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RESOLVENT ESTIMATES FOR SPACETIMES
BOUNDED BY KILLING HORIZONS

ORAN GANNOT

We show that the resolvent grows at most exponentially with frequency for the wave equation on a class of
stationary spacetimes which are bounded by nondegenerate Killing horizons, without any assumptions on
the trapped set. Correspondingly, there exists an exponentially small resonance-free region, and solutions
of the Cauchy problem exhibit logarithmic energy decay.

1. Introduction

1A. Statement of results. Let (M, g) be a connected (n+1)-dimensional Lorentzian manifold of signa-
ture (1, n) with connected boundary ∂M, satisfying the following assumptions:

(1) ∂M is a Killing horizon generated by a complete Killing vector field T, whose surface gravity is a
positive constant κ > 0 (see Section 2C for details).

(2) M is stationary in the sense that there is a compact spacelike hypersurface X with boundary such
that each integral curve of T intersects X exactly once.

(3) T is timelike in M◦.

Consider a formally self-adjoint (with respect to the volume density) operator L ∈ Diff2(M) commuting
with T, such that L −�g ∈ Diff1(M). Thus we can write

L =�g +W +V,

where W is a smooth vector field and V ∈ C∞(M). In addition, assume that W is tangent to ∂M.
Identify M = Rt × X under the flow of T. Since T commutes with L , the composition

P(ω)= eiωt Le−iωt (1-1)

descends to a differential operator on X depending on ω ∈ C. Fredholm properties of P(ω) were first
examined in a robust fashion by Vasy [2013] using methods of microlocal analysis, and subsequently by
Warnick [2015] via physical space arguments; see also [Gannot 2018].

Here we summarize a simple version of these results, which applies in any strip of fixed width near the
real axis. For k ∈ N, let

X k
= {u ∈ H k+1(X) : P(0)u ∈ H k(X)}, (1-2)
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equipped with the graph norm. Since P(ω)−P(0)∈Diff1(X), the operator P(ω) is bounded X k
→H k(X)

for each ω ∈ C.

Proposition 1.1 [Vasy 2013; Warnick 2015]. The operator P(ω) : X k
→ H k(X) is Fredholm of index 0

in the half-plane
{
Imω >−κ

(
k+ 1

2

)}
and is invertible for Imω > 0 sufficiently large.

The inverse P(ω)−1
: H k(X)→X k forms a meromorphic family of operators in

{
Imω >−κ

(
k+ 1

2

)}
,

called the resolvent family, which is independent of k in a suitable sense [Vasy 2013, Remark 2.9]. Its
complex poles in

{
Imω > −κ

(
k + 1

2

)}
are known as resonances, and correspond to nontrivial mode

solutions v = e−iωt u of the equation �gv = 0, where u ∈ C∞(M) satisfies T u = 0. Thus mode solutions
with Imω > 0 grow exponentially in time, whereas those with Imω < 0 exhibit exponential decay.

Given ω0,C0 > 0, define the region

�= {|Imω| ≤ e−C0|Reω|
} ∩ {|ω|> ω0}.

These parameters are fixed in the next theorem, which is the main result of this paper.

Theorem 1. There exist ω0,C0 > 0 such that P(ω) has no resonances in �. Furthermore, there exists
C > 0 such that if ω ∈�, then

‖P(ω)−1 f ‖H k+1 ≤ eC |Reω|
‖ f ‖H k (1-3)

for each k ∈ N and f ∈ H k(X).

Theorem 1 is also true when ∂M consists of several Killing horizons generated by T, each of which has
a positive, constant surface gravity. In particular, Theorem 1 applies to any stationary perturbation of the
Schwarzschild–de Sitter spacetime (which is bounded by two nondegenerate Killing horizons [Vasy 2013,
Section 6]) that preserves the timelike nature of T, and for which the horizons remain nondegenerate Killing
horizons. Other examples are even asymptotically hyperbolic spaces in the sense of [Guillarmou 2005].

1B. Energy decay. Theorem 1 can be used to prove logarithmic decay to constants for solutions of the
Cauchy problem

�gv = 0, v|X = v0, T v|X = v1. (1-4)

Given initial data (v0, v1) ∈ H k+1(X)× H k(X), the equation (1-4) admits a unique solution

v ∈ C0(R+; H k+1(X))∩ C1(R+; H k(X)).

If N denotes the future-pointing unit normal to the level sets of t and Q[v] is the stress-energy tensor
(see Section 4C) associated to v, define the energy

E[v](s)=
∫
{t=s}

Q[v](N , N ) d SX .

Here d SX is the induced volume density on X = {t = 0}, which is isometric to each time slice {t = s}.
Since N is timelike, it is well known that E[v](s) is positive definite in dv. One consequence of the
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positivity of κ is the energy-boundedness statement

E[v](t)≤ CE[v](0); (1-5)

see for instance [Warnick 2015, Corollary 3.9]. One can also define an energy Ek[v] controlling all
derivatives up to order k, with E[v] = E1[v], which is similarly uniformly bounded. This can be improved
to a logarithmic energy-decay statement uniformly up to the horizon, with a loss of derivatives.

Corollary 1.2. Given k ∈ N, there exists C > 0 such that

Ek[v](t)1/2 ≤
C

log(2+ t)
‖(v0, v1)‖X k×H k+1

for each v ∈ C0(R+; H k+1(X)) ∩ C1(R+; H k(X)) solving the Cauchy problem (1-4) with initial data
(v0, v1) ∈ X k

× H k+1(X).

We can also improve Corollary 1.2 by showing that v decays logarithmically to a constant as follows.
Given (v0, v1) ∈ X k

× H k+1(X), define the constant

v∞ = vol(∂X)−1
∫

X

(
A−2v1− 2A−2Wv0− divg(A−2W )v0

)
A d SX .

Here A > 0 is the lapse function and W is the shift vector as described in Section 2D.

Corollary 1.3. Given k ∈ N, there exists C > 0 such that

‖v(t)− v∞‖H k+1 +‖∂tv(t)‖H k ≤
C

log(2+ t)
‖(v0, v1)‖X k×H k+1

for each v ∈ C0(R+; H k+1(X)) ∩ C1(R+; H k(X)) solving the Cauchy problem (1-4) with initial data
(v0, v1) ∈ X k

× H k+1(X).

By Sobolev embedding, Corollary 1.3 can be used to deduce pointwise decay estimates as well.

1C. Relationship with previous work. The analogue of Theorem 1 was first established for compactly
supported perturbations of the Euclidean Laplacian in the landmark paper [Burq 1998]. There have
been subsequent improvements and simplifications in the asymptotically Euclidean setting [Burq 2002;
Vodev 2000; Datchev 2014], while Rodnianski and Tao [2015] considered asymptotically conic spaces.
In a different direction, Holzegel and Smulevici [2013] established logarithmic energy decay on slowly
rotating Kerr–AdS spacetimes, which contain a Killing horizon of the type described here in addition to a
conformally timelike boundary. However, their approach made heavy use of the symmetries of Kerr–AdS,
and is not adaptable to our setting.

Most relevant to the setting considered here are [Moschidis 2016; Cardoso and Vodev 2002]. The
former reference shows logarithmic energy decay on Lorentzian spacetimes which may contain Killing
horizons, but importantly also contain at least one asymptotically flat end. There, the mechanism of decay
is radiation into the asymptotically flat region. In contrast, asymptotically flat ends are not considered
in the present paper, but we do allow spacetimes which contain Killing horizons as their only boundary
components. We therefore stress that the results of [Moschidis 2016] are disjoint from those of this paper.
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Meanwhile, [Cardoso and Vodev 2002] applies to a wide class of Riemannian metrics, including those
with hyperbolic ends. There is a close connection between asymptotically hyperbolic manifolds and
black holes spacetimes, first exploited in the study of resonances by Sá Barreto and Zworski [1997]. This
relationship has attracted a great deal of interest, especially following the paper [Vasy 2013]; for a survey
of recent developments, see [Zworski 2017].

