d /, over the algebra isomorphism

DWUt ! Ut�1 .

7 Calculation of b0
t

Theorem 7.1 For t < �W we have b0
t D

1
W .t/

; for t � �W we have b0
t D 0.

Proof We will use the cell structure †d . Vertices of †d are located at the centres
of chambers wD , thus they are in bijection with W . We embed L2

t C 0.†d / into L2
t

by .‰c/.w/D .�1/d.w/c.wh∅i/. This embedding maps all harmonic 0–cochains to
constant functions, multiples of 1.w/D1. The square of the norm of 1 is

P
w2W td.w/ .

It is finite and equal to W .t/ for t < �W , and infinite if t � �W . The latter means that
for t � �W we have L2

tH0.†d /D 0.

To find b0
t for t < �W we need to identify the projection of ı1 on L2

tH0.†d /; it is
C 1, where

hı1�C 1; 1it D 0:
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This gives C D k1k�2
t D

1
W .t/

. In accordance with the procedure described at the end

of Section 2, we find b0
t D C D 1

W .t/
.

In view of Corollary 3.4, the above result makes it plausible to suspect that for t < �W

we have b>0
t D 0. In the next section we prove that this is true for right angled Coxeter

groups.

8 Mayer–Vietoris sequence

In this section we limit our attention to right angled Coxeter groups. “Right angled”
means that whenever two generators s; s0 2 S are related in the standard presentation,
they in fact commute. If we join each pair of commuting generators by an edge, we
get a graph with the set of vertices S . It is convenient to fill it, gluing in a simplex
whenever we can see its 1–skeleton in the graph. The resulting simplicial complex is
denoted L, and the Coxeter group WL . The Davis chamber D can be identified with
the cone CL0 over the first barycentric subdivision of L. We say that a subcomplex
K � L is full, if whenever it contains all vertices of a simplex of L, it contains the
simplex as well. Full subcomplexes K correspond to subsets of S and thus to special
subgroups WK of WL . The Davis complex of WK is naturally embedded in †WL

:
we first embed DK D CK0 in DL D CL0 , and then extend WK –equivariantly. We
abbreviate †WL

to †L .

Let L D L1 [ L2 , where L1 , L2 and (consequently) L0 D L1 \ L2 are full
subcomplexes of L. We embed WLi

into WL , and †Li
into †L ; then †L D

WL†L1
[WL†L2

, WL†L1
\WL†L2

DWL†L0
. We have a short exact sequence

of cochain complexes

0!L2
t C �.†L/!L2

t C �.WL†L1
/˚L2

t C �.WL†L2
/!L2

t C �.WL†L0
/! 0;

from which we get the long Mayer–Vietoris sequence:

: : :!L2
t H i�1.WL†L0

/!L2
t H i.†L/!(8–1)

!L2
t H i.WL†L1

/˚L2
t H i.WL†L2

/!L2
t H i.WL†L0

/! : : :

Since we work with reduced cohomology, this sequence is only weakly exact (the
kernels are closures of the images), see Lück [9, 1.22]. Still, if a term is preceded and
followed by zero terms it has to be zero. Notice that WL†Li

is the disjoint union of
w†Li

, where w runs through a set of representatives of WLi
–cosets in WL . The L2

t

norm on w†Li
is td=2 times the L2

t norm on †Li
, where d is the length of the shortest

element of wWLi
. In particular, if L2

t H p.†Li
/D 0, then L2

t H p.WL†Li
/D 0.
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Corollary 8.1 Suppose that b>0
t .†Li

/D 0 for i D 0; 1; 2. Then b>1
t .†L/D 0.

Theorem 8.2 Let W be a right angled Coxeter group. For t < �W we have b0
t D

�t D
1

W .t/
and b>0

t D 0.

Proof Let W DWL . We argue by induction on the number of vertices of L.

(1) If L is a simplex, then †L;d is a cube; its L2
t cohomology coincides with the

usual cohomology and is concentrated in dimension 0.

(2) If L is not a simplex, we can find two vertices a; b 2L not connected by an edge;
we put L1D

S
f� j a 62 �g, L2D

S
f� j b 62 �g and L0DL1\L2 . These have fewer

vertices than L, and so L2
t H>0.†Li

/D 0 for t <�.WLi
/ (i D 0; 1; 2). Since Li �L,

we have �.WLi
/� �.WL/. Therefore we have L2

t H>0.†Li
/D 0 for t < �.WL/. It

follows from Corollary 8.1 that L2
t H>1.†L/D 0 (still for t < �.WL/), while from

Corollary 3.4 and Theorem 7.1 we conclude that

b0
t .†L/D �t .†L/D b0

t .†L/� b1
t .†L/:

Thus b1
t .†L/D 0.

