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We introduce and analyze a general class of not necessarily bounded multiplicative functions, examples
of which include the function n 7→ δω(n), where δ ∈ R \ {0} and where ω counts the number of distinct
prime factors of n, as well as the function n 7→ |λ f (n)|, where λ f (n) denotes the Fourier coefficients of a
primitive holomorphic cusp form.

For this class of functions we show that after applying a W-trick, their elements become orthogonal to
polynomial nilsequences. The resulting functions therefore have small uniformity norms of all orders
by the Green–Tao–Ziegler inverse theorem, a consequence that will be used in a separate paper in order
to asymptotically evaluate linear correlations of multiplicative functions from our class. Our result
generalizes work of Green and Tao on the Möbius function.
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1. Introduction

Let f : N→ C be a multiplicative arithmetic function. Daboussi showed (see [Daboussi and Delange
1974]) that if | f | is bounded by 1, then

1
x

∑
n6x

f (n)e2π iαn
= o(x) (1-1)
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for every irrational α. A detailed proof of the following slightly strengthened version may be found in
[Daboussi and Delange 1982]: Suppose that f satisfies∑

n6x

| f (n)|2 = O(x); (1-2)

then (1-1) holds for every irrational α. Montgomery and Vaughan [1977] give explicit error terms for the
decay in (1-1) for multiplicative functions that satisfy, in addition to (1-2), a uniform bound at all primes,
in the sense that | f (p)|6 H holds for some constant H > 1 and all primes p.

In this paper we will study the closely related question of bounding correlations of multiplicative
functions with polynomial nilsequences in place of the exponential function n 7→ e2π iαn . A chief concern
in this work is to include unbounded multiplicative functions in the analysis. To this end we shall
significantly weaken the moment condition (1-2) by decomposing f into a suitable Dirichlet convolution
f = f1 ∗ · · · ∗ ft and analyzing the correlations of the individual factors with exponentials, or rather
nilsequences. The benefit of such a decomposition is that we merely require control on the second
moments of the individual factors of the Dirichlet convolution and not of f itself. This essentially allows
us to replace (1-2) by the condition that there exists θ f ∈ (0, 1] such that√

1
x

∑
n6x

| fi (n)|2� (log x)1−θ f 1
x

∑
n6x

| fi (n)| (1-3)

for all i ∈ {1, . . . , t}. To illustrate the difference between these two moment conditions, let us consider a
simple example of a function that satisfies (1-3), but neither (1-2) nor∑

n6x

| f (n)|2�
∑
n6x

| f (n)|. (1-4)

Example 1.1. For any t ∈ N, let dt(n)= 1 ∗ · · · ∗ 1(n) denote the general divisor function, which arises
as a t-fold convolution of 1. Choosing fi = 1 for each 16 i 6 t , it is clear that (1-3) holds with θ f = 1.
If t > 1, then neither (1-2) nor (1-4) hold, since

1
x

∑
n6x

dt(n)�t (log x)t−1, but 1
x

∑
n6x

d2
t (n)�t (log x)t

2
−1.

Thus, the second moment is not controlled by the first.

In order to describe the three classes of multiplicative functions that we will be working with here, let
us introduce some notation. Throughout this paper, we write

S f (x)=
1
x

∑
n6x

f (n) and S f (x; q, r)=
q
x

∑
n6x

x≡r (mod q)

f (n)

for x > 1 and integers q, r ∈ N. We furthermore require the following functions w and W :
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Definition 1.2. Let w : N→ R be an increasing function such that

log log x
log log log x

<w(x)6 log log x

for all sufficiently large x , and set

W (x)=
∏

p6w(x)

p.

The basic class of function we will be interested in is the following:

Definition 1.3. Given a positive integer H > 1, we let MH denote the class of multiplicative arithmetic
functions f : N→ C such that:

(1) | f (pk)|6 H k for all prime powers pk .

(2) There is a positive constant α f such that

1
x

∑
p6x

| f (p)| log p > α f

for all sufficiently large x .

For the purpose of our main result, Theorem 6.1, it will be necessary to restrict attention to those
functions f that admit a so-called W -trick (see Section 5). For this reason, we introduce the subset of
elements of MH that have stable mean values in certain arithmetic progressions:

Definition 1.4. Let FH ⊂MH be the subset of multiplicative functions f with the following property.
Let x > 1 be a parameter. Given any constant C > 0, there exists a function ϕC with ϕC(x)→ 0 as
x→∞ such that, whenever 16 Q < (log x)C is a multiple of W (x) and when A (mod Q) is a reduced
residue, then

S f (x ′; Q, A)= S f (x; Q, A)+ O
(
ϕC(x)

Q
φ(Q)

1
log x

∏
p6x
p-Q

(
1+
| f (p)|

p

))
(1-5)

for all x ′ ∈ (x(log x)−C , x).

We will discuss this class of functions in detail in Section 4, where we prove several sufficient conditions
for f ∈MH to belong to FH , or to a related class that will be introduced below. These sufficient conditions,
recorded in Propositions 4.4 and 4.10 and Lemmas 4.16 and 4.17, prove to be much easier to verify
in practice than the one given in the above definition, not at least because they take a form that allows
for applications of the Selberg–Delange method as presented in [Tenenbaum 1995]. As an application
of Lemmas 4.16 and 4.17 (see the remarks following their statements), we obtain the following simple
criterion applicable to real-valued elements of MH :
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Proposition 1.5. Suppose that f ∈MH is real-valued and that it is bounded away from zero at primes, in
the sense that there exists δ > 0 and a sign ε ∈ {+,−} such that

#{p 6 x : ε f (p)> δ}> (1+o(1))x
log x

, (as x→∞).

Then f ∈FH if f is nonnegative or if , for every given C > 0, there exists a function ψC : R>0→ R>0

with ψC(x)→ 0 as x→∞ such that

S f χ0(x)= O
(
ψC(x)
log x

exp
( ∑

p6x,p-Q

| f (p)|
p

))
, (x > 1)

for all trivial characters χ0 (mod Q) with Q ∈ (1, (log x)C) and W (x) | Q.

Observe, in particular, that this criterion may be applied to functions that take negative values at
all primes, such as the Möbius function. In the latter case, the prime number theorem-type estimate
Sµ(x)�B (log x)−B, which holds for all x > 2 and B > 0, implies that all conditions are satisfied; see
Example 4.18(i) for details. As an easy consequence of the above proposition, it further follows that
any function of the form f (n) = δω(n) for fixed δ > 0 belongs to FH . In Section 4D we will show
that the function n 7→ |λ f (n)| belongs to FH , where λ f (n) denotes the normalized Fourier coefficients
of a primitive holomorphic cusp form. This is an example which cannot be deduced from the above
proposition.

In Section 6, we will see that in the context of our main result condition (1-5) only needs to hold
for slowly varying twists of f . This allows us to slightly weaken the above definition and introduce the
following intermediate class of functions FH ⊂FH,ni t ⊂MH , which will also be discussed in Section 4.

Definition 1.6. Let FH,ni t ⊂MH denote the subset of functions f with the following property. For every
constant C > 0 and every sufficiently large x > 1, there exists tx ∈ R with |tx | 6 2 log x such that the
function fx : n 7→ f (n)n−i tx satisfies (1-5) for all x ′ ∈ (x(log x)−C , x), all 16 Q < (log x)C , W (x) | Q,
and all reduced residues A (mod Q). Observe that FH ⊂FH,ni t since we may take tx = 0 for all x .

Twists of the form f (n)n−i t play an important role in the study of multiplicative functions as their
behavior is closely linked to that of the mean value of f through Halász’s theorem [1968]; see also
[Tenenbaum 1995, §III.4.3]. While Halász’s theorem concerns bounded functions that are closely related
to the constant function 1, an analogue to this result, applicable to our basic class MH , has recently been
proved independently by Elliott [2017, Theorems 2 and 4] and Tenenbaum [2017, Théorème 1.2]. The
next lemma, which we chiefly include for comparison of the error terms in (1-5) and in later results, is a
straightforward consequence of their result. The first part is due to Elliott and Kish [2016, Lemma 21].

Lemma 1.7 (Elliott, Kish, Tenenbaum). Suppose f ∈MH and that∑
p6H

∑
k>2

| f (pk)| p−k <∞.
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Then

S| f |(x)�
1

log x
exp

(∑
p6x

| f (p)|
p

)
.

Furthermore, we have |S f (x)| = o(S| f |(x)) unless there exists t ∈ R such that∑
p prime

| f (p)| −<( f (p)pi t)

p
<∞,

in which case |S f (x)| � S| f |(x).

Returning to the basic class MH , let us record the lemma that shows that every element of MH does
indeed admit a Dirichlet decomposition with the properties described at the beginning of this introduction.
To be precise, the lemma below corresponds to θ f =

1
2 in (1-3). We will prove this lemma in Section 3. In

accordance with the earlier discussion, this lemma will only be needed in the case where f is unbounded,
i.e., when H > 1.

Lemma 1.8. (Dirichlet decomposition) Let f ∈MH and let h be the multiplicative function defined as

h(pk)=

{
f (p)/H if k = 1,
0 if k > 1.

(1-6)

Let h∗H denote the H-fold convolution of h with itself. Then

f = h∗H
∗ h′,

where h′ is a multiplicative function that satisfies h′(p) = 0 at primes and |h′(pk)| 6 (2H)k at prime
powers.

Let f = f1 ∗ · · · ∗ fH with fi = h for all but one of the factors and fi = h ∗ h′ for the remaining one. If
x > 1 and if Q 6 x1/2 is an integer multiple of W (x), then the following bound holds for all A ∈ (Z/QZ)∗:∑
D6x1−1/H

gcd(D,Q)=1

∑
d1···dH−1=D

| f1(d1) · · · fH−1(dH−1)|

D

√√√√√DQ
x

∑
n6x/D

nD≡A (mod Q)

| fH (n)|2

� (log x)1/2
Q

φ(Q)
1

log x

∏
p6x
p-Q

(
1+
| f (p)|

p

)
. (1-7)

Aim and motivation. As mentioned before, the purpose of this paper is to study correlations of multi-
plicative functions, more specifically of functions from MH , with polynomial nilsequences. In general,
such correlations can only be shown to be small if either the nilsequence is highly equidistributed or else
if the multiplicative function is equidistributed in progressions with short common difference. We will
consider both cases, the former in Proposition 6.4 and the latter in Theorem 6.1. In accordance with this
restriction, the latter result only applies to the subsets FH and FH,ni t whose elements admit a W -trick
as we will establish in Section 5. Restricting attention to the class FH for now, then “W -trick” roughly
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means the following here. For every f ∈FH there is a product W̃ = W̃ (x) of small prime powers such
that f has a constant average value in all suitable subprogressions of {n ≡ A (mod W̃ )} for every fixed
residue A ∈ (Z/W̃ Z)∗. Instead of bounding Fourier coefficients of f as in (1-1), we aim to show that
every f ∈FH satisfies1

W̃
x

∑
n6x/W̃

( f (W̃ n+ A)− S f (x; W̃ , A))F(g(n)0)= oG/0

(
1

log x
W̃

φ(W̃ )

∏
p6x, p-W̃

(
1+
| f (p)|

p

))
(1-8)

for all 1-bounded polynomial nilsequences F(g(n)0) of bounded degree and bounded Lipschitz constant
that are defined with respect to a nilmanifold G/0 of bounded step and bounded dimension. The precise
statement will be given in Section 6. This result can be viewed as a generalization of work of Green and
Tao [2012a] who were the first to study correlations of the form (1-8) and who prove (1-8) for the Möbius
function. In fact, we borrow their approach to reduce Theorem 6.1 to Proposition 6.4 in Section 6 and we
work with their techniques in Sections 7 and 8.

Note carefully that the bound proposed in (1-8) is nontrivial even in the case where the function f
satisfies S f (x)= o(1), i.e., even for a function like f (n)= δω(n) with δ ∈ (0, 1), which satisfies

S f (x)∼ (log x)δ−1
�

1
log x

∏
p6x

(
1+
| f (p)|

p

)
= o(1).

To see this, we observe that Lemma 1.7 and Shiu’s lemma [1980, Theorem 1] imply that the error
term in (1-8) is, at least for a positive proportion of the reduced residues A (mod W̃ ), of the form
o(“the trivial upper bound”), which is the bound obtained by inserting absolute values everywhere.

The interest in estimates of the form (1-8) lies in the fact that the Green–Tao–Ziegler inverse theorem
[Green et al. 2012] allows one to deduce that f (W̃ n + A)− S f (x; W̃ , A) has small U k-norms of all
orders, where “small” may depend on k. Employing the nilpotent Hardy–Littlewood method of Green
and Tao [2010], this in turn allows one to deduce asymptotic formulae for expressions of the form∑

x∈K∩Zs

f (ϕ1(x)+ a1) · · · f (ϕr (x)+ ar ), (1-9)

for a1, . . . , ar ∈ Z, pairwise nonproportional linear forms ϕ1, . . . , ϕr : Zs
→ Z and convex K ⊂ Rs ,

provided that f has a sufficiently pseudorandom majorant function. We construct such pseudorandom
majorants in the companion paper [Matthiesen 2016], which also addresses the question of evaluating
(1-9) for functions f ∈FH,ni t with the property that | f (n)| �ε nε for all ε > 0.

Strategy and related work. Our overall strategy is to decompose the given multiplicative function via
Dirichlet decomposition in such a way that we can employ the Montgomery–Vaughan approach to the
individual factors. This approach reduces matters to bounding correlations of sequences defined in terms
of primes. One type of correlation that appears will be handled with the help of Green and Tao’s bound
[2010, Proposition 10.2] on the correlation of the “W -tricked von Mangoldt function” with nilsequences.

1This statement needs to be slightly adapted if f ∈FH,ni t .
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Carrying out the Montgomery–Vaughan approach in the nilsequences setting makes it necessary to
understand the equidistribution properties of certain families of product nilsequences which result from an
application of the Cauchy–Schwarz inequality. These product sequences are studied in Section 8 refining
techniques introduced in [Green and Tao 2012a]. More precisely, we show that most of these products are
equidistributed provided the original sequence that these products are derived from was equidistributed.
The latter can be achieved by the Green–Tao factorization theorem for nilsequences from [Green and Tao
2012b].

The question studied in this paper is in spirit related to that of Bourgain–Sarnak–Ziegler [Bourgain et al.
2013], who use an orthogonality criterion that can be proved employing ideas that go back to Daboussi
and Delange [1974] (see also [Harper 2011] and [Tao 2011]). Invoking the orthogonality criterion in the
form it is presented in [Kátai 1986], recent and very substantial work of Frantzikinakis and Host [2017]
shows that every bounded multiplicative function can be decomposed into the sum of a Gowers-uniform
function, a structured part and an error term. This error term is small in the sense that the integral of the
error term over the space of all 1-bounded multiplicative functions is small. While their result provides no
information on the quality of the error term of individual functions, it allows one to study simultaneously
all bounded multiplicative functions.

The point of view taken in the present work is a different one: we have applications to explicit
multiplicative functions in mind. For many multiplicative functions f that appear naturally in number
theoretic contexts, the mean value 1

x

∑
n6x f (x) is described by a reasonably nice function in x , and one

can hope to be able to verify the conditions from Definitions 1.3 and 1.4 (or 1.6) for such functions. In
order to deduce asymptotic formulae for expressions as in (1-9), it is important that the bound on the
correlation (1-8) improves at least on the trivial bound given by the average value of | f |. Thus, we need
to be able to understand these bounds for individual functions f . We establish a noncorrelation result
(Theorem 6.1) with an explicit bound that preserves information on | f | just as in (1-8). An important
feature of this work is that it applies to a large class of unbounded functions.

Notation. The following, perhaps unusual, piece of notation will be used throughout the paper: Suppose
δ ∈ (0, 1), we write x = δ−O(1) instead of x = (1/δ)O(1) to indicate that there is a constant 0 6 C � 1
such that x = (1/δ)C .

Convention. If the statement of a result contains Vinogradov or O-notation in the assumptions, the
implied constants in the conclusion may depend on all implied constants from the assumptions.

2. Brief outline of some ideas

In this section we give a very rough outline of the ideas behind the application of the Montgomery–
Vaughan approach in the nilsequences setting, making a number of simplifications for the benefit of the
exposition. The main idea of Montgomery and Vaughan [1977] is to introduce a log factor into the Fourier
coefficient that we wish to analyze. Let f : N→ R be a multiplicative function that satisfies | f (p)|6 H
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for some constant H > 1 and all primes p and suppose (1-4) holds. Then we have∑
n6N

f (n)e(nα) log N
n
6

(∑
n6N

(
log N

n

)2
)1/2(∑

n6N

| f (n)|2
)1/2

� N 1/2
(∑

n6N

| f (n)|2
)1/2

,

and thus

log N
(

1
N

∑
n6N

f (n)e(nα)
)
�

(
1
N

∑
n6N

| f (n)|2
)1/2

+

∣∣∣∣ 1
N

∑
n6N

f (n)e(nα) log n
∣∣∣∣.

The first term in the bound is handled by the assumptions on f , that is, by assuming that (1-4) holds. To
bound the second term, one invokes the identity log n =

∑
d|n 3(d), which reduces the task to bounding

the expression ∑
nm6N

f (nm)3(m)e(nmα).

This in turn may be reduced to the task of bounding∑
np6N

f (n) f (p)3(p)e(pnα),

where p runs over primes. Applying the Cauchy–Schwarz inequality and smoothing, it furthermore
suffices to estimate expressions of the form∑

p,p′
f (p) f (p′) log(p) log(p′)

∑
n

w(n)e((p− p′)nα),

where p and p′ run over primes and where w is a smooth weight function. One employs a standard sieve
estimate to bound #{(p, p′) : p− p′ = h} for fixed h. Standard exponential sum estimates and a delicate
decomposition of the summation ranges for n, p, p′ yield an explicit bound on (1/N )

∑
n6N f (n)e(nα).

We seek to employ the above approach to correlations of the form

1
N

∑
n6N

(
f (n)− 1

N

∑
m6N

f (m)
)

F(g(n)0)

for multiplicative f . One problem we face is that the above approach makes substantial use of the
strong equidistribution properties of the exponential functions e((p− p′)nα) for distinct primes p, p′. A
general polynomial sequence (g(n)0)n6N on a nilmanifold G/0 may, on the other hand, not even be
equidistributed. This problem is resolved by an application of the factorization theorem for polynomial
sequences from [Green and Tao 2012b], which allows us to assume that (g(n)0)n6N is equidistributed in
G/0 if f is equidistributed in progressions to small moduli. The latter will be arranged for by employing
a W -trick. As above, we then consider the following expression, which we split into sums over large and
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small primes, respectively, with respect to a suitable cutoff parameter X :

1
N

∑
mp6N

f (m) f (p)3(p)F(g(mp)0)

=
1
N

∑
m6X

∑
p6N/m

f (m) f (p)3(p)F(g(mp)0)+ 1
N

∑
m>X

∑
p6N/m

f (m) f (p)3(p)F(g(mp)0).

Applying Cauchy–Schwarz to both terms shows that it suffices to understand correlations of the form∑
m,m′

f (m) f (m′)
∑

p

3(p)F(g(mp)0)F(g(m′ p)0)

and ∑
p,p′

f (p) f (p′)3(p)3(p′)
∑

m

F(g(pm)0)F(g(p′m)0).

Choosing X suitably, only the first of these correlations matters. We shall bound this correlation by
employing Green and Tao’s result that the W -tricked von Mangoldt function is orthogonal to nilsequences.
The necessary equidistribution properties of the sequences n 7→ F(g(mn)0)F(g(m′n)0) will be estab-
lished in Sections 7 and 8. The problem of extending the above method to functions from MH will be
addressed at the beginning of Section 9. For this purpose the moment condition (1-4) will be replaced by
Lemma 1.8.

3. A suitable Dirichlet decomposition for f ∈ Mh

In this section we prove Lemma 1.8, which shows that every function f ∈MH has a decomposition
f = f1 ∗ · · · ∗ fH into multiplicative functions fi such that the L2-norms of the fi are controlled on
average by the mean value of f . This lemma will replace the much more restrictive condition (1-4) in our
application of the Montgomery–Vaughan approach outlined in the previous section. Before we prove
Lemma 1.8, let us record a straightforward consequence of [Shiu 1980, Theorem 1] that will be used.

Lemma 3.1 (Shiu). Let H be a positive integer and suppose f : N→ R is a nonnegative multiplicative
function satisfying f (pk) 6 H k at all prime powers pk . Let W = W (x) be as before, let q > 0 be an
integer and let A′ ∈ (Z/WqZ)∗. Then∑

x−y<n6x
n≡A′ (mod Wq)

f (n)�
y

φ(Wq)
1

log x
exp

( ∑
w(x)<p6x

p-q

f (p)
p

)
, (3-1)

uniformly in A′, q and y, provided that q 6 y1/2 and x1/2 6 y 6 x.

Proof. This lemma differs from [Shiu 1980, Theorem 1] in that it does not concern short intervals but at
the same time it does not require f to satisfy f (n)�ε nε. Shiu’s result works with a summation range
of the form x − y < n 6 x , where xβ < y 6 x , β ∈

(
0, 1

2

)
. Thus, in our case the parameter β can be

regarded as fixed. As observed in [Nair and Tenenbaum 1998], the proof of [Shiu 1980, Theorem 1] only
requires the condition f (n)�ε nε to hold for one fixed value of ε once β is fixed.
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Note that any integer n ≡ A′ (mod Wq) is free from prime divisors p <w(x). Thus, f (n)6 H�(n) 6

nlog H/ logw(x). Given any ε > 0, we deduce that n ≡ A′ (mod Wq) implies f (n) 6 nε provided x is
sufficiently large. �

Proof of Lemma 1.8. Let h and h′ be as in the statement of the lemma. We begin by showing that

|h′(pk)|6 (2H)k, (3-2)

using induction. Since h′(p)= 0, the inequality holds for k = 1. To analyze the general case, note that,
since h(pk)= 0 whenever k > 2, we have

h∗H (pk)=

(
H
k

)
hk(p)=

(
H
k

)
f k(p)
H k

for 16 k 6 H, and h∗H (pk)= 0 if k > H. Thus, f = h′ ∗ h∗H implies that

h′(pk)= f (pk)−

min(k,H)∑
j=1

h′(pk− j )h∗H (p j ).

Suppose now that k> 2 and that the inequality holds for all j < k. Then, invoking also (1) of Definition 1.3,
we have

|h′(pk)|< H k
+

min(k,H)∑
j=1

(2H)k− j
(

H
j

)
< (2H)k

(
2−k
+

min(k,H)∑
j=1

1
j !2 j

)
< (2H)k,

as claimed.
To prove (1-7), suppose that fH = h or h ∗ h′. By Shiu’s bound, we have

DQ
x

∑
n6x/D

n≡A (mod Q)

f 2
H (n)�

1
log(x/D)

Q
φ(Q)

∏
p6x
p-Q

(
1+
| f (p)|

H p

)
,

where we used the trivial inequality fH (p)26 | fH (p)| = | f (p)|/H and extended the product over primes
up to x . Multiplying the right-hand side with

Q
φ(Q)

∏
p6x
p-Q

(
1+
| f (p)|

H p

)
� 1,

and observing that log(x/D)�H log x , we obtain√√√√√DQ
x

∑
n6x/D

n≡A (mod Q)

f 2
i (n)�H

1
(log x)1/2

Q
φ(Q)

∏
p6x
p-Q

(
1+
| f (p)|

H p

)
.
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Thus, the left-hand side of (1-7) is bounded by

�H
1

(log x)1/2
Q

φ(Q)

∏
p6x
p-Q

(
1+
| f (p)|

H p

) ∑
D6x1−1/H

gcd(D,Q)=1

∑
d1···dH−1=D

| f1(d1) · · · fH−1(dH−1)|

D

�H
1

(log x)1/2
Q

φ(Q)

∏
p6x
p-Q

(
1+
| f (p)|

H p

)(
1+

(H − 1)| f (p)|
H p

)(
1+

∑
k>2

| f1 ∗ · · · ∗ fH−1(pk)|

pk

)

�H
1

(log x)1/2
Q

φ(Q)

∏
p6x
p-Q

(
1+
| f (p)|

p

)(
1+

(H − 1)
p2

)(
1+

∑
k>2

| f1 ∗ · · · ∗ fH−1(pk)|

pk

)
.

