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We introduce differential characters of Drinfeld modules. These are function-field analogues of Buium’s
p-adic differential characters of elliptic curves and of Manin’s differential characters of elliptic curves in
differential algebra, both of which have had notable Diophantine applications. We determine the structure
of the group of differential characters. This shows the existence of a family of interesting differential
modular functions on the moduli of Drinfeld modules. It also leads to a canonical F-crystal equipped with
a map to the de Rham cohomology of the Drinfeld module. This F-crystal is of a differential-algebraic
nature and the relation to the classical cohomological realizations is presently not clear.

1. Introduction

The theory of arithmetic jet spaces developed by Buium draws inspiration from the theory of differential
algebra over a function field. In differential algebra, given a scheme E defined over a function field K
with a derivation ∂ on it, one can define the jet spaces J n E for all n ∈N with respect to (K , ∂) and they
form an inverse system of schemes satisfying a universal property with respect to derivations lifting ∂ .
The ring of global functions O(J n E) can be thought of as the ring of n-th order differential functions
on E . In the case when E is an elliptic curve and its structure sheaf OE does not have a derivation lifting ∂
(if it does, then it is the isotrivial case and E will descend to the subfield K ∂=0 of constants), there exists a
differential function 2 ∈O(J 2 E) which is a homomorphism of group schemes from J 2 E to the additive
group Ga . Such a 2 is an example of a differential character of order 2 for E and is known as a Manin
character. Explicitly, if E is given by the Legendre equation y2

= x(x − 1)(x − t) over K = C(t) with
derivation ∂ = d

dt , then

2(x, y, x ′, y′, x ′′, y′′)=
y

2(x − t)2
−

d
dt

[
2t (t − 1)

x ′

y

]
+ 2t (t − 1)x ′

y′

y2 .

The existence of such a 2 is a consequence of the Picard–Fuchs equation. Using the derivation ∂ on K ,
we can lift any K -rational point P ∈ E(K ) canonically to J 2 E(K ), and this defines a homomorphism
∇ : E(K )→ J 2 E(K ). We emphasize that ∇ is merely a map on K -rational points and does not come
from a map of schemes. The composition 2 ◦∇ : E(K )→ Ga(K ) is then a group homomorphism of
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K -points. Note that the torsion points of E(K ) are contained in the kernel of 2 since Ga(K ) is torsion
free. Such a 2 was used by Manin [1963] to give a proof of the Lang–Mordell conjecture for abelian
varieties over function fields. Later Buium [1992] gave a different proof, using other methods, but still
using the Manin map.

The theory of arithmetic jet spaces, as developed by Buium, proceeds similarly. Derivations ∂ are
replaced by what are known as π-derivations δ. They naturally arise from the theory of π-typical Witt
vectors. For instance, when our base ring R is an unramified extension of the ring of p-adic integers Zp,
for a fixed prime π = p, the Fermat quotient operator δx = (φ(x)− x p)/p is the unique p-derivation,
where the endomorphism φ : R→ R is the lift of the p-th power Frobenius endomorphism of R/pR. In
analogy with differential algebra, one can define the n-th order jet space J n E of an elliptic curve E over
R to be the (π -adic) formal scheme over R with functor of points

(J n E)(C)= HomR(Spec Wn(C), E),

where Wn(C) is the ring of π-typical Witt vectors of length n + 1, which we view as the arithmetic
analogue of C[t]/(tn+1). The jet space J n E is also known as the Greenberg transform. As with the
differential jet space, it has relative dimension n+ 1 over the base, in this case Spf R.

Then one can define Xn(E) to be the R-module of all group-scheme homomorphisms from J n E to
the π-adic formal scheme Ĝa. Let X∞(E) be the direct limit of the Xn(E). Now the usual Frobenius
operator on Witt vectors induces a canonical Frobenius morphism φ : J n+1 E → J n E lying over the
endomorphism φ of Spf R. Hence pulling back morphisms via φ as 2 7→ φ∗2, endows X∞(E) with an
action of φ∗ and hence makes X∞(E) into a left module over the twisted polynomial ring R{φ∗} with
commutation law φ∗ · r = φ(r) ·φ∗. Buium [1995] studied the structure of X∞(E). Putting K = R

[ 1
p

]
,

he showed that X∞(E)⊗R K is freely generated by a single element as a K {φ∗}-module. This element
is of order 2 unless E has a Frobenius lift (in particular is a canonical lift of an ordinary curve), in which
case it is of order 1. It is the arithmetic analogue of the Manin character.

In this paper, we study the function-field analogue of Buium’s theory. We emphasize that we take
the function-field analogue in every possible sense. So instead of looking at characters J n E→ Ĝa of
Z-module schemes over Zp, where the Z-module scheme E is an elliptic curve over Zp and J n E is its
p-typical arithmetic jet space defined above, we will look at, for example, characters J n E → Ĝa of
(t-adically formal) Fq [t]-module schemes over Fq [[t]], where E is a Drinfeld Fq [t]-module, Ĝa is the
additive group with the tautological Fq [t]-module structure, and J n E is its function-field arithmetic jet
space — in other words, the Greenberg transform but with “t-typical” Witt vectors. The most important
result in this paper is the construction of a canonical F-crystal H(E) which comes with a Hodge-type
filtration and a morphism H(E)→ HdR(E) to the usual de Rham cohomology preserving the filtration.
As a consequence of the methods that go into the construction of H(E), we also prove that X∞(E) is
freely generated by a single element as an R{φ∗}-module, which is a stronger, integral version of the
equal-characteristic analogue of Buium’s result. Here, we would like to emphasize that all the fundamental
principles that go into our approach also work for p-adic elliptic curves.
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Before we describe our main results in detail, we wish to fix a few notations. Let Fq be the finite field
with q elements and A is the coordinate ring of X\{∞}, where X is a projective, geometrically connected,
smooth curve over Fq and ∞ a Fq-point on it. Let p be a fixed maximal ideal of A, and let π be an
element of p \ p2. Let R be an A-algebra which is a complete discrete valuation ring with maximal ideal
πR and which has a lift φ : R→ R of the q̂-power Frobenius from R/πR, where q̂ = |A/p|. Then one
can consider the operator on R given by δx = (φ(x)− x q̂)/π . It is called the π -derivation associated to φ.

Then as in the mixed-characteristic case above, one can define the t-typical Witt vectors and hence the
t-typical arithmetic jet space functor. For any (formal) A-module scheme E over R, the jet space also
J n E has a natural (formal) A-module-scheme structure. However, we would like to remark here that for
all n ≥ 1, the J n E are not abelian Anderson A-modules (as defined in [Hartl 2017, 1.2]). Then we let
Xn(E) denote the set of A-linear differential characters of order n, that is, the set of homomorphisms
J n E→ Ĝa of (formal) A-module schemes over R. Finally, we form their direct limit X∞(E), which is
naturally an R{φ∗}-module, as above.

We say E splits at m if Xm(E) 6= {0} but Xi (E) = {0} for all 0 ≤ i ≤ m − 1. Then we show that
m satisfies 1 ≤ m ≤ r , where r is the rank of E , and that Xm(E) is a free R-module with a canonical
basis element 2m ∈ Xm(E), depending only on our chosen coordinate on E . In the case when the rank r
is 2, we have m = 2 unless E admits a lift of Frobenius compatible with the A-module structure on E ,
in which case m = 1. Then our first main theorem is a strengthened version of the equal-characteristic
analogue of Buium’s result [1995].

Theorem 1.1. Let E be a Drinfeld module that splits at m. Then the R-module Xm(E) is free of rank 1 and
it freely generates X∞(E) as an R{φ∗}-module in the sense that the canonical map R{φ∗}⊗R Xm(E)→
X∞(E) is an isomorphism.

Let us now proceed to our second result. Let u : J n E → E be the usual projection map and put
N n
= ker u. Since u is A-linear, N n is a formal A-module scheme of relative dimension n over Spf R.

For each n ≥ 1, we show in Proposition 7.2 that there is a lift of Frobenius f : N n+1
→ N n making the

system {N n
} into a prolongation sequence with respect the obvious projection map u : N n+1

→ N n . We
call f the lateral Frobenius. However, f is not compatible with i and φ : J n+1 E→ J n E in the obvious
way, that is, it is not true that φ ◦ i = i ◦ f holds. In fact, we can not expect it to be true because that would
induce an A-linear lift of Frobenius on E which is not the case to start with. Instead we have

φ2
◦ i = φ ◦ i ◦ f.

In Section 9, we construct a canonical F-crystal attached to E . The F-crystal, denoted H(E), is an
R-module which has a semilinear operator f∗ (induced from f) on it and is of rank m, which we emphasize
can be strictly smaller than r . (By the term F-crystal, we mean only a free R-module of finite rank
equipped with a semilinear operator F . We do not assume F is injective, although on H(E) this will be
true generically. The reader can refer to [Laumon 1996, §2.4].) The module H(E) also has a Hodge-type
filtration and canonically maps to the de Rham cohomology of E , with its Hodge filtration.
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Theorem 1.2. There is a canonical map between exact sequences

0 // Xm(E) //

ϒ

��

H(E) //

8

��

I(E) //
� _

��

0

0 // Lie(E)∗ // HdR(E) // Ext(E, Ĝa) // 0

Moreover, the operator f∗ on H(E) descends to its image under 8.

The definitions of the maps ϒ and 8 are given in (9-7), and the proof is given in Section 9B. There
is a close connection between these two theorems — in fact, our proof of Theorem 1.1 goes by way of
Theorem 1.2.

Finally, we conclude the paper with some explicit computations of the structure constants of the
F-crystal H(E), which are new differential modular forms.

To a Drinfeld module E , the crystalline theory also attaches an F-crystal Hcrys(E). It appears that our
H(E) has subtle connections with Hcrys(E), but it also appears that any such connection would be indirect.
This is because H(E), unlike Hcrys(E), has a fundamentally differential-algebraic nature in that it lies
not over a point of the moduli space of Drinfeld modules but over a point of the jet space of the moduli
space. For instance, the computations in Section 10 show the structure constants of H(E) do involve the
higher π -derivatives of the structure constants of the Drinfeld module. The phenomenon of π -differential
invariants depending on higher π-derivatives of modular parameters in the mixed-characteristic setting
can be found in [Borger and Saha 2017a; Buium 1995; Buium and Saha 2011; 2012a; 2012b; 2014].

It would be interesting to understand the exact nature of the relationship between H(E) and the
crystalline cohomology groups, as well as the étale cohomology groups and the other constructions in
π -adic Hodge theory. This is all the more true because, as we remarked before, the techniques developed
in this paper have analogues for p-adic elliptic curves [Borger and Saha 2017a], and as a result, we do
obtain an analogous construction of the F-crystal H(E) for elliptic curves.

2. Notation

Let us fix some notation which will hold throughout the paper. Let q = ph where p is a prime and h ≥ 1.
Let X be a projective, geometrically connected, smooth curve over Fq . Fix an Fq -rational point∞ on X .
Let A denote the Dedekind domain O(X \ {∞}). Let p be a maximal ideal of A, and let Â denote the
p-adic completion of A. Let t be an element of p \ p2, and let π denote its image in Â. Then π generates
the maximal ideal p̂ of Â. Let k denote the residue field A/p and let q̂ denote its cardinality. So, for
example, if A = Fq [u] and p= (t), where t ∈ Fq [u] is an irreducible polynomial, then q̂ = qdeg(t). Note
that the quotient map Â→ k has a unique section. Thus Â is not just an Fq -algebra but also canonically a
k-algebra.

Now let R be an Â-algebra which is p-adically complete and flat, or equivalently π -torsion free. Thus
the composition

θ : A→ Â→ R (2-1)
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is injective (assuming R 6= {0}) and hence one says that θ is of generic characteristic. Let us also fix an
Â-algebra endomorphism φ : R→ R which lifts the q̂-power Frobenius modulo pR:

φ(x)≡ x q̂ mod pR.

Do note that the identity map on Â does indeed lift the q̂-power Frobenius on Â/p̂.
For our main results, R will in the end be a discrete valuation ring, most importantly the completion

Fq [[π ]] of the maximal unramified extension of Â, where φ satisfies φ(c)= cq̂ for c ∈ Fq and φ(π)= π .
So the reader may assume this from the start. (Also note that not all rings R admit such a Frobenius lift;
so the existence of φ does place a restriction on R.) But some form of our results should hold in general,
and with essentially the same proofs. This is of some interest, for instance when R is the coordinate ring
of the ordinary locus of the moduli space of Drinfeld modules of a given rank. (For the representability
of Drinfeld modular varieties, see Laumon’s book [1996, Theorem 1.4.1].) With an eye to the future, we
have not assumed that R is a discrete valuation ring where it is easily avoided, in Sections 3–7.

Let K denote R
[

f rac1π
]
, and for any R-module M write MK = K ⊗R M . Finally, let S denote Spf R.

3. Function-field Witt vectors

Witt vectors over Dedekind domains with finite residue fields were introduced in [Borger 2011a]. We
will only work over Â, which is the ring of integers of a local field of characteristic p, and here they
were introduced earlier in [Drinfeld 1976]. The basic results can be developed exactly as in any of the
usual developments of the p-typical Witt vectors. The only difference is that in all formulas any p in a
coefficient is replaced with a π and any p in an exponent is replaced with a q̂ .

3A. Frobenius lifts and π -derivations. Let B be an R-algebra, and let C be a B-algebra with structure
map u : B→C . In this paper, a ring homomorphism ψ : B→C will be called a lift of Frobenius (relative
to u) if it satisfies the following:

(1) The reduction mod π of ψ is the q̂-power Frobenius relative to u, that is, ψ(x)≡ u(x)q̂ mod πC .

(2) The restriction of ψ to R coincides with the fixed φ on R, that is, the following diagram commutes

B
ψ
// C

R
φ
//

OO

R

OO

A π-derivation δ from B to C means a set-theoretic map δ : B → C satisfying the following for all
x, y ∈ B

δ(x + y)= δ(x)+ δ(y) and δ(xy)= u(x)q̂δ(y)+ δ(x)u(y)q̂ +πδ(x)δ(y)
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such that for all r ∈ R, we have

δ(r)=
φ(r)− r q̂

π
.