Common to the works described above is the use of Carleman estimates in the interior of the geometry,
which is then combined with some other (typically more complicated) analysis near infinity. Although the
proof of Theorem 1 adopts techniques from [Burq 1998; Moschidis 2016; Rodnianski and Tao 2015], one
novelty (and simplifying feature) is that the Carleman estimate employed here is valid up to and including
the horizon. In particular, this avoids the use of separation of variables and special function methods [Burq
1998; Holzegel and Smulevici 2013; Vodev 2000], Mourre-type estimates [Burq 2002], and spherical
energies [Cardoso and Vodev 2002; Datchev 2014; Moschidis 2016; Rodnianski and Tao 2015].

2. Preliminaries

2A. Semiclassical rescaling. It is conceptually convenient to rescale the operator by

P(z)= h2 P(h−1z). (2-1)

Thus ω= h−1z, and uniform bounds on P(z) for ±z in a compact set [a, b] ⊂ (0,∞) give high-frequency
bounds for P(ω) as |ω| →∞. Theorem 1 is easily seen to be equivalent to the following.

Theorem 1′. Given [a, b] ⊂ (0,∞), there exist C,C1 > 0 such that

‖u‖H k+1
h
≤ eC/h

‖P(z)u‖H k
h

(2-2)

for each u ∈ X k and ±z ∈ [a, b] + ie−C1/h
[−1, 1].

The norms in (2-2) are semiclassically rescaled Sobolev norms. For detailed expositions on semiclassical
analysis, the reader is referred to [Zworski 2012] and [Dyatlov and Zworski 2018, Appendix E].

2B. Stationarity. A tensor on M will be called stationary if it is annihilated by the Lie derivative LT .
The definition of stationarity can be extended to T ∗M by observing that T lifts to a vector field on T ∗M
via the identification

T ∗M = T ∗R⊕ T ∗X.

Any covector $ ∈ T ∗q M at a point q = (t, x) can be decomposed as $ = ξ + τ dt , where ξ ∈ T ∗x X and
τ dt ∈ T ∗t R. Thus a function F ∈ C∞(T ∗M) is stationary if it depends only on ξ ∈ T ∗x X and τ ∈R, which
we sometimes denote by F(x, ξ, τ ). Furthermore, if τ = τ0 is fixed, then F induces a function F( · , τ0)

on T ∗X . This is compatible with the Poisson bracket in the sense that for stationary F1, F2 ∈ C∞(T ∗M),
there is the equality

{F1, F2}(x, ξ, τ0)= {F1( · , τ0), F2( · , τ0)}(x, ξ). (2-3)

On the left is the Poisson bracket on T ∗M, and on the right the Poisson bracket on T ∗X .
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In particular, this discussion applies to the dual metric function G ∈ C∞(T ∗M), whose value at
$ ∈ T ∗q M is given by

G(x,$)= g−1
x ($,$)= gαβ(x)$α$β .

The semiclassical principal symbol p = σh(P(z)) is given by p(x, ξ ; z)=−G(x, ξ − z dt).

Lemma 2.1. The quadratic form (x, ξ) 7→ G(x, ξ) is negative definite on T ∗X◦.

Proof. The condition τ = 0 implies that $ = ξ + 0 dt is orthogonal to T [. But T [ is timelike on M◦,
whence the result follows. �

If τ0 ∈ R is fixed and K ⊂ X◦ is compact, then by Lemma 2.1 there exist c, R > 0 such that if
G(x, ξ)≥ R, then

G(x, ξ + τ0 dt)≥ cG(x, ξ)

for each ξ ∈ T ∗K X◦, where the constants c, R are locally uniform in τ0. In particular, given a compact
interval I ⊂ R, the set

{ξ ∈ T ∗K X◦ : G(ξ + τ dt)= 0 for some τ ∈ I }

is a compact subset of T ∗X◦. This also implies that if Q is a stationary quadratic form on T ∗M, then
there exists C > 0 such that

|Q(x, ξ + τ dt)| ≤ C(1+ |G(x, ξ + τ dt)|)

for each ξ ∈ T ∗K X◦ and τ ∈ I .

2C. Killing horizons and surface gravity. Recall the hypotheses on (M, g) described in Section 1A and set

µ= g(T, T ).

The key property of (M, g) is that ∂M is a Killing horizon generated by T. By definition, this means
that ∂M is a null hypersurface which agrees with a connected component of the set {µ= 0, T 6= 0}. Of
course in this case T is nowhere-vanishing. Since orthogonal null vectors are collinear, there is a smooth
function κ : ∂M→ R, called the surface gravity, such that

∇gµ=−2κT (2-4)

on ∂M. The nondegeneracy assumption means that κ > 0, and for simplicity it is assumed that κ is in
fact constant along ∂M.

2D. Properties of the metric. Let N denote the future-pointing unit normal to the level sets of t , and
define the lapse function A > 0 by A−2

= g−1(dt, dt). The shift vector is given by the formula

W = T − AN ,

which by construction is tangent to the level sets of t . Let k denote the induced (positive definite) metric
on X . If (x i ) are local coordinates on X , then

g = (A2
− ki j W i W j ) dt2

− 2ki j W i dx j dt − ki j dx i dx j .
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Inverting this form of the metric gives

g−1
= A−2(∂t −W i ∂i )

2
− ki j ∂i ∂ j . (2-5)

Note that k(W,W )= A2
−µ, and hence W 6= 0 near ∂M.

Now use the condition that ∂M is a Killing horizon generated by T. The covariant form of (2-4) reads

∂iµ= 2κW j ki j . (2-6)

By assumption κ > 0, so W is a nonzero inward-pointing normal to X along ∂X whose length with
respect to k is A.

Introduce geodesic normal coordinates (r, y A) on X near ∂X , so r is the distance to ∂X (uppercase
indices will always range over A = 2, . . . , n). By construction, ∂r is an inward-pointing unit normal
along ∂X , so

W r
= A, W A

= 0 (2-7)

along the boundary. Also by construction, the components of the induced metric in (r, y A)-coordinates
satisfy krr

= 1 and kr A
= 0.

Lemma 2.2. The function r satisfies g−1(dr, dr)=−2κA−1r + r2C∞(M).

Proof. First observe that kAB W AW B
∈ r2C∞(M) by (2-7), and since k(W,W )= A2

−µ,

A2
−µ= (W r )2+ kAB W AW B.

Nowµ and r are both boundary-defining functions, soµ= f r for some f ∈C∞(M), and hence dµ= f dr
on ∂X . But on the boundary 〈dµ〉 = 2κA2 from (2-6), while 〈W, dr〉 =W r

= A from (2-7). Thus

µ= f r = 2κAr + r2C∞(M).

Plugging this back into the equation for k(W,W ) yields

(W r )2 = A2
− 2κAr + r2C∞(M),

and therefore g−1(dr, dr)=−krr
+ A−2(W r )2 =−2κA−1r + r2C∞(M) as desired. �

Observe that the surface gravity depends on the choice of null generator T. Consider the rescaled
vector field

T̂ =
T
2κ
,

which changes the time coordinate by the transformation t̂ = 2κt . If P̂(ω̂) is now defined as in (1-1) but
with t replacing t̂ , then

P(ω)= P̂
(
ω

2κ

)
.

It suffices to prove Theorem 1 for P̂(ω) then, since rescaling the frequency only changes the constants
ω0,C0,C . Dropping the hat notation, it will henceforth be assumed that κ = 1

2 .
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Next, consider a conformal change g = f g̃, where f > 0 is stationary. The operator L can then be
written as

L = f −1�g̃ + (n− 1) f −2
∇g̃ f +W +V. (2-8)

Thus we can write L = f −1 L̃ , where L̃ has the same form as L but with g̃ replacing g, provided that the
vector field ∇g̃ f is tangent to ∂M. But this follows from the stationarity of f , since

g(T,∇g f )= 0

and T is normal to ∂M. Thus it suffices to prove Theorem 1 with L̃ replacing L . Observe that ∂M remains
a Killing horizon generated by T with respect to g̃, and the surface gravity is unchanged.

By making a conformal change and dropping the tilde notation, it will also be assumed that

g−1(dr, dr)=−r. (2-9)

If (τ, ρ, ηA) are dual variables to (t, r, y A), define a stationary quadratic form G0 ∈ C∞(T ∗M) by

G0 =−rρ2
− 2ρτ − k AB

0 ηAηB . (2-10)

Here k0 is the restriction of k to ∂M, which is then extended to a neighborhood of ∂M by requiring that
L∂r k0 = 0. In the next section, the difference G−G0 will be analyzed.

