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UNSTABLE NORMALIZED STANDING WAVES FOR THE SPACE PERIODIC NLS

NILS ACKERMANN AND TOBIAS WETH

For the stationary nonlinear Schrödinger equation −1u+ V (x)u− f (u)= λu with periodic potential V
we study the existence and stability properties of multibump solutions with prescribed L2-norm. To this
end we introduce a new nondegeneracy condition and develop new superposition techniques which allow
us to match the L2-constraint. In this way we obtain the existence of infinitely many geometrically distinct
solutions to the stationary problem. We then calculate the Morse index of these solutions with respect to
the restriction of the underlying energy functional to the associated L2-sphere, and we show their orbital
instability with respect to the Schrödinger flow. Our results apply in both, the mass-subcritical and the
mass-supercritical regime.

1. Introduction

Suppose that N ∈N and consider the stationary nonlinear Schrödinger equation with prescribed L2-norm

−1u+ V (x)u− f (u)= λu, u ∈ H 1(RN ), |u|22 = α, (Pα)

which we will call the constrained equation. Here | · |2 denotes the standard L2-norm, V ∈ L∞(RN ) is
periodic in all coordinates, f is a superlinear nonlinearity of class C1 with Sobolev-subcritical growth,
α > 0 is given, u is the unknown weak solution and λ ∈ R is an unknown parameter. Solutions to (Pα)
are standing wave solutions for the time-dependent Schrödinger equation modeling a Bose–Einstein
condensate in a periodic optical lattice [Aftalion and Helffer 2009; Morsch and Oberthaler 2006; Baizakov
et al. 2003; Efremidis and Christodoulides 2003; Fleischer et al. 2003; Louis et al. 2003; Ostrovskaya
and Kivshar 2003; Hilligsøe et al. 2002; Dalfovo et al. 1999]. In this model α is proportional to the total
number of atoms in the condensate.

Set
6α := {u ∈ H 1(RN ) : |u|22 = α} (1-1)

for α > 0. Define the functional 8 : H 1(RN )→ R by

8(u) := 1
2

∫
RN
(|∇u|2+ V u2)−

∫
RN

F(u), (1-2)

Ackermann was supported by CONACYT grant 237661, UNAM-DGAPA-PAPIIT grant IN100718 and the program UNAM-
DGAPA-PASPA (Mexico).
MSC2010: primary 35J91, 35Q55; secondary 35J20.
Keywords: nonlinear Schrödinger equation, periodic potential, standing wave solution, orbitally unstable solution, multibump

construction, prescribed norm.

1177

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2019.12-5
http://dx.doi.org/10.2140/apde.2019.12.1177
http://msp.org


1178 NILS ACKERMANN AND TOBIAS WETH

where we set F(s) :=
∫ s

0 f . Then the pair (u, λ) is a weak solution of (Pα) if and only if u is a critical
point of the restriction of 8 to 6α with Lagrange multiplier λ.

Not assuming periodicity of V but instead supRN V = lim|x |→∞ V (x), the existence of a minimizer
of 8 on 6α in the mass-subcritical case was shown under additional assumptions on the growth of the
nonlinearity f by Lions [1984]; see also [Jeanjean and Squassina 2011] for a different approach. For
constant V, solutions of (Pα) are constructed in the mass-supercritical case in [Bartsch and Soave 2017;
Bartsch and de Valeriola 2013; Jeanjean 1997]; here the corresponding critical points of8|6α are not local
minimizers. In [Bellazzini et al. 2017; Bellazzini and Jeanjean 2016; Fukuizumi and Ohta 2003; Fukuizumi
2001] local minimizers are found in the mass-supercritical case under spatially constraining potentials.

The structure of the solution set of the constrained equation is rather poorly understood up to now in
the case where V ∈ L∞(RN ) is not constant, but 1-periodic in all coordinates. In contrast, a large amount
of information is available for the free equation

−1u+ V (x)u = f (u), u ∈ H 1(RN ),

where essentially the parameter λ is fixed but the L2-norm is not prescribed anymore. Of particular
interest for us are the results on the existence of so-called multibump solutions. In [Arioli et al. 2009;
Kryszewski and Szulkin 2009; Ackermann 2006; 1996; Ackermann and Weth 2005; Rabinowitz 1997;
Spradlin 1995; Alama and Li 1992; Coti Zelati and Rabinowitz 1992], an infinite number of solutions are
built using nonlinear superposition of translates of a special solution which satisfies a nondegeneracy
condition of some form.

The main goal of the present work is to apply nonlinear superposition techniques to the constrained
problem with periodic V to obtain an infinity of L2-normalized solutions in the form of multibump
solutions. We succeed in doing this, but have to impose a stricter nondegeneracy condition than in the case
of the free equation which nevertheless is fulfilled in many situations. This provides, as far as we know,
the first result on multibump solutions for the constrained problem, and also the first multiplicity result in
the case of a nonconstant periodic potential V. We also compute the Morse index of these normalized
multibump solutions with respect to the restricted functional 8|6α , and we will use the Morse index
information to derive orbital instability of the multibump solutions.

To state our results, we need the following hypotheses. We consider, as usual, the critical Sobolev
exponent defined by 2∗ := 2N/(N − 2) in the case N ≥ 3 and 2∗ :=∞ in the case N = 1, 2:

(H1) V ∈ L∞(RN ).

(H2) V is 1-periodic in all coordinates.

(H3) f ∈ C1(R), f (0)= f ′(0)= 0,

lim
s→∞

f ′(s)
|s|2∗−2 = 0

if N ≥ 3, and there is p > 2 such that

lim
s→∞

f ′(s)
|s|p−2 = 0

if N = 1 or N = 2.
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Throughout this paper we assume (H1) and (H3). It is well known that 8 is well-defined by (1-2) and
of class C2. The standard example for a function satisfying (H3) is f (s) := |s|p−2s with p ∈ (2, 2∗). In
the following, we let H−1(RN ) denote the topological dual of H 1(RN ). For our main result, we need the
notion of a fully nondegenerate critical point of 8|6α .

Definition 1.1. Assume (H1) and (H3). For α > 0, a critical point u ∈ H 1(RN ) of 8|6α with Lagrangian
multiplier λ will be called fully nondegenerate if for every g ∈ H−1(RN ) there exists a unique weak
solution zg ∈ H 1(RN ) of the linearized equation

−1zg + [V − λ]zg − f ′(u)zg = g in RN, (1-3)

and if in the case g = u we have
∫

RN uzu 6= 0. Here, as usual, we regard H 1(RN ) as a subspace of
H−1(RN ), so u ∈ H−1(RN ).

As we shall see in Section 2 below, the full nondegeneracy of a critical point u ∈ H 1(RN ) of 8|6α
with Lagrangian multiplier λ implies the nondegeneracy of the Hessian of 8|6α at u. By definition, this
Hessian is the bilinear form

(v,w) 7→

∫
RN
(∇v∇w+ [V − λ]vw− f ′(u)vw) (1-4)

defined on the tangent space
Tu6α = {v ∈ H 1(RN ) : (v, u)2 = 0};

see Definition 2.5 below. Here ( · , · )2 denotes the standard scalar product in L2(RN ). We also need to fix
the following elementary notation. If n ∈ N and a = (a1, a2, . . . , an) ∈ (ZN )n is a tuple of n elements
from ZN, define

d(a) :=min
i 6= j
|ai
− a j
|.

Moreover, for b ∈ RN we denote by Tb the associated translation operator; i.e., for u : RN
→ R the

function Tbu : RN
→ R is given by

Tbu(x) := u(x − b) for x ∈ RN.

Our first main result is the following.

Theorem 1.2 (multibump solutions). Assume (H1)–(H3) and fix α > 0, n ∈N, n ≥ 2. Moreover, suppose
that ū is a fully nondegenerate critical point of 8|6α/n with Lagrangian multiplier λ̄. Then for every ε > 0
there exists Rε > 0 such that for every a ∈ (ZN )n with d(a)≥ Rε there is a critical point ua of 8|6α with
Lagrange multiplier λa such that∥∥∥∥ua −

n∑
i=1

Tai ū
∥∥∥∥

H1(RN )

≤ ε and |λa − λ̄| ≤ ε.

If ε is chosen small enough then ua is unique. Moreover, if ū is a positive function and f (ū)≥ 0 on RN,
f (ū) 6≡ 0, then ua is positive as well.
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The proof of Theorem 1.2 is based on a general shadowing lemma, a simple consequence of Banach’s
fixed point theorem, applied to approximate zeros of the gradient of the extended Lagrangian Gα for the
constrained variational problem on 6α. If ū is a nondegenerate local minimum of 8 on 6α/n then it is
easy to see that the sum ũ of n translates of ū is an approximate zero of ∇Gα if these translates are far
enough apart from each other. The shadowing lemma implies that to obtain a zero of ∇Gα near ũ it is
sufficient to prove that D2Gα(ũ) is invertible and that the norm of its inverse is bounded appropriately.
This step is the main difficulty and requires the assumption of full nondegeneracy of ū.

Our next result is concerned with the Morse index of the solutions ua given in Theorem 1.2 with
respect to the functional 8|6α . For this we recall that the Morse index m(u) of a critical point u of 8|6α
with Lagrangian multiplier λ is defined as the maximal dimension of a subspace W ⊂ Tu6α such that the
quadratic form in (1-4) is negative definite on W. If such a maximal dimension does not exist, one sets
m(u)=∞. We also introduce the following additional assumption:

(H4) f (s)/|s| is nondecreasing in R and f (s)s > 0 for all s 6= 0.

Theorem 1.3. Assume (H1)–(H3), fix α > 0, n ∈N, n ≥ 2, and suppose that ū is a fully nondegenerate
critical point of 8|6α/n with Lagrangian multiplier λ̄ and finite Morse index m(ū). Moreover, let zū be
given as in Definition 1.1 with u = ū. Then the critical points ua found in Theorem 1.2 have, for small ε,
the following Morse index m(ua) with respect to 8|6α :

m(ua)=

{
n(m(ū)+ 1)− 1 if (ū, zū)2 < 0,
nm(ū) if (ū, zū)2 > 0.

If moreover (H4) holds true, then m(ua) > 0.

The key role of the sign of the scalar product (ū, zū)2 in this theorem is not surprising since it is
closely related to variational properties of the underlying critical point ū. More precisely, we shall see in
Lemma 2.6 below that it determines the relationship between the Morse index of ū with respect to 8|6α/n

and its free Morse index with respect to the functional u 7→8(u)− λ̄|u|22 on H 1(RN ).
We now consider the special case where (H4) holds true and ū is a nondegenerate local minimum

of 8|6α/n . By a nondegenerate local minimum we mean a critical point ū of 8|6α/n with Lagrangian
multiplier λ̄ such that the quadratic form in (1-4) is positive definite on Tu6α/n . In this case, we shall
see in Section 2 below that ū is fully nondegenerate, and we will deduce the following corollary from
Theorems 1.2 and 1.3 in Section 4.

Corollary 1.4. Assume (H1)–(H4) and fix α > 0, n ∈ N, n ≥ 2. Moreover, suppose that ū is a
nondegenerate local minimum of 8|6α/n with Lagrangian multiplier λ̄. Then for every ε > 0 there exists
Rε > 0 such that for every a ∈ (ZN )n with d(a)≥ Rε there is a critical point ua of 8|6α with Lagrange
multiplier λa such that ∥∥∥∥ua −

n∑
i=1

Tai ū
∥∥∥∥

H1(RN )

≤ ε and |λa − λ̄| ≤ ε.

If ε is chosen small enough then ua is unique. Moreover, ua does not change sign and has Morse index
m(ua)=n−1 with respect to 8|6α .
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Next we present an example where the nondegeneracy hypotheses of the previous theorems can be
verified. For this we make the following assumptions:

(H5) V ∈C2(RN ) is 1-periodic in all coordinates, positive, and has a nondegenerate critical point at some
point x0 ∈ RN.

(H6) f (s)= |s|p−2s for some p ∈ (2, 2∗)\{2+ 4/N }.