When C = B and u is the identity map, we will call this simply a π -derivation on B.
It follows that the map φ : B→ C defined as

φ(x) := u(x)q̂ +πδ(x)

is a lift of Frobenius in the sense above. On the other hand, for any flat R-algebra B with a lift of
Frobenius φ, one can define the π -derivation δ(x)= (φ(x)− x q̂)/π for all x ∈ B.

Note that this definition depends on the choice of uniformizer π , but in a transparent way: if π ′ is
another uniformizer, then δ(x)π/π ′ is a π ′-derivation. This correspondence induces a bijection between
π -derivations B→ C and π ′-derivations B→ C .

3B. Witt vectors. We will present three different points of view on function-field Witt vectors, all parallel
to the mixed characteristic case. But there is perhaps one unfamiliar element below, which is that we will
work relative to our general base R, and it already has a lift of Frobenius. The consequence is that we
need to pay attention to certain twists of the scalars by Frobenius, which are invisible over the absolute
base R = Â. However this unfamiliar element has nothing to do with the difference between mixed and
equal characteristic and only with the difference between the relative and the absolute setting.

Let B be an R-algebra with structure map u : R→ B.

(1) The ring W (B) of π-typical Witt vectors can be defined as the unique (up to unique isomorphism)
R-algebra W (B) with a π-derivation δ on W (B) and an R-algebra homomorphism W (B)→ B such
that, given any R-algebra C with a π -derivation δ on it and an R-algebra map f : C→ B, there exists a
unique R-algebra homomorphism g : C→W (B) such that the diagram

W (B)

��

B C
f

oo

g
bb

commutes and g ◦ δ = δ ◦ g. Thus W is the right adjoint of the forgetful functor from R-algebras with
π-derivation to R-algebras. For details, see Section 1 of [Borger 2011a]. This approach follows that of
[Joyal 1985] to the usual p-typical Witt vectors.

(2) If we restrict to flat R-algebras B, then we can ignore the concept of π -derivation and define W (B)
simply by expressing the universal property above in terms of Frobenius lifts, as follows. Given a flat
R-algebra B, the ring W (B) is the unique (up to unique isomorphism) flat R-algebra W (B) with a lift of
Frobenius (in the sense above) F :W (B)→W (B) and an R-algebra homomorphism W (B)→ B such
that for any flat R-algebra C with a lift of Frobenius φ on it and an R-algebra map f : C → B, there
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exists a unique R-algebra homomorphism g : C→W (B) such that the diagram

W (B)

��

B C
f

oo

g
bb

commutes and g ◦φ = F ◦ g.

(3) Finally, returning to the case of general R-algebras B, one can also define Witt vectors in terms
of the Witt polynomials. For each n ≥ 0 let us define Bφ

n
to be the R-algebra with structure map

R φn
−→ R u

−→ B and define the ghost rings to be the product R-algebras
∏n
φ B = B× Bφ×· · ·× Bφ

n
and∏

∞

φ B = B× Bφ × · · · . Then for all n ≥ 1 there exists a restriction, or truncation, map Tw :
∏n
φ B→∏n−1

φ B given by Tw(w0, · · · , wn) = (w0, · · · , wn−1). We also have the left shift Frobenius operators
Fw :

∏n
φ B→

∏n−1
φ B given by Fw(w0, . . . , wn)= (w1, . . . , wn). Note that Tw is an R-algebra morphism,

but Fw lies over the Frobenius endomorphism φ of R.
Now as sets define

Wn(B)= Bn+1, (3-1)

and define the set map w :Wn(B)→
∏n
φ B by w(x0, . . . , xn)= (w0, . . . , wn) where

wi = x q̂ i

0 +πx q̂ i−1

1 + · · ·+π i xi (3-2)

are the Witt polynomials. The map w is known as the ghost map. (Do note that under the traditional
indexing, used in many sources going back to Witt [1937], our Wn would be denoted Wn+1.) We can
then define the ring Wn(B), the ring of truncated π -typical Witt vectors, by the following theorem as in
the p-typical case [Hesselholt 2015, Proposition 1.2].

Theorem 3.1. For each n ≥ 0, there exists a unique functorial R-algebra structure on Wn(B) such that
w becomes a natural transformation of functors of R-algebras.

Note that, unlike with Witt vectors in mixed characteristic, addition for function-field Witt vectors is
performed componentwise. This is because the Witt polynomials (3-2) are additive. This might appear to
defeat the whole point of Witt vectors and arithmetic jet spaces. But this is not so. The reason is that
while the additive structure is the componentwise one, the A-module structure is not. So the difference
is only that, unlike in mixed characteristic where A = Z, a group structure is weaker than A-module
structure. In fact, because the Witt polynomials are k-linear, the k-vector space structure on Wn(B) is the
componentwise one. This is just like with the p-typical Witt vectors, where multiplication by roots of
x p
− x can be performed componentwise.
For the convenience of the reader, we give some examples the proofs of which we leave as exercises.

If the structure map A→ B factors through A/p and B is perfect, then multiplication is given by the
formula

(x0, x1, . . .) · (y0, y1, . . .)= (z0, z1, . . .), where zn =
∑

i+ j=n

x q̂ j

i yq̂ i

j .
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For example, if B = R = A/p = Fq̂ , then W (B) is identified with the power-series ring B[[π ]], where
π corresponds to the Witt vector (0, 1, 0, 0, . . .). At the opposite extreme, where π is invertible in B,
the ghost map is an isomorphism. So W (B) is isomorphic to the product ring B × B × · · · and not a
power-series ring.

3C. Operations on Witt vectors. Now we recall some important operators on the Witt vectors. There
are the restriction, or truncation, maps T :Wn(B)→Wn−1(B) given by T (x0, . . . , xn)= (x0, . . . , xn−1).
Note that W (B)= lim

←−−
Wn(B). There is also the Frobenius ring homomorphism F :Wn(B)→Wn−1(B),

which can be described in terms of the ghost map. It is the unique map which is functorial in B and
makes the following diagram commutative

Wn(B)
w

//

F
��

∏n
φ B

Fw
��

Wn−1(B) w
//
∏n−1
φ Bn

(3-3)

As with the ghost components, T is an R-algebra map but F lies over the Frobenius endomorphism φ of R.
Next we have the Verschiebung V :Wn−1(B)→Wn(B) given by

V (x0, . . . , xn−1)= (0, x0, . . . , xn−1).

Let Vw :
∏n−1
φ B→

∏n
φ B be the additive map given by

Vw(w0, . . . , wn−1)= (0, πw0, . . . , πwn−1).

Then the Verschiebung V makes the following diagram commute:

Wn−1(B)
w
//

V
��

∏n−1
φ B

Vw
��

Wn(B) w
//
∏n
φ B

(3-4)

For all n ≥ 0 the Frobenius and the Verschiebung satisfy the identity

FV (x)= πx . (3-5)

The Verschiebung is not a ring homomorphism, but it is k-linear.
Finally, we have the multiplicative Teichmüller map [ ] : B→Wn(B) given by x 7→ [x] = (x, 0, 0, . . .).

Here in the function-field setting, [ ] is additive and even a homomorphism of k-algebras but is not a
homomorphism of A-algebras. This can be compared to the mixed-characteristic setting, where it is a
homomorphism of monoids but not a homomorphism of Z-algebras.
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3D. Computing the universal map to Witt vectors. Given an R-algebra C with a π -derivation δ :C→C
and an R-algebra map f : C→ B, we will now describe the universal lift g : C→W (B). The explicit
description of g leads us to Proposition 3.2 which is used in Section 10 in computations for Drinfeld
modules of rank 2. The reader may skip this subsection without breaking continuity till then.

It is enough to work in the case where both B and C are flat over R. Then the ghost map w :W (B)→∏
∞

φ B is injective. Consider the map [φ] : C →
∏
∞

φ C given by x 7→ (x, φ(x), φ2(x), . . .). Then we
have the following commutative diagram:

C
f ◦[φ]

zz

[φ]

��

g

{{

W (B) w
//

F
��

∏
∞

φ B

Fw
��

∏
∞

φ C
f

oo

Fw
��

W (B) w
//
∏
∞

φ B
∏
∞

φ C
f

oo

Thus the map f ◦ [φ] : C→
∏
∞

φ B factors through W (B) as our universal map g : C→W (B).
Let us now give an inductive description of the map g. Write

g(x)= (x0, x1, . . .) ∈W (B).

Then from the above diagram w ◦ g = f ◦ [φ]. Therefore the vector (x0, x1, . . .) is the unique solution to
the system of equations

x q̂n

0 +πx q̂n−1

1 + · · ·+πnxn = f (φn(x)), (3-6)

for n ≥ 0. For example, we have x0 = f (x) and x1 = f (δ(x)).
Now consider the case where B itself has a π-derivation, C = B, and f = 1. For any x ∈ B, let us

write x (n) := δn(x), or simply x ′ = δ(x), x ′′ = δ2(x) and so on.

Proposition 3.2. We have x0 = x , x1 = x ′ and x2 = x ′′+π q̂−2(x ′)q̂ .

Proof. As stated above, equalities x0 = x and x1 = x ′ follow immediately from (3-6). For n = 2, we have

x q̂2

0 +πx q̂
1 +π

2x2 = φ
2(x)

= φ(x q̂
+πx ′)

= φ(x)q̂ +πφ(x ′)

= x q̂2
+π q̂(x ′)q̂ +π((x ′)q̂ +πx ′′)

And therefore we have x2 = x ′′+π q̂−2(x ′)q̂ . �
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4. A-module schemes, jet spaces and preliminaries

An A-module scheme over S = Spf R is by definition a pair (E, ϕE), where E is a commutative group
object in the category of S-schemes and ϕE : A→End(E/S) is a ring map. (Here and below, by a scheme
over the formal scheme S, we mean a formal scheme formed from a compatible family of schemes over
the schemes Spec R/pn R.) Then the tangent space T0 E at the identity has two A-modules structures: one
coming by restriction of the usual R-module structure to A, and the other coming from differentiating ϕE .
We will say that (E, ϕE) is strict if these two A-module structures coincide, that is if the composition

A→ End(E/S)→ EndR(T0 E)

agrees with the composition

A θ
−→ R→ EndR(T0 E).

We say it is admissible if it is both strict and isomorphic to the additive group Ĝa= Ĝa/S as a group scheme.
We will denote this induced map to tangent space as θ : A→ R. (Note that it is best practice to require

only the isomorphism with Ĝa to exist locally on S. So below, our Drinfeld modules would more properly
be called coordinatized Drinfeld modules.)

A Drinfeld module (E, ϕE) of rank r is an admissible A-module scheme over S such that for each
nonzero a ∈ A, the group scheme ker(ϕE(a)) is finite flat of degree |a|r = q−rord∞(a) over S. (See [Gekeler
1990b, (1.4)] or [Laumon 1996, p. 4].)

Proposition 4.1. Let f be an endomorphism of the Fq-module scheme Ĝa/S over S. Then given any
coordinate x on E , the map f is of the form

f (x)=
∞∑

i=0

ai xq i
,

where f is a restricted power series, meaning ai → 0 π -adically as i→∞.

Proof. Let f ∈ Hom(Ĝa, Ĝa) be an additive endomorphism of Ĝa. Then f is given a restricted power
series

∑
i bi x i such that bi → 0 as i→∞. Since f is additive, we have bi = 0 unless i is a power of p.

Second, because f is Fq -linear, we have
∑

i bpi (cx)pi
= c

∑
i bpi x pi

for all c ∈ Fq . Considering the case
where c is a generator of F∗q , we see this implies bpi = 0 unless pi is a power of q . �

Let R{τ}ˆ be the subring of R{{τ}} consisting of (twisted) restricted power series. Then by Proposition 4.1,
the Fq -linear morphisms between two admissible A-module schemes E1 and E2 over Spf R are given in
coordinates by elements in R{τ }ˆ where τ acts as τ(x)= xq :

HomFq (E1, E2)= R{τ }ˆ. (4-1)

4A. Prolongation sequences and jet spaces. Let X and Y be schemes over S = Spf R. We say a pair
(u, δ) is a prolongation, and write Y (u,δ)

−−−→X , if u :Y→ X is a map of schemes over S and δ :OX→u∗OY
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is a π -derivation making the following diagram commute:

R // u∗OY

R

δ

OO

// OX

δ

OO

Following [Buium 2000], a prolongation sequence is a sequence of prolongations

Spf R (u,δ)
←−−− T 0 (u,δ)

←−−− T 1 (u,δ)
←−−− · · · ,

where each T n is a scheme over S. We will often use the notation T ∗ or {Tn}n≥0. Note that if the T n are
flat over Spf R then having a π -derivation δ is equivalent to having lifts of Frobenius φ : T n+1

→ T n .
Prolongation sequences form a category CS∗ , where a morphism f : T ∗→U∗ is a family of morphisms

f n
: T n
→U n commuting with both the u and δ, in the evident sense. This category has a final object S∗

given by Sn
= Spf R for all n, where each u is the identity and each δ is the given π -derivation on R.

For any scheme Y over S, for all n ≥ 0 we define the n-th jet space J n X (relative to S) as

J n X (Y ) := HomS(W ∗n (Y ), X)

where W ∗n (Y ) is defined in Section 10.3 of [Borger 2011b]. We will not define W ∗n (Y ) in full generality
here. Instead, we will define HomS(W ∗n (Y ), X) in the affine case, and that will be sufficient for the
purposes of this paper. Write X = Spf C and Y = Spf B. Then W ∗n (Y )= Spf Wn(B) and so J n X (B) is
the set of R-algebra homomorphisms C→Wn(B):

J n X (B)= HomR(C,Wn(B)). (4-2)

Then J ∗X := {J n X}n≥0 forms a prolongation sequence, called the canonical prolongation sequence.
As in the mixed-characteristic case [Buium 2000, Proposition 1.1], J ∗X satisfies the following universal
property — for any T ∗ ∈ CS∗ and X a scheme over S0, we have

Hom(T 0, X)= HomCS∗ (T
∗, J ∗X)

Let X be a scheme over S = Spf R. Define Xφn
by Xφn

(B) := X (Bφ
n
) for any R-algebra B. In other

words, Xφn
is X ×S,φn S, the pull-back of X under the map φn

: S→ S. Next define
n∏
φ

X = X ×S Xφ
×S · · · ×S Xφn

.

Then for any R-algebra B we have X
(∏n

φ B
)
= X (B)×S · · · ×S Xφn

(B). Thus the ghost map w in
Theorem 3.1 defines a map of S-schemes

w : J n X→
n∏
φ

X.