2E. Negligible tensors. We now define a class of tensors which will arise as errors throughout the proof
of Theorem 1′.

Definition 2.3. (1) A stationary 1-tensor Fα ∂α is said to be negligible if its components in a coordinate
system (t, r, y A) satisfy

F t
∈ r C∞(M), Fr

∈ r2C∞(M), F A
∈ r C∞(M).

(2) A stationary 2-tensor Hαβ ∂α ∂β is said to be negligible if its components in a coordinate system
(t, r, y A) satisfy

H t t
∈ C∞(M), H rr

∈ r2C∞(M), H AB
∈ r C∞(M),

H t A
∈ C∞(M), H tr

∈ r C∞(M), H r A
∈ r C∞(M).

Observe that negligibility is invariant under those coordinate changes which leave (t, r) invariant.
Denote by N1 and N2 all C∞(T ∗M) functions of the forms Fα$α and Hαβ$α$β , respectively.

Recall the definition of G0 in (2-10). The notion of negligibility is motivated by the fact that

G = G0+N2.

This follows directly from (2-5), (2-7), and (2-9). We will also repeatedly reference the auxiliary functions

Y = (rρ)2+ τ 2, Z = rρ2
+ k ABηAηB . (2-11)
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It follows immediately from the Cauchy–Schwarz inequality 2ab < δa2
+ b2/δ that there exists C > 0

satisfying

Z ≤ C
(
|G0| +

τ 2

r

)
. (2-12)

The next two lemmas also follow from judicious applications of the Cauchy–Schwarz inequality and the
trivial observation that (rρ)2 = r(rρ2) is small relative to rρ2 for small values of r .

Lemma 2.4. Let F ∈N1. Then, for each γ > 0 there exists Cγ such that

r−1
|τ ||F | ≤ Cγ τ 2

+ γ Z .

Furthermore, ρN1 ⊂N2 and N1 ·N1 ⊂ rN2.

Lemma 2.5. Let H ∈N2. Then, for each γ > 0 there exist Cγ , rγ > 0 such that

|H | ≤ CγY + γ k ABηAηB, |H | ≤ Cγ τ 2
+ γ Z

for r ∈ [0, rγ ].

Now combine Lemma 2.5 with the bound (2-12) and the relation G = G0 +N2. Thus there exists
R > 0 and C > 0 such that

Z ≤ C
(
|G| + τ

2

r

)
(2-13)

for r ∈ [0, R].
The next goal is to compute the Poisson brackets {G, r} and {G, {G, r}}. To begin, observe that

{G0, r} = −2(rρ+ τ), {G0, {G0, r}} = 2(rρ2
+ 2τρ). (2-14)

In order to replace G0 with G we also need to consider the Poisson brackets of functions in N1 and N2.

Lemma 2.6. The Poisson bracket satisfies {N2, r} ⊂N1 and {N2,N1} ⊂N2, as well as {G0,N1} ⊂N2

and {{G0, r},N2} ⊂N2. Therefore,

{G, r} = −2(rρ+ τ)+N1, {G, {G, r}} = 2(rρ2
+ 2τρ)+N2. (2-15)

Furthermore, {G, {G, r}} = −2rρ2
+N2 whenever {G, r} = 0.

Proof. The first part is a direct calculation, while (2-15) follows from the first part and (2-14). The last
statement follows from the inclusion ρN1 ⊂N2. �

3. Carleman estimates in the interior

3A. Statement of result. We now prove a Carleman estimate valid in the interior X◦, but with uniform
control over the exponential weight near ∂X .

Recall that r denotes the distance on X to the boundary with respect to the induced metric. Although
this function is only well-defined in a small neighborhood of ∂X , for notational convenience we will
assume that [0, 3] is contained in the range of r (otherwise it is just a matter of replacing 3 with 3ε for an
appropriate ε > 0).
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Proposition 3.1. Given [a, b] ⊂ (0,∞), there exists r1 ∈ (0, 1) and ϕ1, ϕ2 ∈ C∞(X) such that

• on {r ≤ 1} the functions ϕ1, ϕ2 are equal and depend only on r ,

• ϕ′i (r) < 0 is constant on {r ≤ r1} for i = 1, 2,

with the following property: given a compact set K ⊂ X◦ there exists C > 0 such that

‖(eϕ1/h
+ eϕ2/h)u‖H2

h (X)
≤ Ch−1/2

‖(eϕ1/h
+ eϕ2/h)P(z)u‖L2(X)

for each u ∈ C∞c (K ◦) and ±z ∈ [a, b].

It clearly suffices to prove Proposition 3.1 for the operator L =�g, since the lower-order terms can be
absorbed as errors. In order to prove Theorem 1′, an additional estimate is needed near the boundary; this
is achieved in Section 4 below.

3B. The conjugated operator. Given ϕ ∈ C∞(X), define the conjugated operator

Pϕ(z)= eϕ/h P(z)e−ϕ/h .

Let pϕ(z) denote its semiclassical principal symbol. Define L2(X) with respect to the density A · d SX ,
where recall d SX is the induced volume density on X , and A > 0 is the lapse function as in Section 2C.
Defining Re Pϕ(z) and Im Pϕ(z) with respect to this inner product, integrate by parts to find

‖Pϕ(ω)u‖2L2(X) = 〈Pϕ(ω)Pϕ(ω)
∗u, u〉L2(X)+ i〈[Re Pϕ(ω), Im Pϕ(ω)]u, u〉L2(X) (3-1)

for u ∈ C∞c (X◦). The idea is to find ϕ which satisfies Hörmander’s hypoellipticity condition

{Re pϕ, Im pϕ}> 0 (3-2)

on the characteristic set {pϕ = 0}.
In order to apply the results of Section 2E without introducing additional notation, it is convenient to

work with the dual metric function G directly. Define

Gϕ(x,$)= G(x,$ + i dϕ),

so since we are assuming that τ is real, Re Gϕ(x,$) = G(x,$) − G(x, dϕ), and Im Gϕ(x,$) =
(HGϕ)(x,$). We will then construct ϕ (viewed as a stationary function on M) such that

{Re Gϕ, Im Gϕ}(x,$)= (H 2
Gϕ)(x,$)+ (H

2
Gϕ)(x, dϕ) > 0 (3-3)

on {Gϕ = 0} ∩ {a ≤±τ ≤ b}. This will imply the original hypoellipticity condition from the discussion
surrounding (2-3) and the identifications

pϕ(x, ξ ; z)=−Gϕ(x, ξ − z dt), z =−τ.

Note that the dual variable τ is now playing the role of a rescaled time frequency.
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3C. Constructing the phase in a compact set. To avoid any undue topological restrictions, we will
actually construct two weights ϕ1, ϕ2 in the interior which agree outside a large compact set. This appears
already in [Burq 1998], but we will follow the closely related presentation in [Moschidis 2016; Rodnianski
and Tao 2015].

Lemma 3.2. There exist positive functions ψ1, ψ2 ∈ C∞(X) with the following properties:

(1) ψ1, ψ2 have finitely many nondegenerate critical points, all of which are contained in {r > 2}.

(2) ψ2 >ψ1 on {dψ1 = 0}, and ψ1 >ψ2 on {dψ2 = 0}.

(3) The functions ψ1, ψ2 are equal and depend only on r in {r ≤ 2}. Furthermore ∂rψ1 and ∂rψ2 are
negative in this region.

Proof. Let ζ ∈ C∞({r ≥ 2}) solve the boundary value problem

1k ζ = 1, ζ |{r=2} = 1.

Here 1k is the nonpositive Laplacian with respect to the induced metric k. Since 1k ζ > 0, none of the
critical points of ζ in {r > 2} are local maxima. In addition, since ζ clearly achieves its maximum at each
point of {r = 2}, its outward-pointing normal derivative is strictly positive by Hopf’s lemma [Gilbarg and
Trudinger 1983, Lemma 3.4]. By construction, the outward-pointing unit normal is −∂r ; hence ζ ′ < 0
near {r = 2} (for the remainder of the proof, prime will denote differentiation with respect to r ).