We then consider the constrained singularly perturbed equation

−ε21u+ V (x)u− |u|p−2u = λu, u ∈ H 1(RN ), |u|22 = α, (Pα,ε)

in the semiclassical limit ε→ 0. Its weak solutions correspond, for each ε > 0, to critical points and
Lagrange multipliers of the restriction of the functional

8ε : H 1(RN )→ R, 8ε(u) :=
1
2

∫
RN
(ε2
|∇u|2+ V u2)−

1
p

∫
RN
|u|p,

to 6α. We also consider the related free problem

−ε21u+ V (x)u = |u|p−2u, u ∈ H 1(RN ), (Fε)

whose weak solutions coincide with critical points of 8ε for every ε > 0. It is well known, see [Grossi
2002], that there exists a locally unique curve of solutions of (Fε) that concentrate near x0 as ε→ 0. For
our purposes we need to show additional properties of these solutions.

Theorem 1.5. Assume (H5) and (H6). Then there exist ε0 > 0 and a continuous map (0, ε0)→ H 1(RN ),
ε→ ūε, such that the following properties hold true:

(i) For each ε ∈ (0, ε0) the function ūε is a positive solution of (Fε).

(ii) As ε→ 0, the functions x 7→ ūε concentrate near x0 in the sense that the functions x 7→ ūε(x0+ εx)
converge in H 1(RN ) to the unique radial positive solution u0 ∈ H 1(RN ) of the equation

−1u0+ V (x0)u0 = u p−1
0

in RN .

(iii) |ūε|22→ 0 as ε→ 0.

(iv) For each ε ∈ (0, ε0) the function ūε is a fully nondegenerate critical point of the restriction of 8ε to
6
|ūε|22

with Morse index

m(ūε)=

{
mV if 2< p < 2+ 4

N
,

mV + 1 if 2+ 4
N
< p < 2∗.

(1-5)

Here mV denotes the number of negative eigenvalues of the Hessian of V at x0.

We emphasize that properties (i)–(ii) were already proved in [Grossi 2002], and that (iii) follows from
(ii) by a simple change of variable. For our purposes, the property (iv) is of key importance. We shall
also see in Section 5 below that, for ε ∈ (0, ε0),

(ūε, zūε)2 < 0 if 2< p < 2+ 4
N

and (ūε, zūε)2 > 0 if 2+ 4
N
< p < 2∗, (1-6)
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where zūε is given as in Definition 1.1 corresponding to u = ūε. Since the solutions ūε in Theorem 1.5
depend continuously on ε and |ūε|22→ 0 as ε→ 0, we can find, for every α > 0 and large enough n ∈ N,
a number εn ∈ (0, ε0) such that |ūεn |

2
2 = α/n. The combination of Theorems 1.2, 1.3 and 1.5 with (1-6)

therefore yields the following corollary.

Corollary 1.6. Assume (H5) and (H6). Then for every α > 0 there exist nα ∈N and a sequence εn→ 0
such that for every n ≥ nα the problem Pα,εn has infinitely many geometrically distinct positive solutions.
More precisely, for every n ∈ N with n ≥ nα, and every δ > 0 there exists Rδ,n > 0 such that for every
a ∈ (ZN )n with d(a)≥ Rδ,n there is a critical point ua of 8εn |6α with Lagrange multiplier λa such that∥∥∥∥ua −

n∑
i=1

Tai ūεn

∥∥∥∥
H1(RN )

≤ δ and |λa| ≤ δ.

If δ is chosen small enough then ua is unique. Moreover, ua is a positive function, and its Morse index
with respect to 8|6α is given by

m(ua)=

{
n(mV + 1)− 1 if 2< p < 2+ 4

N
,

n(mV + 1) if 2+ 4
N
< p < 2∗,

where mV denotes the number of negative eigenvalues of the Hessian of V at x0.

Our next result is concerned with the orbital instability of the normalized multibump solutions we have
constructed in the previous theorems. For this we focus on odd nonlinearities f in (Pα) satisfying (H3)
and therefore assume

(H7) the function f is odd.

We also assume (H1) and (H3), so 8 in (1-2) is a well-defined C2-functional. If ϕ ∈6α is a critical
point of 8|6α with Lagrangian multiplier λ, then the function

uϕ : R×RN
→ C, uϕ(t, x)= ϕ(x)eiλt , (1-7)

is a solution of the time-dependent nonlinear Schrödinger equation

−iut =−1u+ V (x)u− g(|u|2)u, (1-8)

where g is defined by f (t) = g(|t |2)t . Solutions of this special type are usually called solitary wave
solutions. The solution uϕ is called orbitally stable if for every ε > 0 there exists δ > 0 such that
every solution u : [0, t0)→ H 1(RN,C) of (1-8) with ‖u(0, · )−ϕ‖H1 < δ can be extended to a solution
[0,∞)→ H 1(RN,C) which satisfies

sup
0<t<∞

inf
s∈R

‖u(t, · )− uϕ(s, · )‖H1 < ε.

Otherwise, uϕ is called orbitally unstable. We then have the following result.

Theorem 1.7. Assume (H1), (H3), and (H7), and suppose that ϕ ∈6α is a positive function which is a
critical point of 8|6α with positive Morse index and Lagrangian multiplier λ < inf σess(−1+ V ). Then
the corresponding solitary wave solution uϕ of (1-8) is orbitally unstable.
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Here and in the following, σess(−1+ V ) denotes the essential spectrum of the Schrödinger operator
−1+ V. We note that Theorem 1.7 neither requires periodicity of V, nor does it require the assumption
on the oddness of a certain difference of numbers of eigenvalues in the seminal instability result in
[Grillakis et al. 1990, p. 309]. Theorem 1.7 applies to the normalized multibump solutions constructed in
Theorem 1.2 and Corollaries 1.4 and 1.6 in the case where the nonlinearity satisfies (H4) and (H7). In
these cases, the extra assumption λ < inf σess(−1+ V ) follows from Lemma 2.9 below and the fact that
the Lagrangian multipliers of the multibump solutions are arbitrarily close to the multiplier of the initial
solution.

There are many results on the orbital stability and instability of the standing waves generated by
solutions to (Pα); see [Ianni and Le Coz 2009; Stuart 2008; Hilligsøe et al. 2002; Grillakis et al. 1987;
Cazenave and Lions 1982]. However, none of these results covers the situation addressed in Theorem 1.7.

The paper is organized as follows. In Section 2 we collect some preliminary notions and observations.
In particular, here we explain our new notions of fully nondegenerate restricted critical point and of the
free Morse index. In Section 3 we then prove Theorem 1.2. In Section 4 we derive a general result on
the Morse index of normalized multibump solutions which gives rise to Theorem 1.3. At the end of this
section, we also complete the proof of Corollary 1.4. In Section 5, we analyze the singular perturbed
equation (Fε) and we prove Theorem 1.5. In Section 6, we then prove the orbital instability result given
in Theorem 1.7. Finally, in the Appendix we provide a computation of the free Morse index of the
solutions uε considered in Theorem 1.5. This computation is partly contained in [Lin and Wei 2008, proof
of Theorem 2.5], but some details have been omitted there. We therefore provide a somewhat different
argument in detail for the convenience of the reader.

We finally remark that the main results of our paper can be extended to more general nonlinearities.
In particular, Theorem 1.2 has an abstract proof that extends to nonlinearities that also depend on x ,
1-periodically in every coordinate. This proof also extends to nonlocal nonlinearities with convolution
terms as in [Ianni and Le Coz 2009]. This follows from Brézis–Lieb-type splitting properties for these
nonlinearities that were proved in [Ackermann 2006].

Notation. In the remainder of the paper, we write | · |p for the standard L p(RN )-norm, 1≤ p ≤∞. We
also use the notation ( · , · )2 for the standard L2(RN )-scalar product. For the sake of brevity, we write L2

in place of L2(RN ) and H k in place of H k(RN ) for k ∈N. By (H1), −1+V is a self adjoint operator in
L2 with domain H 2. Since we assume (H1) throughout the paper and λ is a free parameter in (Pα), we
may assume without loss of generality that γ :=min σ(−1+ V ) > 0, where σ(−1+ V ) stands for the
spectrum of −1+ V. Then H 1 is the form domain (the energy space) of −1+ V, and we may endow
H 1 with the scalar product

〈u, v〉 =
∫

RN
(∇u · ∇v+ V uv), u, v ∈ H 1. (1-9)

The norm ‖ · ‖ induced by 〈 · , · 〉 is equivalent to the standard norm on H 1. It will be convenient to define
S := (−1+ V )−1; then we have

〈u, v〉 = (S−1/2u, S−1/2v)2 for u, v ∈ H 1. (1-10)
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We point out that, for a subspace Z ⊂ H 1, the notation Z⊥ always refers to the orthogonal complement
of Z in H 1 with respect to the scalar product 〈 · , · 〉.

We recall that the spectrum σ(−1+ V ) is purely essential if (H2) is assumed. In this case, it also
follows that all powers of S are equivariant with respect to the action of ZN. Hence

〈Tav, Taw〉 = 〈v,w〉 for all v,w ∈ H 1, for all a ∈ ZN .

For any two normed spaces X, Y the space of bounded linear operators from X in Y is denoted by
L(X, Y ), and we write L(X) := L(X, X).

For a C1-functional 2 defined on H 1, we let d2 : H 1
→ (H 1)∗ denote the derivative of 2 and

∇2 : H 1
→ H 1 the gradient with respect to the scalar product 〈 · , · 〉 defined in (1-9). Moreover, if

2 is of class C2, then d22(u) : H 1
× H 1

→ R denotes the Hessian of 2 at a point u ∈ H 1, whereas
D22(u) ∈ L(H 1) stands for the derivative of the gradient of 2 at u. We then have

〈D22(u)v,w〉 = d22(u)[v,w] for v,w ∈ H 1.

2. Some preliminary abstract results and notions

We now state some abstract results which will be used in Section 3 in the proof of Theorem 1.2. We start
with a standard corollary of Banach’s fixed point theorem, which is sometimes referred to as a shadowing
lemma.

Lemma 2.1. Let (E, ‖ · ‖) be a Banach space, let h : E→ E be continuously differentiable with derivative
dh : E→ L(E), and let v0 ∈ E , δ > 0, q ∈ (0, 1) satisfy the following:

(i) T := dh(v0) ∈ L(E) is an isomorphism.

(ii) ‖h(v0)‖< δ(1− q)/‖T−1
‖L(E).

(iii) ‖dh(y)− T ‖L(E) ≤ q/‖T−1
‖L(E) for y ∈ Bδ(v0).

Then h has a unique zero in Bδ(v0).

The proof of this lemma is standard by showing that the map y 7→ y−T−1h(y) defines a q-contraction
on Bδ(v0). Applying Banach’s fixed point theorem to this map gives rise to a unique zero of h in Bδ(v0),
and it easily follows from the above assumptions that this zero is contained in Bδ(v0).

We will use the following immediate corollary of Lemma 2.1.

Corollary 2.2. Let (E, ‖ · ‖) be a Banach space, let h : E → E be differentiable and such that its
derivative dh : E → L(E) is uniformly continuous on bounded subsets of E. Moreover, let (vk)k be a
bounded sequence in E such that

(i) h(vk)→ 0 as k→∞;

(ii) dh(vk) ∈ L(E) is an isomorphism for k ∈ N, and supk∈N‖dh(vk)
−1
‖L(E) <∞.

Then there exist k0 ∈ N and uk ∈ E , k ≥ k0, with

h(uk)= 0 for k ≥ k0 (2-1)
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and
‖uk − vk‖→ 0 as k→∞. (2-2)

Moreover, the sequence (uk)k is uniquely determined by properties (2-1), (2-2) for large k.

In the remainder of this section, we collect some preliminary results and notions related to the
functional 8 defined in (1-2) and its restrictions to spheres with respect to the L2(RN )-norm. Recall that
we are assuming conditions (H1) and (H3). We define

9(u) :=
∫

RN
F(u),

so
8(u)= 1

2‖u‖
2
−9(u).

Following [Ackermann 2006] we say that a map g : X → Y of Banach spaces X and Y BL-splits if
g(xn)− g(xn − x∗)→ g(x∗) in Y if xn ⇀ x∗ in X . For example, by [Ackermann 2006, Remark 3.3] the
maps ‖ · ‖2 and | · |22 BL-split. The next result about BL-splitting maps is less obvious:

Lemma 2.3. The maps 9, ∇9 and D29 BL-split, and they are uniformly continuous on bounded subsets
of H 1.