Note that w is injective when evaluated on points with coordinates in any flat R-algebra.
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The operators F and Fw in (3-3) induce maps φ and φw as follows

J n X w
//

φ

��

∏n
φ X

φw
��

J n−1 X
w
//
∏n−1
φ X

(4-3)

where φw is the left-shift operator given by

φw(w0, . . . , wn)= (φS(w1), . . . , φS(wn)),

and where φS : Xφi
→ Xφi−1

is the composition given in the following diagram:

Xφi ∼
// Xφi−1

×S,φ S

��

// Xφi−1

��

S
φ

// S.

(4-4)

Now let E be an A-module scheme over S with action map A ϕE−→ EndS(E). Then the functor it
represents takes values in A-modules, and hence so does the functor B 7→ E(Wn(B)). In this way, for each
n ≥ 0, the S-scheme J n E comes with an A-module structure. We denote it by ϕJ n E : A→ EndS(J n E).
Similarly, ϕE induces an A-linear structure ϕEφn on each Eφ

n
. In this case, it is easy to describe explicitly.

It is the componentwise one:

ϕ∏n
φ E(w0, . . . , wn)= (ϕE(w0), . . . , ϕEφn (wn)).

The ghost map w : J n E →
∏n
φ E and the truncation map u : J n E → J n−1 E homomorphisms of A-

module schemes over S. This is because they are given by applying the A-module scheme E to the
R-algebra maps w :Wn(B)→

∏n
φ B and T :Wn(B)→Wn−1(B). On the other hand, the Frobenius map

φ : J n E→ J n−1 E is a homomorphisms of A-module schemes lying over the Frobenius endomorphism
φ of S. In other words, the induced map J n E→ (J n−1 E)φ is a homomorphism of A-module schemes
over S.

4B. Coordinates on jet spaces. Given an isomorphism of S-schemes E → Ĝa, we have an induced
bijection, by (4-2),

(J n E)(B)−→∼ Wn(B). (4-5)

Now recall the bijection Wn(B)−→∼ Bn+1 of (3-1). Combining the two, we see that given a coordinate x
on an admissible A-module scheme E , we have a canonical system of coordinates (x0, . . . , xn) on J n E .
We will use these Witt coordinates without further comment. We emphasize once again that there are other
canonical systems of coordinates on J n E , for instance the Buium–Joyal coordinates denoted x, x ′, x ′′, . . ..
They are related by the formulas of Proposition 3.2. Each has their own advantages.
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We will now describe the above maps explicitly in the Buium–Joyal coordinates. Let O(E)= R[x]ˆ.
Then, for each n, O(J n E) = R[x, x ′, . . . , x (n)] and the corresponding algebra maps u∗ and φ∗ from
O(J n E)→O(J n+1 E) are given as follows, for all i :

u∗(x (i))= x (i),

φ∗(x (i))= (x (i))q̂ +πx (i+1). (4-6)

4C. Character groups. Let Ĝa denote the additive group over S, i.e., the formal spectrum of the π -adic
completion of R[x], with the tautological A-module structure ϕ

Ĝa
given by the usual multiplication of

scalars: ϕ
Ĝa
(a)= aτ 0. We will maintain this convention throughout the paper.

Given a prolongation sequence T ∗ we can define its shift T ∗+n by (T ∗+n) j
:= T n+ j for all j (as in

[Buium 2000, p. 106]).

Spf R (u,δ)
←−−− T n (u,δ)

←−−− T n+1
· · ·

We define a δ-morphism of order n from X to Y to be a morphism J ∗+n X → J ∗Y of prolongation
sequences. We define a character of order n, 2 : (E, ϕE)→ (Ĝa, ϕĜa

) to be a δ-morphism of order n

from E to Ĝa which is also a homomorphism of A-module objects. By the same argument as in the mixed
characteristic case [Buium 2000, Proposition 1.9], an order n character is equivalent to a homomorphism
2 : J n E→ Ĝa of A-module schemes over S. We denote the group of characters of order n by Xn(E).
So we have

Xn(E)= HomA(J n E, Ĝa),

which one could take as an alternative definition. Note that Xn(E) comes with an R-module structure
since Ĝa is an R-module scheme over S. Also the inverse system J n+1 E u

−→ J n E defines a directed
system

Xn(E) u∗
−→ Xn+1(E) u∗

−→· · ·

via pull back. Each morphism u∗ is injective because each u has a section (typically not A-linear). We
then define X∞(E) to be the R-module direct limit lim

−−→
Xn(E).

Similarly, precomposing with the Frobenius map φ : J n+1 E → J n E induces a Frobenius operator
φ : Xn(E)→ Xn+1(E). However since φ : J n+1 E→ J n E is not a morphism over Spf R but instead lies
over the Frobenius endomorphism φ of Spf R, some care is required. Consider the relative Frobenius
morphism φE/R , defined to be the unique morphism making the following diagram commute:

J n+1 E
φE/R

((

φ

))

$$

J n E ×(Spf R),φ Spf R

��

// J n E

��

Spf R
φ

// Spf R
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Then φE/R is a morphism of A-module formal schemes over Spf R. Now given a δ-character2 : J n E→ Ĝa,
define φ∗2 to be the composition

J n+1 E φE/R
−−−→ J n E ×(Spf R),φ Spf R 2×1

−−−→ Ĝa×(Spf R),φ Spf R ι
−→ Ĝa, (4-7)

where ι is the isomorphism of A-module schemes over S coming from the fact that Ĝa descends to Â as
an A-module scheme. For any R-algebra B, the induced morphism on B-points is

E(Wn+1(B)) E(F)
−−−→ E(Wn(B)φ)

2
φ
B−−−→ Bφ b 7→b

−−−→ B.

Note that this composition E(Wn+1(B))→ B is indeed a morphism of A-modules because identity map
Bφ→ B is A-linear, which is true because φ restricted to Â is the identity.

Thus we have an additive map Xn(E)→ Xn+1(E) given by 2 7→ φ∗2. Note that this map is not
R-linear. However, the map

φ∗ : Xn(E)→ Xn+1(E)φ, 2 7→ φ∗2

is R-linear, where Xn+1(E)φ denotes the abelian group Xn+1(E) with R-module structure defined by the
law r ·2 := φ(r)2. Taking direct limits in n, we obtain an R-linear map

X∞(E)→ X∞(E)φ, 2 7→ φ∗2.

In this way, X∞(E) is a left module over the twisted polynomial ring R{φ∗} with commutation law
φ∗r = φ(r)φ∗.

5. Admissible modules

Let (E, ϕE) be an admissible A-module scheme over S = Spf R. By (4-1), we can write

ϕE(t)=
∑

aiτ
i (5-1)

with ai ∈ R ai → 0, and a0 = π = θ(t). For brevity, we will typically write the pair (E, ϕE) as E . We
remind the reader that Ĝa implicitly has the tautological A-module structure defined in Section 4C.

The main purpose of this section is to establish some facts that will be used in the proof of Theorem 6.2
below. We emphasize that in this application E will not be a Drinfeld module.

Proposition 5.1. Any A-linear morphism f : E → G between admissible A-modules is determined
by the induced morphism on tangent spaces. More precisely, if we write ϕE(t) = πτ 0

+
∑

j≥1 a jτ
j ,

ϕG(t)= πτ 0
+
∑

j≥1 c jτ
j , and f =

∑
i biτ

i , then f is determined by b0, as follows:

br =
1

π −πqr

r−1∑
i=0

(bi a
q i

r−i − cr−i b
qr−i

i ).
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Proof. Because f is B-linear, we have(∑
i≥0

biτ
i
)(
πτ 0
+

∑
j≥1

a jτ
j
)
=

(
πτ 0
+

∑
j≥1

c jτ
j
)(∑

i≥0

biτ
i
)
.

Comparing the coefficients of τ r , we have

b0aq0

r + · · ·+ br−1aqr−1

1 + brπ
qr
= πbr + c1bq

r−1+ · · ·+ cr bqr

0 .

Therefore we have

br (π −π
qr
)=

r−1∑
i=0

(bi a
q i

r−i − cr−i b
qr−i

i ).

Since R is π -torsion free and 1−πqr
−1 is invertible for r ≥ 1, this determines each br uniquely in terms

of b0, . . . , br−1. Therefore b0 determines each br . �

Corollary 5.2. The R-module map R→ HomA(Ĝa, Ĝa) defined by b 7→ bτ 0 is an isomorphism.

Now consider the subset S†
⊂ R{τ }ˆ defined by

S†
:=

{∑
i≥0

biτ
i
∈ R{τ }ˆ | v(bi )≥ i, for all i and b0 ∈ R∗

}
. (5-2)

Here, and below, we write v(b) for the minimal i such that b ∈ pi R. (Note that v may not be a valuation
if R is not a discrete valuation ring.)

Proposition 5.3. S† is a group under composition.

Note that a similar group of automorphisms appears in [Dupuy 2014, §4.3].

Proof. The fact that S† is a submonoid of R{τ }ˆ under composition follows immediately from the law
bτ i
◦ cτ j

= bcq i
τ i+ j and linearity. Indeed if v(b)≥ i and v(c)≥ j , then v(bcq i

)≥ i + j .
Now let us show that any element f =

∑
biτ

i
∈ S† has an inverse under composition. Let g =∑

∞

n=0 cnτ
n , where c0 = b−1

0 and we define inductively cn = −b−qn

0 (c0bn + c1bq
n−1 + · · · + cn−1bqn−1

1 ).
Then it is easy to check that g ◦ f = 1. Take n ≥ 1 and assume v(ci )≥ i for all i = 0, . . . , n− 1. Then it
is enough to show v(cn)≥ n. We have v(cn)≥min{v(ci b

q i

n−i ) | i = 0, . . . , n− 1}. Now

v(ci b
q i

n−i )= v(ci )+ q iv(bn−i )= i + q i (n− i)≥ i + (n− i)= n.

Therefore the left inverse g of f lies in S†.
Now consider g′ =

∑
∞

n=0 dnτ
n
∈ R{{τ }}, where d0 = b−1

0 and we inductively define

dn =−b−1
0 (b1dq1

n−1+ b2dq2

n−2+ · · ·+ bndqn

0 ).

Then as above, one can easily check that f ◦ g′ = 1 and hence it is a right inverse of f in R{{τ }}. But
using the associativity property of R{{τ }} we get g′ = (g ◦ f )◦ g′ = g ◦ ( f ◦ g′)= g and hence g is both a
left and right inverse of f in S†. �
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Proposition 5.4. Let B denote the subring Fq [t] ⊆ A. Let f : E→ G be a B-linear homomorphism of
admissible A-module schemes over Spf R. Then f is A-linear.

Proof. Given any element a ∈ A, we will show ϕG(a) ◦ f = f ◦ ϕE(a). Both sides are B-linear
homomorphisms E→ G; indeed, f is B-linear by assumption, and both ϕG(a) and ϕE(a) are B-linear
because A is commutative. Furthermore, on tangent spaces, ϕG(a) ◦ f is multiplication by a f ′(0), and
f ◦ϕE(a) is multiplication by f ′(0)a; this is because the A-module schemes are admissible. Thus the
two morphisms agree on tangent spaces and therefore they agree, by Proposition 5.1. �

In other words, the forgetful functor from admissible A-modules schemes over R to admissible B-
module schemes over R is fully faithful. This remains true if we allow B to be not just Fq [t] but any
sub-Fq -algebra of A strictly containing Fq .

Lemma 5.5. If q ≥ 3, then q i
− q i− j

− j − 1≥ 0 for all j = 1, . . . , i .

Proof. Consider f (x) = q i
− q i−x

− x − 1, for 1 ≤ x ≤ i . Then f (1) ≥ 0 since q ≥ 3. Now f ′(x) =
q i−x ln q − 1. Since ln q > 1 for q ≥ 3, we have f ′(x)≥ 0 for all 1≤ x ≤ i and hence f (x)≥ 0 for all
1≤ x ≤ i and we are done. �

Lemma 5.6. For q = 2 and i ≥ 2, q i
− i − 1≥ 1.

Proof. Consider the function h(x)= qx
− x for x ≥ 2. Then h′(x)= qx ln q − 1= ln qqx

− 1> 0 since
x ≥ 2. Therefore h is a strictly increasing function and hence the minimum is attained at i=2. Therefore
q i
− i ≥ q2

− 2= 2 and the result follows. �

Lemma 5.7. For q = 2 and i ≥ 2 and j = 1, . . . , i

q i
− q i− j

− j ≥ 1

Proof. For j = i , the result follows from Lemma 5.6. So we may assume 1 ≤ j ≤ i − 1. Let H(x) :=
q i
− q i−x

− x where 1≤ x ≤ i − 1. Then H ′(x)= q i−x ln q − 1. Since x ≤ i − 1 implies i − x ≥ 1 and
hence q i−x

≥ q . Therefore we get

H ′(x)≥ q ln q − 1= ln qq
− 1= ln 4− 1> 0,

where the last equality follows since q = 2.
Hence H(x) is a strictly increasing function within the interval 1≤ x ≤ i − 1. Therefore the minimum

is achieved at x = 1 and we have

q i
− q i− j

− j ≥ q i
− q i−1

− 1

= q i−1(q − 1)− 1

= q i−1
− 1 (because q = 2)

≥ q − 1 (since i ≥ 2)

= 1 �
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Theorem 5.8. Suppose v(ai ) ≥ q i
− 1 for all i ≥ 1, where the ai are as in (5-1). Then there exists a

unique homomorphism f : E→ Ĝa of A-module schemes over S, written f =
∑
∞

i=0 biτ
i in coordinates,

with b0 = 1. Moreover,

(1) if q ≥ 3, then v(bi )≥ i and f is an isomorphism of A-module schemes;

(2) if q = 2, then v(bi )≥ i − 1.

Proof. Let f =
∑
∞

i=0 biτ
i , bi ∈ R, where b0 = 1 and

bi = π
−1(1−πq i

−1)−1
i∑

j=1

bi− j a
q i− j

j . (5-3)

Indeed, this is the only possible choice for f , by Corollary 5.2. Conversely, it is easy to see that f satisfies
ϕ(t) ◦ f = f ◦ϕ(t), which implies ϕ(b) ◦ f = f ◦ϕ(b) for all b ∈ B.