Corollary 8.3 Assume that L is a generalised homology .n�1/–sphere (ie, .D; @D/
is a generalised homology n–disc); then for t < 1

�.WL/
we have bn

t D 0, while for

t > 1
�.WL/

the L2
t –cohomology is concentrated in dimension n and bn

t D .�1/n�t D

.�1/n

WL.t/
.

Proof This follows from Theorems 8.2 and 7.1 via Poincaré duality (Theorem 6.1).

Proposition 8.4 Let K � L be a full subcomplex. The dimension of the Ut .WL/–
module L2

t H q.WL†K / is the same as the dimension of the Ut .WK /–module
L2

t H q.†K / (ie, it is equal to b
q
t .†K /).

Proof A harmonic q–cochain on WL†K D
S
fw†K j w 2WLg is the same thing as

a collection of harmonic q–cochains on w†K . In order to calculate dimensions, we
embed everything in V D˚��DL

L2
t .WL/. Let 1� 2 V have ı1 as its coordinate with

index � , and 0 on all other coordinates. As we project 1�q on L2
tHq.WL†K /, we get

in fact a harmonic cochain supported on †K —harmonic cochains supported on other
components of WL†K are orthogonal to 1�q , so also to its projection. We can as well
project 1�q on L2

tHq.†K / inside ˚L2
t .WK /, so that the projection matrices are the

same (apart for the case � 6�K , which gives 0 in the first case and does not appear in
the second), and traces coincide.
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9 Chain homotopy contraction

In this section we will describe a simplicial version of the geodesic contraction of †
with respect to the Moussong metric. We will consider the chain complex C�.†st /

equipped with the boundary operator @ given by (5–8). Henceforth we write † for
†st , and we denote by b the barycentre of the basic chamber D . Recall that † can be
equipped with a W–invariant, CAT .0/ metric dM , the Moussong metric (Moussong
[10]). From now on, all balls, geodesics etc. will be considered with respect to dM

(unless explicitly stated otherwise). Besides CAT .0/, the following property of the
Moussong metric will be useful for us: for every R> 0 there exists a constant N.R/

such that any ball of radius R in † intersects at most N.R/ chambers.

Theorem 9.1 There exists a linear map H WC�.†/! C�C1.†/, and constants C , R,
with the following properties:

(a) if v 2†.0/ , then @H.v/D v� b ;

(b) if � is a simplex of positive dimension, then @H.�/D � �H.@�/;

(c) for every simplex � , kH.�/kL1 < C ;

(d) if 
 is a geodesic from a vertex of a simplex � to b , then supp.H.�// �
BR.image.
 //.

Proof We will construct, for all integers i � 0, linear maps hi WC�.†/! C�.†/,
Hi WC�.†/! C�C1.†/ such that:

(1) h0 D id;

(2) @hi D hi@;

(3) @Hi D hi �Hi@� hiC1 ;

(4) 9Ck ;8� 2†
.k/;8i � 0; kHi.�/kL1 < Ck and khi.�/kL1 < Ck ;

(5) 9Rk ;8� 2 †
.k/;8i � 0, if 
 is a geodesic from a vertex of � to b , then

supp.hi.�//, supp.Hi�1.�// (if i > 0) and supp.Hi.�// are contained in the
ball BRk

.
 .i// (or in BRk
.b/, if i > length.
 /);

(6) if i �diam.�[fbg/, then hi.�/D0 (unless dim �D0, in which case hi.�/Db )
and Hi.�/D 0.

The construction will be by induction on the chain degree k . Throughout this proof, we
will say that a family of chains is uniformly bounded if they have uniformly bounded
support diameters and L1 norms. Let A be the length of the longest edge in †.
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(1) k D 0

Let v 2†.0/ , let 
vW Œ0; l �!† be a geodesic such that 
v.0/D v , 
v.l/D b . We put
h0.v/D v , hi.v/D b if i � l , and we choose a vertex within distance A from 
v.i/

and declare it to be hi.v/ in the remaining cases. We have d.hi.v/; hiC1.v//� 1C2A.
Now, up to the action of W , there are only finitely many pairs of vertices .y; z/
satisfying d.y; z/ < 1C 2A. In every W–orbit of such pairs we choose a pair .y; z/
and we fix a 1–chain H.y; z/, @H.y; z/D y� z ; we then extend H to the W–orbit of
.y; z/ using the W–action (making choices if stabilisers are non-trivial). In the case
y D z we choose H.y;y/ D 0. Notice that the chosen 1–chains H are uniformly
bounded. Finally, we put Hi.v/DH.hi.v/; hiC1.v//.