Before we give the proof we fix some p ∈ (2, 2∗) if N ≥ 3 and we use p given in (H3) if N = 1, 2.
Using (H3) it is easy to construct, for every ε > 0, functions fi,ε ∈ C1(R), i = 1, 2, 3, and a constant
Cε > 0 such that

f =
3∑

i=1

fi,ε (2-3)

and such that

| f ′1,ε(s)| ≤ ε, | f
′

2,ε(s)| ≤ Cε|s|p−2, and | f ′3,ε(s)| ≤ ε|s|
2∗−2 for all s ∈ R. (2-4)

If N = 1, 2 we simply choose f3,ε ≡ 0 and ignore all terms that contain 2∗.

Proof of Lemma 2.3. We only prove this in the case N ≥ 3; the other cases are treated similarly. Consider
(un)⊆ H 1 such that un ⇀ u. Then (un) is bounded in H 1 and therefore also in Lq for q ∈ [2, 2∗]. For
fixed ε > 0 we have

| f ′2,ε(un)− f ′2,ε(un − u)− f ′2,ε(u)|p/(p−2)→ 0

by [Ackermann 2016, Theorem 1.3]. On the other hand, there are varying constants C > 0, independent
of ε, such that

| f ′1,ε(un)− f ′1,ε(un − u)− f ′1,ε(u)|∞ ≤ Cε,

| f ′3,ε(un)− f ′3,ε(un − u)− f ′3,ε(u)|2∗/(2∗−2) ≤ Cε

for all n. For all v,w ∈ H 1 with ‖v‖ = ‖w‖ = 1 it follows that∣∣〈(D29(un)−D29(un − u)−D29(u)
)
v,w

〉∣∣
≤ Cε|v|2|w|2+ | f ′2,ε(un)− f ′2,ε(un − u)− f ′2,ε(u)|p/(p−2)|v|p|w|p +Cε|v|2∗ |w|2∗

≤ C(ε+ o(1))
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and hence lim supn→∞‖D
29(un)−D29(un − u)−D29(u)‖L(H1) ≤ Cε. Letting ε→ 0 we obtain the

claim for D29. The proof for the uniform continuity of D29 on bounded subsets of H 1 is similar. One
treats the maps ∇9 and 9 analogously. �

We shall need the following simple consequence of (H4).

Lemma 2.4. If conditions (H1) and (H3)–(H4) hold true and u ∈ H 1
\{0} satisfies ∇8(u) = λSu for

some λ ∈ R, then
〈(D28(u)− λS)u, u〉< 0.

Proof. By (H3) and (H4), the map s 7→ f ′(s)s2
− f (s)s is nonnegative in R, and it is positive on a

nonempty open subset of (−ε, ε)\{0} for every ε > 0. Moreover, since u ∈ H 1 is a weak solution of

−1u+ [V (x)− λ]u = f (u) in RN

by assumption, standard elliptic regularity shows that u is continuous and that u(x)→ 0 as |x | →∞.
Consequently, we have

〈D28(u)u, u〉− λ〈Su, u〉 = 〈D28(u)u, u〉− 〈∇8(u), u〉

= 〈∇9(u), u〉− 〈D29(u)u, u〉 =
∫

RN
( f (u)u− f ′(u)u2) < 0,

as claimed. �

As before, for α > 0, we consider the sphere 6α ⊂ H 1 as defined in (1-1), and we let Jα : 6α→ R

denote the restriction of 8 to 6α. We note that, for u ∈6α, the tangent space of 6α at u is given by

Tu6α = {v ∈ H 1
: (v, u)2 = 0} = {v ∈ H 1

: 〈v, Su〉 = 0} ⊂ H 1, (2-5)

where latter equality follows from (1-10). If u is a critical point of Jα, we have

∇8(u)= λSu (2-6)

for some λ ∈ R, the corresponding Lagrange multiplier. Moreover, the Hessian d2 Jα(u) is a well-defined
quadratic form on Tu6α given by

d2 Jα(u)[v,w] = 〈D28(u)v,w〉− λ〈Sv,w〉 for v,w ∈ Tu6α. (2-7)

For the general definition of the Hessian of C2-functionals on Banach manifolds at critical points, see,
e.g., [Palais 1963, p. 307]. To see (2-7), one may argue with local coordinates for 6α at u, as is done,
e.g., in [Edwards 1994, Theorem 8.9] in the finite-dimensional case. Alternatively, to prove (2-7) we may
consider smooth vector fields ṽ, w̃ on 6α with ṽ(u)= v, w̃(u)= w, and we extend ṽ, w̃ arbitrarily as
smooth vector fields ṽ, w̃ : H 1

→ H 1. Using (2-6), we then have

d2 Jα(u)[v,w] = ∂ṽ∂w̃8(u)= ∂ṽ|u〈∇8,w〉 = 〈D28(u)v,w〉+ 〈∇8(u), dw̃(u)v〉

= 〈D28(u)v,w〉+ λ(u, dw̃(u)v)2 = 〈D28(u)v,w〉− λ(v,w)2,

where the last equality follows from the fact that the function u∗ 7→ h(u∗) := (u∗, w̃(u∗))2 vanishes on
6α and therefore 0= ∂ṽh(u)= (v,w)2+ (u, dw(u)v)2.
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We need the following definitions.

Definition 2.5. Let u ∈ H 1 be a critical point of Jα with Lagrange multiplier λ. Put 3 := Tu6α and let
P ∈ L(H 1,3) denote the 〈 · , · 〉-orthogonal projection onto 3. Moreover, put B := D28(u)− λS.

(a) The Morse index m(u) ∈ N∪ {0,∞} of u with respect to Jα is defined as

m(u) := sup{dim Z : Z subspace of 3 with 〈Bv, v〉< 0 for all v ∈ Z\{0}}.

(b) The free Morse index mf(u) ∈ N∪ {0,∞} of u is defined as

mf(u) := sup{dim Z : Z subspace of H 1 with 〈Bv, v〉< 0 for all v ∈ Z\{0}}.

(c) We call u a nondegenerate critical point of Jα if P B|3 is an isomorphism of 3.

(d) We call u freely nondegenerate if B is an isomorphism of H 1. In this case we put

zu := B−1Su ∈ H 1.

For a critical point u ∈ H 1 of Jα, it is clear that

mf(u)= m(u) or mf(u)= m(u)+ 1. (2-8)

In the case where u is freely nondegenerate, the scalar product (zu, u)2 determines whether u is nonde-
generate and which case occurs in (2-8). More precisely, we have the following simple but important
lemma.

Lemma 2.6. Let u ∈ H 1 be a freely nondegenerate critical point of Jα with Lagrange multiplier λ:

(a) u is nondegenerate if and only if (zu, u)2 6= 0.

(b) If m(u) is finite and (zu, u)2 > 0, then mf(u)= m(u).

(c) If m(u) is finite and (zu, u)2 < 0, then mf(u)= m(u)+ 1.

Proof. In the following, we let N (L) denote the kernel and R(L) denote the range of a linear operator L .
Moreover, we let B, P and 3 be as in Definition 2.5.

(a): By definition, we have zu = B−1Su ∈ N (P B) \ {0}. Moreover, we have dimN (P B) = 1 since
B : H 1

→ H 1 is an isomorphism. Consequently,

N (P B)= span(zu) and R(P B)=3.

Now, again by definition, u is nondegenerate if and only if P B|3 : 3→3 is an isomorphism, and this
holds true if and only if H 1

= span(zu)⊕3. By (2-5), the latter property is equivalent to (zu, u)2 6= 0.

(b) and (c): Since codim3 = 1 and zu /∈ 3, there are, for every φ ∈ H 1, unique elements µ ∈ R and
w ∈3 such that

φ = µzu +w. (2-9)
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Recall that span(Su)=N (P)=3⊥. We therefore have the representation

〈Bφ, φ〉 = µ2
〈Bzu, zu〉+ 2µ〈Bzu, w〉+ 〈Bw,w〉

= µ2
〈Su, zu〉+ 2µ〈Su, w〉+ 〈Bw,w〉

= µ2(zu, u)2+〈Bw,w〉. (2-10)

To see (b), recall that the definition of m(u) implies the existence of a subspace Z ⊂3 of codimension
m(u) in 3 such that 〈Bφ, φ〉 ≥ 0 for all φ ∈ Z . Since zu /∈3, the space Z̃ := span(zu)⊕ Z has at most
codimension m(u) in H 1. Moreover, in the representation (2-9) for φ ∈ Z̃ we find w ∈ Z . Therefore,
(2-10) yields 〈Bφ, φ〉 ≥ 〈Bw,w〉 ≥ 0. This implies mf(u)≤ m(u), and thus equality follows by (2-8).

To see (c), let Z ⊂3 be an m(u)-dimensional subspace such that 〈Bw,w〉< 0 for all w ∈ Z\{0}. Put
Z̃ := span(zu)⊕ Z . Then dim Z̃ =m(u)+1, and for the representation (2-9) for φ ∈ Z̃\{0} we find w ∈ Z .
Then (2-10) implies 〈Bφ, φ〉< 0 since either µ 6= 0 or w ∈ Z\{0}. Consequently, mf(u)≥m(u)+ 1, and
thus equality follows by (2-8). �

Parts (b) and (c) of Lemma 2.6 can also be derived from [Maddocks 1985, (2.7) of Theorem 2]. For
the convenience of the reader we gave a simple direct proof.

Definition 2.7. A critical point u ∈ H 1 of Jα will be called fully nondegenerate if u is freely nondegenerate
and the equivalent properties in Lemma 2.6(a) hold true.

Definition 2.7 is consistent with Definition 1.1, as the function zu = B−1Su defined in Definition 2.5
is uniquely determined as the weak solution of (1-3) with g = u.

In the next lemma, we show that nondegenerate local minima of Jα are fully nondegenerate critical
points.

Lemma 2.8. Suppose that (H4) holds true, and let u ∈ H 1 be a nondegenerate critical point of Jα with
m(u)= 0 (i.e., u is a nondegenerate local minimum of Jα). Then u is fully nondegenerate, and either u or
−u is a positive function.

Proof. We continue using the notation from the proof of Lemma 2.6. Since u is nondegenerate, we have
3 = R(P B|3) and therefore H 1

= N (P)+R(B|3). This implies codimR(B) ≤ codimR(B|3) ≤ 1
and hence that R(B) is closed. Since P B|3 is injective, N (B) ∩3 = {0} and hence dimN (B) ≤ 1.
If dimN (B) = 1 were true, then we would have H 1

= N (B)⊕3. Since the quadratic form 〈B · , · 〉
is positive definite on 3, it would be positive semidefinite on H 1, in contradiction with Lemma 2.4.
Therefore N (B)= {0} and B, being symmetric with closed range, is an isomorphism. Hence u is freely
nondegenerate, and thus it is also fully nondegenerate.

Next, we suppose by contradiction that u changes sign. A variant of the proof of Lemma 2.4 then shows
that the quadratic form 〈B · , · 〉 is negative definite on the two-dimensional subspace span(u+, u−)⊂ H 1,
where u± := max{0,±u} denotes the positive, respectively negative, part of u. Since this space has a
nontrivial intersection with 3, we thus obtain a contradiction to the assumption m(u)= 0. �

Next we add an observation for the case where u is a fully nondegenerate critical point of Jα and a
positive function.
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Lemma 2.9. Let u ∈ H 1 be a fully nondegenerate critical point of Jα with Lagrangian multiplier λ such
that u is a positive function and f (u)≥ 0 on RN, f (u) 6≡ 0. Then we have

λ < inf σ(−1+ V ). (2-11)

Proof. Since u is freely nondegenerate, we see that

λ 6∈ σ(−1+ V − f ′(u)). (2-12)

Moreover, u(x)→ 0 as |x | →∞ by standard elliptic estimates, and the same is true for the functions
x 7→ f ′(u(x)), x 7→ f (u(x))/u(x). Consequently, by (2-12) and Theorem 14.6 and the proof of
Theorem 14.9 in [Hislop and Sigal 1996], we have for L0 := −1+ V and L := −1+ V − f (u)/u that

λ /∈ σess(−1+ V − f ′(u))= σess(L0)= σess(L),

where σess denotes the essential spectrum. Since u is an eigenfunction of the Schrödinger operator L
corresponding to the eigenvalue λ, it follows that λ is isolated in σ(L). Since moreover u is positive, it is
then easy to see that λ= inf σ(L), and that λ is a simple eigenvalue. On the other hand, the assumption
f (u)/u ≥ 0 implies

inf σ(L0)≥ inf σ(L)= λ.