(1) Assume q ≥ 3. Let us now show v(bi )≥ i . For i = 0, it is clear. For i ≥ 1, we may assume by induction
that v(b j )≥ j for all j = 1, . . . , i − 1. By (5-3), we have v(bi )≥min{v(bi− j a

q i− j

j )− 1 | j = 1, . . . , i}.
Now

v(bi− j a
q i− j

j )− 1≥ v(bi− j )+ v(a
q i− j

j )− 1

≥ i − j + q i− j (q j
− 1)− 1

= i − j + q i
− q i− j

− 1

≥ i (by Lemma 5.5).

Therefore we have v(bi )≥ i .
Therefore f is a restricted power series and hence defines a map between π -formal schemes f : E→ Ĝa

which is A-linear.
Let us show that f is an isomorphism. By Proposition 5.3, there exists a linear map g : Ĝa → E

such that f ◦ g = g ◦ f = 1. Then g is also A-linear for formal reasons: for any a ∈ A, we have
f (g(ϕ(a)x))= ϕ(a)x = f (ϕ(a)g(x)). Since f is injective, we must have g(ϕ(a)x)= ϕ(a)g(x) which
shows the A-linearity of g and we are done.

(2) Now assume q = 2. We want to show that v(bi ) ≥ i − 1 for all i ≥ 1. For i = 1, we have
b1 = π

−1(1−πq−1)−1(b0a1) and hence v(b1)≥ q − 1− 1= 0. For i ≥ 2 and j = 1, . . . , i ,

v(bi− j a
q i− j

j )= v(bi− j )+ q i− jv(a j )≥ (i − j − 1)+ (q i
− q i− j ) (since v(a j )≥ q j

− 1).

Hence to show v(bi )≥ i−1, it is enough to show that q i
−q i− j

− j ≥ 0 and that follows from Lemma 5.7.
�

The remainder of this section consists of an interesting observation which will not however be used in
this paper. Letting Gfor

a denote the formal completion of Ĝa along the identity section Spf R→ Ĝa. Thus
we have Gfor

a = Spf R[[x]], where R[[x]] has the (π, x)-adic topology. We want to extend the A-action on
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Gfor
a to an action of Â:

Â→ EndFq (G
for
a /S). (5-4)

Recall that EndFq (G
for
a ) agrees with the noncommutative power-series ring R{{τ }}, with commutation law

τb = bqτ for b ∈ R. (See for example [Drinfeld 1974, §2].) Therefore for any a ∈ A, we can write

ϕ(a)=
∑

j

α jτ
j

where α j ∈ R. Each α j can be thought of as a function of a ∈ A. To construct (5-4) it is enough to prove
that these functions are p-adically continuous, which also implies that such an extension to a continuous
Â-action is unique. This is a consequence of the following result.

Proposition 5.9. If a ∈ pn , then α j ∈ p
n− j R.

Proof. Clearly, it is true for n = 0. Now assume it is true for some given n. Suppose a ∈ pn+1 and write
a = πb, where b ∈ pn . Let ϕ(b)=

∑
j β jτ

j and ϕ(π)=
∑

k γkτ
k . Then we have∑

j

α jτ
j
= ϕ(a)= ϕ(π)ϕ(b)=

∑
k

γkτ
k
∑

j

β jτ
j
=

∑
k, j

γkβ
qk

j τ
j+k

and hence α j =
∑ j

k=0 γkβ
qk

j−k . So to show α j ∈ p
n+1− j R, it suffices to show

γkβ
qk

j−k ∈ p
n+1− j R, for 0≤ k ≤ j ≤ n+ 1.

By induction we have β j−k ∈p
n−( j−k)R and hence γkβ

qk

j−k ∈p
(n−( j−k))qk

R. Since we have (n−( j−k))qk
≥

n− j + 1 for k ≥ 1, we then have γkβ
qk

j−k ∈ p
n− j+1 R. For k = 0, because ϕ is a strict module structure,

we have γ0 = π and hence γ0β j ∈ πp
n− j R = p1+n− j R. �

6. Characters of Nn — upper bounds

We continue to let E denote the admissible A-module scheme over S of (5-1). Let N n denote the kernel
of the projection u : J n E→ E . Thus we have a short exact sequence of A-module schemes over S:

0→ N n
→ J n E u

−→ E→ 0

The purpose of this section is to analyze the character group of N n . In the applications of this section, E
will eventually be a Drinfeld module, but we do not need to assume this yet.

Let us fix a coordinate x on E , and denote the corresponding Buium–Joyal coordinates on J n E by
x, x ′, . . . , x (n). From now on, let us abusively write φ for the Frobenius pull back φ∗ of (4-6).

Lemma 6.1. For all n ≥ 0, φn(x)= πnx (n)+ O(n− 1), where O(n− 1) are elements of order less than
or equal to n− 1.
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Proof. For n = 0, it is clear. For n ≥ 1, we have by induction

φn(x)= φ(πn−1x (n−1)
+ O(n− 2))

= πn−1φ(x (n−1))+ O(n− 1)

= πn−1(πδ(x (n−1))+ (x (n−1))q̂)+ O(n− 1)

= πnx (n)+ O(n− 1). �

Theorem 6.2. For any n ≥ 1, let H n denote the kernel of the projection u : J n E→ J n−1 E. Then there is
a unique A-linear homomorphism ϑn : H n

→ Ĝa of the form

ϑn(x (n))= x (n)+ b1(x (n))q + b2(x (n))q
2
+ · · · ,

where bi ∈ R. Moreover, ϑn freely generates HomA(H n, Ĝa) as an R-module, and

(1) if q ≥ 3, then v(bi )≥ i and ϑn is an isomorphism of A-module schemes;

(2) if q = 2, then v(bi )≥ i − 1.

Proof. First observe that we have

ϕE(t)φn(x)= φn(ϕE(t))= φn(π)φn(x)+φn(a1)φ
n(x)q + · · ·+φn(ar )φ

n(x)q
r
.

Second, the subscheme H n is defined by setting the x, x ′, . . . , x (n−1) coordinates to 0. Combining these
two observations and Lemma 6.1, we obtain

πnϕE(t)x (n) = ππnx (n)+φn(a1)(π
nx (n))q + · · ·+φn(ar )(π

nx (n))q
r

and hence

ϕE(t)x (n) = πx (n)+φn(a1)π
n(q−1)(x (n))q + · · ·+φn(ar )π

n(qr
−1)(x (n))q

r
.

But then by Theorem 5.8, there is a unique A-linear homomorphism ϑn of the kind desired for the
respective cases of q ≥ 3 and q = 2. Moreover by Proposition 5.1, HomA(H n, Ĝa) is freely generated by
ϑn as an R-module. Finally, by Proposition 5.3, ϑn an isomorphism when q ≥ 3. �

Now consider the exact sequence

0→ H n
→ N n

→ N n−1
→ 0

and the corresponding long exact sequence

0→ HomA(N n−1, Ĝa)→ HomA(N n, Ĝa)→ HomA(H n, Ĝa)→ · · · .

The image of the map HomA(N n, Ĝa)→ HomA(H n, Ĝa) can be regarded as a sub-R-module of R, by
Theorem 6.2 above. Therefore in the R-module filtration

HomA(N n, Ĝa)⊇ HomA(N n−1, Ĝa)⊇ · · · ⊇ HomA(N 0, Ĝa)= 0,

each associated graded piece is canonically a submodule of R.
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In particular, we have the following:

Proposition 6.3. If R is a discrete valuation ring, then HomA(N n, Ĝa) is a free R-module of rank at
most n.

7. The lateral Frobenius and characters of Nn

We continue to let E denote the admissible A-module scheme over S of (5-1).
Now we will construct a family of important operators which we call the lateral Frobenius operators.

That is, for all n, we will construct maps f : N n+1
→ N n which are lifts of Frobenius relative to the

projections u : N n+1
→ N n and hence make the system {N n

}
∞

n=0 into a prolongation sequence. Do note
that a priori the A-modules N n do not form a prolongation sequence to start with.

Let N∞ denote the inverse limit the projection maps u : N n+1
→ N n . (Here and below, we take inverse

limits in the category of presheaves on R-algebras in which π is nilpotent. They are representable by affine
formal schemes.) Then the maps f induce a lift of Frobenius on N∞. Similarly on J∞E = limn J n E , the
maps φ induce a lift of Frobenius. Now for all n ≥ 1, the inclusion N n ↪→ J n E is a closed immersion
and hence induces a closed immersion of schemes N∞ ↪→ J∞E . But f is not obtained by restricting φ
to N∞. In fact, φ does not even preserve N∞. So f is an interesting operator which is distinct from φ,
although it does satisfy a certain relation with φ which we will explain below.

Here we would also like to remark that the lateral Frobenius can also be constructed in the mixed-
characteristic setting of p-jet spaces of arbitrary schemes [Borger and Saha 2017b], but it is much more
involved.

Let F :Wn→Wn−1 and V :Wn−1→Wn denote the Frobenius and Verschiebung maps of Section 3C.
Let us arrange them in the following diagram, although it does not commute.

Wn
V
//

F
��

Wn+1

F
��

Wn−1
V

// Wn

F
��

Wn−1

(7-1)

Rather the following is true

F FV = FV F. (7-2)

Indeed, the operator FV is multiplication by π = θ(t), and F is a morphism of A-algebras.
We can reexpress this in terms of jet spaces using the natural identifications J n E 'Wn and N n

'Wn−1.
For jet spaces, let us switch to the notation i := V and φ := F for the right column of (7-1). Then we
define the lateral Frobenius

f : N n+1
→ N n
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simply to be the map F :Wn→Wn−1 in left column. Thus (7-1) becomes the following:

N n+1 i
//

f
��

J n+1 E

φ

��

N n i
// J n E

φ
��

J n−1 E

(7-3)

Note again that this diagram is not commutative. However rewriting (7-2) in the above notation, we do have

φ◦2 ◦ i = φ ◦ i ◦ f. (7-4)

We emphasize that when we use the notation N n , the A-module structure will always be understood to
be the one that makes i an A-linear morphism. It should not be confused with the A-module structure
coming by transport of structure from the isomorphism N n

'Wn−1 = J n−1 E of group schemes.
We also emphasize that while i is a morphism of S-schemes, the vertical arrows φ and f in the diagram

above lie over the Frobenius endomorphism φ of S, rather than the identity morphism.

Lemma 7.1. For any torsion-free R-algebra B, the map FV :Wn(B)→Wn(B) is injective.

Proof. Since B is torsion free, the ghost map Wn(B)→ B × · · · × B is injective, and hence Wn(B) is
torsion free. The result then follows because FV is multiplication by π . �

Proposition 7.2. The morphism f : N n
→ N n−1 is A-linear.

Proof. We want to show that for any a ∈ A, the two morphisms N n+1
→ N n given by x 7→ af(x) and

by x 7→ f(ax) are equal. Since the N i are flat over R, it is enough to consider B-points x , where B is a
π -torsion free R-algebra.

Since both φ and i are A-linear morphisms, so are φi and φ2i . Therefore we have

φi(f(ax))= φ2i(ax)= aφ2i(x)= aφi(f(x))= φi(af(x)).

Thus the points f(ax) and af(x) of N n(B) become equal after the application of φi . Now translating
from the notation of diagram (7-3) to that of diagram (7-1), we have two elements of Wn−1(B) which
become equal after applying FV . But since FV = π and B is torsion free, Lemma 7.1 implies these two
elements must be equal. �

For 0≤ i ≤ k− 1, let us abusively write f◦i for the composition

f◦i : N n

i times︷ ︸︸ ︷
f ◦ · · · ◦ f
−−−→ N n−i u

−→ N n−k .

Then for all 1≤ i ≤ n, we define the canonical characters 9i ∈HomA(N n, Ĝa) (associated to our implicit
coordinate x on E) by

9i = ϑ1 ◦ f
◦i−1 (7-5)
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where ϑ1 is as in Theorem 6.2. Clearly, the maps 9i are A-linear since each one of the maps above is.
Finally, given a character 9 ∈ HomA(N n−1, Ĝa), we will write f∗9 =9 ◦ f. Note that f∗ is semilinear:
for λ ∈ R, we have

f∗(λ9)= φ(λ) f∗(9). (7-6)

The points of J n E contained in N n are those with Witt coordinates of the form (0, x1, x2, . . . , xn).
We will use the abbreviated coordinates (x1, . . . , xn) on N n instead.

Lemma 7.3. For all i = 1, . . . , n, we have

9i (x1, . . . , xn)≡

{
x q̂ i−1

1 mod π if q ≥ 3,

x q̂ i−1

1 +φ(a1)x
qq̂ i−1

1 mod π if q = 2,

where a1 is the first of the structure constants of the Drinfeld module E , as in (5-1).

Proof. Since f is identified with the Frobenius map F : Wn → Wn−1, it reduces modulo π to the q̂-th
power of the projection map. Therefore, we have

9i (x1, . . . , xn)= ϑ1 ◦ f
◦(i−1)(x1, . . . , xn)≡ ϑ1(x

q̂ i−1

1 ) mod π.

q ≥ 3 By part (1) of Theorem 6.2, the map ϑ1 is congruent to the identity modulo π . Therefore 9i is
congruent to x q̂ i−1

1 modulo π .

q = 2 By part (2) of Theorem 6.2, we have ϑ1(x1)≡ x1+ b1xq
1 mod π , where by (5-3), we have

b1 = π
−1(1−πq−1)−1πq−1φ(a1)≡ φ(a1) mod π.

Therefore we have ϑ1(x1)≡ x1+φ(a1)x
q
1 mod π , and so 9i is congruent to x q̂ i−1

1 +φ(a1)x
qq̂ i−1

1 mod π .
�

Proposition 7.4. If R is a discrete valuation ring, then the elements 91, . . . , 9n form an R-basis for
HomA(N n, Ĝa).

Proof. By Proposition 6.3, the R-module HomA(N n, Ĝa) is free of rank at most n. So to show the elements
91, . . . , 9n form a basis, it is enough by Nakayama’s lemma to show they are linearly independent
modulo π .

We can view HomA(N n, Ĝa) as the set of additive functions in O(N n). Further since N n is flat,
O(N n) is π-torsion free, and so any function f ∈ O(N n) is additive if π f is. Therefore the map
R/πR⊗R HomA(N n, Ĝa)→ R/πR⊗R O(N n) remains injective.