The first step is to replace ζ by a Morse function. We may for instance embed {r ≥ 2} into a compact
manifold X0 without boundary, and approximate an arbitrary smooth extension of ζ to X0 by a Morse
function in the C∞(X0) topology. Restricting to {r ≥ 2} and again calling this replacement ζ , we still
have that ζ has no local maximum in {r > 2} and ζ ′ < 0 near {r = 2}. In particular, all critical points of ζ
are nondegenerate and lie in a compact subset of {r > 2}.

Now fix any function ζ̄ = ζ̄ (r)∈ C∞({r < 3}) such that ζ̄ ′< 0 everywhere, and ζ̄ ≥ ζ on their common
domain of definition {2≤ r < 3}. Choose a cutoff H = H(r) ∈ C∞(X; [0, 1]) such that

H = 1 for r < 2+ γ, supp H ⊂ {r ≤ 2+ 2γ },

and H ′ ≤ 0. Set ψ1 = H ζ̄ + (1− H)ζ , and compute ψ ′1 = H ′(ζ̄ − ζ )+ H ζ̄ ′+ (1− H)ζ ′. If γ > 0 is
sufficiently small, then ψ ′1 < 0 in a neighborhood of supp H , since the sum of the last two terms is strictly
positive on supp H . On the other hand, outside of such a neighborhood the only critical points of ψ1 are
those of ζ .

Let p1, . . . , pn enumerate the necessarily finite number of critical points of ψ1, and choose γ > 0 such
that the closed geodesic balls B(p1, γ ), . . . , B(pn, γ ) are mutually disjoint and B(p j , γ )⊂ {r > 2} for
each j . Since p j is not a local maximum, for each j there is a point q j ∈ B(p j , r) such that

ψ1(q j ) > ψ1(p j ).

Now choose a diffeomorphism g : X → X which is the identity outside the union of the B(q j , r) and
exchanges p j with q j . Then, set ψ2=ψ1◦g. By construction the only critical points of ψ2 are q1, . . . , qn ,
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and furthermore

ψ2(p j ) > ψ1(p j ), ψ1(q j ) > ψ2(q j )

for each j . Since outside of {r > 2} the functions ψ1 = ψ2 depend on r only, the proof is complete,
adding an appropriate constant if necessary to ensure that both functions are positive. �

Let B1 ⊂ {r > 2} be a closed neighborhood of {dψ1 = 0} such that ψ2 >ψ1 on B1, and likewise for B2,
exchanging the roles of ψ1 and ψ2. Also, let Ui ⊂ Bi be additional neighborhoods of {dψi = 0}. Now
define

ϕi = exp(αψi ), i = 1, 2, (3-4)

where α > 0 is a parameter. The following lemma is a standard computation which is included for the
sake of completeness.

Lemma 3.3. Given ε > 0 and τ0 > 0, there exists α0 > 0 such that if α ≥ α0, then

{Re Gϕi , Im Gϕi }> 0

on ({Gϕi = 0} ∩ {r ≥ ε} ∩ {|τ | ≤ τ0}) \ T ∗Ui
M for i = 1, 2.

Proof. The subscript i = 1, 2 will be suppressed. Use the definition (3-4) to compute

HGϕ = αeαψHGψ, H 2
Gϕ = α

2eαψ(HGψ)
2
+αeαψH 2

Gψ.

Assume that Gϕ(x,$) = 0. It follows from Im Gϕ(x,$) = 0 that (HGϕ)(x,$) = 0, and hence
(HGψ)(x,$)= 0. Therefore by (3-3),

{G−G(x, dϕ), HGϕ}(x,$)= αeαψ(H 2
Gψ)(x,$)+α

3e3αψ(H 2
Gψ)(x, dψ)+α4e3αψ

|G(x, dψ)|2.

Next, use the condition (Re Gϕ)(x,$)=0, which implies G(x,$)=α2e2αψG(x, dψ). By the discussion
following Lemma 2.1, there exists C > 0 such that

|(H 2
Gψ)(x,$)| ≤ C(1+ |G(x,$)|)

on {r ≥ ε} ∩ {|τ | ≤ τ0}. Thus on the set {Gϕ = 0} ∩ {r ≥ ε} ∩ {|τ | ≤ τ0},

|αeαψ(H 2
Gψ)(x,$)| + |α

3e3αψ(H 2
Gψ)(x, dψ)| ≤ Cα3e3αψ .

On the other hand, as soon as dψ 6= 0 the third term α4e3αψ
|G(x, dψ)|2 is positive by Lemma 2.1, and

dominates the previous two terms for large α > 0. Since dψ 6= 0 away from B, the proof is complete. �

3D. Constructing the phase outside of a compact set. The most delicate part of the argument is the
construction of the phase outside of a compact set. Since g−1(dr, dr)=−r and ϕ is a function only of r
in this region,

Gϕ = G+ r(ϕ′)2+ iϕ′HGr.
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Now compute the Poisson bracket

{Re Gϕ, Im Gϕ} = {G+ r(ϕ′)2, ϕ′HGr}

= ϕ′H 2
Gr +ϕ′′(HGr)2− ((ϕ′)3+ 2r(ϕ′)2ϕ′′) ∂ρHGr.

Assume that ϕ′ < 0, in which case Im Gϕ = 0 is equivalent to HGr = 0. The goal is then to arrange
negativity of the term

H 2
Gr − ((ϕ′)2+ 2rϕ′ϕ′′) ∂ρHGr (3-5)

on the set {Re Gϕ = 0}. Recall the definition of Z from (2-11).

Lemma 3.4. There exists C > 0 and R> 0 such that Z ≤C(r(φ′)2+τ 2/r) on {Re Gϕ = 0}∩{0< r ≤ R}.

Proof. Apply (2-13), using that Re Gϕ = 0 implies G =−r(ϕ′)2. �

Putting everything together, it is now easy compute H 2
Gr on {Gϕ = 0} near the boundary.

Lemma 3.5. For each δ > 0 there exists Rδ > 0 such that∣∣∣H 2
Gr + 2τ 2

r

∣∣∣≤ δ(r(φ′)2+ τ 2

r

)
on {Gϕ = 0} ∩ {0< r ≤ Rδ}.

Proof. From the expression (2-15) for H 2
Gr and Lemma 2.5, find Cγ > 0 and rγ > 0 such that

|H 2
Gr + 2rρ2

|< Cγ |τ |2+ γ Z (3-6)

for r ∈ (0, rγ ). Now multiply HGr by ρ, and use that ρN1 ⊂N2. Therefore by Lemma 2.5, there exist
C ′γ > 0 and r ′γ > 0 such that

|2rρ2
+ 2τρ|< C ′γ |τ |

2
+ γ Z (3-7)

for r ∈ (0, r ′γ ). On the other hand, from HGr = 0, deduce that −τρ = τ 2/r + τr−1N1. By Lemma 2.4,
there exists C ′′γ > 0 such that ∣∣∣2τρ+ 2τ 2

r

∣∣∣< C ′′γ |τ |
2
+ γ Z . (3-8)

Combine (3-6), (3-7), and (3-8) via the triangle inequality with Lemma 3.4 to find that∣∣∣H 2
Gr + 2τ 2

r

∣∣∣< 3γC
(
r(φ′)2+ τ

2

r

)
+ (Cγ +C ′γ +C ′′γ )τ

2

for r ∈ (0,min{rγ , r ′γ , R}); here C > 0 and R > 0 are provided by Lemma 3.4. Finally, choose γ
sufficiently small depending on δ and a corresponding Rδ > 0 such that the conclusion of the lemma
holds for r ∈ (0, Rδ). �

Next, observe that −∂ρHGr = 2r + r2C∞(M). Given a > 0, it follows from (3-5) and Lemma 3.5 that
there exists R1 > 0 such that

(ϕ′)−1
{Re Gϕ, Im Gϕ}<−

3a2

2r
+ 3r(ϕ′)2+ 3r2ϕ′ϕ′′ (3-9)

on {Gϕ = 0} ∩ {0< r ≤ R1} ∩ {|τ | ≥ a}, provided that ϕ′′ ≥ 0.
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Shrinking R1 if necessary, it may be assumed that ψ = ψi as in Lemma 3.2 satisfies ψ ′ < 0 on
[0, R1+ 1]. Recalling that ϕi = exp(αψi ), choose α > 0 satisfying the conclusion of Lemma 3.3 with
ε = R1. By further increasing α, (but keeping a > 0 fixed), it may also be assumed that ϕ = ϕi satisfies

3(ϕ′(R1)R1)
2 > a2, ϕ′′(r)≥−

ϕ′(r)
r

for r ∈ [R1, R1+ 1]. (3-10)

Although ϕ is already defined on all of X , the following lemma allows one to redefine ϕ on {r < R1+ 1}
in such a way that its derivative is controlled; this new extension will still be denoted by ϕ. The idea
comes from [Burq 1998, Section 3.1.2], but of course the form of the operator there is quite different.