(2) k! .kC 1/

Let � 2 †.kC1/ . Then, due to (2), @hi.@�/D hi.@@�/D 0. Thus, hi.@�/ is a cycle.
Moreover, we claim that as we vary � , the cycles hi.@�/ are uniformly bounded. In
fact, as a consequence of (5), every simplex in the support of hi.@�/ is within Rk

of one of the points 
v.i/, where v runs through the vertices of � , and, by CAT .0/

comparison, the k C 2 points 
v.i/ are within 2A of each other. Whence uniform
boundedness of supports of hi.@�/. Uniform boundedness of L1 norms follows from
(4). Up to the W–action on Ck.†/, there are only finitely many possible values of
hi.@�/. As in step 1, we fix .kC 1/–chains hi.�/, @hi.�/D hi.@�/, so that they are
uniformly bounded (and are 0 whenever hi.@�/D 0).

To define Hi.�/, we consider the chain hi.�/�Hi.@�/� hiC1.�/. It is a cycle:

@.hi.�/�Hi.@�/� hiC1.�//D @hi.�/� @Hi.@�/� @hiC1.�/

D hi.@�/�
�
hi.@�/�Hi.@@�/� hiC1.@�/

�
� hiC1.@�/D 0:

Again, all such chains (as we vary � ) are uniformly bounded, and we can choose
Hi.�/, satisfying @Hi.�/D hi.�/�Hi.@�/� hiC1.�/, in a uniformly bounded way.
As before, we put Hi.�/D 0 whenever we have to chose it so that it has boundary 0
(so as to satisfy (6)).

Now that we have a family of maps satisfying (1)–(6), we put H.�/D
P

i�0 Hi.�/.
The sum is always finite because of (6). The conditions (a)–(d) are easy to check: (a)
and (b) follow from (1), (3) and (6); (c) follows from (4) and (5): since the supports of
Hi.�/ are uniformly bounded and “move along” a geodesic 
 with constant speed as i

grows, only a uniformly finite number of Hi.�/ contribute to a coefficient of a fixed
simplex � in the chain H.�/; moreover, because of (4), each contribution is smaller
than Cdim� ; (d) is a consequence of (5).
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10 Vanishing below �

Let H be a map as in Theorem 9.1.

Theorem 10.1 Suppose that t > 1
�W

. Then the map H extends to a bounded operator
H WL2

t C�.†/!L2
t C�C1.†/.

Proof Unspecified summations will be over †.k/ . Nk will denote the number of
k –simplices in a chamber.

Let a D
P

a�� 2 L2
t Ck.†/. We know that for every simplex � , kH.�/kL1 < C .

Also X
ja� j D

X
ja� jt

d.�/=2t�d.�/=2
�

�X
ja� j

2td.�/
�1=2 �X

t�d.�/
�1=2

� kakt

�
NkW .t�1/

�1=2
<C1;

so that
P

a�H.�/ is pointwise convergent to a chain H.a/ 2L1CkC1.†/. We want
to estimate kH.a/kt . Let us write � � � if � appears with non-zero coefficient in
H.�/. We have jH.a/� j �

P
� j��� C ja� j , so that

X
jH.a/� j

2td.�/
� C 2

X
�

� X
� j���

ja� j

�2

td.�/

� C 2
X
�

� X
� j���

ja� jt
d.�/=2t

�˛
�

d.�/�d.�/
2

�
t
�ˇ

�
d.�/�d.�/

2

��2

(10–1)

� C 2
X
�

� X
� j���

ja� j
2td.�/.t�˛/d.�/�d.�/

�� X
� j���

.t�ˇ/d.�/�d.�/

�
:

Here ˛ , ˇ are positive numbers chosen so that ˛Cˇ D 1, t�ˇ < �W .

Claim There exists a constant C 0 , independent of � , such thatX
� j���

.t�ˇ/d.�/�d.�/
� C 0W .t�ˇ/:

Proof Recall that A is the length of the longest edge in †, and N.r/ is the maximal
number of chambers intersecting a ball of radius r . The claim follows from two
observations.
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(1) For w0 2 W let E.w0/ D fw 2 W j d.w/ D d.w0/C d.w�1
0
w/g. In more

geometric terms, E.w0/ is the set of all w such that some gallery connecting D and
wD passes through w0D . We haveX
w2E.w0/

.t�ˇ/d.w/�d.w0/ D

X
w2E.w0/

.t�ˇ/d.w
�1
0
w/
�

X
w2W

.t�ˇ/d.w/ DW .t�ˇ/:

(2) If � � � , then � is at distance at most R from a geodesic 
 joining (a vertex of)
� and b . Let us consider the union U of all galleries joining D and a fixed chamber
D0 containing � . Then U is the intersection of all half-spaces containing D and D0

(see Ronan [11]). Since half-spaces are geodesically convex in dM , we have 
 � U .
Consequently, every point of 
 lies in a gallery joining D0 and D . Therefore, if we put
B.�/D fw0 j w0D\BR.�/¤∅g, then we have f� j � � �g �

S
w02B.�/E.w0/D .