So to show they are linearly independent in R/πR ⊗R HomA(N n, Ĝa), it is enough to show that
R/πR⊗R HomA(N n, Ĝa) maps injectively to R/πR⊗R O(N n). Now by Lemma 7.3, we have 9i ≡

x q̂ i−1

1 mod π for q ≥ 3 (and 9i ≡ x q̂ i−1

1 +φ(a1)x
qq̂ i−1

1 for q = 2). So the 9i map to linearly independent
elements of R/πR⊗R O(N n). �
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8. X∞(E)

We now assume further that R is a discrete valuation ring and E is a Drinfeld module over Spf R. Let r
denote the rank of E . We continue to write ϕE(t)= a0τ

0
+ a1τ

1
+ · · ·+ arτ

r , where a0 = π , ai ∈ R for
all i , and ar ∈ R∗.

In this section and the next, we will determine the structure of X∞(E). In the case of elliptic curves,
it falls in two distinct cases as to when the elliptic curve admits a lift of Frobenius and when not. In
particular, canonical lifts of ordinary elliptic curves all fall into one case. A similar story happens in our
case when E is a Drinfeld module of rank 2, which one might consider the closest analogue of an elliptic
curve. However, when the rank exceeds 2, the behavior of X∞(E) offers much more interesting cases
which leads us to introduce the concept of the splitting order m of a Drinfeld module E . The splitting
order is always less than or equal to the rank of E . When the rank equals 2, the splitting order is 1 if and
only if E admits a lift of Frobenius.

We would like to point out here that our structure result for X∞(E) is an integral version of the
equal-characteristic analogue of [Buium 1995]. He shows that X∞(E)⊗R K is generated by a single
element as a K {φ∗}-module where K = R

[ 1
p

]
. But here we show that the module X∞(E) itself is

generated by a single element as a R{φ∗}-module. These methods also work in the setting of elliptic
curves over p-adic rings, and hence this stronger result can be achieved in that case too. (See [Borger and
Saha 2017a].)

The following theorem should be viewed as an analogue of the fact that an elliptic curve has no nonzero
homomorphism of Z-module schemes to Ga. In our case, we show that no Drinfeld module admits a
nonzero homomorphism of A-module schemes to Ĝa.

Theorem 8.1. We have X0(E)= {0}.

Proof. Any character f =
∑

i≥0 biτ
i
∈ X0(E) satisfies the following chain of equalities, where θ is as

in (2-1):
ϕ

Ĝa
(t) ◦ f = f ◦ϕE(t)

θ(t)τ 0
◦

∑
i≥0

biτ
i
=

∑
i≥0

biτ
i
◦

∑
j≥0

a jτ
j

∑
i≥0

θ(t)biτ
i
=

∑
i≥0

( r∑
j=0

bi− j a
q i− j

j

)
τ i

Comparing the coefficients of τ i for i > r , and using the equality a0 = θ(t), we have

bi (1− θ(t)q
i
−1)θ(t)= aq i−r

r bi−r + aq i−r+1

r−1 bi−r+1+ · · ·+ aq i−1

1 bi−1. (8-1)

Suppose f is nonzero. There exists an N such that bN−r 6= 0 and v(bN−r ) < v(bi ) for all i ≥ N − r + 1.
Then the valuation of the right-hand side of (8-1), for i = N , becomes v(aq i−r

r bN−r ) = v(bN−r ), since
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v(ar )= 0. But then, by taking the valuation of both sides of (8-1), we have

v(bN )= v(bN−r )− 1< v(bN−r )

and N ≥ N − r + 1, which is a contradiction. Therefore f must be 0. �

As a consequence the short exact sequence of A-module schemes over S

0→ N n i
−→ J n E→ E→ 0, (8-2)

induces an exact sequence

0→ Xn(E) i∗
−→HomA(N n, Ĝa)

∂
−→ExtA(E, Ĝa), (8-3)

where ExtA(E, Ĝa) denotes the group of extension classes of A-module schemes over R, as defined in
Gekeler [1990a, §5]. He further defines an exact sequence

0→ Lie(E)∗→ Ext]A(E, Ĝa)→ ExtA(E, Ĝa)→ 0 (8-4)

of R-modules, where Ext]A(E, Ĝa) denotes the group of classes of an extension together with a splitting
of the corresponding extension of Lie algebras. Finally one defines

HdR(E)= Ext]A(E, Ĝa). (8-5)

Theorem 8.2. The exact sequence (8-4) is split. The rank of ExtA(E, Ĝa) is r − 1, and the rank of
Ext]A(E, Ĝa) is r .

Proof. See Diagram (5.2) and Corollary 3.7 in [Gekeler 1990a]. �

The following is the equal-characteristic analogue of a result of Buium [1995, Proposition 3.2].

Theorem 8.3. Let (E, ϕE) be a Drinfeld module of rank r .

(1) Xr (E) is nonzero.

(2) We have

X1(E)'
{

R if E has a lift of Frobenius,
{0} otherwise.

Proof. (1) Consider the exact sequence (8-3). By Proposition 7.4, the R-module HomA(N n, Ĝa) is free
of rank n. But also ExtA(E, Ĝa) is free of rank r − 1, by Theorem 8.2 above. Therefore when n = r , the
kernel Xn(E) is nonzero.

(2) Now consider X1(E). It is contained in HomA(N 1, Ĝa), which is free of rank 1, and the quotient is con-
tained in ExtA(E, Ĝa), which is torsion free. Therefore X1(E) is either {0} or all of HomA(N 1, Ĝa)' R.

Let 1 denote the identity map in HomA(Ĝa, Ĝa). Then its image ∂(1) in ExtA(E, Ĝa) is the class
of the extension (8-2). Therefore we have the equivalences X1(E) ' R ⇐⇒ i∗ is an isomorphism
⇐⇒ ∂(1)= 0⇐⇒ (8-2) is split⇐⇒ E has a lift of Frobenius. �

Define the splitting order of the Drinfeld module E to be the integer m such that Xm(E) 6= {0} and
Xm−1(E)= {0}. We also say that E splits at order m. By Theorems 8.1 and 8.3 above, we have 1≤m ≤ r
and additionally m = 1 if and only if E has a Frobenius lift.
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Computation of the character of the Carlitz module. Let A = Fq [t] with q ≥ 3. Let E be the Carlitz
module over R satisfying

ϕE(t)(x)= πx + xq .

Then the operator ϕE(t) itself is a lift of Frobenius and hence, by the universal property of J 1 E , defines
the A-linear splitting of the exact sequence

0→ N 1
→ J 1 E→ E→ 0

that is, an A-linear morphism ν : J 1 E → N 1 given in Buium–Joyal coordinates by ν(x, x ′) = x ′ − x .
Then our normalized character 21 : J 1 E→ Ĝa is given by 21 = ϑ1 ◦ ν.

Define L i = (π
q
−π) · · · (πq i

−π). Then from Theorem 6.2, we have ϑ1 : N 1
→ Ĝa given by

ϑ1(x ′)=
1
π

∞∑
i=0

(−1)i

L i
(πx ′)q

i
. (8-6)

Hence we have

21(x, x ′)=
1
π

∞∑
i=0

(−1)i

L i
(π(x ′− x))q

i
=

1
π

logC(π(x
′
− x)), (8-7)

where logC denotes the Carlitz logarithm, as in [Goss 1996, p. 57]. One can check that this is the exact
analogue of Buium’s character 1

p log
(
1+ p x ′

x p

)
for Ĝm in the mixed-characteristic setting.

8A. Splitting of J n(E). The exact sequence (8-2) is split by the Teichmüller section v : E → J n E ,
as defined in Section 3. We emphasize that v is only a morphism of Fq-module schemes and is not a
morphism of A-module schemes. Nevertheless, it induces an isomorphism

J n(E)−→∼ E × N n

of Fq -module schemes. Therefore for any character 2 ∈ Xn(E), we can write 2= g2⊕92 or

2(x0, . . . , xn)= g2(x0)+92(x1, . . . , xn), (8-8)

where 92 = i∗2 ∈ HomA(N n, Ĝa) and g2 = v∗2. We call g2 the Teichmüller component of 2. Note
that because v is only Fq -linear, g2 is also only Fq -linear. It still can, however, be expressed as an additive
restricted power series. On the other hand, the restriction 92 of 2 to N n does remain A-linear.

Now consider the morphism

(φ ◦ i − i ◦ f) : N n+1
→ J n E, (8-9)

in the notation of (7-3). It is an A-linear morphism by Proposition 7.2.

Proposition 8.4. There exists a morphism h (necessarily unique and A-linear) making the diagram

N n+1

u
��

φ◦i−i◦f
// J n E

N 1
h

77
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commute. In coordinates, it has the form

h(x1)= (πx1, c1x q̂
1 , c2x q̂2

1 , . . .),

for some c j ∈ R.

Proof. By (7-1)–(7-3), the first statement is equivalent to showing that for any R-algebra B, there exists a
map h : B→Wn(B) such that

Wn(B)

��

FV−V F
// Wn(B)

B
h

99

commutes, where the vertical map is the projection onto the zeroth component. Now for any y ∈Wn−1(B),
we have

(FV − V F)(V y)= FV V y− V FV y = πV y− V (πy)= 0.

So such a function h exists.
To conclude that h(x) is of the given form, we use a homogeneity argument. Let (z0, z1, . . .) denote

the ghost components of (x0, x1, . . .). If interpret each x j as an indeterminate of degree q̂ j , then each z j

is a homogenous polynomial in the x0, . . . , x j of degree q̂ j and with coefficients in A: z1 = x q̂
0 +πx1,

and so on. Solving for x j in terms of z0, . . . , z j , we see that x j is a homogenous polynomial in the
z0, . . . , z j with coefficients in A

[ 1
π

]
.

Now let (y0, y1, . . .) denote (FV − V F)(x0, x1, . . .), where y j ∈ R[x0, . . . , x j ]. Then the ghost
components of (y0, y1, . . .) are (π z0, 0, 0, . . .)= (πx0, 0, 0, . . .). It follows that y0 = πx0. Further, by
the above, y j is an element of R[x0, . . . , x j ] but also a homogeneous polynomial in πx0 of degree q̂ j

and with coefficients in A
[ 1
π

]
. Therefore it is of the form c j x

q̂ j

0 for some c j ∈ R. �

Proposition 8.5. Let 2 be a character in Xn(E).

(1) We have
i∗φ∗2= f∗(i∗2)+ γ91,

where γ = πg′2(0) and g′2(x0) denotes the usual derivative of the polynomial g2(x0) ∈ R[x0]

of (8-8).

(2) For n ≥ 1, we have
i∗(φ◦n)∗2= (fn−1)∗i∗φ∗2.

Proof. (1) By Proposition 8.4, we have

(φ ◦ i − i ◦ f)(x1, . . . , xn+1)= (πx1, c1x q̂
1 , c2x q̂2

1 , . . .),

where c j ∈ R. Therefore we have

((i∗φ∗− f∗i∗)2)(x1, . . . , xn+1)=2(πx1, c1x q̂
1 , . . .)= g2(πx1)+92(c1x q̂

1 , . . .). (8-10)
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In particular, the character (i∗φ∗− f∗i∗)2 depends only on x1. Therefore it is of the form γ91, for some
γ ∈ R. Further since by Theorem 6.2 we have 9 ′1(0)= 1, the coefficient γ is simply the linear coefficient
of (i∗φ∗− f∗i∗)2, which by (8-10) is πg′2(0).

(2) This is another way of expressing φ◦n ◦ i = φ ◦ i ◦ f◦(n−1), which follows from (7-4) by induction. �

8B. Frobenius and the filtration by order. We would like to fix a notational convention here. Let
u : J n E → J n′E denote the canonical projection map for any n′ < n, given in Witt coordinates by
u(x0, . . . , xn)= (x0, . . . , xn′).

Consider the following morphism of exact sequences of A-modules

0 // N n

u
����

i
// J n E

u
����

u
// E // 0

0 // N n−1 i
// J n−1 E u

// E // 0.

Since X0(E) = {0} by Theorem 8.1, applying HomA(−, Ĝa) to the above, we obtain the following
morphism of exact sequences of R-modules

0 // Xn(E)
i∗

// HomA(N n, Ĝa)
∂

// ExtA(E, Ĝa)

0 // Xn−1(E)
?�

u∗

OO

i∗
// HomA(N n−1, Ĝa)

?�
u∗

OO

∂
// ExtA(E, Ĝa).

Proposition 8.6. For any n ≥ 0, the diagram

Xn(E)/Xn−1(E)
� � φ∗

//
� _

i∗
��

Xn+1(E)/Xn(E)� _

i∗
��

HomA(N n, Ĝa)/HomA(N n−1, Ĝa)
f∗

∼
// HomA(N n+1, Ĝa)/HomA(N n, Ĝa)

is commutative. The morphisms i∗ and φ∗ are injective, and f∗ is bijective.

In fact, we will show in Corollary 9.9 that all the morphisms in the diagram of Proposition 8.6 are
isomorphisms.

Proof. For n ≥ 1, commutativity of the diagram follows from Proposition 8.5; for n = 0, it follows from
Theorem 8.1.

The maps i∗ are injective because the projections J n E → J n−1 E and N n
→ N n−1 have the same

kernel, and f∗ is an isomorphism by Proposition 7.4. It follows that φ∗ is an injection. �

8C. The character 2m. Recall the exact sequence (8-3)

0→ Xn(E) i∗
−→HomA(N n, Ĝa)

∂
−→ExtA(E, Ĝa).
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Let m denote the splitting order of E . Then for all n < m, the map

∂ : HomA(N n, Ĝa)→ ExtA(E, Ĝa)

is injective since Xn(E)= {0}. But at n = m, we have Xm(E) 6= {0}, and so there is a nonzero character
9 ∈ HomA(N m, Ĝa) in the kernel of ∂ . Write 9 in terms of the basis of canonical characters 9i defined
in (7-5):

9 = λ̃m9m − λ̃m−19m−1− · · ·− λ̃191,

where λ̃i ∈ R for all i = 0, . . . ,m− 1. Then we necessarily have λ̃m 6= 0 since Xm−1 = {0}. Therefore
we have

∂9m = λm−1∂9m−1+ · · ·+ λ1∂91 ∈ ExtA(E, Ĝa)K (8-11)

where λi = λ̃i/λ̃m for all i = 1, . . . ,m− 1. This implies that the character

9m − λ19m−1− · · ·− λm−191

is in ker(∂) and hence by the main exact sequence (8-3), there exists a unique 2m ∈ Xm(E)K such that

i∗2m =9m − λm−19m−1− · · ·− λ191. (8-12)

It then follows immediately that 2m is a K -linear basis for Xm(E)K , say by Propositions 7.4 and 8.6.
(We will show in Corollary 9.9 that 2m actually lies in the group Xm(E) of integral characters, and is in
fact an integral basis for it.)