Lemma 3.6. There exists an extension of ϕ = ϕi from {r ≥ R1+ 1} to {r < R1+ 1} such that

{Re Gϕ, Im Gϕ}> 0

on {Gϕ = 0} ∩ {0 < r ≤ R1} ∩ {|τ | ≥ a}. Furthermore, there exists r1 ∈ (0, R1) such that ϕ′(r) < 0 is
constant for r ∈ [0, r1].

Proof. Motivated by (3-9), consider the differential equation

−
a2

r
+ 3rk2

+ 3r2kk ′ = 0, k(R1)= ϕ
′(R1) < 0.

This is a Bernoulli equation whose solution is given by

k(r)=−r−1
(
(ϕ′(R1)R1)

2
+

2
3

a2 log
(

r
R1

))1/2

.

The solution is certainly meaningful for r ∈ [R0, R1], where we define R0 by

R0 = R1 exp
(

1
2
−

3
2

(
ϕ′(R1)

R1

a

)2)
.

Note that we indeed have R0 < R1 by the assumption (3-10). The value R0 was chosen such that
k ′(R0)= 0, and it is easy to see that k ′(r) > 0 for r ∈ (R0, R1]. In addition, k(R0) < 0. Let θ = θ(r) be
defined on [0, R1+ 1] by

θ(r)=


ϕ′(r), r ∈ [R1, R1+ 1],
k(r), r ∈ [R0, R1],

k(R0), r ∈ [0, R0].

The function θ is strictly negative, and the piecewise continuous function θ ′ satisfies

−
a2

r
+ 3rθ2

+ 3r2θθ ′ ≤ 0

for r ∈ (0, R1+ 1]. Indeed, by the construction of k and R0, the inequality holds for r ∈ (0, R1), and it is
also true for r ∈ (R1, R1+ 1] by (3-10). Rearranging,

θ ′ ≥
a2

3r3θ
−
θ

r
(3-11)

for r ∈ (0, R1+ 1].
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We now proceed to mollify θ in such a way that the hypotheses of the lemma hold. Let ηε(r) =
(1/ε)η(r/ε) denote a standard mollifier, where η ∈ C∞c ((−1, 1)) has integral one. In addition, choose a
cutoff H = H(r) ∈ C∞(X; [0, 1]) such that

H = 1 for r < R1+
1
4 , H = 0 for r > R1+

1
2 ,

and H ′ ≤ 0. Now define

θε = (1− H)θ + ηε ∗ (Hθ).

Clearly θε is smooth, and θε→ θ uniformly for r ∈ [0, R1+ 1]. Furthermore, there exists ε0 > 0 such
that if ε ∈ (0, ε0), then the following properties are satisfied:

• θε(r) < 0 and θ ′ε(r)≥ 0 for r ∈ [0, R1+ 1].

• θε(r)= ϕ′(r) for r ∈
[
R1+

3
4 , R1+ 1

]
,

• There exists r1 ∈ (0, R0] such that θε(r)= k(R0) for r ∈ [0, r1].

Since θ is continuous and piecewise smooth,

θ ′ε = (1− H)θ ′− H ′θ + ηε ∗ (H ′θ + Hθ ′). (3-12)

Therefore by (3-11),

θ ′ε ≥−H ′θ + ηε ∗ (H ′θ)+ (1− H)
(

a2

3r3θ
−
θ

r

)
+ ηε ∗

(
H
(

a2

3r3θ
−
θ

r

))
for r ∈ (0, R1+1]. The right-hand side converges uniformly to a2/(3r3θ)−θ/r for r ∈ [r1, R1+1] since
the latter function is continuous there. Since θε→ θ uniformly for r ∈ [r1, R1+ 1] as well, there exists
ε ∈ (0, ε0) such that

−
3a2

2r
+ 3rθ2

ε + 3r2θεθ
′

ε ≤ 0

for r ∈ [r1, R1+ 1]. This inequality is also true for r ∈ (0, r1), since θε = k(R0) on that interval. Now
extend ϕ from {r ≥ R1+ 1} to {r < R1+ 1} by the formula

ϕ(r)= ϕ(R1+ 1)+
∫ r

R1+1
θε(s) ds.

This completes the proof according to (3-9) by observing that the ϕ just constructed satisfies ϕ′′(r)≥ 0. �

As a remark, if τ 6= 0, then the hypoellipticity condition also holds along {r = 0}, simply because
Im Gϕ 6= 0 in that case. However, since (x, ξ) 7→ G(x, ξ) is not elliptic along {r = 0}, the hypoellipticity
condition alone, stated here in the semiclassical setting, is not sufficient to prove a Carleman estimate;
see [Hörmander 1963, Section 8.4].

Now that the phases ϕ1, ϕ2 have been constructed globally, we are ready to finish the proof of
Proposition 3.1. Here we come back to the operator Pϕ(z) on X . Fix a norm | · | on the fibers of T ∗X
(for instance using the induced metric k) and let 〈ξ〉 = (1+ |ξ |2)1/2.
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Proof of Proposition 3.1. Recall that we are given [a, b] ⊂ (0,∞) and a compact set K ⊂ X◦. Without
loss, we may assume that K = {r ≥ ε} for some ε > 0. Let Bi ,Ui be as in the discussion preceding
Lemma 3.3. In particular,

{Re pϕi , Im pϕi }> 0

on ({pϕi = 0} ∩ {r ≥ ε/2}) \ T ∗Ui
X . Let χi ∈ C∞c (B◦i ) be such that χi = 1 near Ui . If ϕ = ϕi , then

|pϕ|2+χ2
+ h{Re pϕ, Im pϕ} ≥ h(M |pϕ|2+Mχ2

+{Re pϕ, Im pϕ})

for any M > 0, provided that h> 0 is sufficiently small. On the other hand, the set {Re pϕ = 0}∩{r ≥ ε/2}
is compact by Lemma 2.1, uniformly for ±z ∈ [a, b]. Therefore,

〈ξ〉−4(M |pϕ|2+Mχ2
+{Re pϕ, Im pϕ}) > 0

near T ∗X ∩ {r ≥ ε/2} for M > 0 sufficiently large. By (3-1) and the semiclassical Gårding inequality
applied to eϕi/hu,

h‖eϕi/hu‖2H2
h (X)
≤ C‖eϕi/h P(z)u‖2L2(X)+C‖eϕi/hu‖2L2(Bi )

(3-13)

for u ∈ C∞c (K ◦) and i = 1, 2. Since ϕ1 > ϕ2 on B2 and ϕ2 > ϕ1 on B1, there is γ > 0 such that

eϕi/h
≤ e−γ /h(eϕ1/h

+ eϕ2/h)

on Bi . Now add (3-13) for i = 1, 2 to absorb the integral over B1 ∪ B2 into the left-hand side. �

4. Degenerate Carleman estimates near the boundary

4A. Statement of result. We now complement Proposition 3.1 with a result valid up to the boundary.
Recall that the phases ϕ1, ϕ2 are equal on {r ≤ 1}. Since we are working near ∂X , we will thus drop the
subscript and simply write ϕ.

Proposition 4.1. Given [a, b] ⊂ (0,∞) there exists r0 > 0 and C > 0 such that

‖eϕ/hu‖H1
b,h
≤ C

(
h−1/2

‖eϕ/h P(z)u‖L2 + eϕ(0)/h
‖u‖L2(∂X)

)
(4-1)

for u ∈ C∞c ({r < r0}) and ±z ∈ [a, b].