If λ= inf σ(L0) were true, we could obtain from λ /∈ σess(L0) that λ is also an isolated eigenvalue of L0

with a positive eigenfunction v. But then, since f (u) 6≡ 0 by assumption,

λ=

∫
RN (|∇v|

2
+ V v2)∫

RN v2 >

∫
RN (|∇v|

2
+ (V − f (u)/u)v2)∫

RN v2 ≥ λ,

a contradiction. Hence λ < inf σ(L0). �

We close this section by introducing the extended Lagrangian

Gα : H 1
×R→ R, Gα(u, λ) :=8(u)− 1

2λ(|u|
2
2−α)=8(u)−

1
2λ(〈Su, u〉−α).

By definition, u ∈ H 1 is a critical point of Jα with Lagrange multiplier λ if and only if (u, λ) is a critical
point of Gα. We endow H 1

×R with the natural scalar product

〈(u, s), (v, t)〉 := 〈u, v〉+ st.

The respective gradient of Gα is

∇Gα : H 1
×R→ H 1

×R, ∇Gα(u, λ)=
(
∇8(u)− λSu,− 1

2(|u|
2
2−α)

)
. (2-13)

Moreover, we have

D2Gα(u, λ)[(v, µ)] = (D28(u)v− λSv−µSu,−〈Su, v〉). (2-14)

The operator D2Gα(u, λ) is known in the literature as the bordered Hessian of 8 at (u, λ). It has
been used extensively in finite-dimensional settings to discern local extrema of restricted functionals; see,
e.g., [Greenberg et al. 2000; Shutler 1995; Hassell and Rees 1993; Hughes 1991; Spring 1985; Baxley
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and Moorhouse 1984]. We will use it only in Section 3 below for a gluing procedure respecting an
L2-constraint.

Although we do not need this property in the present paper, we note that a critical point u ∈ H 1 of Jα
is nondegenerate if and only if D2Gα(u, λ) is an isomorphism of H 1

×R. The proof is straightforward.

3. Gluing bumps with L2-constraint

This section is devoted to the proof of Theorem 1.2, which we reformulate in the following way for
matters of convenience. We continue to use the notation introduced in Section 2.

Theorem 3.1. Assume (H1)–(H3) and fix α > 0. Given n ∈ N, n ≥ 2, suppose that ū is a fully nondegen-
erate critical point of Jα/n with Lagrange multiplier λ̄. Let also (ak) ⊆ (Z

N )n be a sequence such that
d(ak)→∞ as k→∞. Then there exists k0 ∈ N such that for k ≥ k0 there exist critical points uk of Jα
with Lagrange multiplier λk . Moreover, we have

‖uk − vk‖→ 0 and |λk − λ̄| → 0 as k→∞, where vk :=

n∑
i=1

Tai
k
ū ∈ H 1, (3-1)

and the sequence (uk)k is uniquely determined by these properties for large k. Furthermore, if ū is a
positive function and f (ū)≥ 0 on RN, f (ū) 6≡ 0, then uk is positive as well for large k.

The remainder of this section is devoted to the proof of this theorem. Let α > 0, n ≥ 2, and ū, λ̄ be as
in the statement of the theorem. Since ū is nondegenerate and freely nondegenerate, Definition 2.5 and
Definition 2.7 imply

B := D28(ū)− λ̄S ∈ L(H 1) is an isomorphism (3-2)

and
there exists zū ∈ H 1 with (zū, ū)2 6= 0 and Bzū = Sū. (3-3)

Let (ak)⊆ (Z
N )n be a sequence such that d(ak)→∞ as k→∞, and let vk ∈ H 1 be given as in (3-1)

for k ∈ N. For simplicity we assume that

a1
k = 0 for all k ∈ N. (3-4)

We wish to prove that
∇Gα(vk, λ̄)→ 0 as k→∞ (3-5)

and that

D2Gα(vk, λ̄) ∈ L(H 1
×R) is invertible for large k,

and the norm of the inverse remains bounded as k→∞. (3-6)

Once these assertions are proved, we may apply Corollary 2.2 with h := ∇Gα to find, for k large, critical
points uk of Jα with Lagrange multiplier λk such that (3-1) holds true. Here we use the fact that the
sequence (vk)k is bounded in H 1 and that D28 is uniformly continuous on bounded subsets of H 1.

By the BL-splitting properties, (2-13) implies∥∥∥∥∇Gα(vk, λ̄)−

n∑
i=1

∇Gα/n(Tai
k
ū, λ̄)

∥∥∥∥
L(H1×R)

→ 0.
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Since ‖∇Gα/n(Tai
k
ū, λ̄)‖L(H1×R) = ‖∇Gα/n(ū, λ̄)‖L(H1×R) = 0 for i = 1, 2, . . . , n and every k, (3-5)

follows.
We now turn to the (more difficult) proof of (3-6). For this we consider the operators

Bk := D28(vk)− λ̄S ∈ L(H 1) for k ∈ N.

and we claim that

T
−ai

k
BkTai

k
w→ Bw in H 1 for w ∈ H 1, i = 1, 2, . . . , n. (3-7)

To see this, we recall that D29 BL-splits and that therefore

D29(vk)=

n∑
j=1

D29(Ta j
k
ū)+ o(1) in L(H 1), (3-8)

which implies

Bk = I − λ̄S−D29(vk)= I − λ̄S−
n∑

j=1

D29(Ta j
k
ū)+ o(1) in L(H 1). (3-9)

It is easy to see that

T
−ai

k
D29(Tai

k
ū)Tai

k
= D29(ū) for k ∈ N and i = 1, . . . , n. (3-10)

Moreover, if i 6= j , then for w ∈ H 1 we have

D29(Ta j
k
ū)Tai

k
w = Ta j

k
T
−a j

k
D29(Ta j

k
ū)Ta j

k
Tai

k−a j
k
w = Ta j

k
D29(ū)Tai

k−a j
k
w→ 0 (3-11)

in H 1, since Tai
k−a j

k
w ⇀ 0 and D29(ū) ∈ L(H 1) is a compact operator. Combining (3-9)–(3-11) and

recalling that S commutes with Tai
k
, we find that

T
−ai

k
BkTai

k
w = (I − λ̄S)w−

n∑
j=1

T
−ai

k
D29(Ta j

k
ū)Tai

k
w+ o(1)

= (I − λ̄S)w−D29(ū)w+ o(1)= Bw+ o(1) as k→∞

for w ∈ H 1 and i = 1, . . . , n, as claimed in (3-7).
We note that (3-7) implies

T
−ai

k
BkTa j

k
w = Ta j

k−ai
k
T
−a j

k
BkTa j

k
w = Ta j

k−ai
k
Bw+ o(1) ⇀ 0 in H 1 (3-12)

for w ∈ H 1 and i 6= j . We now prove (3-6) by contradiction. Supposing that (3-6) does not hold true, we
find, after passing to a subsequence, that there are wk ∈ H 1 and µk ∈ R such that ‖wk‖

2
+µ2

k = 1 and
D2Gα(vk, λ̄)[(wk, µk)] → 0. By (2-14) this implies

Bkwk −µk Svk→ 0 in H 1, (3-13)

(vk, wk)2→ 0 in R. (3-14)

Define for i = 1, 2, . . . , n, possibly after passing to a subsequence, the functions

wi
:= w-lim

k→∞
T
−ai

k
wk ∈ H 1
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and µ := limk→∞ µk . Let zū ∈ H 1 be given as in (3-3). Forming the H 1-scalar product of (3-13) with
Tai

k
zū and using (3-7) together with the fact that T

−ai
k
vk ⇀ ū in H 1, we obtain

o(1)= 〈Bkwk, Tai
k
zū〉−µk〈Svk, Tai

k
zū〉 = 〈wk, BkTai

k
zū〉−µk(vk, Tai

k
zū)2

= 〈T
−ai

k
wk, T−ai

k
BkTai

k
zū〉−µk(T−ai

k
vk, zū)2 = 〈w

i , Bzū〉−µ(ū, zū)2+ o(1)

= 〈wi , Sū〉−µ(ū, zū)2+ o(1)= (wi , ū)2−µ(ū, zū)2+ o(1)

for i = 1, . . . , n. Hence
(wi , ū)2 = µ(ū, zū)2 for i = 1, . . . , n.

By (3-14) we thus have

0= lim
k→∞

(vk, wk)2 = lim
k→∞

n∑
i=1

(Tai
k
ū, wk)2 = lim

k→∞

n∑
i=1

(ū, T
−ai

k
wk)2 =

n∑
i=1

(ū, wi )2 = nµ(ū, zū)2.

Since (ū, zū)2 6= 0, this gives µ= 0. Hence (3-13) reduces to

Bkwk→ 0 in H 1 as k→∞. (3-15)

We now set

zk := wk −

n∑
j=1

Ta j
k
w j for k ∈ N,

so
T
−ai

k
zk ⇀ 0 for i = 1, . . . , n. (3-16)

By (3-7), (3-12) and (3-15) we have

0= w-lim
k→∞

T
−ai

k
Bkwk = w-lim

k→∞

[ n∑
j=1

T
−ai

k
BkTa j

k
w j
+ T
−ai

k
Bkzk

]
= Bwi

+w-lim
k→∞

T
−ai

k
Bkzk . (3-17)

Moreover,
D29(ū)T

−ai
k
zk→ 0 in H 1 for i = 1, . . . , n (3-18)

by (3-16) and since D29(ū) ∈ L(H 1) is a compact operator, which by (3-10) implies

T
−ai

k
D29(Ta j

k
ū)zk = Ta j

k−ai
k
D29(ū)T

−a j
k
zk→ 0 in H 1 (3-19)

for i, j = 1, . . . , n. Using (3-9) again, we obtain

w-lim
k→∞

T
−ai

k
Bkzk = w-lim

k→∞

(
T
−ai

k
(I − λ̄S)zk −

n∑
j=1

T
−ai

k
D29(Ta j

k
ū)zk

)
= w-lim

k→∞
(I − λ̄S)T

−ai
k
zk = 0

for i = 1, . . . , n. Combining this with (3-17), we conclude that Bwi
= 0 for i = 1, . . . , n and thus

wi
= 0 for i = 1, . . . , n
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by (3-2). We therefore have wk = zk for all k. Recalling (3-15), (3-9), (3-4), and choosing i = 1 in (3-18)
and (3-19), we find

o(1)= Bkwk = Bkzk = (I − λ̄S)zk −

n∑
j=1

D29(Ta j
k
ū)zk + o(1)= (I − λ̄S)zk + o(1)

= (I − λ̄S)zk −D29(ū)zk + o(1)= Bzk + o(1)= Bwk + o(1),

and thus wk→ 0 in H 1 by (3-2). Since µ= 0, this contradicts our assumption that ‖wk‖
2
+µ2

k = 1 for
all k. This proves (3-6), as desired.

In the following we assume N ≥ 3. The cases N = 1, 2 are proved similarly, ignoring those terms
below that include the critical exponent 2∗.

As remarked above, applying Corollary 2.2 with h := ∇Gα now yields, for k large, critical points uk

of Jα with Lagrange multiplier λk such that (3-1) holds true. To finish the proof of Theorem 3.1, we now
assume that ū ∈ H 1 is positive with f (ū)≥ 0 in RN, f (ū) 6≡ 0, and we show that uk is also positive for k
large. By Lemma 2.9 we then have λ̄ < inf σ(−1+ V )= γ , so∫

RN
(|∇v|2+ [V − λ̄]|v|2)≥ (γ − λ̄)‖v‖2 for all v ∈ H 1.

On the other hand, for fixed ε ∈ (0, γ − λ̄) it easily follows from (H3), Sobolev embeddings, the
representation (2-3), and (2-4), that there is a constant C > 0 such that∫

RN
f (v)v ≤ ε‖v‖2+C‖v‖p

+ ε‖v‖2
∗

for v ∈ H 1.

Moreover, since vk is positive, (3-1) implies u−k :=min{uk, 0} → 0 in H 1 as k→∞. However, we have

0=
∫

RN
(−1uk + [V − λk]uk − f (uk))u−k

=

∫
RN
(|∇u−k |

2
+ [V − λk]|u−k |

2)−

∫
RN

f (u−k )u
−

k

and therefore

(γ − λ̄)‖u−k ‖
2
≤

∫
RN
(|∇u−k |

2
+ [V − λ̄]|u−k |

2)

= o(1)|u−k |
2
2+

∫
RN
(|∇u−k |

2
+ [V − λk]|u−k |

2)

= o(1)‖u−k ‖
2
+

∫
RN

f (u−k )u
−

k

≤ (ε+ o(1))‖u−k ‖
2
+C‖u−k ‖

p
+ ε‖u−k ‖

2∗ .