The above is now seen to have the claimed bound

�H
1

(log x)1/2
Q

φ(Q)

∏
p6x
p-Q

(
1+
| f (p)|

p

)
for all sufficiently large x , providing

∑
w(x)<p6x

∑
k>2

| f1 ∗ · · · ∗ fH−1(pk)|

pk �H 1.

To show the latter, note that f1 ∗ · · · ∗ fH−1 equals either h∗(H−1) or h∗(H−1)
∗ h′. Similarly as in the first

part of this proof, we have

|h∗(H−1)(pk)|6

(
H − 1

k

)
6

H k

k!

for k < H and h∗(H−1)(pk)= 0 for k > H, and, consequently,

|(h∗(H−1)
∗ h′)(pk)| =

min(k,H−1)∑
j=0

|h′(pk− j )h∗(H−1)(p j )|

6
min(k,H−1)∑

j=0

(2H)k− j H j 6 2(2H)k .

Thus, if x is large enough that w(x) > 4H, then

∑
w(x)<p6x

∑
k>2

| f1 ∗ · · · ∗ fH−1(pk)|

pk 6 2
∑

w(x)<p6x

∑
k>2

(2H
p

)k
6 8H 2

∑
w(x)<p6x

1
p2

(
1−

2H
p

)−1

6 16H 2
∑

w(x)<p6x

1
p2 �H 1,

which completes the proof. �
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4. Multiplicative functions in progressions: The class of functions FH

Both of the conditions that define MH are natural and simple conditions on the behavior of | f | at prime
powers. Our aim in this section is to discuss the more complicated stability condition (1-5) on mean
values in progressions, that defines the class FH . We will prove two sufficient conditions, recorded in
Propositions 4.4 and 4.10, for the bound (1-5) to hold and apply these to provide several examples of
natural functions that belong to FH . In particular, we deduce a simple criterion, see Lemma 4.16, for a
nonnegative function to belong to FH .

4A. A sufficient condition for f ∈ FH . The main tool in our analysis of (1-5) will be the following
consequence of the “pretentious large sieve”, which lets one bound the tail of the character sum expansion
of Sh(x; q, a) for any bounded multiplicative function h and thereby simplifies the task of analyzing the
expression Sh(x; q, a).

Proposition 4.1 ([Granville and Soundararajan ≥ 2018]; cf. [Balog et al. 2013, Lemma 3.1; Granville
2009, Theorem 2; Granville et al. 2017, Theorem 1.8). Let C > 0 be fixed and let h be a bounded
multiplicative function. For any given x , consider the set of primitive characters of conductor at most
(log x)C and enumerate them as χ1, χ2, . . . in such a way that |Shχ1(x)| > |Shχ2(x)| > · · · . If x is
sufficiently large, then the following holds for all x1/2 6 X 6 x and q 6 (log x)C . Let C be any set of
characters modulo q, q 6 (log x)C , which does not contain characters induced by χ1, . . . , χk , where
k > 2. Then∣∣∣∣ 1
φ(q)

∑
χ∈C

χ(a)
∑
n6X

h(n)χ(n)
∣∣∣∣�C

eOC (
√

k)X
q

(
log log x

log x

)1− 1
√

k
log

log x
log log x

∏
p6q,p-q

(
1+
|h(p)| − 1

p

)
.

To deduce a sufficient condition for (1-5) we first extend this result to all unbounded elements of MH .

Corollary 4.2. Let f ∈MH and set h = f if H = 1. If H > 1, let h be the multiplicative function defined
in (1-6) so that f = h∗H

∗ h′ for a multiplicative function h′ with support in the square-full numbers. Let
C > 0 be a constant, let ε = 1

2 min(1, α f /H), and set k = dε−2
e > 2 and k ′ = dlog2(4H)e. For each

j ∈ {0, . . . , k ′}, let E j = {χ
( j)
1 , . . . , χ

( j)
k } denote the set consisting of the first k primitive characters of

conductor at most (log x1/2 j
)C defined by Proposition 4.1 when applied to h and with x replaced by x1/2 j

.
If x is sufficiently large, the following holds for all x1/2 6 y 6 x and all integer multiplies 0 < Q 6

(log x1/(8H))C of W (x). Let C be any set of characters modulo Q which does not contain characters
induced by any χ ∈ E := E0 ∪ · · · ∪ Ek′ , then∣∣∣∣S f (y; Q, a)−

Q
y

1
φ(Q)

∑
χ (mod Q)
χ 6∈C

χ(a)
∑
n6y

f (n)χ(n)
∣∣∣∣

=
Q

φ(Q)

∣∣∣∣∑
χ∈C

χ(a)
1
y

∑
n6y

f (n)χ(n)
∣∣∣∣�C,H,α f

1
(log x)1+α f /(3H)

Q
φ(Q)

exp
( ∑

p6x, p-Q

| f (p)|
p

)
.
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The proof of this corollary makes use of the following lemma about the contribution of the sparse
function h′.

Lemma 4.3. Let H > 1, f ∈MH and let f = h∗H
∗ h′ be the decomposition from (1-6). Let g : N→ C

be a bounded completely multiplicative function that vanishes at all primes p6w for a fixed w> (2H)16,
and let δ ∈ (0, 1). Then, if x1/2 6 y 6 x , we have∣∣∣∣1y∑

n6y

f (n)b(n)
∣∣∣∣6 ∑

n16yδ

|h′(n1)b(n1)|

n1

∣∣∣∣n1

y

∑
n26

y
n1

h∗H(n2)b(n2)

∣∣∣∣+O(x−
δ
8 (logy)O(H)).

Proof. Recall that h′ is supported on square-full numbers only and that |h′(pk)|6 (2H)k by (3-2). Since
b is completely multiplicative, we have∑

n6y

f (n)b(n)=
∑

n1n26y

h′(n1)h∗H (n2)b(n1)b(n2)

6
∑

n16yδ
|h′(n1)b(n1)|

∣∣∣∣ ∑
n26y/n1

h∗H (n2)b(n2)

∣∣∣∣+ y
∑

n1>yδ

|h′(n1)b(n1)|

n1

∑
n26y/n1

|h∗H (n2)|

n2

6
∑

n16yδ
|h′(n1)b(n1)|

∣∣∣∣ ∑
n26y/n1

h∗H (n2)b(n2)

∣∣∣∣+ y(log y)O(H)
∑

n1>yδ
p|n1⇒p>w

|h′(n1)|

n1
.

By decomposing every square-full number n1 as m2d with d |m, we obtain the following bound for the
sum in the final term:

∑
n1>yδ

p|n1⇒p>w

|h′(n1)|

n1
6

∑
m>yδ/3

p|m⇒p>w

(2H)�(m
2)

m2

∑
d|m

(2H)�(d)

d
6

∑
m>yδ/3

p|m⇒p>w

(2H)
2 log m
logw

m2 d(m)

�

∑
m>yδ/3

p|m⇒p>w

m
−2+2 log(2H)

logw +
1
8 �

∑
m6yδ/3

p|m⇒p>w

m−2+1
4 � y−

δ
4 , (4-1)

where we used the bound d(n)� n1/8. Combining the two bounds above completes the proof. �

Proof of Corollary 4.2. To start with, we consider the bounded multiplicative function h. Note that
Proposition 4.1 applies to values of X with x1/2 6 X 6 x . Our application, will, however, require a range
of the form x1/(4H) 6 X 6 x . For this reason, we will apply Proposition 4.1 once with x replaced by
x1/2 j

for each j ∈ {0, . . . , dlog2(4H)e}. If C is as in the statement of the corollary, then Proposition 4.1
shows that for all Q 6 (log x1/(8H))C and for all x1/(4H) < X 6 x , we have

1
X

Q
φ(Q)

∣∣∣∣∑
χ∈C

χ(A)
∑
n6X

h(n)χ(n)
∣∣∣∣�C,H,α f

(
log log x

log x

)1−1/
√

k

log
(

log x
log log x

)
�C,H,α f

(log x)−1+α f /(2H)(log log x)2,
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since 1/
√

k = 1/
√
[ε−2]6 ε = 1

2 min(1, α f /H)6 α f /(2H).
By property (2) of Definition 1.3, we have

Q
φ(Q)

exp
(∑

p6x
p-Q

|h(p)|
p

)
> exp

(∑
p6x
p-Q

| f (p)|
H p

)
>
( log x

C log log x

)α f /H
,

and, thus,

1
X

Q
φ(Q)

∣∣∣∣∑
χ∈C

χ(A)
∑
n6X

h(n)χ(n)
∣∣∣∣�C,H,α f

(log log x)2+α f /H

(log x)1+α f /(2H)

Q
φ(Q)

exp
(∑

p6x
p-Q

|h(p)|
p

)

�C,H,α f

1
(log x)1+α f /(3H)

Q
φ(Q)

exp
(∑

p6x
p-Q

|h(p)|
p

)
. (4-2)

To handle the case where H > 1, consider the decomposition f = h∗H
∗ h′ with h as in (1-6). If

x1/2 6 y 6 x , then Lemma 4.3 implies that for any δ ∈ (0, 1),

1
y

∑
χ∈C

χ(A)
∑
n6y

f (n)χ(n)6
1
y

∑
χ∈C

∑
d06yδ
|h′(d0)χ(d0)|

∣∣∣∣ ∑
d6y/d0

h∗H (d)χ(d)
∣∣∣∣+O(x−δ/8(log x)O(H)). (4-3)

The error term in this bound is acceptable. A generalization of the hyperbola method applied to the sum
over d (see Section 9A for a deduction) shows that the main term satisfies

1
y

∑
χ∈C

∑
d06yδ
|h′(d0)χ(d0)|

∣∣∣∣ ∑
d6y/d0

h∗H (d)χ(d)
∣∣∣∣

6
∑

d06yδ
p|d0⇒p>w(x)

|h′(d0)|

d0

∑
D6(y/d0)1−1/H

∑
d1···dH−1=D

|h(d1) · · · h(dH−1)||χ(D)|
D

×

H∑
i=1

Dd0

y

∣∣∣∣∣∑
χ∈C

χ(A)
∑

n:
(y/d0)

1−1/H max(d1,...,di−1)
6Dn6y/d0

h(n)χ(n)

∣∣∣∣∣. (4-4)

Observe that the upper bound on n in the inner sum satisfies y/(Dd0) ∈ [y1/H−δ, x]. By choosing
δ = 1/(4H), this interval is contained in [x1/(2H)−δ/2, x] = [x3/(8H), x]. An application of the triangle
inequality shows that the inner sum is bounded by

Dd0

y

∣∣∣∣∑
χ∈C

χ(A)
∑

n6y/(d0 D)

h(n)χ(n)
∣∣∣∣+ Dd0

y

∣∣∣∣∑
χ∈C

χ(A)
∑
n6y′

h(n)χ(n)
∣∣∣∣,

where y′ =min(y/(d0 D), (y/d0)
1−1/H D−1 max(d1, . . . , di−1)). We are now in a position to apply (4-2)
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to bound the first of these terms by

�C,H,α f

1
(log x)1+α f /(3H) exp

( ∑
p6x, p-Q

|h(p)|
p

)
.

If y′> x1/(4H), then the same bound applies to the second term. If, on the other hand, y′6 x1/(4H)6 y1/(2H),
then the second term may trivially be bounded by

φ(Q)y1/(4H)−1d0 D 6 φ(Q)y1/(4H)−1+1/(4H)+1−1/H 6 (log x)C x−1/(4H).

Inserting these bounds into (4-4) and completing the outer sums, we deduce that (4-4) is bounded by

�C,H,α f

1
(log x)1+α f /(3H) exp

(∑
p6x,
p-Q

|h(p)|
p

) ∑
d0:p|d0
⇒p>w(x)

|h′(d0)|

d0

(∑
d6x

|h(d)χ(d)|
d

)H−1

.

The sum over d in this bound satisfies(∑
d6x

|h(d)χ(d)|
d

)H−1

6
∏
p6x

(
1+
|h(p)χ(p)|

p

)H−1

6 exp
(
(H − 1)

∑
p6x,p-Q

|h(p)|
p

)
,

and the sum over d0 converges by (4-1), applied with y = 1, provided x is sufficiently large for w(x)>
(2H)16 to hold. Collecting all information together, it follows from (4-3) that

1
x

Q
φ(Q)

∑
χ∈C

χ(A)
∑
n6x

f (n)χ(n)�C,H,α f

1

(log x)
1+

α f
(3H)

Q
φ(Q)

exp
(∑

p6x,
p-Q

| f (p)|
p

)
,

which competes the proof. �

With Corollary 4.2 in place, we obtain the following sufficient condition for f ∈MH to belong to FH :

Proposition 4.4 (sufficient condition). Suppose that f ∈MH . Then f ∈FH if the following holds. For
every C > 0, there exists a function ψC : R>0→ R>0, with the property that ψC(x)→ 0 as x→∞, such
that

S f χ (x ′)= S f χ (x)+ O
(
ψC(x)
log x

exp
( ∑

p6x, p-Q

| f (p)|
p

))
, (x > 2), (4-5)

uniformly for all x ′ ∈ (x(log x)−C , x] and all characters χ (mod Q) with 1< Q 6 (log x)C and W (x) |Q.

Proof. Recall from Definition 1.4 that we have to show that there exists ϕC = o(1) such that

|S f (x ′; Q, A)− S f (x; Q, A)| = O
(
ϕC(x)
log x

Q
φ(Q)

∏
p6x, p-Q

(
1+
| f (p)|

p

))
(4-6)

uniformly for all x ′ ∈ (x(log x)−C , x], all 16 Q 6 (log x)C with W (x) | Q and all reduced A (mod Q).
This will be a straightforward consequence of the fact that by Corollary 4.2 there are only finitely many
characters in the character sum expansions of S f (x ′; Q, A) and S f (x; Q, A) that matter. Using the



1326 Lilian Matthiesen

notation from the corollary, let E (Q) denote the set of characters modulo Q that are induced by the
elements of E0 ∪ · · · ∪ Ek′ . Then

S f (x ′; Q, A)=
Q

φ(Q)

∑
χ (mod Q)
χ∈E (Q)

χ(A)S f χ (x ′)+ O
(
ψ(x)
log x

Q
φ(Q)

exp
(∑

p6x
p-Q

| f (p)|
p

))
,

where ψ(x)= OC,H,α f ((log x)−α f /(3H)), uniformly in x ′, Q and A as above. Thus, (4-6) follows from
our assumptions with ψC(x)= ψ(x)+ #E ·ϕC(x). �

Example 4.5 (applications using Selberg–Delange-type arguments). The conditions required by Propo-
sition 4.4 are of a type that can usually be checked by means of the Selberg–Delange method (see,
e.g., [Tenenbaum 1995, Section II.5]) provided the function f is closely related to a ζ - or L- function.
The range of the modulus Q of the characters χ that appear is small enough to ensure that exceptional
characters can be handled. Examples of functions suitable for this approach include:

(i) the function 1
4r(n)= 1

4 #{(x, y) ∈ Z2
: x2
+ y2
= n},

(ii) the indicator function of the set of sums of two squares,

(iii) the characteristic function of set of numbers composed of primes that split completely in a given
Galois extension K/Q of finite degree.

In the following subsection, we will further analyze the Lipschitz condition (4-5) and prove another
sufficient condition, in this case for an element f ∈MH to belong to FH,ni t .

4B. Lipschitz estimates for elements of MH and another sufficient condition. For applications of
Proposition 4.4 or Corollary 4.2, the following four lemmas, which we all prove in Section 4C, are
very useful. The first lemma is a slight generalization of the Lipschitz estimate for bounded multiplicative
functions and a related decay estimate that Granville and Soundararajan established in Theorems 3 and 4
of [Granville and Soundararajan 2003].

Lemma 4.6 (Lipschitz estimates). Let f0 ∈M1 and let x > 3. Suppose that f : N→ C is multiplicative,
bounded in absolute value by 1 and satisfies | f (pk)| = | f0(pk)| for all primes p > exp((log log x)2) and
k > 1. Define

F(s)=
∏
p6x

(
1+

f (p)
ps +

f (p2)

p2s + · · ·

)
.

If the maximum of max|y|62 log x |F(1+ iy)| is attained at y = tx, f , then, uniformly in x and f as above,
we have ∣∣∣∣1x ∑

n6x

f (n)n−i tx, f −
1
x ′
∑
n6x ′

f (n)n−i tx, f

∣∣∣∣� f0

1
(logx)1+C0

exp
(∑

p6x

| f (p)|
p

)
(4-7)
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for all x ′ ∈ [x exp(−(log log x)−4), x], where C0 ∈
(
0, 1

2α f0

)
is a positive constant that only depends on

α f0 . Furthermore, we have, for any tx, f as above,∣∣∣∣1x ∑
n6x

f (n)
∣∣∣∣� f0

1
|tx, f | + 1

+
log log x

log x
+

1
(log x)1+C0

exp
(∑

p6x

| f (p)|
p

)
. (4-8)

The conditions on f above will allow us to apply the lemma to twists hχ where h ∈M1 and χ is a
character modulo Q with Q 6 (log x)C for any given constant C > 0. In order to extend this to twists
f χ for f ∈MH and H > 1, we note that the function h associated to f via (1-6) belongs to M1. The
following lemma will enable us to employ Lemma 4.6 in general.

Lemma 4.7. Let f ∈MH and let h be as in (1-6). Let C > 0 be a fixed constant and let ψ :R>0→R>0 be
a function that satisfies ψ(x)→ 0 as x→∞. Let x > 1 and suppose that χ (mod Q), with Q 6 (log x)C

and W (x) | Q, is a character such that

|Shχ (y)− Shχ (y′)|6
ψ(x)
log y

exp
( ∑

p6y, p-Q

|h(p)|
p

)
for all y ∈ (x1/(2H), x] and y′ ∈ (y(log x)−C , y]. Then, for all x ′ ∈ (x(log x)−C , x], we have

|S f χ (x)− S f χ (x ′)|6
ψ ′(x)
log x

exp
( ∑

p6x, p-Q

| f (p)|
p

)
,

where ψ ′ is independent of χ and Q and satisfies ψ ′(x)→ 0 as x→∞; more precisely,

ψ ′(x)= OH,C
(
ψ(x)+ (log x)−min(1,α f /(2H))

+ x−1/8(log x)O(H)).
The next lemma shows that if χ is a character that is negligible in the application of Proposition 4.4 or

Corollary 4.2 to the function h, then χ is also negligible in an application of the result to f .

Lemma 4.8. Let f ∈MH , let h be as in (1-6), and let C > 0. Let ψ : R>0→ R>0 be a function that
satisfies ψ(x)→ 0 as x→∞. Let x > 1 and suppose that χ (mod Q), with Q 6 (log x)C and W (x) | Q,
is any character such that

|Shχ (x ′)|6
ψ(x)
log y

exp
( ∑

p6y, p-Q

|h(p)|
p

)
for all x ′ ∈ [x1/(4H), x]. Then

|S f χ (y)|6
ψ ′(x)
log x

exp
( ∑

p6x, p-Q

| f (p)|
p

)
, (y ∈ [x1/2, x]),

where ψ ′ is independent of χ and Q and satisfies

ψ ′(x)= O(ψ(x)+ x−1/(32H)(log x)O(H)).

Finally, we observe that (4-7) holds uniformly in f for some t = tx that only depends on x and f0.
This proves particularly valuable when dealing with families of induced characters.
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Lemma 4.9. Let x , f0 and f be as in Lemma 4.6, and let x ′ ∈
[
x exp

(
−

1
2(loglogx)4

)
,x
]
. Then there

exists |tx |6 2 log x , only dependent on x and f0, but not on f or x ′, such that, uniformly in x , x ′ and f as
before, ∣∣∣∣1x ∑

n6x

f (n)n−i tx −
1
x ′
∑
n6x ′

f (n)n−i tx

∣∣∣∣� 1
(log x)1+C0

exp
(∑

p6x

| f (p)|
p

)
, (4-9)

where C0 > 0 is a positive constant that only depends on α f0 .

As a consequence of Lemmas 4.6–4.9 and Corollary 4.2, we obtain the following sufficient condition
for testing whether a function belongs to FH,ni t .

Proposition 4.10 (another sufficient condition). Let f ∈MH and h as in (1-6). For every C > 0, let
ψC : R>0→ R>0 be a function that satisfies ψC(x)→ 0 as x→∞. Suppose that for every sufficiently
large x there exists τx ∈ R with |τx | 6 2 log x such that the following holds: If 1 6 Q 6 (log x)C with
W (x) | Q and if χ (mod Q) is a character then either the bound

|Sgxχ (x
′)|6

ψC(x ′)
log x ′

exp
( ∑

p6x ′,p-Q

|g(p)|
p

)
, (x1/(8H) 6 x ′ 6 x), (4-10)

holds for either g = h or g = f and for gx : n 7→ g(n)n−iτx , or else we have tx, f = τx or tx = τx in the
statement of Lemmas 4.6 or 4.9 when applied with f0 = h and with f replaced by hχ .

Then the function n 7→ f (n)n−iτx satisfies (1-5) and f ∈FH,ni t .

Example 4.11. The above proposition applies to:

(i) the Möbius function f = µ. In this case we may take τx = 0 for all x since Sµχ (x)�B q1/2(log x)−B

for all B > 0 and all χ (mod q).2 Indeed, if χ is a trivial character this estimate follows from prime
number theorem-type bounds on Sµ(x); see Example 4.18(i) for details. If χ (mod q) is nontrivial, then
its conductor, q ′ say, is at least 2 and one may deduce the estimate from [Iwaniec and Kowalski 2004,
Corollary 5.29], which proves the claimed bound for nontrivial primitive characters. In fact, if q 6 x ,
then it follows from [loc. cit., (5.79)] that∑

p6x

χ(p)�B q ′1/2x(log x)−B
+ω(q)�B q1/2x(log x)−B,

since ω(q)� log x . If q > x , then ∑
p6x

χ(p)�B q1/2x(log x)−B

holds trivially. Thus, [loc. cit., (5.79)] generalizes to all nontrivial χ and, by following the original proof
from [loc. cit.], so does [loc. cit., (5.80)].

2This is the same information about µ as was used in [Green and Tao 2012a, Proposition A.1] to handle the “major arcs”.
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(ii) every multiplicative function f that takes values on the unit circle, i.e., for which | f (n)| = 1 for all n.
This, in turn, follows from [Balog et al. 2013, Theorem 2], which provides the bound

|S f χ (x)| �
(
(log log x)2/ log x

)1/20
, (4-11)

valid for all characters χ of conductor Q 6 exp((log log x)2), except perhaps for those induced by one
exceptional character, ξ say. By Lemma 4.9, there exists |tx | 6 2 log x such that (4-9) holds for all
χ (mod Q) induced by ξ . Suppose now that |tx | > (log x)1/100. Then Lemma 4.9, combined with the
bound (4-8), implies that the above bound on |S f χ (x)| also holds for characters induced by ξ . In this
case, we may take τx = 0. If, however, |tx |6 (log x)1/100, then we may use partial summation to deduce
from (4-11) that

|S fxχ (x)| �
(
(log log x)2/ log x

)3/100

for all χ not induced by ξ . In this case, we may set τx = tx .