The Sobolev space appearing on the left-hand side of (4-1) is modeled on the space of vector fields Vb(X)
which are tangent to the boundary; see [Melrose 1993]. Thus u ∈ H 1

b (X) if u ∈ L2(X) and K u ∈ L2(X)
for any K ∈ Vb(X). If u ∈ H 1

b (X) and supp u ⊂ {r < 1}, we can set

‖u‖2H1
b,h
=

∫
X
|u|2+ h2

|r ∂r u|2+ h2k AB(∂Au · ∂B ū) d SX .

Of course away from ∂X this is equivalent to the full H 1
h norm. Observe that it is enough to prove

Proposition 4.1 for the operator L = �g, since the estimate (4-1) is stable under perturbations B ∈
h Diff1

h(X) provided that the vector field part of B is tangent to ∂X . The latter condition is satisfied by
the hypothesis that W is tangent to ∂M made in the Introduction.
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Proposition 4.1 is proved through integration by parts. A convenient way of carrying out this procedure
is by constructing an appropriate multiplier for the wave operator and applying the divergence theorem.
This approach to Carleman estimates for certain geometric operators is partly inspired by [Alexakis and
Shao 2015; Ionescu and Klainerman 2009].

4B. The divergence theorem. We will use the divergence theorem in the time-differentiated form

d
dt

∫
X

g(K , N ) d SX +

∫
∂X

g(K , T ) d S∂X =

∫
X
(divg K )A d SX , (4-2)

valid for any vector field K , see [Warnick 2015, Lemma 3.1] for instance, where recall X = {t = 0}. Thus
the first term on the left-hand side of (4-2) is short-hand for

d
ds

∫
{t=s}

g(K , N ) d SX evaluated at s = 0.

Here d S∂X is the volume density on ∂X induced by k (the latter is Riemannian, and hence the induced
volume density is well-defined).

4C. Stress-energy tensor. Given v ∈ C∞(M), let Q = Q[v] denote the usual stress-energy tensor asso-
ciated to v with components

Qαβ = Re(∂αv · ∂β v̄)− 1
2 g−1(dv, d v̄)gαβ .

This tensor has the property that (∇βQαβ)Sα = Re(�v · Sv̄) for any vector field S. Given such a vector
field and a function w, define the modified vector field J = J [v] with components

Jα = Qα
βSβ + 1

2w · ∂
α(|v|2)− 1

2(∂
αw)|v|2.

The relevant choices in this context are

S =∇gr, w = λ+ 1
2�gr, (4-3)

where λ = λ(r) is an undetermined function to be chosen in Lemma 4.4 below. Also, introduce the
tensor 5 with components

5αβ
=−∇

αβr − λg αβ .

The divergence of J satisfies

Re(�gu · (Sv̄+wv̄))= divg J +5(dv, d v̄)+ 1
2(�gw)|v|

2, (4-4)

which is verified by a direct calculation.

4D. The conjugated operator. Near ∂M, consider the conjugated operator L8 = e8�ge−8, where
8=8(r). Then, L8 has the expression

L8 =�g − 28′S+ ((8′)2−8′′)g−1(dr, dr)−8′�gr

=�g − 28′S+ V0.
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Now g−1(dr, dr)=−r by assumption, and consequently the potential term V0 satisfies

V0 = r(8′′− (8′)2)−8′�gr.

Set V1 = V0− 28′w, multiply L8v by Sv̄+wv̄, and take the real part to find that

Re(L8v · (Sv̄+wv̄))= Re(�gv · (Sv̄+wv̄))− 28′|Sv|2+Re V1v · Sv̄+ V0w|v|
2. (4-5)

It is also convenient to write Re(V1v · Sv̄) as a divergence,

Re(V1v · Sv̄)= 1
2 divg(V1|v|

2S)− 1
2(S(V1)+ V1�gr)|v|2.

In view of this expression, define the vector field K = J + 1
2 V1|v|

2S. For future use, also define the
modified potential V by

V = 1
2(�gw)+ V0w−

1
2 S(V1)−

1
2 V1�gr +8′w2. (4-6)

On one hand, integrating the divergence of K yields boundary integrals; the following special case of this
will suffice.

Lemma 4.2. Let v ∈ C∞(M) be given by v = e−i zt/hu, where u is stationary and z ∈ R. Then,∫
X
(divg K )A d SX =−

∣∣∣ z
h

∣∣∣2 ∫
∂X
|u|2 d S∂X .

Proof. Apply the divergence theorem (4-2). Since z ∈R, the vector field K is stationary, and hence there is
no contribution from the time derivative. As for the integral over ∂M, observe that T is null and S =−T
on the horizon. Since T v =−i(z/h)v, it follows that g(T, K )=−|T v|2 =−|z/h|2|u|2 on ∂M. �

Note that the boundary contribution from Lemma 4.2 has an unfavorable sign, which will account for
the boundary term in Proposition 4.1. On the other hand, the divergence of K can also be expressed in
terms of (4-5).

Lemma 4.3. If 8′ < 0, then the divergence of K satisfies

(2|8′|)−1
|L8v|2 ≥ divg K +5(dv, d v̄)−8′|Sv|2+ V |v|2, (4-7)

where V is given by (4-6).

Proof. Combine (4-5) with (4-4), and then use the Cauchy–Schwarz inequality to find

Re(L8v · (Sv̄+wv̄))≤ (2|8′|)−1
|L8v|2−8′(|Sv|2+w2

|v|2),

recalling that 8′ < 0. �

4E. Pseudoconvexity. To examine positivity properties of 5(dv, d v̄)−8′|Sv|2, we establish a certain
pseudoconvexity condition. A criterion of this type first appeared in work of Alinhac [1984] on unique
continuation, and was also employed in [Ionescu and Klainerman 2009; Alexakis and Shao 2015]. Recall
that the Poisson bracket is related to the Hessian via the formula

{G, {G, f }}(x,$)= 4$α$β∇
αβ f, (4-8)

valid for any f ∈ C∞(M).
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Lemma 4.4. There exists M, c, R0 > 0, and a function λ= λ(r) such that

M{G, r}2−{G, {G, r}}− 4λG ≥ c((rρ)2+ τ 2
+ k ABηAηB) (4-9)

for r ∈ [0, R0].

Proof. Throughout, assume that M ≥ 1. Let r ≤ (4M)−1, and define the function λ by

λ= 1
2 − (1− δ)r M,

where δ > 0 will be chosen sufficiently small. Observe that 1
4 ≤ λ≤

1
2 uniformly in M ≥ 1 for r ≤ (4M)−1.

Denote the left-hand side of (4-9) by 4E , and the corresponding quantity by 4E0 if G is replaced with G0.
Dividing through by 4,

E0 = M((rρ)2+ 2rρτ + τ 2)− 1
2(rρ

2
+ 2ρτ)− λG0. (4-10)

Use the expression for λG0 and the lower bound λ≥ 1
4 on {r ≤ (4M)−1

} to find that

E0 ≥ Mδ((rρ)2+ 2rρτ)+Mτ 2
+

1
4 k AB

0 ηAηB .

Therefore E0 ≥ c(MY + k ABηAηB) if δ > 0 is sufficiently small, where recall Y = (rρ)2+ τ 2.
Now consider the error E − E0 incurred by replacing G with G0. Replacing M{G, r}2 with M{G0, r}2

produces an error
2M{G0, r}{G−G0, r}+M{G−G0, r}2.

Using Cauchy–Schwarz on the first term to absorb a small multiple of M{G0, r}2 into E0 (in other words,
changing the constant c > 0 in the lower bound for E0 above) leaves an overall error of the form

M(N1 ·N1)⊂ (r M)N2.