By the choice of ε, this implies u−k = 0 for large k. Consequently, uk is strictly positive on RN for large k
by the strong maximum principle. The proof of Theorem 3.1 is finished.
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4. Morse index and nondegeneracy of normalized multibump solutions

In this section, we prove a general result on the nondegeneracy and the Morse index of normalized
multibump solutions built from fully nondegenerate critical points of the restriction of 8 to 6α/n .
Moreover, we also complete the proof of Corollary 1.4 at the end of the section.

Recall, for α > 0 and a critical point u of Jα =8|6α , the definitions of the Morse index m(u) and the
free Morse index mf(u) given in Definition 2.5. The following theorem is the main result of this section,
and together with Lemma 2.6 it readily implies Theorem 1.3.

Theorem 4.1. Assume (H1)–(H3) and fix α > 0. Given n ∈ N, n ≥ 2, suppose that ū is a fully nonde-
generate critical point of Jα/n with Lagrange multiplier λ̄ and finite Morse index m(ū). Furthermore, let
(ak)⊆ (Z

N )n be a sequence such that d(ak)→∞ as k→∞, and such that the critical points uk of Jα
with Lagrange multiplier λk and with

‖uk − vk‖→ 0 and |λk − λ̄| → 0 as k→∞, where vk :=

n∑
i=1

Tai
k
ū ∈ H 1 (4-1)

from Theorem 3.1 exist for all k. Then, for k sufficiently large, uk is a nondegenerate critical point of Jα,
m(uk) = n(m(ū)+ 1)− 1 if (ū, zū)2 < 0, and m(uk) = nm(ū) if (ū, zū)2 > 0. If (H4) holds true, then
m(uk) > 0 for large k.

To prove this theorem, we set B :=D28(ū)− λ̄S and Bk :=D28(vk)− λ̄S, as in Section 3. Moreover,
we consider the self adjoint operators

Ck := D28(uk)− λk S ∈ L(H 1)

for k ∈ N. First we show that the constrained critical points uk of 8 are freely nondegenerate and that

mf(uk)= nmf(ū) for large k.

To this end it is sufficient to prove the following.

Lemma 4.2. It holds true that

lim sup
k→∞

inf
W6H1

dim W=nmf(ū)

sup
w∈W
‖w‖=1

〈Ckw,w〉< 0, (4-2)

lim inf
k→∞

inf
W6H1

dim W=nmf(ū)+1

sup
w∈W
‖w‖=1

〈Ckw,w〉> 0. (4-3)

Proof. By (4-1) and since D28 : H 1
→ L(H 1) is uniformly continuous on bounded subsets of H 1, the

assertion follows once we have established the following estimates:

lim sup
k→∞

inf
W6H1

dim W=nmf(ū)

sup
w∈W
‖w‖=1

〈Bkw,w〉< 0, (4-4)

lim inf
k→∞

inf
W6H1

dim W=nmf(ū)+1

sup
w∈W
‖w‖=1

〈Bkw,w〉> 0. (4-5)
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Let Z ⊂ H 1 denote the generalized eigenspace of the self-adjoint operator B in H 1 corresponding to its
mf(ū) negative eigenvalues. Pick δ > 0 such that 〈Bw,w〉 ≤ −δ‖w‖2 for all w ∈ Z and 〈By, y〉 ≥ δ‖y‖2

for all y ∈ Z⊥. Put

Zk :=

n∑
i=1

Tai
k
Z ⊂ H 1 for k ∈ N.

Since d(ak)→∞, the sum is direct and hence dim Zk = nmf(ū) for k sufficiently large. If wk ∈ Zk

satisfies ‖wk‖ = 1 for all k, then it suffices to show

lim sup
k→∞

〈Bkwk, wk〉 ≤ −δ (4-6)

along a subsequence to prove (4-4). We write

wk =

n∑
i=1

Tai
k
ρi

k for k ∈ N with ρi
k ∈ Z .

Since Z is finite-dimensional, we may pass to a subsequence such that ρi
k→ ρi

∈ Z for i = 1, . . . , n as
k→∞. It is easy to see that then

1= ‖wk‖
2
=

n∑
i=1

‖ρi
‖

2
+ o(1) as k→∞.

Thus (3-7) and (3-12) imply

〈Bkwk, wk〉 =

n∑
i, j=1

〈BkTai
k
ρi

k, Ta j
k
ρ

j
k 〉 =

n∑
i, j=1

〈T
−a j

k
BkTai

k
ρi , ρ j

〉+ o(1)=
n∑

i=1

〈Bρi , ρi
〉+ o(1)

≤−δ

n∑
i=1

‖ρi
‖

2
+ o(1)=−δ+ o(1),

that is, (4-6).
If yk ∈ Z⊥k satisfies ‖yk‖ = 1 for all k, then it suffices to show

lim inf
k→∞

〈Bk yk, yk〉 ≥ δ (4-7)

for a subsequence to prove (4-5). Passing to a subsequence, we may assume that

wi
:= w-lim

k→∞
T
−ai

k
yk

exists for i = 1, . . . , n. Let v ∈ Z . Since Tai
k
v ∈ Zk , we infer that

0= 〈Tai
k
v, yk〉 = 〈v, T−ai

k
yk〉 = 〈v,w

i
〉+ o(1) for i = 1, . . . , n.

Consequently,

wi
∈ Z⊥ for i = 1, . . . , n. (4-8)
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We now set

zk := yk −

n∑
i=1

Tai
k
wi for k ∈ N,

noting that
w-lim
k→∞

T
−ai

k
zk = 0 for i = 1, . . . , n. (4-9)

In particular, this implies
zk ⇀ 0 in H 1 (4-10)

by (3-4) which we may again assume without loss of generality. Using (3-7), (3-12), and (4-9) we obtain
the splitting

〈Bk yk, yk〉 = 〈Bkzk, zk〉+ 2
n∑

i=1

〈BkTai
k
wi , zk〉+

n∑
i, j=1

〈BkTai
k
wi , Ta j

k
w j
〉

= 〈Bkzk, zk〉+ 2
n∑

i=1

〈T
−ai

k
BkTai

k
wi , T

−ai
k
zk〉+

n∑
i, j=1

〈T
−a j

k
BkTai

k
wi , w j

〉

= 〈Bkzk, zk〉+

n∑
i=1

〈Bwi , wi
〉+ o(1), (4-11)

where
〈Bkzk, zk〉 = ‖zk‖

2
− λ|zk |

2
2−〈D

29(vk)zk, zk〉

= ‖zk‖
2
− λ|zk |

2
2−

n∑
i=1

〈D29(Tai
k
ū)zk, zk〉+ o(1)

= ‖zk‖
2
− λ|zk |

2
2−

n∑
i=1

〈D29(ū)T
−ai

k
zk, T−ai

k
zk〉+ o(1)

= ‖zk‖
2
− λ|zk |

2
2+ o(1)

= ‖zk‖
2
− λ|zk |

2
2−〈D

29(ū)zk, zk〉+ o(1)

= 〈Bzk, zk〉+ o(1). (4-12)

Here we have used (3-8), (3-10), (4-9), (4-10), and the compactness of the operator D29(ū) ∈ L(H 1).
Let P ∈ L(H1) denote the 〈 · , · 〉-orthogonal projection on Z , and let Q := I − P. Since P has finite

range, we see that
zk − Qzk = Pzk→ 0 in H 1 as k→∞. (4-13)

Combining (4-8), (4-11), (4-12), and (4-13), we obtain

〈Bk yk, yk〉 = 〈B Qzk, Qzk〉+

n∑
i=1

〈Bwi , wi
〉+ o(1)≥ δ

(
‖Qzk‖

2
+

n∑
i=1

‖wi
‖

2
)
+ o(1)

= δ

(
‖zk‖

2
+

n∑
i=1

‖wi
‖

2
)
+ o(1)= δ‖yk‖

2
+ o(1)= δ+ o(1),

and hence (4-7). �
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From Lemma 4.2 it follows that Ck is invertible for large k and that the norm of its inverse remains
bounded as k→∞. We now recall the function zuk = C−1

k Suk ∈ H 1, which by Lemma 2.6 is of key
importance to compute m(uk).

Lemma 4.3. For i = 1, . . . , n we have

T
−ai

k
zuk ⇀ zū = B−1Sū in H 1 as k→∞.

Proof. Let ψ ∈ H 1, and let ϕ = B−1ψ ∈ H 1. Recalling that D28 : H 1
→ L(H 1) is uniformly continuous

on bounded subsets of H 1, we may deduce from (3-7) that

T
−ai

k
CkTai

k
ϕ = T

−ai
k
BkTai

k
ϕ+ o(1)→ Bϕ = ψ in H 1

as k→∞. Since moreover the sequence (zuk )k is bounded in H 1 and T
−ai

k
uk ⇀ ū in H 1 as k→∞, we

have

〈zū, ψ〉 = 〈B−1(Sū), ψ〉 = 〈Sū, ϕ〉 = 〈S(T
−ai

k
uk), ϕ〉+ o(1)= 〈Suk, Tai

k
ϕ〉+ o(1)

= 〈Ckzuk , Tai
k
ϕ〉+ o(1)= 〈zuk ,CkTai

k
ϕ〉+ o(1)= 〈T

−ai
k
zuk , T−ai

k
CkTai

k
ϕ〉+ o(1)

= 〈T
−ai

k
zuk , ψ〉+ o(1) as k→∞. �

Proof of Theorem 4.1. With the help of Lemma 4.3, we compute

(uk, zuk )2 = (vk, zuk )2+ o(1)=
n∑

i=1

(Tai
k
ū, zuk )2+ o(1)

=

n∑
i=1

(ū, T
−ai

k
zuk )2+ o(1)= n(ū, zū)2+ o(1).

Since (ū, zū)2 6= 0 as ū is fully nondegenerate by assumption, we infer that (uk, zuk )2 is also nonzero
and has the same sign as (ū, zū)2 for large k. Moreover, uk is freely nondegenerate by Lemma 4.2, so
Lemma 2.6 yields that uk is a fully nondegenerate critical point of 8|6α for large k. Its Morse index
is, by the same token, m(uk) = mf(uk)− 1 = nmf(ū)− 1 = n(m(ū)+ 1)− 1 if (ū, zū)2 < 0, and it is
m(uk)= mf(uk)= nmf(ū)= nm(ū) if (ū, zū)2 > 0.

To show the last statement of the present theorem, suppose that (H4) is satisfied. Lemma 2.4 implies
〈Bū, ū〉< 0, that is, mf(ū) > 0. In any case it follows from the preceding calculations that m(uk) > 0 for
large k. This completes the proof of Theorem 4.1. �

Proof of Corollary 1.4. Let ū be a nondegenerate local minimum of Jα/n with Lagrange multiplier λ̄.
Moreover, let (ak) ⊆ (Z

N )n be a sequence such that d(ak) → ∞ as k → ∞. By Lemma 2.8, ū is
fully nondegenerate and, without loss of generality, a positive function. Thus, (H4) and Theorem 3.1
imply the existence of positive critical points uk of Jα with Lagrange multiplier λk for large k and
such that (4-1) holds true. Moreover, the sequence (uk)k is uniquely determined by these properties.
Since mf(ū) > 0= m(ū) by (H4) and Lemma 2.4, Theorem 4.1 now implies uk is nondegenerate with
m(uk)= n− 1 for large k. �
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5. Proof of Theorem 1.5

In this section we wish to prove Theorem 1.5. For this we will assume hypotheses (H5) and (H6). Without
loss of generality we may also assume for the nondegenerate critical point x0 of V that

x0 = 0 and V (x0)= 1.