Proof of Proposition 4.10. This result follows from Corollary 4.2 in a similar way as Proposition 4.4 does.
To show that n 7→ fx(n) := f (n)n−iτx satisfies (1-5), let 1 6 Q 6 (log x)C be such that W (x) | Q and
let E (Q) denote the set of characters modulo Q that are induced by the elements of E0 ∪ · · · ∪ Ek′ from
Corollary 4.2, when applied to the function fx . Then

S fx (y; Q, A)− S fx (x; Q, A)=
Q

φ(Q)

∑
χ (mod Q)
χ∈E (Q)

χ(A)(S fxχ (y)− S fxχ (x))

+ OC,H,α f

(
(log x)−α f /(3H) Q

φ(Q)
1

log x
exp

( ∑
p6x, p-Q

| f (p)|
p

))
, (4-12)

whenever x1/2 6 y 6 x .
We begin with the contribution from those characters χ to which the first alternative from the statement

applies. Observe that (4-10) implies that

|Sgxχ (x
′)|6

ψ ′C(x)
log x

exp
( ∑

p6x,p-Q

|g(p)|
p

)
, (x1/(8H) 6 x ′ 6 x),

where ψ ′C(x)= OH (1)maxx1/(8H)6x ′6x ψC(x ′). To see this, note that for all x ′ as above,

exp
( ∑

p6x, p-Q

|g(p)|
p

)
exp

(
−

∑
p6x ′, p-Q

|g(p)|
p

)
6 exp

( ∑
x1/(8H)<p6x

H
p

)
6 exp

(
H(log log x + log(8H)− log log x + o(1))

)
6 (8H)H(1+o(1))

�H 1.
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Thus, by Lemma 4.8 it follows that all characters χ with χ ∈ E (Q) to which the first alternative from the
statement applies satisfy

|S fxχ (y)|6
ψ ′′C(x)
log x

exp
( ∑

p6x, p-Q

| f (p)|
p

)
, (x1/2 6 y 6 x), (4-13)

for a suitable function ψ ′′C = o(1).
For all remaining χ ∈ E (Q), Lemma 4.6 or 4.9 provides the Lipschitz estimate

S fxχ (y)= S fxχ (x)+ O
(
ψ ′′′(x)
log x

exp
( ∑

p6x, p-Q

| f (p)|
p

))
,

for y ∈ [x exp(−(log log x)4/2), x], with ψ ′′′(x)= (log x)−C0 . Thus, the result follows from (4-12). �

4C. Proofs of Lemmas 4.6–4.9. We prove Lemmas 4.6, 4.9, 4.7 and 4.8, in this order.

Proof of Lemma 4.6. The proof of this lemma is almost identical to the proofs of the original results of
Granville and Soundararajan [2003, Theorem 3 and 4], except for one ingredient: their Lemma 2.3 needs
to be replaced by Lemma 4.12 below. The estimate (4-8) follows immediately from [loc. cit., §5] and
Lemma 4.12. Concerning the Lipschitz estimate (4-7), we replace the application of [loc. cit., Theorem 3]
at the beginning of [loc. cit., §6] by the estimate (4-8). The bound in [loc. cit., equation (6.2)] continues
to apply. The first term in this bound is acceptable since in our case w 6 exp((log log x)4), and since
C0 < α f0 . To bound the integrand in the second term, we use the bound [loc. cit., equation (6.5)] if α is
large, which in our situation means that α > exp

(∑
p6x | f (p)|/p

)−1
(log x)C0 with C0 = C0(α f0, 1) as

in the lemma below. If α 6 exp
(∑

p6x | f (p)|/p
)−1
(log x)C0 , we proceed as in the small-α-case from

the original proof but, again, apply our Lemma 4.12 instead of [loc. cit., Lemma 2.3]. �

Lemma 4.12 (“new Lemma 2.3”). Let x > 3, f0 ∈MH and let f : N→ C be a multiplicative function
such that | f (pk)| 6 | f0(pk)| at all prime powers pk , and such that | f (pk)| = | f0(pk)| whenever p >
exp((log log x)2) and k ∈ N. Let

F(s)=
∏
p6x

(
1+

f (p)
ps +

f (p2)

p2s + · · ·

)
.

Then there exists a positive constant C0 = C0(α f0, H) ∈ (0, α f /2) such that for all real numbers y and
1/ log x 6 |β|6 log x , we have

|F(1+ iy)F(1+ i(y+β))| � exp
(

2
∑
p6x

| f (p)|
p

)
(log x)−2C0 .

Remark. Observe that we actually only use this lemma in the case where H = 1.
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Proof. Suppose | f (p)| = g(p)+ h(p) for two nonnegative functions g and h. Then

|F(1+ iy)F(1+ i(y+β))| � exp
(
<

∑
p6x

f (p)p−iy
+ f (p)p−i(y+β)

p

)

� exp
(∑

p6x

(g(p)+ h(p))|1+ p−iβ
|

p

)

� exp
(

2
∑
p6x

g(p)| cos
(1

2 |β| log p
)
|

p

)
exp

(
2
∑
p6x

h(p)
p

)
.

(4-14)

The aim is to exploit the fact that | cos | is not the constant function 1 in order to bound this expression.
We begin by decomposing the set of primes less than x into subsets on which

∣∣cos
( 1

2 |β| log p
)∣∣ is almost

constant. For this purpose, let δ = 1/(log x)3 and consider the decomposition of [0, 2π) into intervals
of the form

( 1
2(n − 1) log(1 + δ)|β|, 1

2 n log(1 + δ)|β|
]
. Thus, in order to cover the interval [0, 2π),

the parameter n runs over the range 1 6 n 6 N, for some N � (δ|β|)−1, and, in particular, we have
(log x)2 � N � (log x)4. By changing δ slightly, we can insure that 1

2 N log(1+ δ)|β| = 2π so that
the decomposition of [0, 2π) has exactly N full intervals and no smaller or larger ones. Next, we set
Y = exp((log log x)2) and decompose the set of primes in the interval [Y, x] into N sets of the form

Pn(x)=
⋃

m≡n (mod N )

{p ∈ (Y (1+ δ)m−1, Y (1+ δ)m] ∩ (Y, x]}, (16 n 6 N ).

If M = log(x/Y )/ log(1+ δ), the Brun–Titchmarsh inequality implies that for each n 6 N :

∑
p∈Pn(x)

1
p
6

∑
06m6M

m≡n (mod N )

π(Y (1+ δ)m)−π(Y (1+ δ)m−1)

Y (1+ δ)m−1

�

∑
m≡n (mod N )

δ

log(Y δ(1+ δ)m−1)

� δ
∑

06k6M/N

1
log(x(1+ δ)−k N )

� δ
∑

06k6M/N

1
log x − k N log(1+ δ)

�
δ

N log(1+ δ)
log
( log x

N log(1+ δ)

)
�

1
N

log log x . (4-15)

Now suppose that g satisfies ∑
p6x

g(p)
p
∼ α log log x (4-16)
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for some α > 0 and let S ⊂ {1, . . . , N } denote the set of all indices n such that∑
p∈Pn(x)

g(p)
p
>
α

2

∑
p∈Pn(x)

1
p
. (4-17)

Then, taking our choice of Y into account and since g(p)6 | f (p)|6 H, we have∑
n∈S

∑
p∈Pn(x)

1
p
>

1
H

∑
n∈S

∑
p∈Pn(x)

g(p)
p
>

1
H

( ∑
Y6p6x

g(p)
p
−
α

2

∑
p6x

1
p

)
∼

α

2H
log log x . (4-18)

Comparing this bound with (4-15) shows that S contains a positive proportion of the integers up to N.
Our next aim is to find a subset T ⊂ S that satisfies∑

n∈T

∑
p∈Pn(x)

1
p
> 1

2

∑
n∈S

∑
p∈Pn(x)

1
p
, (4-19)

and for which
∣∣cos

( 1
2 |β| log p

)∣∣ is bounded away from 1 as p ranges over
⋃

n∈T Pn .
By (4-15) and (4-18), we can choose a positive proportion of all n6 N not to belong to T. In particular,

we can exclude all n from T for which( 1
2(n− 1) log(1+ δ)|β|, 1

2 n log(1+ δ)|β|
]

intersects [0, c)∪ (π − c, π + c)∪ (2π − c, 2π) for some small constant c> 0 that only depends on α, H
and on the implied constant in (4-15). By doing so, we ensure that∣∣cos

( 1
2 |β| log p

)∣∣< cos c < 1

for all p ∈ Pn(x) with n ∈ T. Writing c′ := cos c and considering the cosine sum in the final expression
of (4-14), the above yields∑

p∈Pn(x)

g(p)
∣∣cos

(1
2 |β|log p

)∣∣
p

6 c′
∑

p∈Pn(x)

g(p)
p
6

∑
p∈Pn(x)

g(p)
p
−(1−c′)

∑
p∈Pn(x)

g(p)
p

for n ∈ T. If n 6∈ T, we have the trivial bound∑
p∈Pn(x)

g(p)
∣∣cos

( 1
2 |β| log p

)∣∣
p

6
∑

p∈Pn(x)

g(p)
p
.

By combining these two bounds with (4-17), (4-18) and (4-19), it follows that∑
p6x

g(p)
∣∣cos

( 1
2 |β| log p

)∣∣
p

6
∑
p6x

g(p)
p
− (1− c′)

∑
n∈T

∑
p∈Pn(x)

g(p)
p

6
∑
p6x

g(p)
p
−
α(1− c′)

2

∑
n∈T

∑
p∈Pn(x)

1
p

6
∑
p6x

g(p)
p
− (C0+ o(1)) log log x



Generalized Fourier coefficients of multiplicative functions 1333

for some constant C0 > 0 that only depends on α and H. By (4-14), we thus deduce that

|F(1+ iy)F(1+ i(y+β))| � exp
(

2
∑
p6x

| f (p)|
p

)
(log x)−2C0 .

It remains to show that there exists a decomposition of | f (p)| into nonnegative functions g and h such
that (4-16) holds. This will follow from [Elliott 2017, Lemma 5]. To apply this result, we observe that the
two conditions from Definition 1.3 and partial summation show that every f0 ∈MH has the property that

lim inf
x→∞

1
ε log x

∑
x1−ε<p6x

| f0(p)| log p
p

> α f0 . (4-20)

for every ε ∈ (0, 1). Thus, the assumptions of [Elliott 2017, Lemma 5] are met and the lemma implies
that there exists a nonnegative completely multiplicative function g0 6 | f0|, which satisfies

lim
x→∞

(log x)−1
∑
p6x

g0(p) log p
p

=
α f0

2
.

The function g0 arises from | f0| as the result of a simple greedy-type argument that decides one by one
for each prime p if g0(p)= 0 or g0(p)= | f0(p)|. Partial summation yields

∑
p6z

g0(p)
p
∼
α f0

2
log log z.

If we let g(p)= g0(p) for all p > Y and g(p)= 0 otherwise, then

∑
p6x

g(p)
p
=

∑
p6x

g0(p)
p
+ O(H log log Y )∼

α f0

2
log log x + O(H log log log x),

as required. Thus, we may set α = 1
2α f0 in the first part of the proof and, hence, C0 only depends on α f0

and H. �

Proof of Lemma 4.9. Let f ∗ denote the multiplicative function that satisfies f ∗(pk)= 0 whenever k > 1
and p 6 exp((log log x)2), and f ∗(pk) = f0(pk) whenever k > 1 and p > exp((log log x)2). Then, by
applying Lemma 4.6 twice, we have∣∣∣∣1y ∑

n6y

f ∗(n)n−i t
−

1
y′
∑
n6y′

f ∗(n)n−i t
∣∣∣∣� 1

(log x)1+C0
exp

(∑
p6x

| f (p)|
p

)
,

for all y, y′ ∈ [x exp(−(log log x)−4), x] and some t = tx, f ∗ with |t |6 2 log x .
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Observe that any f may be decomposed as f = f ′∗ f ∗, where f ′(pk)= 0 for all p> exp((log log x)2).
Thus, if w := exp

( 1
2(log log x)−4

)
and x ′ ∈ [x/w, x], then∣∣∣∣1x ∑

n6x

f (n)n−i t
−

1
x ′
∑
n6x ′

f (n)n−i t
∣∣∣∣�∑

d6w

| f ′(d)|
d

∣∣∣∣dx ∑
n6x/d

f ∗(n)n−i t
−

d
x ′
∑

n6x ′/d

f ∗(n)n−i t
∣∣∣∣

+
1
x

∑
d>w

∑
m<x/d

| f ′(d) f ∗(m)| +
1
x ′
∑
d>w

∑
m<x ′/d

| f ′(d) f ∗(m)|

�

∑
d6w

| f ′(d)|
d

1
(log x)1+C0

exp
(∑

p6x

| f ∗(p)|
p

)
+

∑
m6x

1
m

m
x

∑
w<d6x/m

| f ′(d)| +
∑
m6x ′

1
m

m
x ′
∑
m6x ′

∑
w<d6x ′/m

| f ′(d)|.

To bound the last two terms, recall that | f ′(n)|6 1 and that, see, e.g., [Tenenbaum 1995, Theorem III.5.1],

9(z, y) := #{n 6 z : p | n⇒ p 6 y} � ze−u/2 (z > y > 2), (4-21)

where u = log z/ log y. In particular

9
(
z, exp((log log x)2)

)
� ze−(log log x)2/4

= z(log x)−(log log x)/4

whenever z > exp
( 1

2(log log x)4
)
. Thus, the above is bounded by

�
1

(log x)1+C0
exp

(∑
p6x

| f (p)|
p
+

∑
p6d

1
p2(1− p−1)

)
+

∑
m6x

1
m
(log x)−(log log x)/2

�
1

(log x)1+C0
exp

(∑
p6x

| f (p)|
p

)
,

which completes the proof. �

Proof of Lemma 4.8. By Lemma 4.3 and (4-4) it follows that

|S f χ (y)|6 x−δ/8(log x)O(H)
+

∑
d06yδ

∑
D6
( y

d0

)1− 1
H

∑
d1···dH−1=D

|h′(d0)h(d1) · · · h(dH−1)||χ(d0 D)|
d0 D

×

H∑
i=1

Dd0

y

(∣∣∣∣ ∑
n6 y

(Dd0)

h(n)χ(n)
∣∣∣∣+ ∣∣∣∣ ∑

n<
( y

d0

)1− 1
H max(d1,...,di−1)

D

h(n)χ(n)
∣∣∣∣).

As in the proof of Corollary 4.2, we set δ = 1/(4H). Then the inner sums may be bounded using either
the assumption or, if (y/d0)

1−1/H max(d1, . . . , di−1)/D < x1/(4H), by the trivial estimate

Dd0

y
x1/(4H) 6 y1−1/H+1/(4H)−1x1/(4H)

= y−3/(4H)x1/(4H) 6 x−1/(8H).

The lemma follows by bounding the sums over D and d0 as in the proof of Corollary 4.2. �



Generalized Fourier coefficients of multiplicative functions 1335

Proof of Lemma 4.7. We first use Lemma 4.3 to remove the contribution of the function h′ defined in
Lemma 1.8. Given δ ∈ (0, 1), let δ′ be such that xδ = x ′ δ

′

. Then

|S f χ (x)− S f χ (x ′)|

6 x−δ/4(log x)O(H)
+

∑
d06xδ

|h′(d0)χ(d0)|

d0

∣∣∣∣d0

x

∑
n6x/d0

h∗H (n)χ(n)−
d0

x ′
∑

n6x ′/d0

h∗H (n)χ(n)
∣∣∣∣. (4-22)

To analyze the difference above, we seek to decompose h∗H using H − 1 applications of the hyperbola
trick3, ∑

nm6Y

=

∑
n6X

∑
m6Y/n

+

∑
m6Y/X

∑
X6n6Y/m

.

Fix d0 and let X = (x ′/d0)
1/H . If y ∈ {x ′/d0, x/d0}, then applying the hyperbola trick with the chosen

cutoff X and with Y = y, n = d1 and m = d2 · · · dH, we obtain

∑
d1···dH6y

=

∑
d16X

∑
d2···dH6y/d1

+

∑
d2···dH6y/X

∑
X6d16y/(d2···dH )

.

We keep the second term and decompose the first term again, using the same cutoff X, and Y = y/d1,
n = d2 and m = d3 · · · dH . This leads to

∑
d1···dH6y

=

∑
d16X

∑
d26X

∑
d3···dH6y/(d1d2)

+

∑
d16X

∑
d3···dH6y/(d1 X)

∑
X6d26y/(d1d3···dH )

+

∑
d2···dH6y/X

∑
X6d16y/(d2···dH )

.

Continuing in this manner, i.e., keeping every time the second new term and further decomposing the
first, we arrive at

∑
d1···dH6y

=

∑
d1,d2,...,dH−16X

∑
dH6y/(d1d2···dH−1)

+

H−1∑
i=1

∑
d1,...,di−16X

∑
di+1,...,dH :

d1···d̂i ···di−16y/X

∑
X6di6y/(d1···d̂i ···dH )

. (4-23)

In order to apply this decomposition to (4-22), let us consider the difference of the normalized sums
(4-23) for y = x/d0 and y = x ′/d0. Recall that x > x ′. By splitting the third sum of the second term of
the decomposition into two sums when y = x/d0, we obtain the following:

3This proof requires a different decomposition from the one used in (4-4) and Section 9D in order to be able to collect
together terms in (4-24) below.
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d0

x

∑
d1···dH6x/d0

−
d0

x ′
∑

d1···dH6x ′/d0

=

∑
d1,d2,...,dH−16X

(
d0

x

∑
dH6x/(d0d1···dH−1)

−
d0

x ′
∑

dH6x ′/(d0d1···dH−1)

)

+

H−1∑
i=1

∑
d1,...,di−16X

∑
di+1,...,dH :

d0···d̂i ···di−16x ′/X

(
d0

x

∑
di6x/(d1···d̂i ···dH )

−
d0

x ′
∑

di6x ′/(d1···d̂i ···dH )

+
d0

x ′
∑
di6X

−
d0

x

∑
di6X

)

+

H−1∑
i=1

∑
d1,...,di−16X

∑
di+1,...,dH :

x ′/X6d0···d̂i ···dH6x/X

d0

x

∑
X6di6x/(d0···d̂i ···dH )

. (4-24)

When we apply this decomposition with the summation argument g(d1) · · · g(dH ), where g(n)=h(n)χ(n),
then the first and the second term above contain expressions of the form Sg(z)− Sg(z′) for suitable z
and z′. These will be estimated using the assumptions of the lemma. Before turning towards these, let
us consider the remaining terms.

The second term contains two short sums up to X that will be estimated using Shiu’s bound (3-1) in
the following form. For every fixed j ∈N, every q ∈N for which the interval ((W (x)q)2, x] is nonempty
and every y ∈ ((W (x)q)2, x], we have

∑
n6y

|g∗ j (n)| =
∑

A∈(Z/qW (x)Z)∗

∑
n6y

n≡A (mod qW (x))

|h∗ j (n)|�
x

log x
exp

(
j
∑
p6y

p-qW (x)

|h(p)|
p

)
, (4-25)

since W (x)q 6 y1/2, and thus W (x)q =W (y)q ′ for some q ′ 6 y1/2.
By applying this bound twice with W (x)q = Q, we obtain∣∣∣∣d0

x ′
∑

d1,...,di−16X

g(d1) · · · g(di−1)
∑

di+1···dH6
x ′/(d0···di−1 X)

g(di+1) · · · g(dH )
∑
di6X

g(di )

∣∣∣∣
6

d0 X
x ′

1
log X

exp
(∑

p6X
p-Q

|h(p)|
p

) ∑
d1,...,di−16X

|g(d1) · · · g(di−1)|
∑

d6x ′/(d0···di−1 X)

|g∗(H−i)(d)|

6
1

(log X)2
exp

(
(H − i + 1)

∑
p6x ′
p-Q

|h(p)|
p

) ∑
d1,...,di−16X

|g(d1) · · · g(di−1)|

d1 · · · di−1

�H,C
1

(log x)2
exp

(∑
p6x ′
p-Q

| f (p)|
p

)
,

which saves (log x)−1.
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In the final term of (4-24), we will take advantage of the fact that the third sum is short. Starting off
with another application of (4-25), we get

∑
d1,...,di−16X

g(d1) · · · g(di−1)
∑

di+1,...,dH :

x ′/X6d0···d̂i ···dH6x/X

g(di+1) · · · g(dH )
d0

x

∑
X6di6x/(d0···d̂i ···dH )

g(di )

6
1

log x
exp

(∑
p6x ′
p-Q

|h(p)|
p

) ∑
d1,...,di−16X

|g(d1) · · · g(di−1)|

d1 · · · di−1

∑
di+1,...,dH :

x ′/X6d0···d̂i ···dH6x/X

|g(di+1) · · · g(dH )|

di+1 · · · dH

6
1

log x
exp

(∑
p6x ′
p-Q

|h(p)|
p

) ∑
d1,...,di−16X

di+1,...dH−16x

|g(d1) · · · ĝ(di ) · · · g(dH−1)|

d1 · · · d̂i · · · dH−1

∑
dH :

x ′/X6d0···d̂i ···dH6x/X

1
dH

6
1

log x
exp

(∑
p6x ′
p-Q

|h(p)|
p

) ∑
d1,...,di−16X

di+1,...,dH−16x

|g(d1) · · · ĝ(di ) · · · g(dH−1)|

d1 · · · d̂i · · · dH−1

(
log x

x ′
+ O(1)

)

6
log log X + log C + O(1)

log x
exp

(
(H − 1)

∑
p6x ′
p-Q

|h(p)|
p

)
,

which saves a factor (log x)−α f /H+ε.
To summarize our progress so far, note that the decomposition (4-24) and the previous two bounds yield∣∣∣∣d0

x

∑
n6x/d0

h∗H (n)χ(n)−
d0

x ′
∑

n6x ′/d0

h∗H (n)χ(n)
∣∣∣∣

=

∑
d1,...,dH−16
(x ′/d0)

1/H

|g(d1) · · · g(dH−1)|

d1 · · · dH−1

∣∣∣∣Sg

(
x

d0 · · · dH−1

)
− Sg

(
x ′

d0 · · · dH−1

)∣∣∣∣
+

H−1∑
i=1

∑
d1,...,di−16
(x ′/d0)

1/H

|g(d1) · · · g(di−1)|

d1 · · · di−1

∑
di+1,...,dH :

d1···d̂i ···dH6
(x ′/d0)

1−1/H

|g(di+1) · · · g(dH )|

di+1 · · · dH

×

∣∣∣∣Sg

(
x

d0 · · · d̂i · · · dH

)
− Sg

(
x ′

d0 · · · d̂i · · · dH

)∣∣∣∣
+ OH,C

(
(log x)−min(1,α f /(2H)) 1

log x
exp

( ∑
p6x ′, p-Q

| f (p)|
p

))
.

Choosing δ = 1
2 to ensure that d0 6 x1/2, it follows that the terms x/(d0 ···dH−1) and x/(d0 ···d̂i ···dH ) in

the above expression are at least as large as x1/(2H). Since g = hχ , we may thus apply the assumptions
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of the lemma to deduce that the above is bounded by:

�
ψ(x)

log((x ′/d0)1/H )
exp

( ∑
p6x ′, p-Q

|h(p)|
p

)(∏
d6x

g(d)
d

)H−1

+ (log x)−min(1,α f /(2H)) 1
log x

exp
( ∑

p6x ′, p-Q

| f (p)|
p

)

� (ψ(x)+ (log x)−min(1,α f /(2H)))
1

log x
exp

( ∑
p6x ′, p-Q

| f (p)|
p

)
The lemma then follows from (4-22) since by (4-1), applied with y = 1 and w = w(x), the completed
outer sum over d0 converges, i.e.,

∑
∞

d0=1 |h
′(d0)χ(d0)|/d0 < ∞, provided x is sufficiently large for

w(x)> (2H)16 to hold. �

4D. Applications to functions bounded away from zero at primes. In this subsection, we will discuss a
concrete example of an element of FH and prove a criterion for real-valued f to belong to FH that is
just based on the values of f at primes. Let us begin by stating a special case of Proposition 4.10 for
nonnegative f ∈MH .

Lemma 4.13 (sufficient condition for nonnegative functions). Let f ∈MH be a nonnegative function.
Then there exists a constant c > 0, only depending on f , such that the following holds: If x > 3, if
1< Q 6 exp((log log x)2) is a multiple of W (x), and if χ0 (mod Q) denotes the trivial character, then

S f χ0(x)= S f χ0(x
′)+ O

(
(log x)−c 1

log x

∏
p6x, p-Q

(
1+
| f (p)|

p

))

uniformly for all x > 3, x ′ ∈ [x exp(−(log log x)2, x] and all Q as above. If , furthermore, for either
g = h or g = f and for any C > 0, we have a uniform bound of the form

Sgχ (x)= O
(
ψC(x)
log x

∏
p6x, p-Q

(
1+
|g(p)|

p

))
, (4-26)

valid for all x>3, all nontrivial χ (mod Q) and all 16Q6 (log x)C with W (x)|Q, and whereψC =o(1)
may depend on C but is otherwise independent of χ and Q, then f ∈FH .