The factor of r M is harmless since r M ≤ 1
4 ; thus the right-hand side is certainly in N2 uniformly in

M ≥ 1. Using that λ is uniformly bounded in M ≥ 1 on {r ≤ (4M)−1
}, the remaining errors λ(G−G0)

and
{G−G0, {G−G0, r}}+ {G−G0, {G0, r}}+ {G0, {G−G0, r}}

are also in N2 by Lemma 2.6, uniformly in M ≥ 1. Now apply the first bound in Lemma 2.5, choosing
γ > 0 sufficiently small but independent of M so that γ k ABηAηB can be absorbed by ck ABηAηB on the
right-hand side for r ∈ [0, rγ ]. This leaves a large multiple of Y, which is then absorbed by MY on the
right-hand side by taking M sufficiently large. It then suffices to take R0 =min{(4M)−1, rγ }. �

Fix M > 0 such that Lemma 4.4 is valid. This fixes the function λ, and therefore the function w in
(4-3). Lemma 4.3 will be applied with the weight 8= ϕi/h, viewed as a stationary function on M. In
particular, 8′ =−C/h on {r ≤ r1} for some constant C > 0 (recall the statement of Proposition 3.1).

Before proceeding, consider the potential term V from Lemma 4.3. Instead of analyzing its sign, we
more simply note that for F ′ =−C/h one has

V = f0+ h−1 f1+ h−2 f2, (4-11)
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where f0, f1 ∈ C∞(M) and f2 ∈ r C∞(M). The small coefficient of f2 means V can be treated as an error.
To be precise, we have the following positivity result for the bulk terms.

Lemma 4.5. Given a > 0, there exists c, r0 ≥ 0 such that if |z| ≥ a, then

5(dv, d v̄)−8′|Sv|2+ V |v|2 ≥ c(h−2
|u|2+ |r ∂r u|2+ k AB ∂Au ∂B ū) (4-12)

on {r ≤ r0} for each v ∈ C∞(M) of the form v = e−i zt/hu, where u is stationary.

Proof. Since 8′ =−C/h, an inequality of the form (4-12) is true for sufficiently small h > 0 if the term
V |v|2 is dropped from the left-hand side; this follows from Lemma 4.4 and (4-8). On the other hand, for
a potential V satisfying (4-11), there is clearly r0 > 0 such that V |v|2 can be absorbed by ch−2

|v|2 for
r ∈ [0, r0] and h > 0 sufficiently small. �

The proof of Proposition 4.1 is now immediate:

Proof of Proposition 4.1. Given [a, b] ⊂ (0,∞), apply Lemmas 4.2, 4.3, and 4.5 to functions of the form
v = e−i zt/heϕ/hu, where ±z ∈ [a, b] and supp u ⊂ {r < r0}. �

5. Proof of Theorem 1

We prove the equivalent Theorem 1′. Assume that [a, b] ⊂ (0,∞) has been fixed. Choose a cutoff
function χ ∈ C∞(X) such that

suppχ ⊂ {r < r0}, χ = 1 near {r ≤ r0/2},

where r0 is provided by Lemma 4.5. Then, apply Proposition 4.1 to χu and Proposition 3.1 to (1−χ)u,
where u ∈ C∞(X). Since the commutator [P(z), χ] is supported away from ∂X , the error terms can be
absorbed even though the left-hand side is only estimated in the H 1

b,h norm. Bounding eϕ1/h
+ eϕ2/h from

below on the left and from above on the right yields

‖u‖H1
b,h
≤ eC/h(‖P(z)u‖L2 +‖u‖L2(∂X)) (5-1)

for u ∈ C∞(X) and ±z ∈ [a, b].
Next, we remove the boundary term on the right-hand side of (5-1). In order to estimate the boundary

term, we use that L is formally self-adjoint and that W is tangent to ∂M. Apply the divergence theorem
(4-2) to the vector field v̄∇gv− v∇g v̄+ |v|

2
·W with v = e−i zt/hu. Since L is formally self-adjoint, we

obtain Green’s formula

(hz)
∫
∂X
|u|2 d S∂X =− Im

∫
X

P(z)u · ū A d SX .

There is no boundary contribution coming from W since we assumed g(T,W) vanishes on ∂M. Applying
Cauchy–Schwarz to the right-hand side implies

eC/h
‖u‖L2(∂X) ≤ Cεh−1e2C/h

‖P(z)u‖L2 + ε‖u‖L2
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for some Cε and every ±z ∈ [a, b]. Therefore the boundary term on the right-hand side of (5-1) can be
absorbed into the left-hand side by taking ε sufficiently small, at the expense of increasing the constant in
the exponent eC/h . We then have

‖u‖H1
b,h
≤ eC/h

‖P(z)u‖L2 .

The final step is to apply a bound of the form

‖u‖H k+1
h
≤ Ch−1(‖P(z)u‖H k

h
+‖u‖L2) (5-2)

for u ∈ C∞(X) and ±z ∈ [a, b]. The most conceptual way of understanding this estimate is in terms of
the semiclassical trapping present in the interior of M. For an appropriate pseudodifferential complex
absorbing operator Q ∈ 9−∞h (X◦) with compact support in X◦, the nontrapping framework of [Vasy
2013, Section 2.8] shows that P(z)− i Q satisfies the nontrapping bound

‖u‖H k
h
≤ Ch−1

‖(P(z)− i Q)u‖H k
h

for z ∈ [a, b]. Here Q is chosen to be elliptic (with the correct choice of sign) on the trapped set. In this
case Q can be chosen to have compact microsupport in X◦, and hence Q : C−∞(X)→ C∞(X), and in
particular

‖Qu‖H k
h
≤ C‖u‖L2 .

This clearly implies (5-2) for z ∈ [a, b], with a similar argument when −z ∈ [a, b].
This completes the proof of Theorem 1′ in the case when u ∈ C∞(X) and ±z ∈ [a, b]. By perturbation,

this extends to a region ±z ∈ [a, b] + ie−C1/h
[−1, 1]. Simply write

P(z)− P(Re z)= Im z · B(z),

where B(z) ∈ Diff1
h(X) is bounded H k+1

h (X)→ H k
h (X) uniformly for z ∈ [a, b] (although B(z) is not

holomorphic in z). Thus the difference can be absorbed into the left-hand side if |Im z| ≤ e−C1/h for
C1 > 0 sufficiently large. Finally, C∞(X) is dense in X k, see [Dyatlov and Zworski 2018, Lemma E.47],
so (2-2) is valid for u ∈ X k as well, thus completing the proof of Theorem 1′.

6. Logarithmic energy decay

6A. A semigroup formulation. In this section we outline how Corollary 1.2 can be deduced from the
resolvent estimate (1-3) via semigroup theory. The starting point is that the Cauchy problem (1-4) is
associated with a C0 semigroup U (t)= e−i t B on Hk

= H k+1(X)× H k(X) satisfying

‖U (t)‖Hk→Hk ≤ Ceνt (6-1)

for some C, ν > 0 [Warnick 2015, Corollary 3.14]. Recalling the lapse function A = g−1(dt, dt)−1/2,
write

�g = L2+ L1 ∂t + A−2 ∂2
t ,
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where L j is identified with a differential operator on X of order j . Thus L2 = P(0) and L1 = i ∂ωP(0).
More explicitly,

L1 =−2A−2W − divg(A−2W ),

where W is the shift vector from Section 2D. The infinitesimal generator is then given by

−i B =
(

0 1
−A2L2 −A2L1

)
. (6-2)

Indeed, applying U (t) to initial data in C∞c (X◦) shows that −i B is given by (6-2) in the sense of
distributions. Now the resolvent set of B is nonempty, and indeed σ(B)⊂ {Imω≤ ν} by (6-1). Therefore
the domain D(B) of B is characterized as those distributions (v0, v1) ∈Hk such that

v1 ∈ H k+1(X), L2v0+ L1v1 ∈ H k(X).

Since L2 = P(0) and L1 ∈ Diff1(X), this shows that the domain of B is

D(B)= X k
× H k+1(X),

where X k is defined by (1-2). It is also easy to see that the graph norm on D(B) satisfies

‖B(v0, v1)‖Hk +‖(v0, v1)‖Hk ≤ C‖(v0, v1)‖X k×H k+1;

hence the two norms on D(B) are equivalent by the open mapping theorem. Furthermore, the spectrum
of B in

{
Imω >−κ

(
k+ 1

2

)}
coincides with poles of P(ω)−1, and the resolvent estimate (1-3) translates

into the bound ‖(B−ω)−1
‖Hk→Hk ≤ eC |Reω| for ω ∈�.