Proposition 8.7. Let m denote the splitting order of E. Then for any j ≥ 0, the character i∗(φ∗) j2m

agrees with9m+ j modulo rational characters of lower order, and the elements2m, φ
∗2m, · · · , φ

n−m∗2m

are a basis of the K -vector space Xn(E)K .

Proof. By Proposition 8.6, each character φi ∗2m lies in Xm+i (E) but not in Xm+i−1(E). Therefore they
are linearly independent. In particular, the rank of Xn(E) is at least n−m+ 1.

At the same time, by Proposition 8.6, each Xm+i (E)/Xm+i−1(E) has rank at most 1. Thus the rank of
Xn(E) actually equals n−m+ 1, and so the elements in question form a K -basis of Xn(E)K . �

Do note that this result will be improved to an integral version in Theorem 9.10.

9. Ext groups and de Rham cohomology

We will prove Theorem 1.1 in this section. We continue with the notation from the previous section. In
particular, R is a discrete valuation ring.

We will briefly describe our strategy in the next few lines. Recall from (8-12) the equality

i∗2m =9m − λm−19m−1− · · ·− λ191

where λ j ∈ K . A priori, the elements λ j need not belong to R, but we prove in Theorem 9.8 that they
actually do. This implies that i∗2m lies in HomA(N m, Ĝa) and ker(∂), and hence by the exact sequence
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(8-3), we have 2m ∈ Xm(E)— that is, the character 2m is integral. From there, it is an easy consequence
that Xn(E) is generated by 2m, . . . ,2

φn−m

m as an R-module.
To prove Theorem 9.8, which says that all λ j belong to R, requires some preparation. For all n ≥ 1,

we will define maps from HomA(N n, Ĝa) to Ext](E, Ĝa) which is also interpreted as the de Rham
cohomology from associated to the Drinfeld module E . These maps are obtained by push-outs of J n E
by 9 ∈ HomA(N n, Ĝa). To give an idea, do note that, for every n ≥ 1, there are canonical elements
E∗9 ∈ ExtA(E, Ĝa) where the E∗9 is a push-out of J n E by 9 as follows

0 // N n

9

��

i
// J n E

e9
��

u
//// E // 0

0 // Ĝa // E∗9 // E // 0

as E∗9 ∈ ExtA(E, Ĝa). It leads to a very interesting theory of δ-modular forms over the moduli space of
Drinfeld modules and will be studied in a subsequent paper. And similar to previous cases, the main
principles carry over to the case of elliptic curves or abelian schemes as well.

Now we introduce the theory of extensions of A-module group schemes. Given an extension ηC ∈

Ext(G, T ) and f : T → T ′ where G, T and T ′ are A-modules and f is an A-linear map we have the
following diagram of the push-forward extension f∗C .

0 // T //

f
��

C //

��

G // 0

0 // T ′ // f∗C // G // 0

The class of f∗C is obtained as follows — the class of ηC is represented by a linear (not necessarily
A-linear) function ηC : G→ T . Then η f∗C is represented by the class η f∗C = [ f ◦ ηC ] ∈ Ext(E, T ′). In
terms of the action of t ∈ A, ϕC(t) is given by

(
ϕG(t)
ηC

0
ϕT (t)

)
where ηC : G→ T . Then ϕ f∗C(t) is given by(

ϕG(t) 0
f (ηC) ϕT ′(t)

)
(9-1)

Now consider the exact sequence

0→ N n i
−→ J n E u

−→ E→ 0 (9-2)

Given a 9 ∈ HomA(N n, Ĝa) consider the push out

0 // N n

9

��

i
// J n E

e9
��

u
//// E // 0

0 // Ĝa
i
// E∗9 // E // 0
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where E∗9 = (J
n E × Ĝa)/0(N n) and 0(N n) = {(i(z),−9(z)) | z ∈ N n

} ⊂ J n E × Ĝa and e9(x) =
[x, 0] ∈ E∗9 .

The Teichmüller section v : E→ J n(E) is an Fq-linear splitting of the sequence (9-2). The induced
retraction

ρ = 1− v ◦ u : J n(E)→ N n

is given in coordinates simply by ρ : (x0, . . . , xn) 7→ (x1, . . . , xn). Let us denote by sWitt the morphism
on Lie algebras induced by ρ. Thus we have the following split exact sequence of R-modules

0 // Lie N n Di
// Lie J n E

sWitt

mm

Du
// Lie(E) // 0.

Let s9 denote the induced splitting of the push out extension

0 // Lie Ĝa // Lie(E∗9)
s9

ll
// Lie(E) // 0.

It is given explicitly by s̃9 : Lie J n E ×Lie Ĝa→ Lie Ĝa

s̃9(x, y) := D9(sWitt(x))+ y

and

s9 : Lie(E∗9)=
Lie J n E ×Lie Ĝa

Lie0(N n)
→ Lie Ĝa.

Recall that Ext](E, Ĝa) consists of an extension of A-module schemes together with a splitting s of
the corresponding extension of Lie algebras. (See (8-4) above or [Gekeler 1990a, §5].) Therefore we
have the following morphism of exact sequences

0 // Xn(E) //

��

HomA(N n, Ĝa) //

9 7→(E∗9 ,s9 )
��

Ext(E, Ĝa)

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0.

(9-3)

Proposition 9.1. Let 2 be a character in Xn(E), and put 2̃= φ∗2.

(1) The map Xn(E)→ Lie(E)∗ of (9-3) sends 2 to −Dg2.

(2) We have g2̃(x)= g2(x q̂) and

92̃(y)=92(ρ(φ(i(y))))+ g2(πy1).

Proof. (1) Let us recall in explicit terms how the map is given. For the split extension E × Ĝa, the
retractions Lie(E)× Lie Ĝa = Lie(E × Ĝa)→ Lie Ĝa are in bijection with maps Lie(E)→ Lie Ĝa, a
retraction s corresponding to map x 7→ s(x, 0). Therefore to determine the image of 2, we need to
identify E∗92 with a split extension and then apply this map to s92 .
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A trivialization of the extension E∗92 is given by the map

J n E × Ĝa

0(N n)
= E∗92 −→

∼ E × Ĝa

defined by [a, b] 7→ (u(a),2(a)+ b). The inverse isomorphism H is then given by the expression

H(x, y)= [v(x), y−2(v(x))],

and so the composition E→ E × Ĝa→ E∗92→ Ĝa is simply −2 ◦ v =−g2, which induces the map
−Dg2 on the Lie algebras.

(2) We have

2̃(x)=2(φ(x))=92(ρ(φ(x)))+ g2(x
q̂
0 +πx1)= (92(ρ(φ(x)))+ g2(πx1))+ g2(x

q̂
0 ).

In other words, we have 9̃(ρ(x))=92(ρ(φ(x)))+ g2(πx1) and g̃(x0)= g2(x
q̂
0 ). Setting x = i(y), we

obtain the desired result. �

Proposition 9.2. If 9 ∈ i∗φ∗(Xn(E)), then the class (E∗9, s9) ∈ Ext](E, Ĝa) is zero.

Proof. Write 9 = i∗φ∗2. We know from diagram (9-3) that E∗9 is a trivial extension since 9 lies in
i∗Xn+1(E). Now by part (2) of Proposition 9.1, we have gφ∗2(x0) = g2(x

q̂
0 ) and hence Dgφ∗2 = 0.

Therefore by part (1) of that proposition, the class in Ext](E, Ĝa) is zero. �

9A. The F-crystal H(E). The φ-linear map φ∗ : Xn−1(E)→ Xn(E) induces a linear map Xn−1(E)′→
Xn(E), which we will abusively also denote φ∗. Here, for any R-module M , we write M ′ for its base
change R⊗φ,R M via φ : R→ R. We then define

Hn(E)=
HomA(N n, Ĝa)

i∗φ∗(Xn−1(E)′)
.

Then u : N n+1
→ N n induces u∗ : HomA(N n, Ĝa)→ HomA(N n+1, Ĝa). And since u∗i∗φ∗(Xn(E)) =

i∗u∗φ∗(Xn(E)) = i∗φ∗u∗(Xn(E)) ⊂ i∗φ∗(Xn+1(E)), it also induces a map u∗ : Hn(E)→ Hn+1(E).
Define

H(E)= lim
−−→

Hn(E), (9-4)

where the limit is taken in the category of R-modules.
Similarly, f : N n+1

→ N n induces f∗ : HomA(N n, Ĝa)→ HomA(N n+1, Ĝa), which descends to a
φ-linear morphism of R-modules

f∗ : Hn(E)→ Hn+1(E)

because we have f∗i∗φ∗(Xn−1(E)) = i∗φ∗φ∗(Xn−1(E) ⊂ i∗φ∗Xn(E). This then induces a φ-linear
endomorphism f∗ : H(E)→ H(E).

Finally, let In(E) denote the image of ∂:

In(E)= im[Hom(N n, Ĝa)
∂
−→ExtA(E, Ĝa)]. (9-5)
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So Hom(N n, Ĝa)/Xn(E)' In(E). Then u induces maps u∗ : In(E)→ In+1(E), and we put

I(E)= lim
−−→

In(E), (9-6)

where again the limit is taken in the category of R-modules.

Proposition 9.3. The morphism

u∗ : Hn(E)⊗ K → Hn+1(E)⊗ K

is injective. For n ≥ m, it is an isomorphism.

Proof. Consider the following diagram of exact sequences:

0 0

K 〈φ◦(n−m)∗2〉′

OO

i∗φ∗
// K 〈9n+1〉

OO

0 // Xn(E)′K

OO

i∗φ∗
// HomA(N n+1, Ĝa)K

OO

// Hn+1(E)K // 0

0 // Xn−1(E)′K

u∗

OO

i∗φ∗
// HomA(N n, Ĝa)K

u∗

OO

// Hn(E)K //

u∗

OO

0

0

OO

0

OO

The cokernel of each of the left two maps labeled u∗ is of the displayed form by Propositions 7.4 and 8.7. If
n<m, the expression K 〈φ◦(n−m)∗2〉 is understood to be zero. The map i∗φ∗ :K 〈φ◦(n−m)∗2〉′→K 〈9n+1〉

is injective, by Proposition 8.6. Therefore the map u∗ : Hn(E)K → Hn+1(E)K is also injective. It is an
isomorphism if n ≥ m, because K 〈φ◦(n−m)∗2〉 is 1-dimensional and hence the map

i∗φ∗ : K 〈φ◦(n−m)∗2〉′→ K 〈9n+1〉

is an isomorphism. �

Corollary 9.4. We have

Hn(E)⊗ K '
{

K 〈91, . . . , 9n〉 if n ≤ m,
K 〈91, . . . , 9m〉 if n ≥ m.

Do note that we will promote this to an integral result in Section 9B. But before we get there, we will
need some preparation.

Proposition 9.5. We have

In(E)⊗ K '
{

K 〈91, . . . , 9n〉 if n ≤ m− 1,
K 〈91, . . . , 9m−1〉 if n ≥ m− 1.
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Proof. The case n≤m−1 is clear. So suppose n≥m−1. Then HomA(N j , Ĝa)⊗K has basis91, . . . , 9 j ,
and Xn(E)⊗ K has basis 2m, . . . , (φ

n−m)∗2m . Since each (φ j )∗2m equals 9m+ j plus lower order
terms, K 〈91, . . . , 9m−1〉 is a complement to the subspace Xn(E) of HomA(N n, Ĝa). Therefore the map
∂ from K 〈91, . . . , 9m−1〉 to the quotient In(E) is an isomorphism. �

Finally the morphism HomA(N n, Ĝa)→ Ext](E, Ĝa) of diagram (9-3) vanishes on φ∗(Xn−1(E)), by
Proposition 9.2, and hence induces a morphism of exact sequences

0 // Xn(E)
φ∗(Xn−1(E)′)

//

ϒ

��

Hn(E) //

8

��

In(E) //
� _

��

0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

(9-7)

where as in (9-5), In(E) denotes the image of ∂ : Hom(N n, Ĝa)→ ExtA(E, Ĝa).

Proposition 9.6. The map 8 : Hn(E)⊗ K → Ext](E, Ĝa)⊗ K is injective if and only if γ 6= 0, where
γ ∈ R is defined as in Proposition 8.5.

Proof. It is enough to show that ϒ is injective if and only if γ 6= 0. By Proposition 8.7, the class of 2m

is a K -linear basis for (Xn(E)/φ∗(Xn−1(E)′))⊗ K , and so it is enough to show 8 is injective if and
only if ϒ(2m) 6= 0. As in (8-8), write 2m =92m + g2m . Then by Proposition 9.1, it is enough to show
g′2m

(0) 6= 0 if and only if γ 6= 0. But this holds because by Proposition 8.5, we have γ = πg′2m
(0). �

Lemma 9.7. Consider the φ-linear endomorphism F of K m with matrix
0 0 . . . 0 µm

1 0 0 µm−1

0 1 0 µm−2
...

. . .
...

...

0 0 1 µ1

 ,

for some given µ1, . . . , µm ∈ K . If K m admits an R-lattice which is stable under F , then we have
µ1, . . . , µm ∈ R.

Proof. We use Dieudonné–Manin theory. Without loss of generality, we may assume that R/πR is
algebraically closed. Let P denote the polynomial Fm

−µ1 Fm−1
−· · ·−µm in the twisted polynomial ring

K {F}. Then by [Laumon 1996, B.1.5, p. 257], there exists an integer r ≥ 1 and elements β1, . . . , βm ∈

K (π1/r ) such that we have

P = (F −β1) · · · (F −βm)

in the ring K (π1/r ){F} with commutation law Fπ1/r
= π1/r F . (Note that the results of [Laumon 1996]

are stated under the assumption that the residue field of R is an algebraic closure of Fp, but they hold
if it is any algebraically closed field of characteristic p.) Since R = K ∩ R[π1/r

], it is enough to show
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µi ∈ R[π1/r
]. Therefore, by replacing R[π1/r

] with R, it is enough to assume that P factors as above
where in addition all βi lie in K .