Remark 4.14. Note that in the context of this corollary, the main term in the character sum expansion of
S f (x; Q, A) always comes from the trivial character.

Proof. The first part follows from Lemmas 4.6 and 4.7 provided we can show that for all sufficiently
large x we have tx,hχ0 = 0 in the statement of Lemma 4.6 when applied with f replaced by hχ0. This,
however, is immediate since h is nonnegative. The second part is a consequence of Proposition 4.10. �

The following three lemmas all arise as (nontrivial) applications of Lemma 4.13.
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Lemma 4.15 (coefficients of cusp forms). Let f be a primitive holomorphic cusp form4 of weight k ∈ 2N

and level N ∈ N and let

f (z)=
∞∑

n=1

λ f (n)n(k−1)/2e(nz),

be its Fourier expansion, where the λ f (n) are the normalized Fourier coefficients. Then the function
n 7→ |λ f (n)| belongs to F2.

Lemma 4.16 (nonnegative f ). For every H > 1 and α > 0, there exists c = c(H, α) > 0 such that the
following holds. If f ∈MH is nonnegative with α f > α, and if there exists δ > 0 such that

#{p 6 x : f (p) > δ}> (1−c)x
log x

for all sufficiently large x , then f ∈FH .

Remark. As a special case, Lemma 4.16 yields the following simple criterion, which also proves one
part of Proposition 1.5:

A nonnegative function f ∈MH belongs to FH if it is bounded away from zero on the primes, i.e., if
there exists δ > 0 such that f (p) > δ for all p. The same holds true if the latter condition is replaced by
#{p 6 x : f (p) > δ}> (1+ o(1))x/ log x as x→∞.

The following variant of Lemma 4.16 will follow with minor changes in the proof.

Lemma 4.17 (real-valued f ). For every H > 1 and α > 0, there exists c = c(H, α) > 0 such that the
following holds. If f ∈MH is a real-valued function with α f > α, and if there exists δ > 0 and a sign
ε ∈ {+,−} such that

#{p 6 x : ε f (p) > δ}> (1−c)x
log x

for all sufficiently large x , then f ∈ FH,ni t . If , furthermore, for every C > 0 there exists a function
ψC = o(1) such that

S f χ0(x)= O
(
ψC(x)
log x

∏
p6x,p-Q

(
1+
| f (p)|

p

))
,

whenever χ0 is the trivial character modulo Q for any Q ∈ (1, (log x)C) with W (x) | Q, then f ∈FH .

Remark. As a particular consequence, we deduce that f ∈FH,ni t for any function f ∈MH for which
there exists δ > 0 such that f (p) <−δ < 0 at all primes p.

Example 4.18. Examples of functions the above results apply to include:

(i) The Möbius function f (n)= µ(n). Here, the full statement of Lemma 4.17 applies. We may deduce
this from the estimate Sµ(x)�B (log x)−B for B > 0 and x > 2. In fact, writing d | Q∞ to indicate that

4See [Iwaniec and Kowalski 2004, §14.1 and §14.7] for definitions.
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p | d implies p | Q, it follows via repeated Möbius inversion that∑
n6x

(n,Q)=1

µ(n)=
∑

d|Q∞

∑
n6x/d

µ(n)

Recalling (4-21), the above is seen to be bounded by

�

∑
d|Q∞

d6x1/2

∑
n6x/d

µ(n)+
∑

x1/2<2k6x

9(2k, (log x)C)x2−k

�B

∑
d|Q∞

d6x1/2

x
d
(log x)−B

+

∑
x1/2<2k6x

x exp
(
−

log x
4C log log x

)

�B x(log x)−B
∏
p|Q

(1− p−1)−1
�B x(log x)−B+1,

which yields the required decay estimate.

(ii) The function f (n) = δω(n) for any nonzero real number δ and where ω(n) counts the number of
distinct prime factors of n. If δ > 0, then Lemma 4.16 applies. For δ < 0 we will now show that the full
statement of Lemma 4.17 applies. Since W (x) | Q, we may simplify our task by removing finitely many
primes from consideration to start with: let A> |δ| be a constant to be chosen later, let Q0=

∏
p>A pvp(Q)

and let h(n) = δω(n)1gcd(n,
∏

p6A p)=1 denote the restriciton of f to integers free from primes factors
p 6 A. For this function, the Selberg–Delange method as stated in [Montgomery and Vaughan 2006,
Theorem 7.18] implies Sh(x)� (log x)δ−1 and S|h|(x)� (log x)|δ|−1 for all x > 2, while Lemma 1.7 and
Shiu’s lemma in its original form [Shiu 1980, Theorem 1] yield S|h|(x) � (1/ log x)

∏
p6x(1+ |δ|/p).

Proceeding in a similar way as in (i), repeated Möbius inversion shows that∑
n6x

(n,Q)=1

δω(n) =
∑
k>1

∑
d1|Q∞0
d1>1

∑
d2|d∞1
d2>1

· · ·

∑
dk |d∞k−1
dk>1

|δ|ω(d1)+···+ω(dk)
∑

n6x/dk
p|n⇒p>A

δω(n)

6
∑

d|Q∞0

|δ|$(d)℘m(d)
∣∣∣∣ ∑
n6x/d

h(n)
∣∣∣∣, (4-27)

where $(d)= ω(d) if |δ|< 1 and $(d)=�(d) if |δ|> 1, and where ℘m counts factorizations of the
following form:

℘m(d)= #
{
d = d1 · · · dk, k > 1 : d j > 1 and (p | d j ⇒ p | di for all i < j) for all 16 j 6 k

}
.

If ℘(n) denotes the partition number of n as defined in [Hardy and Ramanujan 1918], then

℘m(d)6
∏
p|d

℘(νp(d)).

To bound (4-27), we will use the fact that there exists a constant B > 1 such that ℘(n)6 B
√

n , as proved
in [loc. cit., §2]. Further, we require a bound corresponding to the one recalled in (4-21) but for sums
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over |δ|$(n)℘m(n) restricted to smooth numbers that are coprime to all p 6 A. For such sums we have

9∗(x, y) :=
∑
n6x

p|n⇒p∈(A,y]

|δ|$(n)℘m(n)6 Cεx1/2+ε
+

∑
n6x

p|n⇒p∈(A,y]

(nx−1/2)α
∏
p|n

|δ|$(p
vp (n))B

√
vp(n)

for any α > 0. Let α = (log y)−1 and suppose that y > 2. By [Tenenbaum 1995, Corollary III.3.5.1], the
final sum in the expression above is bounded by

� x1−α/2
∏

A<p6y

(1− p−1)
∑
k>0

pαk
|δ|$(p

k)Bk

pk

� x1−α/2
∏

A<p6y

(1− p−1)(1− e|δ|Bp−1)−1
� x1−α/2(log y)O(1),

provided A > eB max(1, |δ|). Thus, in total, we obtain

9∗(x, y)� x1−α/2(log y)O(1)
= x exp

(
−

log x
2 log y

+ O(1) log log y
)
� x exp

(
−

log x
4 log y

)
for all 26 y 6 x , provided A > eB max(1, |δ|).

Returning to (4-27), we choose A = eB max(1, |δ|) in the definition of h and Q0, and recall that
Q0 6 Q 6 (log x)C . With the above bound on 9∗(x, y) in place, the expression (4-27) can now be
bounded by

�

∑
d|Q∞0

d6x1/2

|δ|$(d)℘m(d)
∑

n6x/d

δω(n)+
∑

x1/2<2k6x

9∗(2k, (log x)C)x2−k(log(x2−k))|δ|−1

�

∑
d|Q∞0

d6x1/2

x
|δ|$(d)℘m(d)

d
(log x)δ−1

+

∑
x1/2<2k6x

x exp
(
−

log x
4C log log x

)
(log x)|δ|

� x(log x)δ−1
∏
p|Q0

∑
k>0

|δ|$(p
k)B
√

k

pk + OE(x(log x)−E),

which is further bounded by

� x(log x)δ−1
∏
p|Q

p>max(|δ|,B)

∑
k>0

|δ|$(p
k)Bk

pk + OE(x(log x)−E)

� x(log x)δ−1(log Q)B|δ|
�
(C log log x)O(|δ|)

(log x)2|δ|
x

log x

∏
p6x, p-Q

(
1+
|δ|

p

)
.

Thus, the required decay estimate holds.

(iii) The general divisor functions dk(n)= 1(∗k)(n) for k > 2, i.e., the k-fold convolution of 1 with itself.
In this case Lemma 4.16 applies.
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The remainder of this subsection contains the proofs of Lemmas 4.15–4.17. We begin with the proof of
Lemma 4.15, which is the least technical case. Lemmas 4.16 and 4.17 will follow with small modifications
from the same proof.

Proof of Lemma 4.15. The function λ f that describes the normalized Fourier coefficients of f is a
multiplicative function and satisfies Deligne’s bound

|λ f (n)|6 d(n),

where d is the divisor function. This shows that part (1) of Definition 1.3 holds with H = 2. Condition
(2) of the definition follows from [Rankin 1973, Theorem 2], since∑

p6x

|λ f (p)| log p > 1
2

∑
p6x

λ f (p)2 log p ∼ x
2
,

which allows us to take αλ f =
1
2 − ε for any ε > 0. Hence, g = |λ f | belongs to M2.

To show that g ∈F2, let h be the bounded multiplicative functions defined, as in Lemma 1.8, by

h(pk)=

{ 1
2 |λ f (p)| if k = 1,
0 if k > 1,

and note that, by Lemma 4.13, it suffices to show that

|Shχ (x)| = o
(

1
log x

∏
p6x

p-qW (x)

(
1+
|h(p)|

p

))
(4-28)

for all nontrivial χ (mod Q) with Q 6 (log x)C and W (x) | Q. We begin this task by invoking Halász’s
theorem. Since g is bounded, the Halász–Granville–Soundararajan bound [Granville and Soundararajan
2003, Corollary 1] implies that

|Shχ (x)| =
1
x

∣∣∣∣∑
n6x

χ(n)h(n)
∣∣∣∣� (M + 1)e−M

+
1
Y
+

log log x
log x

, (4-29)

where

M = M(x, Y )= min
|y|62Y

∑
p6x

1−<(h(p)χ(p)piy)

p
.

Note that

M(x, Y )= min
|y|62Y

∑
p6x

1− h(p)+ h(p)−<(h(p)χ(p)piy)

p

=

∑
p6x

1− h(p)
p

+ min
|y|62Y

∑
p6x

h(p)(1−<(χ(p)piy))

p
;

(4-30)

we abbreviate the second term in this expression as

Mhχ (x, Y ) := min
|y|62Y

∑
p6x

h(p)(1−<(χ(p)piy))

p
.
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Observe that the product in the bound (4-28) satisfies∏
p6xp-qW (x)

(
1+
|h(p)|

p

)
� exp

( ∑
(log x)C+2<p6x

|h(p)|
p

)
�ε (log x)−ε exp

(∑
p6x

|h(p)|
p

)
�ε (log x)αh−ε

(4-31)
with αh = αg/H = αg/2. Thus, if we let Y = (log x)1−αh/2, then the last two terms in (4-29) are negligible
compared with the bound (4-28). Combining (4-29), (4-30) and (4-31) it follows that

|Shχ (x)| � (1+M)e−Mhχ (x,Y ) exp
(∑

p6x

|h(p)| − 1
p

)
+ (log x)−1+αh/2

�
log log x

log x
e−Mhχ (x,Y ) exp

(∑
p6x

|h(p)|
p

)
+ (log x)−1+αh/2

�ε

(log x)εe−Mhχ (x,Y )

log x

∏
p6x

p-qW (x)

(
1+
|h(p)|

p

)
+ (log x)−1+αh/2. (4-32)

This reduces our task to that of finding a sufficiently good lower bound on Mhχ (x, Y ). To achieve this,
we aim to show that there are positive constants δ0, δ1, δ2 > 0 such that for all nontrivial χ (mod Q) with
Q 6 (log x)C and W (x) | Q, for all 06 t 6 2Y and for all y ∈ (exp((log x)1−αh/4), x], the set

Pδ1,δ2(y)= {p 6 y : h(p) > δ1} ∩ {p 6 y : 1−<(χ(p)pi t) > δ2} (4-33)

has positive relative density at least δ0 in the set of primes up to y, i.e.,

#Pδ1,δ2(y)>
δ0 y

log y
. (4-34)

The restriction to nonnegative t is justified here since we consider together with every nontrivial χ
(mod qW (x)) also its conjugate character χ .

Assuming (4-34) for the moment, we then have∑
p∈Pδ1,δ2 (x)

1
p
>

#Pδ1,δ2(x)
x

+

∫ x

2

#Pδ1,δ2(t)
t2 dt >

δ0

log x
+ δ0

∫ x

exp((log x)1−αh/4)

dt
t log t

dt >
δ0αh

4
log log x,

and, hence,

eMhχ (x,Y )� exp
(
δ1δ2

∑
p∈Pδ1,δ2 (x)

1
p

)
� (log x)δ0δ1δ2αh/4.

Combined with (4-32), this shows, in particular, that

|Shχ (x)| �ε (log x)−δ0δ1δ2αh/4+ε 1
log x

∏
p6x
p-Q

(
1+
|h(p)|

p

)
+ (log x)−1+αh/2,

and, hence, that (4-28) holds. Thus, it remains to establish (4-34).
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The set of primes Pδ1,δ2(y) is determined by two conditions involving the behavior of h, χ and ni t

at these primes. To find a lower bound on the cardinality of Pδ1,δ2(y), our first step is to remove the
condition that h(p) > δ1 from consideration. To do so, recall that the Sato–Tate law [Barnet-Lamb et al.
2011] implies that

#{p 6 y : 06 |λp|6 α} ∼
µ(α)y
log y

for every α ∈ [0, 2], where

µ(α)=
2 arcsin

( 1
2α
)
+ sin

(
2 arcsin

( 1
2α
))

π
.

This shows, in particular, that for every c1 ∈ (0, 1) there exists a δ(c1) > 0 such that

#{p 6 y : g(p) > δ(c1)}>
c1 y

log y
(4-35)

for all sufficiently large y. Thus, to prove (4-34) for δ2 =
1
12 , say, it suffices to show that for every

06 t 6 2Y and every y ∈
(
exp((log x)1−αh/4), x

]
, the set

Pχ,t(y) :=
{

p 6 y : <(χ(p)pi t) < 11
12

}
(4-36)

has positive relative density in the set of primes up to y. Indeed, if

#Pχ,t(y)>
c2 y

log y
(4-37)

for some c2 > 0, then, setting c1 = 1− 1
2 c2 in (4-35) and letting δ1 = δ(c1), we find that #Pδ1,δ2(y) is at

least c2 y/(2 log y), i.e., that (4-34) holds with δ0 =
1
2 c2 > 0, as required.5

Having simplified our problem to that of establishing (4-37) for a set of primes only defined by the
behavior of χ(p) and pi t , our next step is to also remove χ from consideration and to essentially turn
the problem into a question about the distribution of (t log p/(2π))p6y modulo one. Let us begin by
decomposing the set of primes into classes on which χ(p) is constant and consider the primes in each
progression A (mod Q) for gcd(A, Q)= 1 separately. Let {z} = z−bzc denote the fractional part of a
real number z, let T = t/(2π) and consider for each A as above the set

NA(y)= {p < y : {T log p} ∈ IT log y and p ≡ A (mod Q)} (4-38)

where IT log y =
[
T log y− 1

9 , T log y
]
(mod 1) is an interval of fixed length 1

9 , the position of which only
depends on the parameters y and t , but not on the residue class A. Our aim is to show that there exists a
constant c3> 0 such that for every reduced residue class A (mod Q) and every y ∈ (exp((log x)1−αh/4), x],
we have

#NA(y)>
c3 y

φ(Q) log y
. (4-39)

5 In view of the reduction to (4-37), it becomes clear that we will only require (4-35) to hold for one specific value of c1 in
the end. This will later allow us to deduce Lemma 4.16 from this proof and, with some further modifications, also Lemma 4.17.
For this reason we will track the information gathered on c2 throughout the rest of the proof.
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Since this bound clearly holds for all invertible residue classes if t = T = 0 and if c3 = 1− ε, ε > 0, we
may restrict attention to the case t ∈ (0, 2Y ] below.

Assuming (4-39) for the moment, let us first show how to deduce the claimed bound (4-37). In view
of (4-39), it suffices to show that for a positive proportion of the reduced residues A (mod Q) we have
NA(y)⊂Pχ,t(y) for all y ∈

(
exp((log x)1−αh/4), x

]
.

If χ is a nontrivial real character, then each of the preimages χ−1(1) and χ−1(−1) contains 1
2φ(Q)

residue classes A (mod Q). If the distance of T log y to the closest integer satisfies ‖T log y‖> 1
6 , then

we have <e(z) < cos
( 2π

6

)
+

1
9 =

1
2 +

1
9 <

3
4 for every z ∈ IT log y , and, hence,

<(χ(p)pi t)=<(ei t log p) < 3
4 <

11
12

for all p ∈NA(y) and all 1
2φ(Q) classes A ∈ χ−1(1). If, on the other hand, ‖T log y‖6 1

6 , then we have
< e(z)> cos 2π

6 −
1
9 =

1
2 −

1
9 > 0 for every z ∈ IT log y , and, thus,

<(χ(p)pi t)=−<(ei t log p) < 0< 11
12

for all p ∈NA(y) and all 1
2φ(Q) classes A ∈ χ−1(−1). Thus, (4-37) holds with c2=

1
2 c3 if χ is nontrivial

and real.
Turning towards the case where χ is not real, recall that the nonzero values of any Dirichlet character

χ (mod Q) are the k-th roots of unity if χ has order k in the group of characters modulo Q and recall
also that χ(A) assumes each k-th root of unity equally often as A runs over the reduced residue classes
modulo Q. Thus, if χ (mod Q) is not a real character, then each of the four sets

R> = {A (mod Q) : <(χ(A)) > 0}, R< = {A (mod Q) : <(χ(A)) < 0},

I> = {A (mod Q) : =(χ(A)) > 0}, I< = {A (mod Q) : =(χ(A)) < 0}

is nonempty and contains a positive proportion of the reduced residues A (mod Q). To see this, note that
k> 3, since χ is not real. By the symmetry of the set of k-th roots of unity, we have #I<= #I> and, if i is
a k-th root of unity, then #R<= #R> as well. If i is not a k-th root of unity, then |#R<−#R>|6 φ(Q)/k.
Since I<∪I> and R<∪R> both exclude at most two of the k k-th roots and since the latter set excludes
none if i is not a k-th root, we have

#S >
k− 2

2
φ(Q)

k
=

(
1
2
−

1
k

)
φ(Q)>

φ(Q)
6

for each set S ∈ {R>,R<,I>,I<}. This proves the claim.
For each of the above sets S , the product set{

χ(A)e2π iτ
: A ∈S , τ ∈

[
T log y− 1

9 , T log y
]}

is contained in an arc of length 2π
( 1

2 +
1
9

)
on the unit circle and a rotation by π

2 maps each of these four
arcs onto another one of them. This configuration has the property that no arc of length at most π4 meets
more than three of the product sets. Thus, for each choice of the endpoint T log y there is one set S for
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which the above product set avoids {ei z
: ‖z‖< π/8}, and for that particular set S , we then have

<(χ(p)pi t)=<(χ(A)ei t log p) < cos π
8
=

1
2

√
2+
√

2< 11
12

for all A ∈ S and all p ∈ NA(y). Thus, (4-37) holds with c2 =
1
6 c3. This completes the proof of the

claim that (4-39) implies (4-37).
It finally remains to analyze the set NA(y) that was defined in (4-38) and we will do this by borrowing

an approach from Wintner’s work [1935] on the distribution of (log pn)n6x modulo one.
Let us fix a reduced residue class A (mod Q) and let (p(A)n )n∈N denote the sequence of primes congruent

to A (mod Q), ordered in increasing order. Adapting Wintner’s notation to our setting, let NA(τ ) denote
the largest index m for which log p(A)m < τ , if such an m exists, and let NA(τ ) = 0 otherwise. By the
prime number theorem in arithmetic progressions, we then have

NA(τ )=
eτ

φ(Q)τ
(1+ O(τ−1)), (τ > 0). (4-40)

Observe that NA(τ/T ) counts the number of m> 0 such that T log pm 6 τ . Thus, if we set ξ := {T log y},
so that T log y = [T log y] + ξ , then, in analogy to [Wintner 1935, equation (3)], we may express the
quantity #NA(y) as

#NA(y)=
[T log y]∑

n=1

(
NA

(n+ ξ
T

)
− NA

(n+ ξ − 1/9
T

))

=

[T log y]∑
n=T

NA

(n+ ξ
T

)
−

[T log y]∑
n=T

NA

(n+ ξ − 1/9
T

)
. (4-41)

If T ∈ (0,C ′] for any fixed constant C ′ > 1, then

#NA(y) > NA

(
[T log y] + ξ

T

)
− NA

(
[T log y] + ξ − 1/9

T

)
= NA(log y)− NA

(
log y−

1
9T

)
= π(y; Q, A)−π(ye−1/(9T )

; Q, A)

> π(y; Q, A)−π(ye−1/(9C ′)
; Q, A)

�C ′ π(y; Q, A), (4-42)

and c3�C ′ 1 in (4-39). This leaves us to establish (4-39) for T ∈
(
C ′, 1

π
(logx)1−αh/2

]
.

To bound (4-41) below, note that the prime number theorem (4-40) implies that

[τ ]∑
n=T

NA

(n+ ξ
T

)
=

T
φ(Q)

[τ ]∑
n=T

e(n+ξ)/T

n+ ξ
+ O

(
T 2

φ(Q)

[τ ]∑
n=T

e(n+ξ)/T

(n+ ξ)2

)
. (4-43)
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A corresponding expansion for the second sum in (4-41) is obtained on replacing ξ by ξ − 1
9 . The sum in

the main term above may be asymptotically evaluated, using induction:

(e1/T
− 1)

N−1∑
n=T

en/T

n+ξ
=

eN/T

N
+ O

(
1
T
+

N∑
n=T

en/T

(n+1)2

)
, (N > T + 1). (4-44)

Indeed, if N = T + 1, then∣∣∣∣ e
T + ξ

−
e1+1/T

T + 1

∣∣∣∣= ∣∣∣∣e1+1/T 1− ξ
(T + 1)(T + ξ)

−
e

T + ξ

∣∣∣∣= O
(

e1+1/T

(T + 1)2
+

1
T

)
,

and if we assume that (4-44) holds for N = M, then it follows for N = M + 1, since

eM/T

M
+
(e1/T
− 1)eM/T

M + ξ
=

eM/T

M
+
(e1/T
− 1)eM/T

M
+
ξeM/T (e1/T

− 1)
M(M + ξ)

=
e(M+1)/T

M
+ O

(e(M+1)/T

M2

)
=

e(M+1)/T

M + 1
+ O

(e(M+1)/T

M2

)
.

Thus, evaluating main term in (4-43) by means of (4-44), we obtain

[τ ]∑
n=T

NA

(n+ ξ
T

)
=

T
φ(Q)

eξ/T e([τ ]+1)/T

(e1/T − 1)([τ ] + 1)
+ O

(
T 2

φ(Q)

[τ ]∑
n=T

e(n+1)/T

(n+ 1)2
+

1
φ(Q)

)
. (4-45)

Since
∫

1/(log x)2 dx = li(x)− x/log x � x/(log x)2, the sum in the error term satisfies

[τ ]∑
n=T

e(n+1)/T

(n+1)2
6
∫ τ+1

T

et/T

t2 dt = 1
T

∫ e(τ+1)/T

e

du
(log u)2

= O
(

T e(τ+1)/T

(τ+1)2
+ 1

)
.

Inserting this information, (4-45) and the analogues expression with ξ replaced by ξ − 1
9 into (4-41), we

obtain

#NA(y)=
T

φ(Q)
e
[T log y]+1

T e
ξ
T

[T log y]+1
1−e−

1
9T

e
1
T −1

+ O
(

T
φ(Q)

e
T log y+1

T

(T log y+1)2/T 2 +
T 2

φ(Q)

)
.