We are then concerned with positive solutions of the singularly perturbed equation

−ε21u+ V (x)u = |u|p−2u, u ∈ H 1, (5-1)

where p ∈ (2, 2∗). By [Grossi 2002, Theorem 1.1], there exists ε0 and a family of positive single peak
solutions ūε, ε ∈ (0, ε0), of (5-1) which concentrates at x0 = 0. This means that each ūε has only one
local maximum, and the rescaled functions

uε ∈ H 1, uε(x) := ūε(εx), (5-2)

converge, as ε→ 0, in H 1 to the unique radial positive solution of the limit equation

−1u0+ u0 = u p−1
0 in RN. (5-3)

Moreover, as follows from the uniqueness statement in [loc. cit., Theorem 1.1], this convergence property
after rescaling determines the solutions ūε uniquely for ε > 0 small. In addition, we can assume by
[loc. cit., Theorem 6.2] that ūε is nondegenerate; i.e., the linear operator

H 1
7→ H 1, v 7→ v− (p− 1)(−ε21+ V )−1ū p−2

ε v, is an isomorphism (5-4)

for ε ∈ (0, ε0). Here, for ε > 0, the operator −ε21+V ∈ L(H 1, H−1) is understood as the Hilbert space
isomorphism H 1

→ H−1 associated with the scalar product

(u, v) 7→
∫

RN

(ε2
∇u · ∇v+ V uv)

on H 1 via Riesz’s representation theorem. Since 0<min V ≤max V <∞, this scalar product is equivalent
to the standard scalar product on H 1, which we denote by

〈u, v〉H1 :=

∫
RN
(∇u · ∇v+ uv). (5-5)

We also let ‖ · ‖H1 denote the associated norm.

Lemma 5.1. The map (0, ε0)→ H 1, ε 7→ ūε, is continuous.

Proof. For ε > 0, let K (ε) := −ε21+ V ∈ L(H 1, H−1). Then the map K : (0,∞)→ L(H 1, H−1)

is continuous. Moreover, since p is subcritical, the nonlinear superposition operator H 1
→ H−1,

u 7→ |u|p−2u, is of class C1. Consequently, the map

h : (0,∞)× H 1
→ H−1, (ε, u) 7→ K (ε)u− |u|p−2u,
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is continuous, and continuously differentiable in its second argument. Since ūε is a weak solution of
(5-1), we have h(ε, uε)= 0. Furthermore, the operator

hu(ε, uε)= K (ε)− (p− 1)|ūε|p−2
∈ L(H 1, H−1)

is an isomorphism as a consequence of (5-4). Hence the claim follows from the implicit function theorem;
see, e.g., [Deimling 1985, Theorem 15.1]. �

Since the map ε 7→ ūε is continuous and

|ūε|22 =
∫

RN
ū2
ε = ε

N
∫

RN
u2
ε = ε

N
∫

RN
u2

0+ o(1)= o(1) as ε→ 0,

the assertions (i)–(iii) of Theorem 1.5 are already verified. The remainder of this section is devoted to the
proof of Theorem 1.5(iv).

For this we first note that the function uε ∈ H 1 defined in (5-2) satisfies the rescaled equation

−1uε + Vε(x)uε = |uε|p−2uε, u ∈ H 1, (5-6)

with
Vε : RN

→ R, Vε(x)= V (εx). (5-7)

Moreover, by (5-4), the linear operator

Bε ∈ L(H 1), Bεv = v− (p− 1)(−1+ Vε)−1u p−2
ε v, is an isomorphism (5-8)

for ε ∈ (0, ε0). We also note that the functions uε have uniform exponential decay; i.e., there exist
constants α,C > 0 such that

|uε(x)| ≤ Ce−α|x | for all x ∈ RN, ε ∈ (0, ε0); (5-9)

see [Grossi 2002, Lemma 4.2(i)]. Moreover,

uε→ u0 in H 2(RN ) and uniformly in RN ; (5-10)

see [loc. cit., Theorem 4.1 and Lemma 4.2(ii)]. Note that uε satisfies [loc. cit., Equation (4.1)] with
ci,y,ε = 0 since it is a solution of (5-6).

We need to recall some properties of the unique radial positive solution u0 of the limit equation (5-3)
and therefore consider the functional

8∗0 : H 1
→ R, 8∗0(u) :=

1
2

∫
RN
(|∇u|2+ u2)−

1
p

∫
RN
|u|p.

It is easy to see that D28∗0(u0) ∈ L(H 1) has exactly one negative eigenvalue, the value 2− p, with
corresponding eigenspace generated by u0. Here, the symbol D2 denotes the derivative of the gradient
with respect to the scalar product 〈 · , · 〉H1 .

Its kernel is spanned by the partial derivatives ∂1u0, ∂2u0, . . . , ∂N u0; see [Ni and Takagi 1993,
Lemma 4.2(i)]. Letting H̃ denote the 〈 · , · 〉-orthogonal complement of span(∂1u0, ∂2u0, . . . , ∂N u0)
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in H 1, we therefore find that the operator

B0
∈ L(H 1), B0v = D28∗0(u0)v = v− (p− 1)[1+ 1]−1u0

p−2,

restricts to an isomorphism H̃ → H̃. Moreover, H̃ contains all radial functions, so in particular u∗ :=
[1+ 1]−1u0 ∈ H̃. Consequently, there exists a unique z∗ ∈ H̃ with B0z∗ = u∗.

Lemma 5.2. We have

(z∗, u0)2 =
(N

4
−

1
p−2

)
|u0|

2
2 =

p− (2+ 4/N )
4N (p− 2)

|u0|
2
2.

Proof. For λ > 0, consider the function

wλ ∈ H 1, wλ(x)= λ1/(p−2)u0(
√
λx) for x ∈ RN,

which is the unique radial positive solution of

−1wλ+ λwλ−w
p−1
λ = 0 in RN, (5-11)

so w1 = u0. Moreover, consider

z̃ ∈ H 1, z̃(x)= ∂

∂λ

∣∣∣
λ=1
wλ(x).

We claim that z∗ =−z̃. Indeed, we have B0 z̃ =−u∗ since differentiating (5-11) at λ= 1 yields

−1z̃+ z̃− (p− 1)u p−2
0 z̃ =−u0 in RN. (5-12)

Moreover, z̃ ∈ H̃ since z̃ is a radial function. By the remarks above, this implies z∗ =−z̃. We therefore
compute

(z∗, u0)2 =−(z̃, u0)2 =−
1
2

d
dλ

∣∣∣
λ=1
|wλ|

2
2 =−

1
2

d
dλ

∣∣∣
λ=1

(
λ2/(p−2)

∫
RN

u2
0(
√
λx) dx

)
=−

1
2

d
dλ

∣∣∣
λ=1
λ2/(p−2)−N/2

|u0|
2
2 =

1
2

(N
2
−

2
p−2

)
|u0|

2
2,

as claimed. �

Next we collect some properties of the scaled potentials Vε, ε ∈ (0, ε0), defined in (5-7). Note that
these functions are uniformly bounded and satisfy

|Vε(x)− 1| ≤ c ε2
|x |2 for x ∈ RN, ε ∈ (0, ε0), with a constant c > 0. (5-13)

We also note that

lim
ε→0

∂i Vε(x)
ε2 =

N∑
j=1

∂i j V (0)x j locally uniformly in x ∈ RN (5-14)

for i = 1, . . . , N , so

|∂i Vε(x)| ≤ c ε2
|x | for x ∈ RN, ε ∈ (0, ε0), with a constant c > 0. (5-15)
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Next we consider

zε := [Bε]−1(−1+ Vε)−1uε ∈ H 1 for ε ∈ (0, ε0),

where Bε is defined in (5-8). Hence zε is the unique weak solution of

−1zε + Vε(x)zε − (p− 1)u p−2
ε zε = uε in RN. (5-16)

We claim that

(zε, uε)2→ (z∗, u0)2 as ε→ 0. (5-17)

To prove this, we argue by contradiction and suppose that there exists δ > 0 and a sequence (εn)n ∈ (0, ε0)

such that εn→ 0 as n→∞ and

|(zn, un)2− (z∗, w)2| ≥ δ for all n ∈ N, where zn := zεn and un := uεn . (5-18)

We first claim that the sequence (zn)n is bounded in H 1. Indeed, if not, we can pass to a subsequence
such that ‖zn‖H1 > 0 for all n and ‖zn‖H1 →∞ as n→∞. We then consider yn := zn/‖zn‖H1 , and we
may pass to a subsequence such that yn ⇀ y in H 1. Since yn is a weak solution of the equation

−1yn + Vεn yn − (p− 1)u p−2
n yn =

un

‖zn‖H1
in RN for every n, (5-19)

we have ∫
RN
[∇ y∇v+ yv− (p− 1)u p−2

0 v] = lim
n→∞

∫
RN
[∇ yn∇v+ Vεn ynv− (p− 1)u p−2

n ynv]

= lim
n→∞

1
‖zn‖H1

∫
RN

unv = 0 for every v ∈ H 1.

Consequently, y ∈ H 1 is a weak solution of −1y + y − (p − 1)u p−2
0 y = 0 in RN, which means that

B0 y = 0. Hence there exist a1, . . . , aN ∈ R with y =
∑N

i=1 ai ∂i u0. Next we note that ∂i un solves the
equation

−1(∂i un)+ Vε ∂i un + un ∂i Vεn − (p− 1)u p−2
n ∂i un = 0 for i = 1, . . . , N .

Multiplying this equation with yn and integrating over RN, we obtain by (5-19) that∫
RN

un yn ∂i Vεn =−
1

‖zn‖H1

∫
RN

un ∂i un = 0 for all n ∈ N.

Dividing this equation by ε2
n and passing to the limit, we may then use (5-9), (5-14), (5-15) and Lebesgue’s

theorem to see that

0= lim
n→∞

1
ε2

n

∫
RN

un yn ∂i Vεn =

N∑
j=1

∫
RN
∂i j V (0)x j u0(x)y(x) dx

=

N∑
`, j=1

a` ∂i j V (0)
∫

RN
x j u0(x) ∂`u0(x) dx =−

|u0|
2
2

2

N∑
j=1

a j ∂i j V (0) for i = 1, . . . , N .
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Here we have integrated by parts in the last step. Since 0 is a nondegenerate critical point of V by
assumption, we conclude that a j = 0 for j = 1, . . . , N and therefore y = 0. This implies in particular that
(y2

n) is bounded in L p/2 and that y2
n → 0 in L p/2

loc . Moreover, u p−2
n → u p−2

0 in L p/(p−2). Testing (5-19)
with yn we obtain∫

RN
(|∇ yn|

2
+ Vεn |yn|

2)= (p− 1)
∫

RN
u p−2

n |yn|
2
+

1
‖zn‖H1

∫
RN

un yn→ 0

as n→∞ and therefore ‖yn‖H1 → 0 as n→∞, which is a contradiction. We thus conclude that the
sequence (zn)n is bounded. We may thus pass to a subsequence such that zn ⇀ z in H 1. We then have by
(5-16) ∫

RN
[∇z∇v+ zv− (p− 1)u p−2

0 v] = lim
n→∞

∫
RN
[∇zn∇v+ Vεn znv− (p− 1)u p−2

n znv]

= lim
n→∞

∫
RN

unv =

∫
RN

u0v for every v ∈ H 1.

Consequently, z ∈ H 1 is a weak solution of −1z + z − (p− 1)u p−2
0 z = u0 in RN, which means that

B0z = u∗. As a consequence, B0(z− z∗) = 0, which implies z− z∗ ∈ span(∂1u0, ∂2u0, . . . , ∂N u0) and
therefore (z− z∗, u0)2 = 0. We thus conclude that

(zn, un)2→ (z, u0)2 = (z∗, u0)2 as n→∞,

contrary to (5-18). This shows (5-17), as claimed. Combining (5-17) with Lemma 5.2, we see that for
fixed p ∈ (2, 2∗)\{2+ 4/N }, we may take ε0 > 0 smaller if necessary such that

(zε, uε)2 < 0 if 2< p < 2+ 4
N

and (zε, uε)2 > 0 if 2+ 4
N
< p < 2∗. (5-20)

Moreover, from (5-20) we immediately deduce (1-6) by rescaling. Since ūε is a critical point of 8ε,
it is also a critical point of 8ε|6

|ūε |22
with Lagrange multiplier 0, which implies, together with (1-6)

and Definition 1.1, that ūε is a fully nondegenerate critical point of 8ε|6
|ūε |22

.
To conclude the proof of Theorem 1.5, it remains to compute the Morse index of ūε for ε > 0 small.

From (1-6) and Lemma 2.6, we deduce that

m(ūε)= mf(ūε)− 1 if 2< p < 2+ 4
N

and m(ūε)= mf(ūε) if 2+ 4
N
< p < 2∗. (5-21)

It therefore suffices to compute the free Morse index mf(ūε), which by rescaling is the same as the free
Morse index mf(uε) with respect to the rescaled potential

8∗ε : H 1
→ R, 8∗ε(u) :=

1
2

∫
RN
(|∇u|2+ Vεu2)−

1
p

∫
RN
|u|p.