Now fix i , and let us show βi ∈ R. Assume βi 6= 0, the case βi = 0 being immediate. Because the (left)
K {F}-module K m has an F-stable integral lattice M , every quotient of K m also has a F-stable integral
lattice, namely the image of M . By [Laumon 1996, B.1.9, p. 360], for each i , the K {F}-module K m has
a quotient (in fact, a summand) isomorphic to N = K {F}/K {F}(F − πv(βi )). Therefore N also has a
F-stable integral lattice. But this can happen only if v(βi )≥ 0, because F sends the basis element 1 ∈ N
to πv(βi ) ∈ N . �

Theorem 9.8. If E splits at m, then we have λ1, . . . , λm−1 ∈ R, where the λi are as defined in Section 8C.

Proof. We will prove the cases when γ = 0 and γ 6= 0 separately, where γ is defined as in Proposition 8.5.

Case γ = 0: When γ = 0 we have f∗i∗ = i∗φ∗, and hence for all n ≥ 1, this induces a φ-linear map
f∗ : In−1(E)→ In(E) as follows

0 // Xn(E)
i∗

// HomA(N n, Ĝa)
∂
// In(E) // 0

0 // Xn−1(E)

φ

OO

i∗
// HomA(N n−1, Ĝa)

∂
//

f∗

OO

In−1(E) //

f∗

OO

0

Let I(E) = lim
−−→

In(E) ⊆ Ext(E, Ĝa). Then by Proposition 9.5, the vector space I(E)K has a K -basis
∂91, . . . , ∂9m−1, and with respect to this basis, the φ-linear endomorphism f∗ has matrix

00 =


0 0 . . . 0 λ1

1 0 0 λ2

0 1 0 λ3
...

. . .
...

...

0 0 1 λm−1


Since I(E) is contained in Ext(E, Ĝa), it is a finitely generated free R-module and hence an integral
lattice in I(E)K . But then Lemma 9.7 implies λ1, . . . , λm−1 ∈ R.

Case γ 6= 0: Let H(E)= lim
−−→

Hn(E). Let us consider the matrix 0 of the φ-linear endomorphism f of
H(E)K with respect to the K -basis 91, . . . , 9m given by Corollary 9.4. Then by Proposition 8.5 and
(8-12), we have

i∗φ∗2m = f∗i∗2m + γ91

= f∗(9m − λm−19m−1− · · ·− λ191)+ γ91

= f∗(9m)−φ(λm−1)9m − · · ·−φ(λ1)92+ γ91.

Therefore we have

f∗(9m)≡ φ(λm−1)9m + · · ·+φ(λ1)92− γ91 mod i∗φ∗(X ′m)
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and hence

0 =



0 0 . . . 0 −γ

1 0 0 φ(λ1)

0 1 0 φ(λ2)
...

. . .
. . .

...
...

0 0 0 φ(λm−2)

0 0 1 φ(λm−1)


We will now apply Lemma 9.7 to the operator f∗ on H(E)K , but to do this we need to produce an integral
lattice M . Consider the commutative square

H(E) 8
//

��

Ext](E, Ĝa)

j
��

H(E)K
8K
// Ext](E, Ĝa)K .

Let M denote the image of H(E) in H(E)K . It is clearly stable under f∗. But also the maps 8K and j
are injective, by Proposition 9.6 and because Ext](E, Ĝa)' Rr ; so M agrees with the image of H(E) in
Ext](E, Ĝa) and is therefore finitely generated.

We can then apply Lemma 9.7 and deduce φ(λm−1), . . . , φ(λ1) ∈ R. This implies λm−1, . . . , λ1 ∈ R,
since R/πR is a field and hence the Frobenius map on it is injective. �

Corollary 9.9. (1) The element 2m ∈ Xm(E)K lies in Xm(E).

(2) For n ≥ m, all the maps in the diagram

Xn(E)/Xn−1(E)
φ∗

//

i∗
��

Xn+1(E)/Xn(E)

i∗
��

HomA(N n, Ĝa)/HomA(N n−1, Ĝa)
f∗
// HomA(N n+1, Ĝa)/HomA(N n, Ĝa)

are isomorphisms.

Proof. (1) By Theorem 9.8, the element i∗2m of HomA(N m, Ĝa)K actually lies in HomA(N m, Ĝa), and
therefore by the exact sequence (8-3) we have 2m ∈ Xm(E).

(2) By Proposition 8.6, we know f∗ is an isomorphism.
Also by Proposition 8.6, the maps i∗ are injective for all n ≥ m. So to show they are isomorphisms, it

is enough to show they are surjective. The R-linear generator 9m of HomA(N n, Ĝa)/HomA(N n−1, Ĝa)

is the image of 2m , which by part (1), lies in Xm(E). Therefore i∗ is surjective for n =m. Then because
f∗ is an isomorphism, it follows by induction that i∗ is surjective for all n ≥ m.

Finally, φ∗ is an isomorphism because all the other morphisms in the diagram are. �

We knew before that i∗(φ j )∗2m agrees with9m+ j plus lower order rational characters, but the corollary
above implies that these lower order characters are in fact integral.
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Theorem 9.10. Let E be a Drinfeld module that splits at m.

(1) For any n ≥ m, the composition

Xn(E)→ HomA(N n, Ĝa)→ HomA(N n, Ĝa)/HomA(N m−1, Ĝa) (9-8)

is an isomorphism of R-modules.

(2) Xn(E) is freely generated as an R-module by 2m, . . . , (φ
∗)n−m2m .

Proof. (1) By Corollary 9.9, the induced morphism on each graded piece is an isomorphism. It follows
that the map in question is also an isomorphism.

(2) This follows formally from (1) and the fact, which follows from Corollary 9.9, that the map (9-8)
sends any (φ∗) j2m to 9m+ j plus lower order terms. �

9B. H(E) and de Rham cohomology. Collecting the results above, we can now prove Theorem 1.2.
Let m denote the splitting order of E , as defined in section 8. We have isomorphisms

R〈91, . . . , 9m−1〉=HomA(N m−1, Ĝa)−→
∼ In(E) and R〈91, . . . , 9m〉=HomA(N m, Ĝa)−→

∼ Hn(E)

for n ≥ m, and hence in the limit

R〈91, . . . , 9m−1〉 −→
∼ I(E) and R〈91, . . . , 9m〉 −→

∼ H(E)

And so the K -linear bases of K ⊗ I(E) and K ⊗ H(E)— the ones respect to which the action of f∗ is
described by the matrices 00 and 0 in the proof of Theorem 9.8 — are in fact R-linear bases of I(E)
and H(E).

We also have isomorphisms for n ≥ m

R〈2m〉 = Xm(E)−→∼ Xn(E)/φ∗(Xn−1(E)′).

Combining these, we have the following map between exact sequences of R-modules, as in (9-7):

0 // Xm(E) //

ϒ

��

H(E) //

8
��

I(E) //
� _

��

0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

where ϒ sends 2m to γ /π (in coordinates). It follows that 8 is injective if and only if γ 6= 0.

10. Computation of λ1 and γ in the rank 2 case

In this section, we compute λ1 and γ for Drinfeld modules of rank 2, the first nontrivial case. Recall
from (8-8), Proposition 8.5(1), and (8-12) that we have

22 =92(x ′, x ′′)− λ191(x ′)+π−1γ x + (higher-degree terms in x) (10-1)



Differential characters of Drinfeld modules and de Rham cohomology 833

assuming the splitting number m is 2. The result below shows that λ1 and γ depend on the higher Buium
derivatives a′i , a′′i , . . . of the modular parameters ai , and not only on the modular parameters themselves.
So it seems that our F-crystal H is not determined by the classical realizations, such as the crystalline
realization or the Tate module, in any straightforward manner.

Theorem 10.1. Let A = Fq [v] with q ≥ 3, let t ∈ A be an irreducible polynomial of degree f , and let E
be a Drinfeld module over R satisfying

ϕE(t)(x)= πx + a1xq
+ a2xq2

. (10-2)

Then we have

λ1 ≡ (−1) fw(q
f−1(q f

−1))/(q−1)(1− a′1w
q f−1
+ a′2w

q f−1
+q f

)q
f
−1 mod π,

where w = a1a−1
2 , and

γ mod π2
≡


πλ1/a1 if f = 1,
−πλ1/a2 if a1 ≡ 0 mod π and f = 2,
0 if a1 6≡ 0 mod π or f ≥ 3.

Observe that when ϕE(t)(x) is of the form πx + axq
+ xq2

, which is always true after changing the
coordinate x (perhaps passing to a cover of S), we have the simplified forms

λ1 ≡ (−1) f a(q
f−1(q f

−1))/(q−1)(1− a′aq f−1
)q

f
−1 mod π, (10-3)

γ mod π2
≡


πλ1/a if f = 1,
−πλ1 if a ≡ 0 mod π and f = 2,
0 if a 6≡ 0 mod π or f ≥ 3.

(10-4)

Proof. Let ϑ1 : N 1
→ Ĝa be the isomorphism defined in Theorem 6.2. Then ϑ1 ≡ τ

0 mod π . Also
ϑ1 induces the isomorphism (ϑ1)∗ : Ext(E, N 1)→ Ext(E, Ĝa). In order to determine the action of A
on J 1 E and J 2 E we need to determine how t acts on the coordinates x ′ and x ′′. Now we note that
J n E ' Wn can be endowed with the δ-coordinates (denoted [z, z′, z′′, . . .]) or the Witt coordinates
(denoted (z0, z1, z2, . . .)) and they are related by the following in J 2 E by Proposition 3.2

[z, z′, z′′] = (z, z′, z′′+π q̂−2(z′)q̂). (10-5)

Taking π -derivatives of both sides of (10-2) using the formula

δ(axq j
)= a′x q̂q i

+φ(a)πq i
−1(x ′)q

i
,

we obtain

ϕ(t)(x ′)= π ′x q̂
+ a′1xqq̂

+ a′2xq2q̂
+πx ′+φ(a1)π

q−1(x ′)q +φ(a2)π
q2
−1(x ′)q

2
(10-6)

and

ϕ(t)(x ′′)= π ′′x q̂2
+ a′′1 xqq̂2

+ a′′2 xq2q̂2
+ {terms with x ′ and x ′′}. (10-7)
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Then the A-action ϕJ 1 E : A→ End(J 1 E) is given in Witt coordinates by the 2× 2 matrix

ϕJ 1 E(t)=
(
ϕE(t) 0
ηJ 1 E ϕN 1(t)

)
where ηJ 1 E = π

′x q̂
+ a′1xqq̂

+ a′2xq2q̂ . By (10-7) and (10-5), the A-action A→ End(J 2 E) is given by
the (1+ 2)× (1+ 2) block matrix

ϕJ 2 E(t)=
(
ϕE(t) 0
ηJ 2 E ϕN 2(t)

)
where (using (10-5)) ηJ 2 E is the column vector

ηJ 2 E =

(
π ′x q̂
+ a′1xqq̂

+ a′2xq2q̂

1(π)x q̂2
+1(a1)xqq̂2

+1(a2)xq2q̂2

)

and where 1(y)= y′′+π q̂−2(y′)q̂ .
Now we will consider two cases:

(1) Consider η91∗(J 1 E) ∈ Ext(E, Ĝa) which is the image of 91 under the connecting morphism

HomA(Ĝa, Ĝa)
∂
−→Ext(E, Ĝa)

and 91 = ϑ1 : N 1
→ Ĝa is the isomorphism defined in Theorem 6.2 and satisfies 91 = τ

0 mod π .

0 // N 1 //

91
��

J 1 E //

��

E // 0

0 // Ĝa // f∗(J 1 E) // E // 0

where ηJ 1 E = [π
′x q̂
+ a′1xqq̂

+ a′2xq2q̂
] ∈ Ext(E, N 1). Hence

η91∗(J 1 E) = [π
′x q̂
+ a′1xqq̂

+ a′2xq2q̂
] ∈ Ext(E, Ĝa) and ∂(91)≡ [x q̂

+ a′1xqq̂
+ a′2xq2q̂

] mod π.

(2) Now consider η92∗(J 2 E) ∈ Ext(E, Ĝa) obtained as

0 // N 2 //

92
��

J 2 E //

��

E // 0

0 // Ĝa // f∗(J 2 E) // E // 0

Now we have

ηJ 2 E =

[(
π ′x q̂
+ a′1xqq̂

+ a′2xq2q̂

1(π)x q̂2
+1(a1)xqq̂2

+1(a2)xq2q̂2

)]
∈ Ext(E, N 2)
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Let F(y)= (y′)q̂ +π1(y). Then applying 92 = ϑ1 ◦ f and f(z1, z2)= zq̂
1 +π z2, we have

∂(92)= η92∗(J 2 E) = [ϑ1(F(π)x q̂2
+F(a1)xqq̂2

+F(a2)xq2q̂2
)] ∈ Ext(E, Ĝa)

∂(92)≡ [F(π)x q̂2
+F(a1)xqq̂2

+F(a2)xq2q̂2
] mod π

≡ [(π ′)q̂ x q̂2
+ (a′1)

q̂ xqq̂2
+ (a′2)

q̂ xq2q̂2
] mod π

≡ [x q̂2
+ (a′1)

q̂ xqq̂2
+ (a′2)

q̂ xq2q̂2
] mod π.

Recall [Gekeler 1990a, §5] that the map R{τ }ˆ→ Ext(E, Ĝa) given by η 7→ [η] is surjective and the
kernel consists of the inner derivations, which is to say all η of the form

πα−α ◦ϕE(t),

for some α ∈ R{τ }ˆ. Let us now work out these relations explicitly for α = τ 0, τ 1, τ 2. If α = τ j , with
j ≥ 0, we get the relation

πτ j
= τ j (πτ 0

+ a1τ
1
+ a2τ

2)

τ j+2
= a−q j

2 [(π −π
q j
)τ j
− aq j

1 τ
j+1
]

τ j+2
≡−(a1a−1

2 )q
j
τ j+1 mod π

and hence we have by induction the relations

τ i+1
≡ (−1)iw(q

i
−1)/(q−1)τ 1 mod π (10-8)

where w = a1a−1
2 , for all i ≥ 0.