Recalling that 1< C ′ < T 6 (log x)1−αh/2/π and that (1−αh/4) log x < log y 6 log x , this yields

#NA(y)=
T

φ(Q)
ey

[T log y]+1
1−e−1/9T

e1/T−1
+O

(
T

φ(Q)
y

(log y)2

)
=

T
φ(Q)

ey
[T log y]+1

1−e−1/9T

e1/T−1
+Oαh

(
y(log y)−1−αh/2/φ(Q)

)
�αh

1−e−1/9T

e1/T−1
1

φ(Q)
y

log y
. (4-46)

Thus, it remains to bound below the leading fraction in this bound. To this end, note that

e−τ = 1−
τ

2
−
τ − τ 2

2
−

∞∑
k=1

τ 2k+1

(2k+ 1)!

(
1−

τ

2k+ 2

)
6 1−

τ

2
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for every τ ∈ [0, 1], and that

eτ 6 1+ τ +
τ 2

2

∞∑
k=0

2−k
= 1+ τ + τ 2 6 1+ 2τ

for all τ ∈
[
0, 1

2

]
. Thus, if T > 2, then the leading factor in the lower bound (4-46) satisfies

1− e−1/9T

e1/T − 1
>

1− 1+ 1/18T
1+ 2/T − 1

=
1
36
,

and it follows that c3�αh 1 in this case. Choosing C ′ = 2 in (4-42), this completes the proof of (4-39)
and of the lemma. �

Proof of Lemma 4.16. This lemma follows from the proof above, observing that the information (4-35)
gained from the Sato–Tate law is now included as an assumption in the statement of the lemma. More
precisely, (4-35) is only required for c1 = 1− 1

2 c2, with c2 =
1
6 c3�αh 1. Thus, c1 = 1− c for some c> 0

only depending on αh = α/H. �

Proof of Lemma 4.17. To deduce this lemma, we need to apply Proposition 4.10 instead of the special
case recorded in Lemma 4.13. We restrict attention to the first part of this lemma, the second being a
simplification. Let h be the function associated to f via (1-6). Let x > 1 and let tx be a real number as in
Lemma 4.9, applied with f0 = h. By arguing as in the proof of Lemma 4.9, it follows from (4-8) that

|Shχ0(x)| �
1

|tx | + 1
+

log log x
log x

+
1

(log x)1+C0
exp

(∑
p6x

|h(p)χ0(p)|
p

)
whenever χ0 (mod Q), Q 6 exp((log log x)2), is a trivial character. If |tx |> (log x)1−αh/2, then |Shχ0(x)|
is small, and we set τx = 0. If |tx |6 (log x)1−αh/2, we instead set τx = tx .

The rest of the proof proceeds almost exactly as that of Lemma 4.15, but with the following changes.
Instead |Shχ (x)|, we now seek to bound |Sh(n)χ(n)n−i tx (x)|, or even

max
|t |6(log x)1−αh/2

|Sh(n)χ(n)n−i t (x)|. (4-47)

Since the parameter Y is chosen as Y = (log x)1−αh/2 in the proof of Lemma 4.15, we may readily turn
the bound (4-29) into one on (4-47) by redefining M as M = M(x, Y ′) with Y ′ = 2Y, a change which
does not affect the rest of the argument. Continuing from here, we replace the decomposition (4-30) by

M(x, Y ′)= min
|y|62Y ′

∑
p6x

1− |h(p)| + |h(p)| −<(h(p)χ(p)piy)

p

=

∑
p6x

1− |h(p)|
p

+ min
|y|62Y ′

∑
p6x

|h(p)|(1− sgn(h(p))<(χ(p)piy))

p
,

and let

Mhχ (x, Y ′)= min
|y|62Y ′

∑
p6x

|h(p)|(1− sgn(h(p))<(χ(p)piy))

p
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denote the second term from this new expression. As in the proof of Lemma 4.16, we need to replace
(4-35) by our new assumptions, which will also allow us to fix sgn(h(p))= ε. The set of primes in (4-36)
now takes the form

Pχ,t(y)=
{

p 6 y : ε<(χ(p)piy)) < 11
12

}
.

The deduction of (4-37) from (4-39) remains, apart from obvious changes taking into account the additional
sign ε, unchanged. �

5. The W -trick

Generalising the fact that the bound (1-1) only applies to Fourier coefficients (1/x)
∑

n6x f (n)e(αn) at
an irrational phase α, it is the case that an arbitrary multiplicative function f may correlate with a given
nilsequence, unless this sequence itself is sufficiently equidistributed. Thus, statements of the form

1
N

∑
n6N

h(n)F(g(n)0)= oG/0(1)

with h = f or h = f − S f (N ; 1, 1) cannot be expected to hold in general. On the other hand, it turns out
to be sufficient to ensure that h is equidistributed in progressions to small moduli in order to resolve this
problem. For arithmetic applications such as establishing a result of the form (1-9), this can be achieved
with the help of the W -trick from [Green and Tao 2008]. The basic idea is to decompose f into a sum of
functions that are equidistributed in progressions to small moduli. This is achieved by decomposing the
range {1, . . . , N } into subprogressions modulo a product W (N ) of small primes, which has the effect of
fixing or eliminating the contribution from small primes on each of the subprogressions.

For multiplicative functions some minor modifications are necessary. Our aim is to decompose the
interval {1, . . . , N } into subprogressions r (mod q) in such a way that

S f (N ; q, r)= (1+ o(1))S f (N ; qq ′, r + qr ′) (5-1)

for small q ′ and 06 r ′ < q . Thus, f should essentially have a constant average value when decomposing
one of the given subprogressions into further subprogressions of small moduli q ′. The example of the
characteristic function of sums of two squares shows that we cannot in general choose q to be a product
of small primes (consider the case where r ≡ 1 (mod 2), q ′ = 2 and r + qr ′ ≡ 3 (mod 4)), but rather
need to allow q to be a product of small prime powers. Further, if f is a function for which Shiu’s bound
on S f (N ; q, r) is correct in the sense that

S f (N ; q, r)∼
q
φ(q)

1
log N

∏
p6N
p-q

(
1+

f (p)
p

)
,

then, in order for (5-1) to hold, we must have p | q whenever p | q ′ and p is small.
Our aim in this section is to show that for every f ∈FH we may, instead of q =W (N ) as in [Green and

Tao 2008], take q = W̃ (N ) := q∗(N )W (N ) for some integer-valued function q∗ :N→N that satisfies the
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bound q∗(x)6 (log x)O(1). For comparison, recall that W (x)=
∏

p6w(x) p, with w as in Definition 1.2.
Thus,

log W (x)=
∑

p6w(x)

log p ∼ w(x) and W (x)6 (log x)1+o(1).

For such a function W̃ , we may decompose the range [1, N ] into subprogressions of the form

{16 m 6 N : m ≡ w1 A (mod w1W̃ (N ))},

where A ∈ (Z/W̃ (N )Z)∗ and where w1 > 1 is composed entirely of primes dividing W̃ (N ). Abbreviating
W̃ = W̃ (N ), we have gcd(w1, W̃ n+ A)= 1 and hence f (w1(W̃ n+ A))= f (w1) f (W̃ n+ A). Thus, it
suffices to study the family of functions

{n 7→ f (W̃ n+ A) : 0< A < W̃ (N ), gcd(A, W̃ )= 1}.

Our first concern is to discard the set of large values of w1 from consideration, as by doing so we can
insure that the range on which each function n 7→ f (W̃ n+ A) needs to be considered is always large.
Since large values of w1 form a sparse set, their contribution in any arithmetic application can usually be
bounded by just using the Cauchy–Schwarz inequality and a bound on the second moment of f as in
[Browning and Matthiesen 2017, Lemma 7.9]. More precisely, one can show that if, for C1 > 1,

SC1(N )= {w1 ∈ N : w1 > (log N )C1, p |w1⇒ p | W̃ (N )},

then
1
N

∑
n6N

∑
w1∈SC1 (N )

1w1|n| f (n)| � (log N )−C1/3,

provided q∗(N ) < (log N )C1/3 and C1 is sufficiently large with respect to H ; see [Matthiesen 2016, §5]
for details. By choosing C1 > 3α f , we can for instance ensure that this bound is o

( 1
N

∑
n6N | f (n)|

)
.

As shown in [loc. cit., §5], the contribution of SC1(N ) to correlations of the form (1-9) is negligible.
Thus, for the purpose of arithmetic applications, it suffices to consider n 7→ f (W̃ n + A) for n ∈
{1, . . . , T } with

T =
N − Aw1

w1W̃ (N )
�

N

(log N )C1 W̃ (N )
.

The next proposition shows that every function f ∈FH admits a W -trick. More precisely, any finite
collection f1, . . . , fr of elements from FH simultaneously admits a W -trick and we moreover have
control over the size of W̃ (= q) and over the level of q ′ up to which (a weakened form of) the relation
(5-1) holds. Below, W̃ plays the role of q and q plays the role of q ′.

Proposition 5.1 (the elements of FH,ni t admit a W -trick). Let E, H > 1 be constants and let f1, . . . , fr ∈

FH,ni t . Then there exists a constant κ , depending on E , H, r and α = min16 j6r α f j , and functions
ϕ′ : N→ R and q∗ : N→ N such that the following holds:

(1) ϕ′(x)→ 0 as x→∞.



Generalized Fourier coefficients of multiplicative functions 1351

(2) q∗(x)6 (log x)κ for all sufficiently large x ∈ N.

(3) If x ∈ N is sufficiently large, if we set W̃ (x) := q∗(x)W (x), and if we define

fx : n 7→ f (n)n−i tx for any f ∈ { f1, . . . , fr }

and with tx as in Definition 1.6 with C = 2E + κ + 4, then the estimate

qW̃ (x)
|I |

∑
m∈I

m≡A (qW̃ (x))

fx(m)− S fx (x; W̃ (x), A)= OE,H,κ

(
ϕ′(x)

1
log x

W̃ (x)
φ(W̃ (x))

∏
p<x

p-W̃ (x)

(
1+
| f (p)|

p

))
(5-2)

holds uniformly for all intervals I ⊆{1, . . . , x} with |I |> x(log x)−E , for all integers 0<q6 (log x)E

and for all A ∈ (Z/qW̃ (x)Z)∗.

Remarks 5.2. (1) If f ∈FH , then fx = f .

(2) We will show that (5-2) holds with ϕ′(x) = ϕC(x)+ (logw(x))−1
+ (log x)−α f /(3H)

+ (log x)−E ,
where ϕC is as in Definition 1.4 with C = 2E + κ + 4.

The rest of this section is devoted to a proof of Proposition 5.1. Our strategy is to first relate the
left-hand side of (5-2) to a restricted character sum, which we will then attempt to bound by means of the
“pretentious large sieve”-consequence recorded in Corollary 4.2.

We begin with a technical lemma that will at various points in the argument allow us to control the
contribution of the prime divisors p | W̃ (N ) that are larger than w(N ).

Lemma 5.3. Let 16 a 6 (log N )E be an integer that is free from prime factors p <w(N ) and suppose
that 06 g(p)6 H for all p. Then∏

p|a

(
1+

g(p)
p

)
= 1+ OE,H

(
1

logw(N )

)
.

Proof. The assumptions on a imply the bound�(a)6 E log log N/logw(N ) on the total number of prime
factors of a. Let m = [w(N )/ logw(N )+�(a)] and recall that the n-th prime pn satisfies pn ∼ n log n.
Then,

pm ∼ m log m 6
w(N )+ E log log N

logw(N )
log m ∼ w(N )+ E log log N .

Using the bounds on w(N ) from Definition 1.2 and Mertens’ estimate, we obtain∏
p|a

(
1+

g(p)
p

)
6
∏
p|a

(1+ p−1)H 6
∏

w(N )<p<pm

(1+ p−1)H

6

(
log(w(N )+ E log log N )+ O(1)

logw(N )+ O(1)

)H

=

(
1+ OE

(
1

logw(N )

))H

= 1+ OE,H

(
1

logw(N )

)
,

as claimed. �



1352 Lilian Matthiesen

Corollary 5.4. If x and q are as in Proposition 5.1, then

qW̃ (x)

φ(qW̃ (x))
6

(
1+ OE,H

(
1

logw(N )

))
W̃ (x)

φ(W̃ (x))
.

Proof. Let a =
∏

p|q,p-W̃ (x) p. Then∏
p|a

(1− p−1)−1
=

∏
p|a

(1+ p−1)(1− p−2)−1

6 exp
(∑

p|a

2
p2

)∏
p|a

(1+ p−1)=
(

1+ O
( 1
w(x)

))∏
p|a

(1+ p−1). �

The next lemma replaces the general interval I from (5-2) by one of the form {1, . . . , y}.

Lemma 5.5. If E, H, x, f and fx are as in Proposition 5.1, if κ > 0 is a given constant and if W̃ (x)6
(log x)κ+2 is a multiple of W (x), then (5-2) follows if there exists a function ϕ′′ = o(1) such that

S fx (x; qW̃ (x), A)= S fx (x; W̃ (x), A)+ OE,H,κ

(
ϕ′′(x)

log x

W̃q

φ(W̃q)

∏
p<x
p-W̃q

(
1+
| f (p)|

p

))
(5-3)

for all q ∈ (0, (log x)−E
] and A ∈ (Z/qW̃ (x)Z)∗. More precisely, we may take

ϕ′(x)= ϕC(x)+ϕ′′(x)+ (logw(x))−1

in (5-2), where ϕC is as in Definition 1.4 with C = 2E + κ + 4.

Proof. In view of (5-3), it suffices to relate the first term in (5-2) to S fx (x; qW̃ (x), A). Let y1, y2 ∈ Z>0

and suppose that I = (y1, y1+ y2] ⊂ [1, x] with y2 > x(log x)−E . Writing W̃ = W̃ (x), an application of
(1-5) with C := 2E + κ + 4> E shows that the first term in (5-2) satisfies

qW̃
|I |

∑
m∈I

m≡A (qW̃ )

fx(m)=
qW̃
y2

∑
y1<m6y1+y2

m≡A (qW̃ )

fx(m)=
y1+ y2

y2
S fx (y1+ y2; qW̃ , A)−

y1

y2
S fx (y1; qW̃ , A)

=
y1+ y2

y2
S fx (x; qW̃ , A)−

y1

y2
S fx (y1; qW̃ , A)

+ O
(
ϕC(x)

log x

W̃q

φ(W̃q)

∏
p<x
p-W̃q

(
1+
| f (p)|

p

))
. (5-4)

We now split into two cases. If, on the one hand,

x > y1 > y2(log x)−E−κ−4 > x(log x)−2E−κ−4,

then (1-5) shows that S fx (y1; qW̃ , A) can be replaced by S fx (x; qW̃ , A) in the final expression in (5-4),
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so that (5-4) is seen to equal

S fx (x; qW̃ , A)+ O
(
ϕC(x)

log x

W̃q

φ(W̃q)

∏
p<x
p-W̃q

(
1+
| f (p)|

p

))
.

In this case, (5-2) follows with ϕ′ = ϕC +ϕ
′′
+ (logw(x))−1 from (5-3) and Corollary 5.4.

If, on the other hand, y1 6 y2(log x)−E−κ−4, then

y1+ y2

y2
= (1+ O((log x)−E−κ−4)).

Since φ(qW̃ )6 qW̃ 6 (log x)E+κ+2, we further have

S fx (y1; qW̃ , A)=
qW̃
y1

∑
n6y1

n≡A (mod qW̃ )

f (n)6 qW̃
∑
n6y1

n≡A (mod qW̃ )

f (n)
n

6 qW̃
∏
p6y
p-qW̃

(
1+
| f (p)|

p
+

H 2

p2(1− H/p)

)
� qW̃

∏
p6y
p-qW̃

(
1+
| f (p)|

p

)

� (log x)E+κ+2 qW̃

φ(qW̃ )

∏
p6y
p-qW̃

(
1+
| f (p)|

p

)
,

which implies that

y1

y2
S fx (y1; qW̃ , A)6 (log x)−E−κ−4S fx (y1; qW̃ , A)� (log x)−2 W̃q

φ(W̃q)

∏
p<x,p-W̃q

(
1+
| f (p)|

p

)
.

Thus, in this case, (5-4) equals

S fx (x; qW̃ , A)+ O
(
ϕC(x)+ (log x)−1

log x
W̃q

φ(W̃q)

∏
p<x
p-W̃q

(
1+
| f (p)|

p

))
,

and an application of (5-3) yields (5-2) with ϕ′(x) = ϕC(x)+ ϕ′′(x)+ (logw(x))−1, when taking into
account Corollary 5.4. �

Following the above reduction, we now proceed to analyze the difference of the two mean values that
appear in (5-3).

Lemma 5.6 (restricted character sum). Let g : N→ C be an arithmetic function, not necessarily multi-
plicative, let W̃ , q, A > 1 be integers, and suppose that gcd(A, qW̃ )= 1. If y > 1, then

Sg(y; W̃ , A)− Sg(y; qW̃ , A)=
qW̃

y
1

φ(qW̃ )

∑∗

χ (mod qW̃ )

χ(A)
∑
n6y

g(n)χ(n), (5-5)

where
∑
∗ indicates the restriction of the sum to characters that are not induced from characters mod W̃ .



1354 Lilian Matthiesen

Proof. We have

Sg(y; W̃ , A)− Sg(y; qW̃ , A)=
W̃
y

( ∑
n6y

n≡A (mod W̃ )

g(n)− q
∑
n6y

n≡A (mod qW̃ )

g(n)
)

=
1
y

W̃

φ(qW̃ )

∑
χ (mod qW̃ )

( ∑
A′ (mod qW̃ )

A≡A′ (mod W̃ )

χ(A′)− qχ(A)
)∑

n6y

g(n)χ(n)

=
1
y

W̃

φ(qW̃ )

∑∗

χ (mod qW̃ )

( ∑
A′ (mod qW̃ )

A≡A′ (mod W̃ )

χ(A′)− qχ(A)
)∑

n6y

g(n)χ(n), (5-6)

where
∑
∗ indicates the restriction of the sum to characters that are not induced from characters mod

W̃ ; for all other characters we have χ(A′) = χ(A) and the difference in the brackets above is zero. It
remains to show that the sum over A′ in (5-6) vanishes. However,∑

A′ (mod qW̃ )

A≡A′ (mod W̃ )

χ(A′)= 1
φ(W̃ )

∑
χ ′ (mod W̃ )

χ ′(A)
∑

A′ (mod qW̃ )

χ(A′)χ ′(A′)= 0,

since χχ ′ is a nontrivial character modulo qW̃ . Thus the lemma follows. �

Finally, we aim to exploit the fact that the character sum on the right-hand side of (5-5) is restricted by
invoking Corollary 4.2.

Proof of Proposition 5.1. Let ε := 1
2 min(1, α/(2H)), k :=dε−2

e and k ′=kdlog2(4H)e, as in the statement
of Corollary 4.2. Setting C ′ = (E + 1)3rk′+1, we let E denote the union of the sets of characters defined
by Corollary 4.2 when applied with C = C ′ to each of the r functions fx ∈MH for f ∈ { f1, . . . , fr }.

Our aim is to find a suitable integer W̃ (x) so that, if W̃ = W̃ (x) and q 6 (log x)E , then none of the
characters that appear in the restricted character sum (5-5) is induced by a character from the set E . To
do so, we construct a finite sequence of integers W0(x),W1(x), . . . with the property

Wi (x)6W (x)2
i
(log x)3

i E

as follows. Let W0(x)=W (x) and suppose we have already defined Wi (x) for all 06 i 6 j. Consider
the set of integers in the interval Ij = [Wj (x),Wj (x)(log x)E

]. If there exists a character χ ∈ E whose
conductor cχ satisfies cχ - Wj (x) but cχ < Wj (x)(log x)E , then we choose one such character χ and
define Wj+1(x) := cχWj (x). Note that

Wj+1(x) < Wj (x)2(log x)E < W (x)2·2
j
(log x)(2·3

j
+1)E < W (x)2

j+1
(log x)3

j+1 E .

If there is no such χ ∈ E , then we stop and set W̃ (x)=Wj (x). Since #E 6 rk ′, this process stops after at
most rk ′ steps and, thus, W̃ (x)6W (x)2

rk′

(log x)3
rk′ E 6 (log x)2

rk′+1
+3rk′ E and

W̃ (x)q < (log x1/(8H))C
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for all q 6 (log x)E and sufficiently large x .
Our construction ensures that there exists no character χ (mod qW̃ (x)) with q 6 (log x)E that is

induced by an element from E but not induced from a character (mod W̃ (x)). Since the sum (5-5) is
restricted to those characters modulo qW̃ (x) that are not induced from characters modulo W̃ (x), we
may apply Corollary 4.2 with C given by this restricted set of characters and with Q = qW̃ (x). This
application shows that whenever 16 q 6 (log x)E and x1/2 < y 6 x , then

1
y

∑∗

χ (mod qW̃ )

χ(A)
∑
n6y

fx(n)χ(n)�C,H,α
1

(log x)1+α/(3H) exp
(∑

p6x
p-qW̃

| f (p)|
p

)
.

In combination with Lemma 5.6 for g= fx , this yields (5-3) for κ=C ′−2 and with ϕ′′(x)= (log x)−α/(3H).
Hence, Lemma 5.5 implies the result with κ = C ′− 2�E,H,r,α 1. �

We will refer to (5-2) as the major arc estimate. We will show in Section 6B that despite the restriction
to invertible residues A ∈ (Z/qW̃ Z)∗, the estimate (5-2) implies that f (W̃ n + A) − S f (x; W̃ , A) is
orthogonal to periodic sequences of period at most (log x)E , for every A ∈ (Z/W̃ Z)∗. This information
will be used in combination with a factorization theorem to reduce the task of proving noncorrelation for
( f (W̃ n+ A)− S f (x; W̃ , A)) with general nilsequences to the case where the nilsequence enjoys certain
equidistribution properties and the Lipschitz function satisfies, in particular,

∫
G/0 F = 0.

6. The noncorrelation result

This section contains a precise statement of the main result, which, informally speaking, shows the follow-
ing. Given E > 1 and a multiplicative function f ∈FH , let W̃ (x) be the function from Proposition 5.1.
Then for every residue A ∈ (Z/W̃ (N )Z)∗ and for parameters N and T such that N 1−o(1)

� T � N, the
sequence

(
f (W̃ n+ A)− S f (N ; W̃ , A)

)
n6T is orthogonal to any given polynomial nilsequence, provided

E is sufficiently large with respect to H, α f and data related to the nilsequence. In Section 6B we carry
out a standard reduction of the main result to an equidistributed version, modeled on [Green and Tao
2012a, §2].

6A. Statement of the main result. We begin by recalling the definition of a polynomial nilsequence and
related notions from [Green and Tao 2012b]. Let G be a connected, simply connected, nilpotent Lie
group. By definition, a filtration G• on G is a finite sequence of closed connected subgroups

G = G0 = G1 > G2 > · · ·> Gd > Gd+1 = {idG}

with the property that for all pairs (i, j) with 06 i, j 6 d , the commutator group [Gi ,G j ] is a subgroup
of Gi+ j , where we set Gi+ j = {idG} if i + j > d + 1. The degree of G• is defined to be the largest
index j for which G j is nontrivial. Since G is nilpotent, the lower central series, defined by G1 = G
and Gi+1 = [G,Gi ] for i > 1, terminates after finitely many steps. Setting G0 = G, this series defines a
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filtration. If s denotes the degree of this filtration, then the Lie group G is called s-step nilpotent. One
can show that s is the smallest possible degree that a filtration of G can have.

Let g : Z→ G be a sequence with values in G and define for every h ∈ Z, the discrete derivative
∂hg(n)= g(n+ h)g(n)−1. Then following [Green and Tao 2012b, Definition 1.8], the set poly(Z,G•) of
polynomial sequences with coefficients in G• is defined to be the set of all sequences g :Z→G for which
every i-th derivative takes values in Gi , i.e., for which ∂hi · · · ∂h1 g(n) ∈ Gi for all i ∈ {0, . . . , d + 1} and
for all n, h1, . . . , hi ∈ Z.