More precisely, the equalities in (1-5) follow from (5-21) once we have shown that

mf(uε)= mV + 1 for all p ∈ (2, 2∗) and ε > 0 small, (5-22)
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where mV denotes the number of negative eigenvalues of the Hessian of V at x0. The argument is partly
contained in the proof of [Lin and Wei 2008, Theorem 2.5]. Nevertheless, since some details are omitted
there, we give a complete proof of (5-22) in the Appendix. The proof of Theorem 1.5 is thus finished.

6. Orbital instability

This section is devoted to the proof of Theorem 1.7. To simplify the presentation we only give a proof for
the case N ≥ 3; the cases N = 1, 2 can be treated similarly, slightly modifying the arguments below.

Throughout this section, we consider the special case where the nonlinearity f is odd. We may
therefore write it in the form f (t)= g(|t |2)t , where g ∈ C([0,∞))∩C1((0,∞)) satisfies g(0)= 0 and

lim
s→∞

g′(s)
s2∗/2−2 = 0.

Note that in this case we have

8(u)= 1
2
‖u‖2−

∫
RN

G(|u|2)= 1
2

∫
RN

(
|∇u|2+ V |u|2

)
−

∫
RN

G(|u|2)

for u ∈ H 1 with G(t)= 1
2

∫ t
0 g for t ≥ 0. To prove the assertion on orbital instability given in Theorem 1.7,

we apply an argument from [Esteban and Strauss 1994] with some modifications. We identify C with R2

and write the time-dependent nonlinear Schrödinger equation (1-8) as the following system in u =
( u1

u2

)
with u1 = Re u, u2 = Im u:

ut = J (−1u+ V (x)u− g(u2
1+ u2

2)u) with J :=
(

0 −1
1 0

)
. (6-1)

In order to set up the functional analytic equation for this system, we denote the dual paring between
H−1 and H 1 by 〈 · , · 〉∗. We put H := H 1

× H 1 and write H∗ = H−1
× H−1 for the topological dual

of H. Recalling that we are assuming min σ(−1+ V ) > 0, we use the scalar product

〈u, v〉H = 〈u1, v1〉+ 〈u2, v2〉 =

2∑
i=1

∫
RN

(
∇ui · ∇vi + V uivi

)
for u, v ∈H,

and denote the induced norm by ‖ · ‖H. The dual pairing between H∗ and H is given by

〈u, v〉H∗,H = 〈u1, v1〉∗+〈u2, v2〉∗ for u =
(

u1

u2

)
∈H∗, v =

(
v1

v2

)
∈H.

As usual in the context of Gelfand triples, we consider the continuous embedding I : H 1 ↪→ H−1 given by

〈I u, v〉∗ :=
∫

RN
uv for u, v ∈ H 1.

The corresponding embedding H ↪→H∗ will also be denoted by I ; i.e., we set

〈I u, v〉H∗,H :=
∫

RN
(u1v1+ u2v2) for u =

(
u1

u2

)
, v =

(
v1

v2

)
∈H.
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With this notation, we write system (6-1) in the more abstract form of a Hamiltonian system. For this we
consider the functionals

8̃ ∈ C2(H,R), 8̃(u)= 1
2‖u‖

2
H−

∫
RN

G(u2
1+ u2

2),

8̃λ ∈ C2(H,R), 8̃λ(u)=8(u)−
λ

2

∫
RN
(u2

1+ u2
2).

With this notation, (6-1) can be written as

(I u)t = Jd8̃(u) in H∗,

where d8̃ : H→H∗ denotes the derivative of 8̃ and J is regarded as a matrix multiplication operator on
H∗ = H−1

× H−1.
Now let ϕ ∈6α satisfy the assumptions of Theorem 1.7, and let λ∈R be the corresponding Lagrangian

multiplier. Moreover, in the following, we let d28̃λ(ψ) ∈ L(H,H∗) denote the second derivative of 8̃λ
at ψ :=

(
ϕ
0

)
∈H, which by direct computation is given as

d28̃λ(ψ)=

(
L1 0
0 L2

)
, where

{
L1w =−1w+ [V (x)− λ]w− f ′(ϕ)w,
L2w =−1w+ [V (x)− λ]w− g(|ϕ|2)w.

Note here that f ′(t)= g(|t |2)+ 2g′(|t |2)t2, so by (H3) we have L i ∈ L(H 1, H−1) for i = 1, 2. Similarly
as noted in [Esteban and Strauss 1994, p. 187], the orbital instability of the solitary wave solution uϕ in
(1-7) follows by the same argument as in the proof of [Grillakis et al. 1990, Theorem 6.2] once we have
established the following.

Proposition 6.1. The operator
M := Jd28̃λ(ψ) ∈ L(H,H∗)

has a positive real eigenvalue; i.e., there exists ρ > 0 and w ∈H\{0} such that Mw = ρ Iw.

The remainder of this section is devoted to the proof of Proposition 6.1. We first note that

L2ϕ = 0 in H−1,

since ϕ is a critical point of 8|6α with Lagrangian multiplier λ. Moreover, since λ < inf σess(−1+ V )
by assumption, and since g(|ϕ|2) vanishes at infinity, Persson’s theorem [Hislop and Sigal 1996, Theo-
rem 14.11] implies

0< inf σess(−1+ V − λ)= inf σess(L2).

Since moreover ϕ is a positive eigenfunction of L2 corresponding to the eigenvalue 0, it follows that
0= inf σ(L2) is a simple isolated eigenvalue. Consequently, putting

3̃ :=
{
v ∈ H−1

: 〈v, ϕ〉∗ = 0} ⊂ H−1,

3 := I−1(3̃)=
{
v ∈ H 1

:
∫

RN vϕ = 0
}
⊂ H 1,

we see that the quadratic form v 7→ 〈L2v, v〉∗ is positive definite on3 and that L2 defines an isomorphism
3 7→ 3̃. From these properties, we deduce the following.
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Lemma 6.2. We have 〈I L−1
2 Iv, v〉∗ > 0 for all v ∈3\{0}.

Proof. Let v ∈ 3\{0}; then Iv ∈ 3̃ and by the remarks above there exists ṽ ∈ 3\{0} with L2ṽ = Iv.
Consequently, we have

〈I L−1
2 Iv, v〉∗ = 〈I ṽ, v〉∗ = 〈Iv, ṽ〉∗ = 〈L2ṽ, ṽ〉∗ > 0,

by the positive definiteness of the quadratic form ṽ 7→ 〈L2ṽ, ṽ〉∗ on 3. �

The following lemma is the key step in the proof of Proposition 6.1. It resembles [Esteban and Strauss
1994, Lemma 2.2], but we need to prove it by a different (more general) argument since our setting does
not satisfy the assumptions in that paper.

Lemma 6.3. We have

µ := inf
v∈3\{0}

〈L1v, v〉∗

〈I L−1
2 Iv, v〉∗

∈ (−∞, 0).

Moreover, µ is attained at some v ∈3\{0} satisfying the equation

L1v = µI L−1
2 Iv+ Iβϕ in H−1 (6-2)

for some β ∈ R.

Proof. Since ϕ has positive Morse index with respect to 8|6α , there exists v ∈3\{0} with 〈L1v, v〉∗ < 0,
which implies µ < 0. In the following, we consider the spectral decomposition

3= V−⊕ V+

with the properties that dim V− <∞ and

〈L1v, v〉∗ ≤ 0, 〈L1w,w〉∗ ≥ δ‖w‖
2, 〈L1v,w〉∗ = 0 for v ∈ V−, w ∈ V+, (6-3)

with some δ > 0. The existence of such a decomposition follows from the fact that inf σess(L1) =

inf σess(−1 + V − λ) > 0. For v ∈ 3, we now write v = v− + v+ with v− ∈ V−, v+ ∈ V+. Let
(vn)n ⊂3\{0} be a minimizing sequence for the quotient

v 7→ q(v) :=
〈L1v, v〉∗

〈I L−1
2 Iv, v〉∗

.

Since µ= infv∈3\{0} q(v) < 0, we may assume that

〈L1vn, vn〉∗ = 〈L1v
−

n , v
−

n 〉∗+〈L1v
+

n , v
+

n 〉∗ < 0 for all n ∈ N. (6-4)

Thus v−n 6= 0, and we may assume that ‖v−n ‖ = 1 for all n ∈ N. Since V− is finite-dimensional, we may
pass to a subsequence such that v−n → v− ∈ V− with ‖v−‖ = 1. Then (6-3) and (6-4) imply

δ lim sup
n→∞

‖v+n ‖
2
≤ lim sup

n→∞
〈L1v

+

n , v
+

n 〉∗ ≤− lim
n→∞
〈L1v

−

n , v
−

n 〉∗ =−〈L1v−, v−〉∗
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and thus v+n is bounded in H 1 as well. Hence (vn)n ⊂3 is bounded in H 1, and we may thus pass to a
subsequence such that

v+n ⇀v+, vn ⇀v := v−+ v+ ∈ 3\{0},

〈L1vn, vn〉∗→ κ1 ≤ 0 and 〈I L−1
2 Ivn, vn〉∗→ κ2 ≥ 0

as n→∞. By weak lower semicontinuity, we then have

〈L1v+, v+〉∗ ≤ lim
n→∞
〈L1v

+

n , v
+

n 〉∗ = κ1−〈L1v−, v−〉∗

and thus

〈L1v, v〉∗ ≤ κ1 ≤ 0.

Consequently, since also

0< 〈I L−1
2 Iv, v〉∗ ≤ κ2

by Lemma 6.2 and weak lower semicontinuity, we find that

q(v)=
〈L1v, v〉∗

〈I L−1
2 Iv, v〉∗

≤
〈L1v, v〉∗

κ2
≤
κ1

κ2
= µ.

Hence v is a minimizer of q in 3\{0}, and therefore q(v) = µ > −∞. Moreover, v minimizes the
functional

3→ R, w 7→ 〈L1w−µI L−1
2 Iw,w〉∗,

and therefore we have

〈L1v−µI L−1
2 Iv,w〉∗ = 0 for all w ∈3.

This implies that there exists β ∈ R such that

〈L1v−µI L−1
2 Iv,w〉∗ = β

∫
R

ϕw for all w ∈ H 1,

i.e.,

L1v−µI L−1
2 Iv = β Iϕ in H−1,

which gives (6-2). �

Proof of Proposition 6.1 (completed). Let µ and v be as in Lemma 6.3, let ρ =
√
−µ > 0, and consider

w =

(
v

−ρL−1
2 Iv+ ρ−1βϕ

)
∈H\{0}.

Then we have

Mw =

(
0 −L2

L1 0

)
w =

(
ρ Iv

µI L−1
2 Iv+ Iβϕ

)
= ρ Iw,

so w ∈H is an eigenfunction of M corresponding to the eigenvalue ρ > 0. �
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Appendix: Proof of (5-22)

In this section we compute the free Morse index of the rescaled single peak solutions uε of (5-6) studied
in Section 5. More precisely, we will prove the equality (5-22) for ε > 0 small. We continue to use the
notation from Section 5. Recall that since uε is a critical point of 8∗ε on 6

|uε|22
with Lagrange multiplier 0,

the free Morse index coincides with the Morse index of uε as a critical point of8∗ε in H 1. Recall moreover
that uε has a unique local maximum point xε, where xε→0 as ε→0 by [Grossi 2002, Proposition 5.2]. Put

u0,ε := u0( · − xε)= Txεu0 ∈ H 1 for ε ∈ (0, ε0).

We first need the following refined convergence estimate:

‖u0,ε − uε‖H2 = O(ε2) as ε→ 0. (A-1)

Suppose by contradiction that this is false; then along a sequence (εn)n⊂ (0, ε0)with εn→0 we have dn :=

‖u0,εn−uεn‖H2 ≥ nε2
n for all n ∈N. Put wn := (u0,εn−uεn )/dn; then wn is a weak solution of the equation

−1wn +wn =
1
dn
(u p−1

0,εn
− u p−1

εn
+ (Vεn − 1)uεn )= τnwn +

Vεn − 1
dn

uεn , (A-2)

with

τn(x)= (p− 1)
∫ 1

0
[(1− s)u0,εn + suεn ]

p−2 ds.