Therefore writing q̂ = q f , we have

∂(91)≡ x q̂
+ a′1xqq̂

+ a′2xq2q̂

≡ xq f
+ a′1xq f+1

+ a′2xq f+2

≡ τ f
+ a′1τ

f+1
+ a′2τ

f+2

≡ (−1) f+1w1+···+q f−2
(1− a′1w

q f−1
+ a′2w

q f−1
+q f

)τ 1

and
∂(92)≡ x q̂2

+ (a′1)
q̂ xqq̂2

+ (a′2)
q̂ xq2q̂2

≡ τ 2 f
+ (a′1)

q f
τ 2 f+1

+ (a′2)
q f
τ 2 f+2

≡ (−1)2 f+1w1+···+q2 f−2
(1− (a′1)

q f
wq2 f−1

+ (a′2)
q f
wq2 f−1

+q2 f
)τ 1

≡ (−1)2 f+1w1+···+q2 f−2
(1− a′1w

q f−1
+ a′2w

q f−1
+q f

)q
f
τ 1.

and hence

λ1 =
∂(92)

∂(91)
≡ (−1) fwq f−1

+···+q2 f−2
(1− a′1w

q f−1
+ a′2w

q f−1
+q f

)q
f
−1 mod π

≡ (−1) fwq f−1(1+···+q f−1)(1− a′1w
q f−1
+ a′2w

q f−1
+q f

)q
f
−1 mod π

≡ (−1) fw(q
f−1(q f

−1))/(q−1)(1− a′1w
q f−1
+ a′2w

q f−1
+q f

)q
f
−1 mod π
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Now we determine γ . Write g = g22 =
∑

i αiτ
i . Then from Proposition 8.5, we know γ = πα0. Now

we will compute α0. Let (z0, z1, z2) := ϕJ 2 E(t)(x, 0, 0). Then

22(ϕJ 2 E(t)(x, 0, 0))=92(z1, z2)− λ191(z1)+ g(z0)

= ϑ1(z
q̂
1 +π z2)− λ1ϑ1(z1)+ g(z0)

≡ zq̂
1 − λ1z1+ g(z0) mod π

where z0 = πx + a1xq
+ a2xq2

and z1 = π
′x q̂
+ a′1xqq̂

+ a′2xq2q̂ . On the other hand from the A-linearity
of 22 we have

22(ϕJ 2 E(t)(x, 0, 0))= ϕ
Ĝa
(t)22(x, 0, 0)= π22(x, 0, 0)≡ 0 mod π

and hence zq̂
1 − λ1z1+ g(z0)≡ 0 mod π . Substituting z0 and z1 in, we obtain

0≡ (π ′x q̂
+ a′1xqq̂

+ a′2xq2q̂)q̂ − λ1(π
′x q̂
+ a′1xqq̂

+ a′2xq2q̂)+ g(πx + a1xq
+ a2xq2

)

≡ (x q̂
+ a′1xqq̂

+ a′2xq2q̂)q̂ − λ1(x q̂
+ a′1xqq̂

+ a′2xq2q̂)+ g(a1xq
+ a2xq2

)

Now substitute g(x) =
∑

j≥0 α j xq j
into this and consider the coefficient of xq . If q̂ = q, we obtain

λ1 ≡ α0a1 and hence

γ = πα0 ≡
πλ1

a1
mod π2.

If q̂ 6= q , we obtain α0a1 ≡ 0 and hence γ ≡ 0 mod π2 if a1 6≡ 0 mod π . If a1 ≡ 0 mod π , we consider
the coefficient of xq2

which is α0a2+ λ1 if f = 2 and α0a2 otherwise. In the case when f = 2 we have
α0≡ λ1/a2 mod π since a2 is invertible and hence γ ≡−πλ1/a2 mod π2. When f ≥ 3 we have α0≡ 0
mod π and hence the result follows. �

Acknowledgement.

We wish to thank the anonymous referee for carefully reading our article and the suggestions which led
to deeper clarifications and brought more lucidity in our present version of the paper.

References

[Borger 2011a] J. Borger, “The basic geometry of Witt vectors, I: The affine case”, Algebra Number Theory 5:2 (2011), 231–285.
MR Zbl

[Borger 2011b] J. Borger, “The basic geometry of Witt vectors, II: Spaces”, Math. Ann. 351:4 (2011), 877–933. MR Zbl

[Borger and Saha 2017a] J. Borger and A. Saha, “Isocrystals associated to arithmetic jet spaces of abelian schemes”, preprint,
2017. To appear in Advances in Mathematics. arXiv

[Borger and Saha 2017b] J. Borger and A. Saha, “On Frobenius and fibers of arithmetic jet spaces”, preprint, 2017. arXiv

[Buium 1992] A. Buium, “Intersections in jet spaces and a conjecture of S. Lang”, Ann. of Math. (2) 136:3 (1992), 557–567.
MR Zbl

[Buium 1995] A. Buium, “Differential characters of abelian varieties over p-adic fields”, Invent. Math. 122:2 (1995), 309–340.
MR Zbl

http://dx.doi.org/10.2140/ant.2011.5.231
http://msp.org/idx/mr/2833791
http://msp.org/idx/zbl/1276.13018
http://dx.doi.org/10.1007/s00208-010-0608-1
http://msp.org/idx/mr/2854117
http://msp.org/idx/zbl/1251.13019
http://msp.org/idx/arx/1712.09346
http://msp.org/idx/arx/1703.07010
http://dx.doi.org/10.2307/2946600
http://msp.org/idx/mr/1189865
http://msp.org/idx/zbl/0817.14021
http://dx.doi.org/10.1007/BF01231447
http://msp.org/idx/mr/1358979
http://msp.org/idx/zbl/0841.14037


Differential characters of Drinfeld modules and de Rham cohomology 837

[Buium 2000] A. Buium, “Differential modular forms”, J. Reine Angew. Math. 520 (2000), 95–167. MR Zbl

[Buium and Saha 2011] A. Buium and A. Saha, “Differential overconvergence”, pp. 99–129 in Algebraic methods in dynamical
systems, edited by T. Crespo and Z. Hajto, Banach Center Publ. 94, Polish Acad. Sci. Inst. Math., Warsaw, 2011. MR Zbl

[Buium and Saha 2012a] A. Buium and A. Saha, “Hecke operators on differential modular forms mod p”, J. Number Theory
132:5 (2012), 966–997. MR Zbl

[Buium and Saha 2012b] A. Buium and A. Saha, “The ring of differential Fourier expansions”, J. Number Theory 132:5 (2012),
896–937. MR Zbl

[Buium and Saha 2014] A. Buium and A. Saha, “The first p-jet space of an elliptic curve: global functions and lifts of Frobenius”,
Math. Res. Lett. 21:4 (2014), 677–689. MR Zbl

[Drinfeld 1974] V. G. Drinfeld, “Elliptic modules”, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656. In Russian; translated in
Math. USSR-Sb. 23:4 (1974), 561–592. MR Zbl

[Drinfeld 1976] V. G. Drinfeld, “Coverings of p-adic symmetric domains”, Funkcional. Anal. i Priložen. 10:2 (1976), 29–40. In
Russian; translated in Funct. Anal. Appl. 10:2 (1976), 107–115. MR Zbl

[Dupuy 2014] T. Dupuy, “Deligne–Illusie classes, I: Lifted torsors of lifts of the Frobenius for curves”, preprint, 2014. arXiv

[Gekeler 1990a] E.-U. Gekeler, “de Rham cohomology and the Gauss–Manin connection for Drinfeld modules”, pp. 223–255 in
p-adic analysis (Trento, 1989), edited by F. Baldassarri et al., Lecture Notes in Math. 1454, Springer, 1990. MR Zbl

[Gekeler 1990b] E.-U. Gekeler, “de Rham cohomology for Drinfeld modules”, pp. 57–85 in Séminaire de théorie des nombres,
Paris 1988–1989, edited by C. Goldstein, Progr. Math. 91, Birkhäuser, Boston, 1990. MR Zbl

[Goss 1996] D. Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3)
[Results in Mathematics and Related Areas (3)] 35, Springer, 1996. MR Zbl

[Hartl 2017] U. Hartl, “Isogenies of abelian Anderson A-modules and A-motives”, preprint, 2017. arXiv

[Hesselholt 2015] L. Hesselholt, “The big de Rham–Witt complex”, Acta Math. 214:1 (2015), 135–207. MR Zbl

[Joyal 1985] A. Joyal, “δ-anneaux et vecteurs de Witt”, C. R. Math. Rep. Acad. Sci. Canada 7:3 (1985), 177–182. MR Zbl

[Laumon 1996] G. Laumon, Cohomology of Drinfeld modular varieties, Part I, Cambridge Studies in Advanced Mathematics
41, Cambridge University Press, 1996. MR Zbl

[Manin 1963] J. I. Manin, “Rational points on algebraic curves over function fields”, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963),
1395–1440. Translated as “Rational points of algebraic curves over function fields”, pp. 189–234 in Fifteen papers on algebra,
Transl. Amer. Math. Soc. (2) 50, Amer. Math. Soc., Providence, RI, 1966. MR Zbl

[Witt 1937] E. Witt, “Zyklische Körper und Algebren der Charakteristik p vom Grad pn . Struktur diskret bewerteter perfekter
Körper mit vollkommenem Restklassenkörper der Charakteristik p”, J. Reine Angew. Math. 176 (1937), 126–140. MR

Communicated by Kiran S. Kedlaya
Received 2017-09-03 Revised 2018-11-26 Accepted 2019-02-22

james.borger@anu.edu.au Mathematical Sciences Institute, Australian National University,
Canberra ACT, Australia

arnabsaha0930@gmail.com Max Planck Institute for Mathematics, Bonn, Germany

mathematical sciences publishers msp

http://dx.doi.org/10.1515/crll.2000.024
http://msp.org/idx/mr/1748272
http://msp.org/idx/zbl/1045.11025
http://dx.doi.org/10.4064/bc94-0-5
http://msp.org/idx/mr/2882615
http://msp.org/idx/zbl/1244.11059
http://dx.doi.org/10.1016/j.jnt.2011.12.006
http://msp.org/idx/mr/2890522
http://msp.org/idx/zbl/1267.11049
http://dx.doi.org/10.1016/j.jnt.2011.12.007
http://msp.org/idx/mr/2890519
http://msp.org/idx/zbl/1267.11048
http://dx.doi.org/10.4310/MRL.2014.v21.n4.a4
http://msp.org/idx/mr/3275641
http://msp.org/idx/zbl/1362.14025
http://dx.doi.org/10.1070/SM1974v023n04ABEH001731
http://msp.org/idx/mr/0384707
http://msp.org/idx/zbl/0321.14014
http://dx.doi.org/10.1007/BF01077936
http://msp.org/idx/mr/0422290
http://msp.org/idx/zbl/0346.14010
http://msp.org/idx/arx/1403.2025
http://dx.doi.org/10.1007/BFb0091142
http://msp.org/idx/mr/1094856
http://msp.org/idx/zbl/0735.14016
http://msp.org/idx/mr/1104700
http://msp.org/idx/zbl/0728.14024
http://dx.doi.org/10.1007/978-3-642-61480-4
http://msp.org/idx/mr/1423131
http://msp.org/idx/zbl/0874.11004
http://msp.org/idx/arx/1706.06807
http://dx.doi.org/10.1007/s11511-015-0124-y
http://msp.org/idx/mr/3316757
http://msp.org/idx/zbl/1316.13028
http://msp.org/idx/mr/789309
http://msp.org/idx/zbl/0594.13023
http://msp.org/idx/mr/1381898
http://msp.org/idx/zbl/0837.14018
http://mi.mathnet.ru/rus/izv/v27/i6/p1395
https://books.google.com/books?id=fkF6evEY6OAC
http://msp.org/idx/mr/0157971
http://msp.org/idx/zbl/0178.55102
http://dx.doi.org/10.1515/crll.1937.176.126
http://dx.doi.org/10.1515/crll.1937.176.126
http://msp.org/idx/mr/1581526
mailto:james.borger@anu.edu.au
mailto:arnabsaha0930@gmail.com
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Richard E. Borcherds University of California, Berkeley, USA

Antoine Chambert-Loir Université Paris-Diderot, France

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta University of California, Santa Cruz, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Martin Olsson University of California, Berkeley, USA

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Michael Rapoport Universität Bonn, Germany

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Christopher Skinner Princeton University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Pham Huu Tiep University of Arizona, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Akshay Venkatesh Institute for Advanced Study, USA

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Melanie Matchett Wood University of Wisconsin, Madison, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2019 is US $385/year for the electronic version, and $590/year (+$60, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 13 No. 4 2019

749Artin’s criteria for algebraicity revisited
JACK HALL and DAVID RYDH

797Differential characters of Drinfeld modules and de Rham cohomology
JAMES BORGER and ARNAB SAHA

839Quadratic twists of abelian varieties and disparity in Selmer ranks
ADAM MORGAN

901Iwasawa theory for Rankin-Selberg products of p-nonordinary eigenforms
KÂZIM BÜYÜKBODUK, ANTONIO LEI, DAVID LOEFFLER and GUHAN VENKAT

943Cycle integrals of modular functions, Markov geodesics and a conjecture of Kaneko
PALOMA BENGOECHEA and ÖZLEM IMAMOGLU

963A finiteness theorem for specializations of dynatomic polynomials
DAVID KRUMM

A
lgebra

&
N

um
ber

Theory
2019

Vol.13,
N

o.4

http://dx.doi.org/10.2140/ant.2019.13.749
http://dx.doi.org/10.2140/ant.2019.13.797
http://dx.doi.org/10.2140/ant.2019.13.839
http://dx.doi.org/10.2140/ant.2019.13.901
http://dx.doi.org/10.2140/ant.2019.13.943
http://dx.doi.org/10.2140/ant.2019.13.963

	1. Introduction
	2. Notation
	3. Function-field Witt vectors
	3A. Frobenius lifts and -derivations
	3B. Witt vectors
	3C. Operations on Witt vectors
	3D. Computing the universal map to Witt vectors

	4. A-module schemes, jet spaces and preliminaries
	4A. Prolongation sequences and jet spaces
	4B. Coordinates on jet spaces
	4C. Character groups

	5. Admissible modules
	6. Characters of Nn —upper bounds
	7. The lateral Frobenius and characters of Nn
	8. X(E)
	8A. Splitting of Jn(E)
	8B. Frobenius and the filtration by order
	8C. The character m

	9. Ext groups and de Rham cohomology
	9A. The F-crystal H(E)
	9B. H(E) and de Rham cohomology

	10. Computation of 1 and  in the rank 2 case
	Acknowledgement.
	References
	
	