To define polynomial nilsequences, let 0 < G be a discrete cocompact subgroup. Then the compact
quotient G/0 is called a nilmanifold. Any Malcev basis X (see [loc. cit., §2] for a definition) for G/0
gives rise to a metric dX on G/0 as described in [loc. cit., Definition 2.2]. This metric allows us to
define Lipschitz functions on G/0 as the set of functions F : G/0→ C for which the Lipschitz norm
(see [loc. cit., Definition 1.2])

‖F‖Lip = ‖F‖∞+ sup
x,y∈G/0

|F(x)− F(y)|
dX (x, y)

is finite. If F is a 1-bounded Lipschitz function, then (F(g(n)0))n∈Z is called a (polynomial) nilsequence.
We are now ready to state the main result:

Theorem 6.1. Let E, H, d,mG > 1 be integers and let f ∈FH,ni t . Let N be a positive integer parameter
and let W̃ = W̃ (N ) be the integer produced by Proposition 5.1 for the function f when applied with
the given values of E, H and with x = N. Let A ∈ N be such that 0 < A < W̃ and gcd(W̃ , A) = 1.
Suppose further that T satisfies N/(log N )E/2

� T � N and that T, N > ee. Let G/0 be a nilmanifold
of dimension mG together with a filtration G• of G of degree d and let g ∈ poly(Z,G•) a polynomial
sequence. Suppose that G/0 has a M0-rational Malcev basis adapted to G• for some M0 > 2 and let
G/0 be equipped with the metric defined by this basis. Let F : G/0→ C be a 1-bounded Lipschitz
function. Then, provided E > 1 is sufficiently large with respect to d, mG , α f and H, we have∣∣∣∣ W̃T ∑

n6T/W̃

(
f (W̃ n+ A)− (W̃ n+ A)i tN S f (n)n−i tN (N ; W̃ , A)

)
F(g(n)0)

∣∣∣∣�d,mG ,α f ,H

{
ϕ′(N )+

1
logw(N )

+
M

Od,mG (1)
0

(log log T )1/(4d+1 dim G)

}
1+‖F‖Lip

log T

W̃

φ(W̃ )

∏
p6N

p-W̃ (N )

(
1+
| f (p)|

p

)
, (6-1)

where tN ∈ [−2 log N , 2 log N ] is, as in Proposition 5.1, given by Definition 1.6 with C = 2E + κ + 4 (in
particular, tN = 0 if f ∈FH ), and where ϕ′ is given by (5-2).

Remark. Partial summation, when combined with the estimate (1-5), which holds with the same value
of C as above for the function n 7→ f (n)n−i tN , shows that
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S f (n)n−i tN (N ; W̃ , A)= (1+ i tN )N−i tN S f (N ; W̃ , A)

+ O
(
|tN |(1+ |tN |)

(
(log N )−E+O(H)

+
ϕC(N )
log N

W̃
φ(W̃ )

∏
p<N ,p-W̃

(
1+
| f (p)|

p

)))
,

where ϕC is as in (1-5). Thus, if E�H,α f 1 is sufficiently large and |tN |
2ϕC(N )=o(1), we may replace the

term (W̃ n+ A)i tN S f (n)n−i tN (N ; W̃ , A) in the statement above by (1+i tN )((W̃ n+ A)/N )i tN S f (N ; W̃ , A).

6B. Reduction of Theorem 6.1 to the equidistributed case. Proceeding similarly as in §2 of [Green and
Tao 2012a], we will reduce Theorem 6.1 to a special case that involves only equidistributed polynomial
sequences. Let us begin by recalling the quantitative notion of equidistribution and total equidistribution
for polynomial sequences that was introduced in [Green and Tao 2012b, Definition 1.2].

Definition 6.2. Let G/0 be a nilmanifold equipped with Haar measure, let δ > 0 and let N ∈N. A finite
sequence g : {1, . . . , N } → G is called δ-equidistributed in G/0 if∣∣∣∣ 1

N

∑
n6N

F(g(n)0)−
∫

G/0
F
∣∣∣∣6 δ‖F‖Lip

for all Lipschitz functions F : G/0→ C. It is called totally δ-equidistributed if, moreover,∣∣∣∣ 1
#P

∑
n∈P

F(g(n)0)−
∫

G/0
F
∣∣∣∣6 δ‖F‖Lip

for all Lipschitz functions F : G/0→ C and progressions P ⊂ {1, . . . , N } of length #P > δN.

The tool that makes a reduction to equidistributed polynomial sequences work is the Green and Tao’s
factorisation theorem [2012b, Theorem 1.19], which we recall for completeness:

Lemma 6.3 (factorization lemma). Let m and d be positive integers, and let M0, N , B > 1 be real
numbers. Let G/0 be an m-dimensional nilmanifold together with a filtration G• of degree d. Suppose
that X is an M0-rational Malcev basis adapted to G• and let g ∈ poly(Z,G•) be a polynomial sequence.
Then there is an integer M with M06M�M OB,m,d (1)

0 , a rational subgroup G ′⊆G, a Malcev basis X ′ for
G ′/0′ in which each element is an M-rational combination of the elements of X , and a decomposition
g = εg′γ into polynomial sequences ε, g′, γ ∈ poly(Z,G•) with the following properties:

(1) ε : Z→ G is (M, N )-smooth.6

(2) g′ : Z→ G ′ takes values in G ′ and the finite sequence (g′(n)0′)n6T is totally M−B-equidistributed in
G ′0/0 using the metric dX ′ on G ′0/0.

(3) γ :Z→G is an M-rational sequence7 and the sequence (γ (n)0)n∈Z is periodic with period at most M.

6The notion of smoothness was defined in [Green and Tao 2012b, Definition 1.18]. A sequence (ε(n))n∈Z is said to be
(M, N )-smooth if both dX (ε(n), idG)6 N and dX (ε(n), ε(n− 1))6 M/N hold for all 16 n 6 N.

7A sequence γ : Z→ G is said to be M-rational if for each n there is 0< rn 6 M such that (γ (n))rn ∈ 0; see [Green and
Tao 2012b, Definition 1.17].
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The following proposition handles the special case of Theorem 6.1 where the polynomial sequence is
equidistributed.

Proposition 6.4 (noncorrelation, equidistributed case). Let E, H,mG, d > 1 be integers and suppose that
f ∈MH . Let N and T be integer parameters satisfying N 1−o(1)

� T � N and let δ = δ(N ) ∈
(
0, 1

2

)
depend on N in such a way that

log N 6 δ(N )−1 6 (log N )E .

Let G/0 be a nilmanifold of dimension mG together with a filtration G• of degree d, and suppose
that X is a 1/δ(N )-rational Malcev basis adapted to G•. This basis gives rise to the metric dX . Let
Q = Q(N )6 (log N )E be an integer that is divisible by W (N ) and let 06 A< Q be an integer such that
A ∈ (Z/QZ)∗.

Then there is E0>1, depending on d , mG and H, such that the following holds provided E is sufficiently
large with respect to d, mG and H :

Let g ∈ poly(Z,G•) be any polynomial sequence such that the finite sequence

(g(n)0)n6T/Q

is totally δ(N )E0-equidistributed. Let F : G/0 → C be any 1-bounded Lipschitz function such that∫
G/0 F = 0, and let I ⊂ {1, . . . , T/Q} be any discrete interval of length at least T/(Q(log N )E). Then∣∣∣∣Q
T

∑
n∈I

f (Qn+ A)F(g(n)0)
∣∣∣∣�d,mG ,α f ,H,E{

(log log T )−1/(22d+3 dim G)
+

δ(N )−10d dim G

(log log T )1/2d+2

}
1+‖F‖Lip

log N
Q

φ(Q)

∏
p6N
p-Q

(
1+
| f (p)|

p

)
. (6-2)

Proof of Theorem 6.1 assuming Proposition 6.4. We loosely follow the strategy of [Green and Tao 2012a,
§2]. In view of the final error term in (6-1), we may assume that M0 6 log N, as the theorem holds
trivially otherwise. This implies that X is a (log N )-rational Malcev basis. Applying the factorization
lemma from above with T replaced by T/W̃ , with M0 = log N, and with a parameter B > 1 that will be
determined in course of the proof (as parameter E0 in an application of Proposition 6.4), we obtain a
factorization of g as εg′γ with properties (1)–(3) from Lemma 6.3. In particular, there is M such that
log N 6 M 6 (log N )OB,mG ,d (1) and such that g′ takes values in a M-rational subgroup G ′ of G and is
M−B-equidistributed in G ′0/0. Our first aim is to decompose the summation range of n in (6-1) into
subprogressions on which the three functions γ , ε and (W̃ n+ A)i tN are all almost constant.

Since γ is periodic with some period a 6 M, the function n 7→ γ (an+ b) is constant for every b, that
is, γ is constant on every progression

Pa,b := {n ∈ [1, T/W̃ ] : n ≡ b (mod a)},
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where 06 b < a. Let γb denote the value that γ takes on Pa,b and note that

|Pa,b|> T/(2aW̃ )> T/(2MW̃ ).

Let g′a,b : Z→ G ′ be defined via

g′a,b(n)= g′(an+ b).

Since (g′(n)0)n6T/W̃ is totally M−B-equidistributed in G ′0/0, it is clear that every finite subsequence
(g′a,b(n)0)n6T/(CaW̃ ) is M−B/2-equidistributed if a, b and C are such that both 06 b< a 6 M and C > 0
and, furthermore, M B/2 > Ca hold.

Let R>1 be an integer that will be chosen later depending on d and dim G. By splitting each progression
Pa,b into� M(log log N )1/R pieces P ( j)

a,b of diameter bounded by� T/(MW̃ (log log N )1/R), we may
also arrange for ε and, simultaneously, for (W̃ n+ A)i tN to be almost constant. More precisely, the fact
that ε is (M, T/W̃ )-smooth implies that

dX (ε(n), ε(n′))6 |n− n′|MW̃ T−1
� (log log N )−1/R

for all n, n′ 6 T/W̃ with |n− n′| � T/(MW̃ (log log N )1/R). By choosing B sufficiently large, we may
ensure that M B/2 > M log log N and, hence, that the equidistribution properties of g′a,b are preserved on
the new bounded diameter pieces of Pa,b. Let P denote the collection of all progressions P ( j)

a,b in our
decomposition.

Since F is a Lipschitz function and since dX is right-invariant (see [Green and Tao 2012b, Appendix
A]), we deduce that∣∣F(ε(n)g′(n)γ (n))− F(ε(n′)g′(n)γ (n))

∣∣6 (1+‖F‖)d(ε(n), ε(n′))
� (1+‖F‖)(log log N )−1/R (6-3)

for all n, n′ ∈ Pa,b with |n − n′| � T
MW̃ (log log N )1/R

. Thus, this bound holds in particular for any
n, n′ ∈ P ( j)

a,b .
To ensure that (W̃ n+ A)i tN is almost constant on the bounded parameter progressions P ( j)

a,b that we
consider, let P ′ ⊂P denote the subset of progressions P ( j)

a,b that are completely contained in the interval
[T/(W̃ (log log N )1/(2R)), T/W̃ ]. Observe that the contribution of all other progressions P ( j)

a,b ∈P \P ′

to (6-1) may be bounded by

(log log N )−1/(2R) W̃ (N )

φ(W̃ (N ))

2
log T

∏
p6N

p-W̃ (N )

(
1+
| f (p)|

p

)
,

where we used Shiu’s bound (3-1) together with fact that we are only summing over n6 T
W̃ (log log N )1/(2R)

.
Since

log log N
log log log N

<w(N )6 log log N
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and since 16 R�d,dim G 1, we have

(log log N )−1/(2R)
�d,dim G (logw(N ))−1, (6-4)

which implies that the above contribution is negligible when compared to the bound in (6-1). For every re-
maining progression P ( j)

a,b ∈P ′, the diameter is now short compared to the size of the endpoints and we have

log(W̃ n+ A)= log(W̃ n′+ A)+ log W̃ (n′+n−n′)+A
W̃ n′+A

= log(W̃ n′+ A)+ log
(

1+ O
(

1
M(log log N )1/(2R)

))
= log(W̃ n′+ A)+ O

(
1

M(log log N )1/(2R)

)
for all n, n′ ∈ P ( j)

a,b . Since |tN |6 2 log N and M > log N, we deduce that

(W̃ n+ A)i tN = (W̃ n′+ A)i tN exp
(

O
(

log N
M(log log N )1/(2R)

))
= (W̃ n′+ A)i tN (1+ O((log log N )−1/(2R)))

= (W̃ n′+ A)i tN + O((log log N )−1/(2R)) (6-5)

for all n, n′ ∈ P ( j)
a,b .

Let us fix one element nb, j for each progression P ( j)
a,b ∈P ′. As we will show next, it will be sufficient

to bound the correlation∣∣∣∣∑
n∈P( j)

a,b

(
f (W̃ n+ A)− (W̃ nb, j + A)i tNS f (n)n−i tN (N ; W̃, A)

)
F(ε(nb, j )g′(n)γb0)

∣∣∣∣
=

∣∣∣∣ ∑
n:

an+b∈P( j)
a,b

(
f (W̃ (an+ b)+ A)− (W̃ nb, j + A)i tN S f (n)n−i tN (N ; W̃ , A)

)
F(ε(nb, j )g′a,b(n)γb0)

∣∣∣∣ (6-6)

for each bounded diameter piece P ( j)
a,b ∈P ′. Indeed, the estimates (6-3) and (6-5) applied with n′ = nb, j

to each such progression, show that the error term incurred from this reduction satisfies∣∣∣∣ ∑
P( j)

a,b∈P
′

∑
n∈P( j)

a,b

{(
f (W̃ n+ A)− (W̃ n+ A)i tN S f (n)n−i tN (N ; W̃ , A)

)
F(ε(n)g′(n)γ (n)0)

−
(

f (W̃ n+ A)− (W̃ nb, j + A)i tN S f (n)n−i tN (N ; W̃ , A)
)
F(ε(nb, j )g′(n)γb0)

}∣∣∣∣
6

∑
P( j)

a,b∈P
′

∑
n∈P( j)

a,b

| f (W̃ n+ A)|
∣∣F(ε(n)g′(n)γ (n)0)− F(ε(nb, j )g′(n)γb0)

∣∣
+

∑
P( j)

a,b∈P
′

∑
n∈P( j)

a,b

|(W̃ n+ A)i tN |
∣∣F(ε(n)g′(n)γ (n)0)− F(ε(nb, j )g′(n)γb0)

∣∣S| f |(N ; W̃ , A)

+

∑
P( j)

a,b∈P
′

∑
n∈P( j)

a,b

|(W̃ n+ A)i tN − (W̃ nb, j + A)i tN |
∣∣F(ε(nb, j )g′(n)γb0)

∣∣S| f |(N ; W̃ , A)
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�
T

W̃ (N )

(1+‖F‖)S| f |(N ; W̃ , A)

(log log N )1/R
.

By Shiu’s bound (3-1), this in turn is bounded above by

�
T

W̃ (N )

(1+‖F‖)
(log log N )1/R

W̃ (N )

φ(W̃ (N ))

1
log N

exp
( ∑
w(N )<p6N

| f (p)|
p

)
. (6-7)

Taking into account (6-4), the error term (6-7) is acceptable in view of the bound in (6-1).
We aim to estimate the correlation (6-6) with the help of Proposition 6.4. This task will be carried

out in four steps, the first of which will be to bound the contribution from noninvertible residues
W̃ b + A (mod W̃a) to which Proposition 6.4 does not apply. The two subsequent steps consist of
checking the various assumptions of Proposition 6.4, while the fourth step contains the actual application
of the proposition.

Before we start, we record a final estimate that will be used throughout the rest of the proof. Note that
the common difference of P ( j)

a,b satisfies a 6 M� (log N )Od,mG ,B(1), which is bounded above by (log N )E ,
provided E is sufficiently large in terms of d , mG and B.

Step 1: Noninvertible residues. We seek to bound the contribution to (6-1) of all progressions P ( j)
a,b ∈P ′

with gcd(W̃ b + A, W̃a) > 1. Let a′ =
∏

p-W̃ (N ) pvp(a), so that W̃ (N ) is invertible modulo a′. Since
gcd(A, W̃ )= 1, it suffices to check whether b satisfies gcd(W̃ b+ A, a′) > 1. Thus, the contribution we
seek to bound takes the form

W̃
T

∑
d|a′, d>1

∑
b<a:

gcd(W̃ b+A,a′)=d

∑
n<T/W̃

n≡b (mod a)

{| f (W̃ n+ A)| + S| f |(N ; W̃ , A)}.

The contribution from the terms involving S| f |(N ; W̃ , A) is bounded by

� S| f |(N ; W̃ , A)
∑

d|a′, d>1

∑
b<a:

gcd(W̃ b+A,a′)=d

1
a

� S| f |(N ; W̃ , A)
∑

d|a′, d>1

1
a

a
a′
φ
(a′

d

)
� S| f |(N ; W̃ , A)

∑
d|a′, d>1

1
d
, (6-8)

where we used the fact that W̃ (N ) is invertible modulo a′. In a similar fashion, we may bound the
contribution from those terms involving | f (W̃ n+ A)| as follows:

W̃
T

∑
d|a′, d>1

∑
b<a:

gcd(W̃ b+A,a′)=d

∑
n<T/W̃

n≡b (mod a)

| f (W̃ n+A)|6
∑

d|a′, d>1

∑
b<a:

gcd(W̃ b+A,a′)=d

| f (d)|
a

S| f |

(
T
d
;

W̃a
d
,

W̃ b+ A
d

)
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6
∑

d|a′, d>1

| f (d)|
a

a
a′
φ
(a′

d

)
S| f |

(
T
d
;

W̃a
d
,

W̃ b+ A
d

)

�

∑
d|a′, d>1

| f (d)|
a′

φ
(a′

d

) W̃a/d
φ(W̃a/d)

1
log(T/d)

exp
( ∑

p<T/d
p-W̃a′/d

| f (p)|
p

)

6
∑

d|a′, d>1

| f (d)|
a′

φ
(a′

d

) a′/d
φ(a′/d)

W̃
φ(W̃ )

1
log(T/d)

exp
(∑

p<T
p-W̃

| f (p)|
p

)

�
W̃

φ(W̃ )

1
log T

exp
(∑

p<T
p-W̃

| f (p)|
p

) ∑
d|a′, d>1

| f (d)|
d

,

where we made use of (3-1) and of the fact that d 6 a 6 (log N )E so that log(T/d)> 1
2 log T once N

and, hence, T are sufficiently large. Observe that the final sums in each of the two bounds above are
similar. We restrict attention to bounding the latter of them. Assuming that the lower bound w(N ) on
prime divisors p | a′ is sufficiently large with respect to H, we have

∑
d|a′, d>1

| f (d)|
d
6
∏
p|a′

(
1+

H
p
+

H 2

p2 + · · ·

)
− 16

∏
p|a′

(
1+

H
p

)(
1+

H 2

p2(1− H
p )

)
− 1

6 exp
(∑

p|a′

2H 2

p2

)∏
p|a′

(
1+

H
p

)
− 16

(
1+

4H 2

w(N )

)∏
p|a′

(
1+

H
p

)
− 1

�E,H
4H 2

w(N )
+

1
logw(N )

�E,H
1

logw(N )
,

where we applied Lemma 5.3 with a replaced by a′ to estimate the product over p | a′.
Bounding the inner sum in (6-8) in a similar fashion and applying (3-1) to estimate S| f |(N ; W̃ , A), we

deduce that the total contribution of noninvertible residues W̃ b+ A (mod W̃a) to (6-1) is at most

Od,mG ,B,H

(
1

logw(N )
W̃

φ(W̃ )

1
log T

exp
( ∑
w(N )<p<T

| f (p)|
p

))
,

which has been taken care of in (6-1). This leaves us to considering the case where the value of b does
not impose an obstruction to applying Proposition 6.4.

Step 2: Checking the initial conditions of Proposition 6.4. The central assumption of Proposition 6.4
concerns the equidistribution of the polynomial sequence it is applied to. To verify this assumption for the
sequence that appears in (6-6), it is necessary to show that the conjugated sequence h∗ : n 7→ γ−1

b g′a,b(n)γb

is, in fact, a polynomial sequence and that it inherits the equidistribution properties of g′a,b(n). Both
these questions have been addressed in [Green and Tao 2012a, §2] in a way we can directly build on:
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Let H = γ−1
b G ′γb and define H• = γ−1

b (G ′)•γb. Let 3= 0 ∩ H and define Fb, j : H/3→ R via

Fb, j (x3)= F(ε(nb, j )γbx0).

Then h∗ ∈ poly(Z, H•) and the correlation (6-6) that we seek to bound takes the form∣∣∣∣∑
n

(
f(W̃(an+ b)+ A)− (W̃ nb, j + A)i tN Sf (n)n−i tN (N; W̃, A)

)
Fb, j (h∗(n)3)

∣∣∣∣, (6-9)

where the sum is over the n such that (an + b) ∈ P ( j)
a,b . The Claim from the end of [Green and Tao

2012a, §2] guarantees the existence of a Malcev basis Y for H/3 adapted to H• such that each basis
element Yi is a M O(1)-rational combination of basis elements X i . Thus, there is C ′ = O(1) such that Y

is MC ′-rational. Furthermore, it implies that there is c′ > 0, depending only on the dimension of G and
the degree of G•, such that whenever B is sufficiently large the sequence

(h∗(n)3)n6T/(aW̃ ) (6-10)

is totally M−c′B/2+O(1)-equidistributed in H/3, equipped with the metric dY induced by Y . Taking B
sufficiently large, we may assume that the sequence (6-10) is totally M−c′B/4-equidistributed. Finally,
the “Claim” also provides the bound ‖Fb, j‖Lip 6 MC ′′

‖F‖Lip for some C ′′ = O(1). This shows that all
conditions of Proposition 6.4 are satisfied except for

∫
H/3 Fb, j = 0.

Step 3: The final condition. The final condition that needs to be arranged for before we can apply
Proposition 6.4 to (6-9) is that

∫
H/3 Fb, j = 0. This is where the major arc condition (5-2) is needed, which

in turn requires that gcd(W̃ b+ A, W̃a)= 1. To ensure that the integral over the test function is zero, we
decompose Fb, j (x3) as (Fb, j (x3)−µb, j )+µb, j ,whereµb, j :=

∫
H/3 Fb, j . The expression in parentheses

represents a new test function that we can apply the proposition with, and we will show next that the con-
tribution from the constant term µb,j is small provided f (W̃ n+ A)− (W̃ nb, j + A)i tN S f (n)n−i tN (N ; W̃ , A)
does not correlate with the characteristic function 1P( j)

a,b
of the corresponding progression P ( j)

a,b .
To start with, recall that T > N/(log N )E/2, that the common difference of P ( j)

a,b satisfies a 6 (log N )E,
and that the length of P ( j)

a,b is bounded below by

|P ( j)
a,b |> T/(2aMW̃ (log log N )1/R)� T/(aW̃ (log N )E/2)

� N/(aW̃ (log N )E),

provided E is sufficiently large in terms of d, mG and B. Observe that condition (5-2) applies to the
function n 7→ f (n)n−i tN and to all discrete intervals I ⊂ {1, . . . , T/W̃ } of length |I | � T/(log T )E. In
particular, we may choose q = a, r = b and let I be a discrete interval of length aW̃ (N )|P ( j)

a,b | that
contains the set {W̃ (N )m+ A : m ∈ P ( j)

a,b }. To relate f (n) to f (n)n−i tN, we observe that (6-5) and (6-4)
imply that

f (W̃ n+ A)= (W̃ nb, j + A)i tN f (W̃ n+ A)(W̃ n+ A)−i tN + O
(
| f (W̃ n+ A)|

logw(N )

)
for all n, nb, j ∈ P ( j)

a,b ∈P ′.
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By applying condition (5-2) to the main term below and Shiu’s bound (3-1) in combination with
Corollary 5.4 to the error term, we obtain the following uniform estimate valid for all P ( j)

a,b ∈P ′:

1

|P ( j)
a,b |

∑
m∈P( j)

a,b

f (W̃ m+ A)

= (W̃ mb, j + A)i tN
aW̃
|I |

∑
m∈I

m≡W̃ b+A (aW̃ )

f (m)m−i tN + O
(

1
logw(N )

aW̃
|I |

∑
m∈I

m≡W̃ b+A (aW̃ )

| f (m)|
)

= (W̃ mb, j + A)i tN S f (n)n−i tN (N ; W̃ , A)+ O
((
ϕ′(N )+

1
logw(N )

)
1

log N

W̃

φ(W̃ )

∏
p<N
p-W̃

(
1+
| f (p)|

p

))
.