6B. Logarithmic stabilization of semigroups. The goal now is to apply a theorem on the logarithmic
stabilization of certain bounded semigroups:

Theorem 2 [Burq 1998, Theorem 3, Batty and Duyckaerts 2008, Theorem 1.5]. Let U (t)= e−i t B be a
bounded C0 semigroup on a Hilbert space H. If σ(B)∩R=∅ and ‖(B−ω)−1

‖H→H ≤ eC |ω| for ω ∈ R,
then there exists C > 0 such that

‖U (t)v‖H ≤
C

log(2+ t)
‖(B− i)v‖H

for each v ∈ D(B).

A priori the semigroup U (t) from Section 6A is not uniformly bounded in time on Hk , since the
energy Ek[v](t) does not control the L2 norm of v(t). Instead, observe that span{(1, 0)} ⊂Hk is invariant
under U (t), which therefore descends to a semigroup Û (t) on the quotient space

Ĥk
=Hk/ span{(1, 0)}.

If π :Hk
→ Ĥk is the natural projection, then, the infinitesimal generator of Û (t) is simply the operator B̂

induced by B on π(D(B)). It follows from (1-5) and the Poincaré inequality that Û (t) is a bounded C0

semigroup.
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Since span{(0, 1)} is finite-dimensional, the spectrum of B̂ is contained in the spectrum of B, and
furthermore the bound

‖(B̂−ω)−1
‖Ĥ→Ĥ ≤ eC |Reω|

also holds for ω ∈�. The final step is to show σ(B̂)∩R=∅. If ω ∈R\0, this follows from the fact that
P(ω)−1 has no nonzero real poles [Warnick 2015, Lemma A.1].

Finally, consider the spectrum at ω = 0. If ω0 is a pole of (B − ω)−1 acting on Hk with Imω0 >

−κ
(
k+ 1

2

)
, then its Laurent coefficients all map into C∞(X)× C∞(X) [Vasy 2013, Section 2.6]. Thus

ker B ⊂ X k
× H k+1(X) is in one-to-one correspondence with smooth stationary solutions of �gv = 0.

If �gv = 0 for v smooth and stationary, then (4-2) applied to the vector field v̄∇gv+ v∇g v̄ shows that
g−1(dv, d v̄) = 0 on X . Again using that v is stationary, Lemma 2.1 implies dv = 0, and hence v is
constant. Thus ker B = span{(1, 0)}, so 0 /∈ σ(B̂).

The hypotheses of Theorem 2 are therefore satisfied by Û (t), which yields the bound

‖Û (t) ◦π(v0, v1)‖Ĥk ≤
C

log(2+ t)
‖(B− i)(v0, v1)‖Hk (6-3)

for each (v0, v1) ∈ X k
×H k+1(X). This establishes Corollary 1.2, since the norm on the left-hand side of

(6-3) is equivalent to Ek[v](t)1/2, where v solves the Cauchy problem (1-4) with initial data (v0, v1).

6C. Decay to a constant. To prove Corollary 1.3, consider the Laurent expansion of (B−ω)−1 about
ω = 0. The range of the corresponding residue 50 consists of all generalized eigenvectors, and contains
span{(1, 0)}.

If the algebraic multiplicity of ω = 0 was greater than 1, then there would exist a solution of �gv = 0
of the form

v(t, x)= u(x)+ t,

where u ∈ C∞(M) is stationary. This is compatible with energy boundedness, but not with the logarithmic
energy decay established above. Thus ω = 0 is a simple pole with algebraic multiplicity 1.

By standard spectral theory, 50 is the projection onto span{(1, 0)} along range(B), so

50 = 〈 · , ψ〉(1, 0)

for some ψ ∈ (ker B)′, which we identify with (Hk)′/ range(B∗)= ker(B∗). Furthermore, ψ is uniquely
determined by requiring that 〈(1, 0), ψ〉 = 1. Here the duality between Hk and

(Hk)′ = Ḣ−k−1(X)× Ḣ−k(X)

is induced by the L2(X) inner product described in Section 3B, where Ḣ s(X) is the Sobolev space of
supported distributions in the sense of [Hörmander 1985, Appendix B.2].

The domain of B∗ consists of all w ∈ Ḣ−k−1(X)× Ḣ−k(X) for which there exists v ∈ Ḣ−k−1(X)×
Ḣ−k(X) satisfying (w, Bu)= (v, u) for every u ∈ D(B)= X k

× H k+1(X). Thus

D(B∗)= Ḣ−k−1(X)× Ẋ−k,
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where we define
Ẋ−k
= {u ∈ Ḣ−k(X) : P(0) ∈ Ḣ−k−1(X)}.

The action of B∗ is given by

i B∗ =
(

0 −L2 A2

1 L1 A2

)
,

using that L1 is skew-adjoint.
Now we compute the kernel of B∗, which again by abstract spectral theory is one-dimensional. Let

ψ1= vol(∂X)−1 A−2
∈ L2(X), viewed as an element of Ḣ−k(X) via the L2(X) inner product, and then set

ψ0 =− vol(∂X)−1L1(1) ∈ Ḣ−k−1(X)

in the sense of supported distributions. If we set ψ = (ψ0, ψ1), then B∗ψ = 0. Furthermore,

vol(∂X)〈1, ψ0〉 = 〈L1(1), 1〉 = −
∫

X
divg(A−2W ) A d SX

=−

∫
∂X

A−2g(W, T ) d S∂X =

∫
∂X

d S∂X = vol(∂X),

since g(W, T )=−g(AN , T )=−A2 on ∂X . Thus ψ ∈ ker B∗ has the appropriate normalization.
Finally, let E = range(I −50), which is thus invariant under U (t), and U (t)|E =U (t)(I −50). Since

Hk
= E +̇ span{(1, 0)},

with +̇ denoting a topological direct sum, it follows that E is isomorphic to the quotient Ĥk as a Banach
space. Given (v0, v1) ∈ D(B), define the constant v∞ = 〈v0, ψ0〉+ 〈v1, ψ1〉. Then

‖U (t)(v0− v∞, v1)‖Hk = ‖U (t)(v0, v1)− (v∞, 0)‖Hk ≤ C‖Û (t) ◦π(v0, v1)‖Ĥk ,

which completes the proof of Corollary 1.3.
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417Fracture with healing: A first step towards a new view of cavitation
GILLES FRANCFORT, ALESSANDRO GIACOMINI and OSCAR LOPEZ-PAMIES

449General Clark model for finite-rank perturbations
CONSTANZE LIAW and SERGEI TREIL

493On the maximal rank problem for the complex homogeneous Monge–Ampère equation
JULIUS ROSS and DAVID WITT NYSTRÖM

505A viscosity approach to the Dirichlet problem for degenerate complex Hessian-type equations
SŁAWOMIR DINEW, HOANG-SON DO and TAT DAT TÔ

537Resolvent estimates for spacetimes bounded by Killing horizons
ORAN GANNOT

561Interpolation by conformal minimal surfaces and directed holomorphic curves
ANTONIO ALARCÓN and ILDEFONSO CASTRO-INFANTES

A
N

A
LY

SIS
&

PD
E

Vol.12,
N

o.2
2019


	1. Introduction
	1A. Statement of results
	1B. Energy decay
	1C. Relationship with previous work

	2. Preliminaries
	2A. Semiclassical rescaling
	2B. Stationarity
	2C. `Killing horizons and surface gravity
	2D. Properties of the metric
	2E. Negligible tensors

	3. Carleman estimates in the interior
	3A. Statement of result
	3B. The conjugated operator
	3C. Constructing the phase in a compact set
	3D. Constructing the phase outside of a compact set

	4. Degenerate Carleman estimates near the boundary
	4A. Statement of result
	4B. The divergence theorem
	4C. Stress-energy tensor
	4D. The conjugated operator
	4E. Pseudoconvexity

	5. Proof of Theorem 1
	6. Logarithmic energy decay
	6A. A semigroup formulation
	6B. Logarithmic stabilization of semigroups
	6C. Decay to a constant

	Acknowledgments
	References
	
	