Putting these together,X
� j���

.t�ˇ/d.�/�d.�/
�

X
w02B.�/

t�ˇ.d.w0/�d.�//
X

w2E.w0/

Nk.t
�ˇ/d.w/�d.w0/

�

X
w02B.�/

t�ˇ.d.w0/�d.�//NkW .t�ˇ/:

Notice that jd.w0/� d.�/j does not exceed the gallery distance from w0D to some
chamber containing � , and is therefore uniformly bounded. Also, the cardinality of
B.�/ is bounded by N.RCA/. The claim is proved.

Using the claim, we can continue the estimate (10–1):

kH.a/k2t � C 2C 0W .t�ˇ/
X
�

� X
� j���

ja� j
2td.�/.t�˛/d.�/�d.�/

�
:

NowX
�

� X
� j���

ja� j
2td.�/.t�˛/d.�/�d.�/

�
D

X
�

�
ja� j

2td.�/
X
� j���

.t�˛/d.�/�d.�/

�
;

so that the following lemma is all we need:

Lemma 10.2 There exists a constant K independent of � such thatX
� j���

.t�˛/d.�/�d.�/ <K:
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Proof Since W acts on .†; dM / isometrically, cocompactly and properly discon-
tinuously, the word metric d on W is quasi-isometric to the metric dM restricted to
W 'W b ,! †. This implies that there exist constants M , m, L such that for any
two points y; z 2† and any chambers Dy 3 y , Dz 3 z , we have

(10–2) MdM .y; z/CL� d.Dy ;Dz/�mdM .y; z/�L;

where we put d.wD;uD/D d.w;u/D d.w�1u/.

Let v be a vertex of � , and let 
 W Œ0; l �! † be a geodesic, 
 .0/D v , 
 .l/D b . To
each � � � we can assign one of the points 
 .i/ (0 � i � blc) in such a way that
dM .�; 
 .i// <RC 1. The number of simplices to which we assign a given 
 .i/ does
not exceed N.RC1/Nk . Suppose that 
 .i/ is assigned to � . Let D� (resp. D� ) be the
chamber containing � (resp. � ) such that d.�/D d.D;D� / (resp. d.�/D d.D;D� /).
Let Di be a chamber containing 
 .i/. We choose Di so that some gallery from D to
D� passes through Di (see part 2 of the proof of the claim above). Using (10–2), we
get

d.�/� d.�/D d.D;D� /� d.D;D� /

� d.D;Di/C d.Di ;D� /� .d.D;Di/C d.Di ;D� //

� mdM .
 .i/; v/�L� .MdM .�; 
 .i//CL/

� mi � .M.RC 1/C 2L/Dmi �P;

where P DM.RC 1/C 2L. Remember that t�1 and, whence, t�˛ are less than 1.
Therefore X

� j���

.t�˛/d.�/�d.�/
�

blcX
iD0

N.RC 1/Nk.t
�˛/mi�P

DN.RC 1/Nk t˛P

blcX
iD0

.t�˛m/i

� N.RC 1/Nk t˛P 1

1� t�˛m
:

This completes the proof of Lemma 10.2 and of Theorem 10.1.

Theorem 10.3 Let W be a Coxeter group. For t < �W we have b0
t .W /D �t .W /D

1
W .t/

and b>0
t .W /D 0.

Proof Theorems 9.1 and 10.1 imply that in the range t > 1
�W

we have

H>0.L
2
t C�.†/; @/D 0:
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Indeed, if c 2L2
t Ck.†/, @cD 0, then cD @H.c/CH.@c/D @H.c/, so that Œc�D 0. It

follows that the isomorphic complex .L2
t�1C�.†/; @

t�1

/ also has vanishing homology
in degrees > 0 (if t�1 < �W ). Thus, its homology is concentrated in dimension 0, and
the zeroth Betti number is equal to the Euler characteristic.

Corollary 10.4 Assume that .D; @D/ is a generalised homology n–disc; then for
t < 1

�W
we have bn

t D 0, while for t > 1
�W

the L2
t cohomology is concentrated in

dimension n and bn
t D .�1/n�t D

.�1/n

W .t/
.

Proof This follows from Theorems 10.3 and 7.1 using Poincaré duality (Theorem
6.1).
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