Let, as above, µb, j =
∫

H/3 Fb, j , and note that µb, j � 1. Thus, the error term incurred by replacing
for each P ( j)

a,b with gcd(W̃ b+ A, W̃a) = 1 the factor Fb, j (h(n)3) in (6-9) by (Fb, j (h(n)3)−µb, j ) is
bounded as follows:∣∣∣∣ W̃T ∑

P( j)
a,b∈P

′

gcd(W̃ b+A,a)=1

µb, j

∑
n∈P( j)

a,b

(
f (W̃ n+ A)− (W̃ mb, j + A)i tN S f (n)n−i tN (N ; W̃ , A)

)∣∣∣∣
�

W̃
T

∑
P( j)

a,b∈P
′

|P ( j)
a,b |

(
ϕ′(N )+

1
logw(N )

)
1

log N
W̃

φ(W̃ )

∏
p<N
p-W̃

(
1+
| f (p)|

p

)

�

(
ϕ′(N )+

1
logw(N )

)
1

log N
W̃

φ(W̃ )

∏
p<N
p-W̃

(
1+
| f (p)|

p

)
,

where ϕ′ is the function defined in Remarks 5.2. This error term has been taken care of in the bound (6-1).

Step 4: Application of Proposition 6.4 The application of Proposition 6.4 to (6-9) will give rise to the
third error term in (6-1). In view of the work carried out in Steps 1–3, we may now assume that
gcd(W̃ b+ A, W̃a)= 1 and that

∫
H/3 Fb, j = 0 holds, and apply Proposition 6.4 with

• g = h, Q = W̃a, I = {n : an+ b ∈ P ( j)
a,b },

• a function δ :N→R such that δ(N )=M−C ′(=M
Od,mG ,B(1)
0 ), which ensures that Y is 1/δ(N )-rational,

• E sufficiently large to ensure that MC ′< (log N )E , which in particular means that E depends on B, and

• E0 =
1
4 c′B = Od,mG (B) for some value of B that is sufficiently large to ensure that (6-10) is totally

M−c′B/4-equidistributed in H/3 (see Step 2) and that is also sufficiently large for Proposition 6.4 to
apply with the above choice of E0.
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Since there are � aM(log log N )1/R intervals P ( j)
a,b in the decomposition P ′ ⊂ P, this yields the

bound∑
P( j)

a,b∈P
′

∣∣∣∣ ∑
n: (an+b)
∈P( j)

a,b

(
f (W̃ (an+ b)+ A)− (W̃ nb, j + A)i tN S f (n)n−i tN (N ; W̃ , A)

)
Fb, j (h∗(n)3)

∣∣∣∣
� aM(log log N )1/R 1+M O(1)

‖F‖
log T

T
W̃a

W̃a
φ(W̃a)

∏
p6N
p-W̃a

(
1+
| f (p)|

p

)
N

� M O(1)(log log N )1/R 1+‖F‖
log T

T
W̃

W̃a
φ(W̃a)

∏
p6N
p-W̃

(
1+
| f (p)|

p

)
N , (6-11)

where the implied constant depends on d,mG, α f , H and B, and where

N = (log log T )−1/(22d+3 dim G)
+

M10d dim G

(log log T )1/2d+2 �
M10d dim G

(log log T )1/(22d+3 dim G)
.

Finally, we invoke Corollary 5.4 to remove the dependence on a from (6-11). We complete the deduction
of Theorem 6.1 by setting R = 22d+3 dim G and comparing the bound arising from (6-11) with the third
term in (6-1). �

It remains to establish Proposition 6.4.

7. Linear subsequences of equidistributed nilsequences

Our aim in this section is to study the equidistribution properties of families

{(g(Dn+ D′)0)n6T/D : D ∈ [K , 2K )}

of linear subsequences of an equidistributed sequence (g(n)0)n6T , where D runs through dyadic intervals
[K , 2K ) for K 6 T 1−1/H . This result will only be needed in the case of unbounded multiplicative
functions, which allows us to assume that H > 1 in this section.

We begin by recalling some essential definitions and notation. Let P : Z→ R/Z be a polynomial of
degree at most d and let α0, . . . , αd ∈ R/Z be defined via

P(n)= α0+α1

(
n
1

)
+ · · ·+αd

(
n
d

)
.

Then the smoothness norm of g with respect to T is defined (cf. [Green and Tao 2012b, Definition 2.7]) as

‖P‖C∞[T ] = sup
16 j6d

T j
‖α j‖R/Z.

If β0, . . . , βd ∈ R/Z are defined via

P(n)= βdnd
+ · · ·+β1n+β0,
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then, compare with [Matthiesen 2012, equation (14.3)], the smoothness norm is bounded above by a
similar expression in terms of the βi , namely

‖P‖C∞[T ]�d sup
16 j6d

T j
‖ j !β j‖R/Z�d sup

16 j6d
T j
‖β j‖R/Z. (7-1)

On the other hand, Lemma 3.2 of [Green and Tao 2012b] shows that there is a positive integer q �d 1
such that

‖qβ j‖R/Z� T− j
‖P‖C∞[T ].

Apart from smoothness norms, we also require the notion of a horizontal character as given in [loc. cit.,
Definition 1.5]. A continuous additive homomorphism η : G→ R/Z is called a horizontal character
if it annihilates 0. In order to formulate quantitative results, one defines a height function |η| for these
characters. A definition of this height, called the modulus of η, may be found in [Green and Tao 2012b,
Definition 2.6]. All that we require to know about these heights is that there are at most M O(1) horizontal
characters η : G→ R/Z of modulus |η|6 M.

The interest in smoothness norms and horizontal characters lies in Green and Tao’s “quantitative
Leibman Theorem”:

Proposition 7.1 [Green and Tao 2012b, Theorem 2.9]. Let mG and d be nonnegative integers, let 0<δ< 1
2

and let N > 1. Suppose that G/0 is an mG-dimensional nilmanifold together with a filtration G• of degree
d and that X is a 1/δ-rational Malcev basis adapted to G•. Suppose that g ∈ poly(Z,G•). If (g(n)0)n6N

is not δ-equidistributed, then there is a nontrivial horizontal character η with 0< |η| � δ−Od,mG (1) such
that

‖η ◦ g‖C∞[N ]� δ−Od,mG (1).

The following lemma shows that for polynomial sequences the notions of equidistribution and total
equidistribution are equivalent with a polynomial dependence in the equidistribution parameter.

Lemma 7.2. Let N and A be positive integers and let δ :N→[0, 1] be a function that satisfies δ(x)−t
�t x

for all t > 0. Suppose that G has a 1/δ(N )-rational Malcev basis adapted to the filtration G•. Suppose
that g ∈ poly(Z,G•) is a polynomial sequence such that (g(n)0)n6N is δ(N )A-equidistributed. Then
there is 16 B�d,mG

1 such that (g(n)0)n6N is totally δ(N )A/B-equidistributed, provided A/B > 1 and
provided N is sufficiently large.

Remark 7.3. The Green–Tao factorization theorem (see property (2) of Lemma 6.3) usually allows one
to arrange for A > B to hold.

Proof. We allow all implied constants to depend on d and mG . Let B > 1 and suppose that (g(n)0)n6N

fails to be totally δ(N )A/B-equidistributed. Then there is a subprogression P = {`n+ b : 06 n 6 m− 1}
of {1, . . . , N } of length m > δ(N )A/B N such that the sequence (g̃(n))06n<m , where g̃(n)= g(`n+ b),
fails to be δ(N )A/B-equidistributed. Provided A > B, Proposition 7.1 implies that there is a nontrivial
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horizontal character η : G→ R/Z of modulus |η|< δ(N )−O(A/B) such that

‖η ◦ g̃‖C∞[m]� δ(N )−O(A/B).

The lower bound on m implies that this is equivalent to the assertion

‖η ◦ g̃‖C∞[N ]� δ(N )−O(A/B),

where we recall that the implied constant may depend on d .
Observing that η ◦ g is a polynomial of degree at most d , let η ◦ g(n)= βdnd

+ · · ·+β0. Then

η ◦ g̃(n)=
d∑

i=0

ni
d∑

j=i

β j

(
j
i

)
`i b j−i ,

and, hence,

sup
16i6d

N i
∥∥∥∥ d∑

j=i

β j

(
j
i

)
`i b j−i

∥∥∥∥� δ(N )−O(A/B).

This yields the bound ∥∥∥∥ d∑
j=i

β j

(
j
i

)
`i b j−i

∥∥∥∥� N−iδ(N )−O(A/B) (7-2)

for 16 i 6 d . Note that the lower bound on m implies that ` < δ(N )−A/B . Using a downwards induction
argument, we aim to show that

‖`dβ j‖� N− jδ(N )−O(A/B) (7-3)

for all 1 6 j 6 d. For j = d, this is clear from the above. Suppose (7-3) holds for all j > i . For each
i < j we then, in particular, have that∥∥∥∥`dβ j

(
j
i

)
b j−i

∥∥∥∥�d ‖`
dβ j‖b j−i

�d N− jδ(N )−O(A/B)b j−i
�d N−iδ(N )−O(A/B).

Using the fact that δ(N )−t
�t N for all t > 0, we deduce that (7-3) holds for j = i from the above bounds

and from (7-2). This shows that there is a nontrivial horizontal character, namely `dη, of modulus at most
δ(N )−O(A/B), such that

‖`dη ◦ g‖C∞[N ]� sup
16i6d

N i
‖`dβi‖R/Z� δ(N )−O(A/B),

where we made use of (7-1). Choosing B sufficiently large in terms of m and d, [Matthiesen 2012,
Proposition 14.2(b)] implies that g is not δ(N )A-equidistributed, which is a contradiction. �

We are now ready to address the equidistribution properties of linear subsequences.

Proposition 7.4. Let H > 1, let N and T be as before and let E1 > 1. Let (AD)D∈N be a sequence of
integers such that |AD| 6 D for every D ∈ N. Further, let δ : N→ (0, 1) be a function that satisfies
δ(x)−t

�t x for all t > 0. Suppose G/0 has a 1/δ(N )-rational Malcev basis adapted to a filtration G• of
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degree d. Let g ∈ poly(G•,Z) be a polynomial sequence and suppose that the finite sequence (g(n)0)n6T

is totally δ(T )E1-equidistributed in G/0. Then there is a constant c1 ∈ (0, 1), depending only on d
and mG := dim G, such that the following assertion holds for all integers K ∈ [(log T )log log T , T 1−1/H

],
provided c1 E1 > 1.

Write gD(n)= g(Dn+ AD) and let BK denote the set of integers D ∈ [K , 2K ) for which

(gD(n)0)n6T/D

fails to be totally δ(T )c1 E1-equidistributed. Then

#BK � K δ(T )c1 E1 .

Proof. Let K ∈ [(log T )log log T , T 1−1/H
] be a fixed integer and let c1 > 0 to be determined in the

course of the proof. Suppose that E1 > 1/c1. Lemma 7.2 implies that for every D ∈BK , the sequence
(gD(n)0)n6T/D fails to be δ(T )c1 E1 B-equidistributed on G/0 for some B > 0 only depending on d and
mG . We continue to allow implied constants to depend on d and mG . By Proposition 7.1, there is a
nontrivial horizontal character ηD : G→ R/Z of modulus |ηD| � δ(T )−O(c1 E1) such that

‖ηD ◦ gD‖C∞[T/D]� δ(T )−O(c1 E1). (7-4)

For each nontrivial horizontal character η : G→ R/Z we define the set

Dη = {D ∈BK : ηD = η}.

Note that this set is empty unless |η| � δ(T )−O(c1 E1). Suppose that

#BK > K δ(T )c1 E1 .

By the pigeonhole principle, there is some η of modulus |η| � δ(T )−O(c1 E1) such that

#Dη > K δ(T )O(c1 E1).

Suppose
η ◦ g(n)= βdnd

+ . . . β1n+β0

and let
η ◦ gD(n)= α

(D)
d nd

+ · · ·+α
(D)
1 n+α(D)0

for any D ∈BK . The quantities α(D)j and β j are linked through the relation

α
(D)
j = D j

d∑
i= j

(
i
j

)
Ai− j

D βi (7-5)

for each 16 j 6 d. Thus, the bound (7-4) on the smoothness norm asserts that

sup
16 j6d

T j

K j ‖α
(D)
j ‖� δ(T )−O(c1 E1). (7-6)
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With a downwards induction we deduce from (7-6) and (7-5) that

sup
16 j6d

T j

K j ‖D
jβ j‖� δ(T )−O(c1 E1). (7-7)

The bound (7-7) provides information on rational approximations of D jβ j for many values of D. Our
next aim is to use this information in order to deduce information on rational approximations of the β j

themselves. To achieve this, we employ the Waring trick that appeared in the Type I sums analysis in
[Green and Tao 2012a, §3], and begin by recalling the two lemmas that this trick rests upon. The first one
is a recurrence result:

Lemma 7.5 [Green and Tao 2012b, Lemma 3.2]. Let α ∈R, 0< δ < 1
2 and 0< σ < 1

2δ, and let I ⊆R/Z

be an interval of length σ such that αn ∈ I for at least δN values of n, 1 6 n 6 N. Then there is some
k ∈ Z with 0< |k| � δ−O(1) such that ‖kα‖� σδ−O(1)/N.

The second is a consequence of the asymptotic formula in Waring’s problem:

Lemma 7.6 [Green and Tao 2012a, Lemma 3.3]. Let K >1 be an integer, and suppose that S⊆{1, . . . , K }
is a set of size αK. Suppose that t > 2 j

+ 1. Then� j,t α
2t K j integers in the interval [1, t K j

] can be
written in the form k j

1 + · · ·+ k j
t , k1, . . . , kt ∈ S.

Returning to the proof of Proposition 7.4, let us consider the set

D j = {m 6 s(2K ) j
: m = D j

1 + · · ·+ D j
s , D1, . . . , Ds ∈ Dη}

for some s > 2 j
+ 1. Each element m of this set satisfies

‖β j m‖� δ(T )−O(c1)(K/T ) j , 16 j 6 d, (7-8)

in view of (7-7). Thus, Lemma 7.6 implies that there are

#D j � δ(T )O(c1 E1)K j

elements in this set. In view of the restrictions on K and the assumptions on the function δ(x), the
conditions of Lemma 7.5 (on σ and δ) are satisfied provided T is sufficiently large. We conclude that
there is an integer k j such that

16 k j � δ(T )−O(c1 E1)

and such that

‖k jβ j‖� δ(T )−O(c1 E1)T− j .

Thus

β j =
a j

κ j
+ β̃ j , (7-9)

where κ j | k j , gcd(a j , κ j )= 1 and

06 β̃ j � δ(T )−O(c1 E1)T− j .
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Hence,

‖κ jβ j‖� δ(T )−O(c1 E1)T− j . (7-10)

Let κ = lcm(κ1, . . . , κd) and set η̃= κη. We proceed as in [Green and Tao 2012a, §3]: The above implies
that

‖η̃ ◦ g(n)‖R/Z�
δ(T )−O(c1 E1)n

T
,

which is small provided n is not too large. Indeed, if T ′= δ(T )c1 E1C T for some sufficiently large constant
C > 1, only depending on d and mG , and if n ∈ {1,...,T ′}, then

‖η̃ ◦ g(n)‖R/Z 6
1
10 .

Let χ : R/Z→ [−1, 1] be a function of bounded Lipschitz norm that equals 1 on
[
−

1
10 ,

1
10

]
and satisfies∫

R/Z
χ(t) dt = 0. Then, by setting F := χ ◦ η̃, we obtain a Lipschitz function F : G/0→ [−1, 1] that

satisfies
∫

G/0 F = 0 and ‖F‖Lip� δ(T )−O(c1 E1). Finally, choosing c1 sufficiently small, only depending
on d and mG , we may ensure that

‖F‖Lip < δ(T )−E1

and, moreover, that

T ′ > δ(T )E1 T .

This choice of T ′, F and c1 implies that∣∣∣∣ 1
T ′

∑
16n6T ′

F(g(n)0)
∣∣∣∣= 1> δ(T )E1‖F‖Lip,

which contradicts the fact that (g(n)0)n6T is totally δ(T )E1-equidistributed. This completes the proof
of the proposition. �

8. Equidistribution of product nilsequences

In this section we prove, building on material and techniques from [Green and Tao 2012a, §3], a result
on the equidistribution of products of nilsequences which will allow us to perform applications of the
Cauchy–Schwarz inequality in Section 9. The specific form of the result is adjusted to the requirements
of Section 9.

We begin by introducing the product sequences we shall be interested in. Suppose g ∈ poly(G•,Z) is a
polynomial sequence. This is equivalent to the assertion that there exists an integer k, elements a1, . . . , ak

of G, and integral polynomials P1, . . . , Pk ∈ Z[X ] such that

g(n)= a P1(n)
1 a P2(n)

2 · · · a Pk(n)
k .
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Then, for any pair of integers (m,m′), the sequence n 7→ (g(mn), g(m′n)−1) is a polynomial sequence
on G×G that may be represented by

(g(mn), g(m′n)−1)=

( k∏
i=1

(ai , 1)Pi (mn)
)( k∏

i=1

(1, ai )
Pi (m′n)

)−1

.

The horizontal torus of G×G arises as the direct product G/0[G,G]×G/0[G,G] of horizontal tori for
G. Let π : G→ G/0[G,G] be the natural projection map. Any horizontal character on G×G restricts
to a horizontal character on each of its factors. Thus, it takes the form η⊕η′(g1, g2) := η(g1)+η

′(g2) for
horizontal characters η, η′ of G. The following proposition will be applied in the proof of Proposition 6.4
to sequences g = gD for unexceptional D in the sense of Proposition 7.4.

Proposition 8.1. Let N and T be as before and let E2 > 1. Let (D̃m)m∈N be a sequence of integers
satisfying |D̃m |< m for every m ∈ N. Further, let δ : N→ (0, 1) be a function that satisfies δ(x)−t

�t x
for all t > 0. Suppose G/0 has a 1/δ(T )-rational Malcev basis adapted to a filtration G• of degree d.
Let P ⊂ {1, . . . , T } be a discrete interval. Suppose F : G/0→ C is a 1-bounded function of bounded
Lipschitz norm ‖F‖Lip and suppose that

∫
G/0 F = 0. Let g ∈ poly(G•,Z) and suppose that the finite

sequence (g(n)0)n6T is totally δ(T )E2-equidistributed in G/0. Then there is a constant c2 ∈ (0, 1), only
depending on d and mG := dim G, such that the following assertion holds for all integers K satisfying

exp((log log T )2)≤ K ≤ exp
( 1

H
(log T − (log T )1/U )

)
,

where 1<U � 1, provided c2 E2 > 1.
Let EK denote the set of integer pairs (m,m′) ∈ (K , 2K ]2 such that the discrete interval

Im,m′ = {n ∈ N : nm+ D̃m ∈ P, nm′+ D̃m′ ∈ P}

has length at least
#Im,m′ > δ(N )c2 E2 T/K ,

and such that∣∣∣∣ ∑
n∈Im,m′

F(g(mn+ D̃m)0)F(g(m′n+ D̃m′)0)

∣∣∣∣> (1+‖F‖Lip)δ(T )c2 E2 #Im,m′

holds. Then,
#EK < K 2δ(T )O(c2 E2),

uniformly for all K as above.

Remark 8.2. Using a trivial bound when #Im,m′ 6 δ(N )c2 E2 T/K, we deduce that∣∣∣∣ ∑
n∈Im,m′

F(g(mn+ D̃m)0)F(g(m′n+ D̃m′)0)

∣∣∣∣< (1+‖F‖Lip)δ(T )c2 E2 T
K

for all (m,m′) ∈ (K , 2K ]2 \ EK .
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Remark 8.3. Proposition 8.1 essentially continues to hold when the variables (m,m′) are restricted to
pairs of primes. Thanks to a suitable choice of a cutoff parameter X that appears in Section 9C, we will
not need this variant of the proposition (cf. Section 9G) and only provide a very brief account of it at the
very end of this section.

Proof. To begin with, we endow G/0×G/0 with a metric by setting

d((x, y), (x ′, y′))= dG/0(x, x ′)+ dG/0(y, y′).

Let F̃ : G/0×G/0→ C be defined via F̃(γ, γ ′)= F(γ )F(γ ′). This is a Lipschitz function. Indeed,
the fact that F and F are 1-bounded Lipschitz functions allows us to deduce that ‖F̃‖Lip 6 ‖F‖Lip. Let
gm,m′ : N→ G×G be the polynomial sequence defined by

gm,m′(n)= (g(nm+ D̃m), g(nm′+ D̃m′)).

Furthermore, we write 0′ = 0×0. Then F̃ satisfies∫
G/0×G/0

F̃(γ, γ ′) d(γ, γ ′)=
∫

G/0
F(γ )

∫
G/0

F(γ ′) dγ ′ dγ = 0.

Now, suppose that
K ∈

[
exp

(
(log log T )2

)
, exp

(
H−1(log T − (log T )1/U )

)]
and that

EK > K 2δ(T )c2 E2 .

For each pair (m,m′) ∈ EK , we have∣∣∣∣ ∑
n∈Im,m′

F̃(gm,m′(n)0)
∣∣∣∣> (1+‖F‖Lip)δ(T )c2 E2#Im,m′ . (8-1)

Thus, for every pair (m,m′) ∈ EK , the corresponding sequence

(F̃(gm,m′(n)0))n6T/max(m,m′)

fails to be totally δ(T )c2 E2-equidistributed. Lemma 7.2 implies that this finite sequence also fails to be
δ(T )c2 E2 B-equidistributed for some B > 1 that only depends on d and mG . All implied constants in the
sequel will be allowed to depend on d and mG , without explicit mentioning. By [Green and Tao 2012b,
Theorem 2.9]8, there is for each pair (m,m′) ∈ EK a nontrivial horizontal character

η̃m,m′ = ηm,m′ ⊕ η
′

m,m′ : G×G→ R/Z

of modulus� δ(T )−O(c2 E2) such that

‖η̃m,m′ ◦ g̃m,m′‖C∞[T/max(m,m′)]� δ(T )−O(c2 E2). (8-2)

8The 1/δ(T )-rational Malcev basis for G/0 induces one for G/0×G/0. Thus [Green and Tao 2012b, Theorem 2.9] is
applicable.
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Given any nontrivial horizontal character η̃ : G×G→ R/Z, we define the set

Mη = {(m,m′) ∈ EK | η̃m,m′ = η̃}.

This set is empty unless |η̃| � δ(T )−O(c2 E2). Pigeonholing over all nontrivial η̃ of modulus bounded by
δ(T )−O(c2 E2), we find that there is some η̃ amongst them for which

#Mη̃ > K 2δ(T )O(c2 E2).

Let us fix such a character η̃ = η⊕ η′ and suppose without loss of generality that the component η is
nontrivial. Suppose

η̃ ◦ (g(n), g(n′))= (αdnd
+α′dn′d)+ · · ·+ (α1n+α′1n′)+ (α0+α

′

0)

and define for (m,m′) ∈ EK the coefficients α j (m,m′), 16 j 6 d , via

η̃ ◦ gm,m′(n)= αd(m,m′)nd
+ · · ·+α1(m,m′)n+α0(m,m′).