We pass to a subsequence such that wn ⇀w in H 2. Since τn→ (p− 1)u p−2
0 as n→∞ uniformly in

RN by (5-10), and since∣∣∣∣Vεn − 1
dn

uεn (x)
∣∣∣∣≤ c

n
|x |2e−α|x | for x ∈ RN, n ∈ N with constants c, α > 0 (A-3)

by (5-9) and (5-13), we may pass to the limit in (A-2) to see that w is a (weak) solution of the equation

−1w+w− (p− 1)u p−2
0 w = 0.

Consequently, w=
∑N

`=1 a` ∂`u0 with `= 1, . . . , N . However, since both u0,εn and uεn attain a maximum
at xεn , we infer from (A-2) and elliptic regularity that

0= lim
n→∞

∂ jwn(xεn )= ∂ jw(0)=
N∑
`=1

a` ∂`j u0(0) for j = 1, . . . , N .

It is well known that 0 is the only maximum point of u0; see, e.g., [McLeod 1993, Lemma 1(b)].
Considering that u0(x) = U0(|x |), where U0 is the solution with initial values U0(0) = u0(0) and
U ′0(0)= 0 of the ordinary differential equation on [0,∞) corresponding to radial solutions of (5-3), and
considering the uniqueness of solutions to that ODE, it is clear that 0 is a nondegenerate maximum point
for u0. Hence it follows that a1, . . . , aN = 0 and thus w = 0. This implies wn→ 0 in L2

loc(R
N ), and thus

−1wn +wn = o(1) in L2(RN )
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by (A-2), (A-3), and since τn has exponential decay in x , uniformly in n. The boundedness of the inverse
of −1+ 1 on L2 implies ‖wn‖H2 → 0, contrary to the definition of wn . Hence (A-1) follows.

We now consider the uniformly bounded families of linear operators

Aε := D28∗ε(uε) ∈ L(H
1),

Cε := T−xε ◦ Aε ◦ Txε ∈ L(H
1), ε ∈ (0, ε0).

Here, as before, the symbol D2 denotes the derivative of the gradient with respect to the scalar product
〈 · , · 〉H1 . The quadratic form associated with Aε is given by

〈Aεv,w〉H1 =

∫
RN
(∇v · ∇w+ [Vε − (p− 1)u p−2

ε ]vw) for v,w ∈ H 1. (A-4)

It is then clear that Aε and Cε share the same spectrum. We have

lim
ε→0
‖Cεv− B0v‖H1 = lim

ε→0
‖Aεv− B0v‖H1 = 0 for all v ∈ H 1, (A-5)

where, as before, B0
= D28∗0(u0) ∈ L(H 1), and the convergence is uniform on compact subsets of H 1.

We claim that
‖Cε ∂i u0‖H1 = O(ε2) for i = 1, . . . , N , (A-6)

and that
〈Cε ∂i u0, ∂ j u0〉H1 =

1
2ε

2 ∂i j V (0)|u0|
2
2+ o(ε2) for i, j = 1, . . . , N (A-7)

as ε→ 0. For this we recall that ∂i uε solves the equation

−1(∂i uε)+ Vε ∂ j uε − (p− 1)u p−2
ε ∂ j uε =−uε ∂ j Vε, (A-8)

and therefore (5-9) and (5-14) yield

Aε ∂i uε = (−1+ 1)−1(−1(∂i uε)+ Vε ∂i uε − (p− 1)u p−2
ε ∂i uε)

=−(−1+ 1)−1uε ∂ j Vε = O(ε2) in H 1. (A-9)

Combining this with (A-1), we find that

‖Cε ∂i u0‖H1 = ‖Aε ∂i u0,ε‖H1 = ‖Aε ∂i uε‖H1 + O(ε2)= O(ε2),

as claimed in (A-6). To see (A-7), we note that

〈Cε ∂i u0,∂ j u0〉H1 =〈Aε ∂i u0,ε,∂ j u0,ε〉H1

=〈Aε ∂i uε,∂ j uε〉H1+〈Aε ∂i u0,ε,∂ j (u0,ε−uε)〉H1+〈Aε ∂ j uε,∂i (u0,ε−uε)〉H1, (A-10)

where, since ∂i u0,ε satisfies −1∂i u0,ε + ∂i u0,ε − (p− 1)u p−2
0,ε ∂i u0,ε = 0 in RN,

〈Aε ∂i u0,ε, ∂ j (u0,ε − uε)〉H1 =

∫
RN
[Vε − 1+ (p− 1)(u p−2

0,ε − u p−2
ε )] ∂i u0,ε ∂ j (u0,ε − uε)= o(ε2)

as ε→ 0. Here, in the last step, we used (A-1) together with the fact that

‖[Vε − 1+ (p− 1)(u p−2
0,ε − u p−2

ε )] ∂i u0,ε‖L2 → 0 as ε→ 0.
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Moreover,

|〈Aε ∂ j uε, ∂i (u0,ε − uε)〉H1 | ≤ ‖Aε ∂ j uε‖H1‖∂i (u0,ε − uε)‖H1 ≤ O(ε4)

by (A-1) and (A-9). Inserting these estimates in (A-10) and using (A-8) once more, together with (5-9),
(5-10), and (5-14) we find that

〈Cε ∂i u0, ∂ j u0〉H1 = 〈Aε ∂i uε, ∂ j uε〉H1 + o(ε2)=−

∫
RN

uε ∂i Vε ∂ j uε + o(ε2)

=−ε2
N∑
`=1

∂i`V (0)
∫

RN
x`u0 ∂ j u0 dx + o(ε2)= 1

2ε
2 ∂i j V (0)|u0|

2
2+ o(ε2).

In the last step we have integrated by parts again. This yields (A-7).
To conclude the proof of (5-22), we now put X = span(u0), Y := span(∂1u0, . . . , ∂N u0), and we let

Z denote the 〈 · , · 〉H1-orthogonal complement of X ⊕ Y in H 1. We then have the 〈 · , · 〉H1-orthogonal
decomposition H 1

= X ⊕ Y ⊕ Z , and we let PX , PY , PZ ∈ L(H 1) denote the corresponding orthogonal
projections onto X , Y , and Z . It then follows from (A-6) that

‖CεPY‖L(H1) = O(ε2) as ε→ 0. (A-11)

Moreover, by the remarks before Lemma 5.2, there exists 0< δ < 1 such that

〈B0u0, u0〉H1 ≤−δ and 〈B0w,w〉H1 ≥ δ‖w‖2H1 for all w ∈ Z . (A-12)

It then follows from (A-5) that

〈Cεu0, u0〉H1 <− 1
2δ for ε > 0 sufficiently small. (A-13)

We also claim that

inf
w∈Z ,‖w‖H1=1

〈Cεw,w〉H1 > δ+ :=
1
2 min

{
δ, inf

RN
V
}

for ε > 0 sufficiently small. (A-14)

Indeed, suppose by contradiction there exist εn ∈ (0, ε0) and wn ∈ Z with ‖wn‖H1 = 1 for n ∈ N such
that εn→ 0 as n→∞ and

〈Cεnwn, wn〉H1 ≤ δ+ as n→∞. (A-15)

Passing to a subsequence, we may then assume that wn ⇀w in H 1 with w ∈ Z . We put w̃n := Txεnwn =

wn( · − xεn ) for n ∈ N; then also w̃n ⇀ w, and we may pass to a subsequence such that w̃n → w in
L2

loc(R
N ) and w̃n→ w pointwise a.e. on RN. By (5-9) and (5-10) this implies∫

RN
u p−2
εn

w̃2
n→

∫
RN

u p−2
0 w2 as n→∞. (A-16)

We also have∫
RN

(
|∇(w̃n −w)|

2
+ Vεn (w̃n −w)

2)
=o(1)+

∫
RN

(
|∇w̃n|

2
− |∇w|2+ Vεn [w̃

2
n −w

2
− 2(w̃n −w)w]

)
,
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where, since |w̃n −w|⇀ 0 in L2(RN ),∣∣∣∣∫
RN

Vεn (w̃n −w)w

∣∣∣∣≤ ‖V ‖L∞(RN )

∫
RN
|w̃n −w||w| → 0 as n→∞.

Moreover, ∫
RN

Vεnw
2
→

∫
RN
w2 as n→∞

by (5-13) and Lebesgue’s theorem. Consequently,∫
RN
(|∇w̃n|

2
+Vεn w̃

2
n)=

∫
RN
(|∇w|2+w2)+

∫
RN
(|∇(w̃n−w)|

2
+Vεn (w̃n−w)

2)+o(1)

≥‖w‖2H1+min
{
1, inf

RN
V
}
‖w̃n−w‖

2
H1+o(1)≥‖w‖2H1+2δ+‖w̃n−w‖

2
H1+o(1),

and together with (A-4), (A-12) and (A-16) this implies

〈Cεnwn, wn〉H1 = 〈Aεn w̃n, w̃n〉H1 ≥ 〈B0w,w〉H1 + 2δ+‖w̃n −w‖
2
H1 + o(1)

≥ 2δ+‖w‖2H1 + 2δ+‖w̃n −w‖
2
H1 + o(1)= 2δ+‖wn‖

2
H1 + o(1)= 2δ++ o(1).

This contradicts (A-15), and hence (A-14) follows.
In the following, we let M ∈ RN×N denote the Hessian of the potential V at 0 which is nondegenerate

by assumption. Then there exists a basis of eigenvectors b1, . . . , bN
∈ RN of M corresponding to the

eigenvalues µ1 ≤ · · · ≤ µN , where

µi < 0 for i ≤ mV and µi > 0 for i > mV .

We then let w1, . . . , wN
∈ span(∂1u0, . . . , ∂N u0) be defined by

wi
:=

N∑
j=1

bi
j ∂ j u0 for i = 1, . . . , N ,

and we define the subspaces Ỹ± ⊂ Y by

Ỹ− := span(w1, . . . , wm) and Ỹ+ := span(wm+1, . . . , wN ).

By (A-7) and construction, there exists δ̃ > 0 such that for ε > 0 sufficiently small we have

〈Cεw,w〉H1 ≤−δ̃ε2
‖w‖2H1 for w ∈ Ỹ− and 〈Cεw,w〉H1 ≥ δ̃ε2

‖w‖2H1 for w ∈ Ỹ+. (A-17)

We now consider the spaces

X̃ := span(u0)⊕ Ỹ− and Z̃ := Z ⊕ Ỹ+.

Then (5-22) follows once we have shown that

sup
w∈X̃ ,‖w‖H1=1

〈Cεw,w〉H1 < 0, (A-18)

inf
w∈Z̃ ,‖w‖H1=1

〈Cεw,w〉H1 > 0 (A-19)



UNSTABLE NORMALIZED STANDING WAVES FOR THE SPACE PERIODIC NLS 1211

for ε > 0 sufficiently small. We only show (A-19); the proof of (A-18) is very similar but simpler. Suppose
by contradiction that (A-19) does not hold true for ε > 0 sufficiently small. Then there exist εn ∈ (0, ε0)

and wn ∈ Z̃ with ‖wn‖H1 = 1 for n ∈ N such that εn→ 0 as n→∞ and

〈Cεnwn, wn〉H1 ≤ 0 as n→∞. (A-20)

With w1
n := PZwn ∈ Z and w2

n := PYwn ∈ Ỹ+ we have, by (A-11), (A-14) and (A-17),

〈Cεnwn, wn〉H1 = 〈Cεnw
1
n, w

1
n〉H1 +〈Cεnw

2
n, w

2
n〉H1 + 2〈Cεnw

2
n, w

1
n〉H1

≥ δ+‖w
1
n‖

2
H1 + δ̃‖w

2
n‖

2
H1ε

2
n + O(‖w1

n‖H1ε2
n).

Passing to a subsequence, we may assume that either ‖w1
n‖H1 → 0 and ‖w2

n‖H1 → 1 as n→∞, or that
‖w1

n‖H1 ≥ c for some constant c > 0 and all n ∈ N. In the first case, we deduce that

〈Cεnwn, wn〉H1 ≥ δ̃ε2
n + o(ε2

n)

and in the second case we obtain that

〈Cεnwn, wn〉H1 ≥ δ+c2
+ o(1)

as n→∞. In both cases we arrive at a contradiction to (A-20), and thus (A-19) is proved. As remarked
before, (A-18) is obtained similarly by using (A-13) and the first inequality in (A-17). The proof of (5-22)
is thus finished.
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