Then the bound (8-2) on the smoothness norm asserts that

sup
16 j6d

T j

K j ‖α j (m,m′)‖� δ(T )−O(c2 E2). (8-3)

Observe that each α j (m,m′), 16 j 6 d , satisfies

α j (m,m′)=
d∑

i= j

(
i
j

)
(D̃i− j

m αi m j
+ D̃i− j

m′ α
′

i m
′ j ). (8-4)

We now aim to show with a downwards induction starting from j = d that

α j =
a j

κ j
+ α̃ j , (8-5)

where 16 κ j � δ(T )−O(c2 E2), gcd(a j , κ j )= 1, and

α̃ j � δ(T )−O(c2 E2)T− j . (8-6)

Suppose j06 d and that the above holds for all j > j0. Set k j0 = lcm(κ j0+1, . . . , κd) if j0 < d , and k j0 = 1
when j0 = d . Note that k j0 � δ(T )−O(c2 E2).

Pigeonholing, we find that there is m̃′ such that m′ = m̃′ for � K δ(T )O(c2 E2) pairs (m,m′) ∈Mη̃.
Amongst these there are furthermore� K δ(T )O(c2 E2) values of m that belong to the same fixed residue
class modulo k j0 . Denote this set of integers m by M ′. Suppose m = k j0m1 +m0 ∈M ′. Letting {x}
denote the fractional part of x ∈ R, we then have

{D̃i− j0
m αi m j0} =

{
D̃i− j0

m α̃i m j0 +
ai m

j0
0

κi

}
, (i > j0),

where, in view of (8-6),
D̃i− j0

m α̃i m j0 � δ(T )−O(c2 E2)K i T−i .
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Since m0 is fixed, it thus follows from (8-3), (8-4), (8-5) and the above bound that as m varies over M ′,
the value of

‖α j0m j0‖

lies in a fixed interval of length� δ(T )−O(c2 E2)K j0 T− j0 .
We aim to make use of this information in combination with the Waring trick from [Green and Tao

2012a, §3] that was already employed in Section 7. For this purpose, we consider the set of integers

M ∗
= {m 6 s(2K ) j0 : m = m j0

1 + · · ·+m j0
s , m1, . . . ,ms ∈M ′

}

with s > 2 j0 + 1. For each element m ∈ M ∗ of this set, ‖α j0m‖ lies in an interval of length �s

δ(T )−O(c2 E2)K j0 T− j0 . Furthermore, Lemma 7.6 implies that #M ∗
� δ(T )O(c2 E2)K j0 . The restrictions

on the size of K and the assumptions on the function δ imply that the conditions of Lemma 7.5 are
satisfied once T is sufficiently large. Thus, assuming T is sufficiently large, there is an integer 16 κ ′j0 �
δ(T )−O(c2 E2) such that

‖κ ′j0α j0‖� δ(T )−O(c2 E2)T− j0,

i.e.,

α j0 =
a j0

κ j0
+ α̃ j0,

where κ j0 | κ
′

j0 , gcd(a j0, κ j0)= 1 and α̃ j0 � δ(T )−O(c2 E2)T− j0 , as claimed.
In particular, we have

‖κ jα j‖� δ(T )−O(c2 E2)T− j (8-7)

for 1 6 j 6 d. Proceeding as in [Green and Tao 2012a, §3], let κ = lcm(κ1, . . . , κd) and set η̃ = κη.
Then (8-7) implies that

‖η̃ ◦ g‖C∞[T ] = sup
16 j6d

T j
‖κα j‖� δ(T )−O(c2 E2),

which in turn shows that

‖η̃ ◦ g(n)‖R/Z� δ(T )−O(c2 E2)n/T

for every n ∈ {1, . . . , T }. Note that the latter bound can be controlled by restricting n to a smaller range.
For this, set T ′ = δ(T )c2 E2C T for some constant C > 1 depending only on d and mG , chosen sufficiently
large to guarantee that

‖η̃ ◦ g(n)‖R/Z 6 1/10,

whenever n ∈ {1, . . . , T ′}. Let χ : R/Z → [−1, 1] be a function of bounded Lipschitz norm that
equals 1 on

[
−

1
10 ,

1
10

]
and satisfies

∫
R/Z

χ(t) dt = 0. Then, by setting F := χ ◦ η̃, we obtain a function
F : G/0→ [−1, 1] such that

∫
G/0 F = 0 and ‖F‖Lip� δ(T )−O(c2 E2). Choosing c2 sufficiently small,

we may ensure that

‖F‖Lip < δ(T )−E2
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and, moreover, that
T ′ > δ(T )E2 T .

The quantities T ′, F and c2 are chosen in such a way that∣∣∣∣ 1
T ′

∑
16n6T ′

F(g(n)0)
∣∣∣∣= 1> δ(T )E2‖F‖Lip,

This contradicts the fact that (g(n)0)n6T is totally δ(T )E2-equidistributed and completes the proof of the
proposition. �

8A. Restriction of Proposition 8.1 to pairs of primes. We end this section by making the contents of
Remark 8.3 more precise. The variables (m,m′) in Proposition 8.1 can without much additional effort be
restricted to range over pairs of primes. It is clear that in the above proof all applications of the pigeonhole
principle that involve the parameters m and m′ have to be restricted to the set of primes. The only true
difference lies in the application of Waring’s result: Lemma 7.6 needs to be replaced by the following
one.

Lemma 8.4. Let K > 1 be an integer and let S ⊂ {1, . . . , K } ∩P be a subset of the primes less than
K. Suppose #S = αK/log K . Let s > 2k

+ 1. Let X ⊂ {1, . . . , sK k
} denote the set of integers that are

representable as pk
1 + · · ·+ pk

s with p1, . . . , ps ∈ S. Then

|X | �k,s α
2s K k,

as K →∞.

Proof. Let Is(N ) denote the number of solutions to the equation

pk
1 + · · ·+ pk

s = N

in positive prime numbers p1, . . . , ps . Hua’s asymptotic formula [Hua 1965, Theorem 11] for the
Waring–Goldbach problem implies that

Is(N )�k,s
N s/k−1

(log N )s
.

Thus, for 16 n 6 sK k , we have

Is(n)�k,s
K s−k

(log K )s
.

Hence,

α2s K 2s

(log K )2s =

(sK k∑
n=1

Is(n)
)2

6 |X |
∑

n

I 2
s (n)

�k,s |X |K
k K 2s−2k

(log K )2s �k,s |X |
K 2s−k

(log K )2s .

Rearranging completes the proof of the lemma. �
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9. Proof of Proposition 6.4

In this section we prove Proposition 6.4 by invoking the possibly trivial Dirichlet decomposition from
Lemma 1.8. Let f ∈ MH , let h, h′ be as in Lemma 1.8 and let f = f1 ∗ · · · ∗ fH with fi = h for
i < H and fH = h ∗ h′. We are given integers Q and A such that 06 A < Q 6 (log N )E and such that
A ∈ (Z/QZ)∗. Recall that g ∈ poly(Z,G•) is a polynomial sequence with the property that (g(n)0)n6T/Q

is totally δ(N )E0-equidistributed in G/0. Let I ⊂ {1, . . . , T/Q} be a discrete interval of length at least
T/(Q(log N )E). Our aim is to bound above the expression∣∣∣∣Q

T

∑
n∈I

f (Qn+ A)F(g(n)0)
∣∣∣∣. (9-1)

If H = 1, then we may write this expression as∣∣∣∣Q
T

∑
n∈I

f (Qn+ D′)F(g(Dn+ D′′)0)
∣∣∣∣, (9-2)

where D = 1, D′ = A and D′′ = 0. The aim of the next two sections is to show that in the case where
H > 1 and the Dirichlet decomposition is nontrivial, the task of bounding (9-1) can be reduced to that of
bounding an expression similar to (9-2), but with f replaced by one of the fi .

9A. Reduction by hyperbola method. Taking into account that f = f1 ∗ · · · ∗ fH , the correlation from
Proposition 6.4 may be written as

Q
T

∑
n6T/Q

1I (n) f (Qn+ A)F(g(n)0)

=
Q
T

∑
d1···dH6T
d1···dH≡A
(mod Q)

f1(d1) f2(d2) · · · fH (dH )F
(

g
(

d1 · · · dH − A
Q

)
0

)
1P(d1 · · · dH ), (9-3)

where P is the finite progression defined via P = Q I + A. Our first step is to split this summation via
inclusion-exclusion into a finite sum of weighted correlations of individual factors fi with a nilsequence.
To describe these weighted correlations, let i ∈ {1, . . . , H}. For every j 6= i , let d j be a fixed positive
integer and write Di :=

∏
j 6=i d j . Let ai ∈ [0, T/Di ) be an integer. Weighted correlations involving fi

will then take the form

Q
T

(∏
j 6=i

f j (d j )

) ∑
ai<di6T/Di

di Di≡A (mod Q)

1P(di Di ) fi (di )F
(

g
(di Di − A

Q

)
0
)

=
Q
T

(∏
j 6=i

f j (d j )

) ∑
ai−D′i

Q <n6
T−D′i
Di Q

fi (Qn+ D′i )F(g(Di n+ D′′i )0)1I (Di n+ D′′i ), (9-4)

for suitable integers D′i , D′′i , determined by the values of Di (mod Q) and A. In order to bound correlations



Generalized Fourier coefficients of multiplicative functions 1377

of the form (9-4), we need to ensure that di runs over a sufficiently long range, which will be achieved by
arranging for Di 6 T 1−1/H to hold.

Let τ = T 1−1/H and note that Di = D j d j/di . Hence,

Di > τ ⇐⇒ d j >
τdi

D j
.

With the help of this equivalence, the function 1 : ZH
→ 1 can be decomposed as follows. Suppose

d1 · · · dH 6 T. Then

1(d1, . . . , dH )= 1D16τ + 1D1>τ

(
1D26τ + 1D2>τ (1D36τ + · · · (1DH6τ + 1DH>τ ) · · · )

)
= 1D16τ + 1D1>τ

(
1D26τ1d2>τd1/D2 + 1D2>τ (1D36τ1d3>τ max(d1,d2)/D3 + · · ·

· · · + 1DH−1>τ (1DH6τ + 1DH>τ ) · · · )
)

= 1D16τ + 1D26τ1d2>τd1/D2 + 1D36τ1d3>τ max(d1,d2)/D3 +· · ·+ 1DH6τ1dH>τ max(d1,...,dH−1)/DH .

Thus, ∑
d1···dH<T

=

H∑
i=1

∑
D6T 1−1/H

∑
d1,...,d̂i ,...,dH

Di=D

∑
di6T/Di

di>τ max(d1,...,di−1)/Di

.

This shows that the original summation (9-3) may be decomposed as a sum of summations of the shape
(9-4) while only increasing the total number of terms by a factor of order O(H). Expressing, if necessary,
the summation range (

τ max(d1, . . . , di−1)

Di
,

T
Di

)
of di as the difference of two intervals starting from 1, we can ensure that di runs over an interval of
length� T/Di � T 1/H . The correlation now decomposes as

Q
T

∑
d1···dH6T
d1···dH≡A
(mod Q)

f1(d1) f2(d2) · · · fH (dH )F
(

g
(

d1 · · · dH − A
Q

)
0

)
1P(d1 · · · dH )

6
H∑

i=1

1−1/H
log 2 log T∑

k=0

∑
D∼2k

(D,Q)=1

∑
d1,...,d̂i ,...,dH

Di=D

(∏
j 6=i

| f j (d j )|

di

)∣∣∣∣∣DQ
T

∑
n6T/D

n>τ max(d1,...,di−1)/D
Dn+D′′∈I

fi (Qn+D′)F(g(Dn+D′′))

∣∣∣∣∣. (9-5)

Observe that (9-2) can be regarded as the special case H = 1 and D = 1 of this bound. Our next
aim is to analyze the innermost sum of (9-5) as D ∼ 2k varies. Setting E1 = E0, we deduce from
Proposition 7.4 that whenever 2k

∈ [exp((log log T )2), (log T )1−1/H
] then there is a set B2k of cardinality

at most O(δ(N )c1 E02k) such that for each D ∼ 2k with D 6∈B2k the sequence

(gD(n)0)n6T/Q, gD(n) := g(Dn+ D′′),
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is totally δ(N )c1 E0-equidistributed. Before turning to the case of D 6∈B2k , we bound the total contribution
from exceptional D, that is, from D ∈B2k and from D 6 exp((log log T )2).

9B. Contribution from exceptional D. Let B2k denote the exceptional set from the previous section.

Lemma 9.1. Whenever E0 is sufficiently large in terms of d, mG and H, we have∑
(log log T )2

log 2 <k6 (1−1/H) log T
log 2

∑
D∈B2k

∑
d1···dH6T

d1···dH≡A (mod Q)
Di=D

| f1(d1) f2(d2) · · · fH (dH )|1P(d1 · · · dH )�t
T
Q

1
(log T )2

and ∑
D6exp((log log T )2)

gcd(D,W )=1

∑
d1···dH6T

d1···dH≡A (mod Q)
Di=D

| f1(d1) f2(d2) · · · fH (dH )|1P(d1 · · · dH )

� (log log T )2H T
Q

Q
φ(Q)

1
log T

∏
p6T
p-Q

(
1+
| f (p)|

H p

)
.

Before we prove this lemma, let us consider its contribution to the bound in Proposition 6.4. The
contribution from the first part is easily seen to be negligible. Regarding the second part, recall that H > 1
and note that by property (2) of Definition 1.3, we have

∏
Q<p6T

(
1+

(H − 1)| f (p)|
H p

)
�

(
log T

E log log T

)(H−1)α f /H

,

where the exponent is positive. Thus, the bound in the second part saves a power of log x when compared
with the bound in (6-2) and is therefore also negligible.

Proof. Set

f i (n) := | f1 ∗ . . . f̂i · · · ∗ fH (n)|.

Then f i=|h∗(H−1)
∗h′| or |h∗(H−1)

| and it follows from (3-2) and the properties of h that f i (n)6 (C H)�(n)

for some constant C. This implies a second moment bound of the form

∑
n6x

gcd(n,Q)=1

f i (n)2 6 x
∑
n6x

gcd(n,Q)=1

f i (n)2

n
6 x

∏
w(N )<p6x

(
1−

(C H)2

p

)−1

6 x(log x)O(H2).

Similarly, we have ∑
n6x

gcd(n,Q)=1

| fi (n)| � x(log x)O(H).

Since Proposition 7.4 provides the bound #B∗2k� δ(N )c1 E02k , a trivial application of the Cauchy–Schwarz
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inequality yields∑
D∈B∗

2k

f i (D)
∑

n6T/D
nD≡A (mod Q)

nD∈P

| fi (n)|6
∑

n6T/2k

gcd(n,Q)=1

| fi (n)|
∑

D∈B∗
2k

gcd(n,Q)=1

f i (D)

6
∑

n6T/2k

gcd(n,Q)=1

| fi (n)|2kδ(N )c1 E0kO(H2) 6 T (log T )O(H)δ(N )c1 E0kO(H2).

Recall that c1 only depends on d and mG , and that by the assumptions of Proposition 6.4 we have
δ(N )� (log T )−1. Since the summation in k has length at most log T and since kO(H2) < (log T )OH (1)

for each k, the first part of the lemma follows by choosing E0 sufficiently large in terms of d , mG and H.
Concerning the second part, we have∑

D6exp((loglogT )2)
gcd(D,Q)=1

f i (D)
∑

n6T/D
nD≡A (mod Q)

nD∈P

| fi (n)|6
∑

D6exp((loglogT )2)
gcd(D,Q)=1

f i (D)
∑

n6T/D
n≡AD
(mod Q)

| fi (n)|,

where DD ≡ 1 (mod Q). Since log(T/D)� log T and T/D < T, Shiu’s bound (3-1) yields the upper
bound

�

∑
D6exp((log log T )2)

gcd(D,Q)=1

f i (D)
D

T
Q

Q
φ(Q)

1
log T

∏
p6T
p-Q

(
1+
| fi (p)|

p

)
. (9-6)

The outer sum satisfies∑
D6exp((log log T )2)

gcd(D,Q)=1

f i (D)
D
�

∏
w(N )<p6exp((log log T )2)

(
1+
| f (p)|

H p

)H−1

� exp
(
(H − 1)

∑
p6exp((log log T )2)

1
p

)
� (log log T )2H ,

which completes the proof of the second part. �

9C. Montgomery–Vaughan approach. Since M1⊂MH for all H >1, it suffices to prove Proposition 6.4
for H > 1. Since the task of bounding (9-2) for D = 1 presents an easier special case of the task of
bounding the inner sum of (9-5) for unexceptional D when H > 1, a proof for the H = 1 case may,
however, be extracted from the argument below. In fact, most of the argument directly applies when
setting H = D = 1. The main differences leading to simplifications are that

(1) if H = D = 1, one can, instead of later referring to the results from Section 7, directly work with the
equidistribution properties of the given polynomial sequence g, and

(2) the extra work of handling the outer sums in (9-5) is not required when H = D = 1.
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From now on we assume that H>1 and that D is unexceptional, that is D∼2k for k>(log log T )2/ log 2
and D 6∈B2k , where B2k is the exceptional set from Section 9A. To bound the inner sum of (9-5) for
unexceptional D, we employ the strategy of Montgomery and Vaughan [1977] outlined in Section 2,
and begin by introducing a factor log n into the average. This will later allow us to reduce matters to
understanding equidistribution along sequences defined in terms of primes. We set h = fi . We caution
that this is not the function h from Lemma 1.8, but could either be h or h ∗h′ in the notation of the lemma.

Cauchy–Schwarz and several integral comparisons show that∑
n6T/(DQ)

1I (Dn+ D′′)h(Qn+ D′)F(g(Dn+ D′′)0) log
(

T/D
Qn+ D′

)
6

( ∑
n6T/(DQ)

(
log
(

T
DQ

)
− log n

)2)1/2( ∑
n6T/(DQ)

h2(Qn+ D′)
)1/2

�
T

DQ

√
DQ
T

∑
n6T/(DQ)

h2(Qn+ D′),

and hence, invoking D 6 T 1−1/H ,

DQ
T

∑
n6T/(DQ)
Dn+D′′∈I

h(Qn+ D′)F(g(Dn+ D′′)0)

�H
1

log T

√
DQ
T

∑
n6T/(DQ)

h2(Qn+D′)+
1

log T

∣∣∣∣DQ
T

∑
n6T/(DQ)
Dn+D′′∈I

h(Qn+D′)F(g(Dn+D′′)0) log(Qn+D′)
∣∣∣∣.(9-7)

Lemma 1.8 shows that the contribution of the first term in this bound to (9-5) is at most

OH

(
1

(log T )1/2
Q

φ(Q)
1

log x

∏
p6x
p-Q

(
1+
| f (p)|

p

))
,

which is negligible in view of the bound stated in Proposition 6.4. It remains to estimate the second term
from (9-7). For this, it will be convenient to abbreviate

gD(n) := g(Dn+ D′′),

and to introduce the two finite progressions

ID = {n : Dn+ D′′ ∈ I } and PD =

{
n : n−D′

Q
∈ ID

}
. (9-8)

Since log n =
∑

m|n 3(m), our task is to bound

DQ
T log T

∣∣∣∣ ∑
mn6T/D

mn≡D′ (mod Q)

1PD (nm)h(nm)3(m)F
(

gD

(
nm− D′

Q

)
0

)∣∣∣∣. (9-9)
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To further simplify this expression we now show that one can, at the expense of a small error term, restrict
the summation in (9-9) to pairs (m, n) of coprime integers for which m = p is prime. To see this, recall
that F is 1-bounded and observe that∑

nm6T/D
�(m)>2 or gcd(n,m)>1

mn≡D′ (mod Q)

|h(nm)|3(m)6 2
∑

p

∑
k>2

k log p
∑

n6T/D,pk
‖n

n≡D′ (mod Q)

|h(n)|

6 2
∑

p>w(N )

∑
k>2

H kk log p
∑

n6T/(Dpk)

pkn≡D′ (mod Q)

|h(n)|.

If pk 6 (T/D)1/2, then Shiu’s bound (3-1) implies for the inner sum:∑
n6T/(Dpk)

pkn≡D′ (mod Q)

|h(n)| �
1
pk

T
D

1
φ(Q)

1
log T

∏
p6T/D

p-Q

(
1+
|h(p)|

p

)
.

If N is sufficiently large, then H log p� p1/4 for all p >w(N ) and thus

∑
p>w(N )

∑
k>2

pk6(T/D)1/2

H k log pk

pk �

∑
p>w(N )

1
p2−1/2 �

1
w(N )1/2

.

Combining the last three steps, the contribution to (9-9) from the terms pk 6 (T/D)1/2 is seen to be
bounded by

�
1

w(N )1/2 log T
Q

φ(Q)
1

log T

∏
p6T/D

p-Q

(
1+
|h(p)|

p

)
.

Turning towards the case of pk > (T/D)1/2, note first that, provided N is large enough that w(N ) > H,
then ∑

n6T/(Dpk)

pkn≡D′ (mod Q)

|h(n)|6
T

Dpk

∑
n6T/(Dpk)
gcd(n,Q)=1

|h(n)|
n
6

T
Dpk

∏
w(N )<p′6T/(Dpk)

(
1−

H
p′

)−1

6
T

Dpk

(
log+

T
Dpk

)O(H)

,

where log+(x) = max{log x, 0} for x > 0, as usual. Assuming, again, that H log p � p1/4 for all
p >w(N ), the remaining sum over pk > (T/D)1/2 therefore satisfies

DQ
T log T

∑
p>w(N )

∑
k>2

pk>(T/D)1/2

H k log pk
∑

n6T/(Dpk)

pkn≡D′ (mod Q)

|h(n)|

6
DQ

T log T

∑
p>w(N )

∑
k>2

pk>(T/D)1/2

H k log pk T
Dpk

(
log+

T
Dpk

)O(H)

,
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which is further bounded by

�
Q

log T

(
log T

D

)O(H) ∑
p>w(N )

∑
k>2

pk>(T/D)1/2

H k log pk

pk

�
Q

log T

(
log T

D

)O(H) ∑
p>w(N )

∑
k>2

pk>(T/D)1/2

p−k(1−1/4)

�
Q

log T

(
log T

D

)O(H) ∑
p>w(N )

p−2+1/2 p1/4
( T

D

)−1/4

�
Q

log T

( T
D

)−1/4(
log T

D

)O(H)
� T−1/8H .

This contribution is dominated by that of the smaller prime powers above.
Thus, the total contribution to (9-5) of pairs (m, n) that are not of the form (m, p), where p is prime

and does not divide m, is bounded by

1
log T

t∑
i=1

∑
k

∑
D∼2k

∑
d1···d̂i ···dt=D

(∏
j 6=i

| f j (d j )|

di

)
Q

φ(Q)
1

log T

∏
p6T/D

p-Q

(
1+
|h(p)|

p

)

6
1

w(N )1/2 log T
Q

φ(Q)
1

log T

∏
p6T
p-Q

(
1+
| f (p)|

p

)
,

which is negligible in view of the bound claimed in Proposition 6.4.
This reduces the task of proving Proposition 6.4 to that of bounding the expression

DQ
T

∣∣∣∣ ∑
mp6T/D

mp≡D′ (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

g
(

pm− D′

Q

)
0

)∣∣∣∣. (9-10)

9D. Decomposing the summation range. We prepare the analysis of (9-10) by first splitting the sum-
mation into large and small divisors with respect to the parameter

X = X (D)=
( T

D

)1−1/(log T
D )

(U−1)/U

,

for a fixed integer U > 4. With this choice of X we obtain

Q D
T

∑
m<X

gcd(m,Q)=1

∑
p6T/(m D)

p≡D′m (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

g
(

pm− D′

Q

)
0

)

+
Q D
T

∑
m>X

gcd(m,Q)=1

∑
p6T/(m D)

p≡D′m (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

g
(

pm− D′

Q

)
0

)
. (9-11)

In order to analyze these expressions, we dyadically decompose in each of the two terms the sum
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with shorter summation range. The cutoff parameter X is chosen in such a way that one of the dyadic
decompositions is of short length, depending on U. Indeed, we have log2 X ∼ log2(T/D), while

log2
T

DX
=

(
log T

D

)1/U

log 2
.

Define

T0 = exp((log log T )2).

Then the two sums from (9-11) decompose as

Q D
T

∑
m<T0

gcd(m,Q)=1

∑
p6 T

(m D)
p≡D′m (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)

+
Q D
T

log2
X
T0∑

j=1

∑
m∼2− j X

gcd(m,Q)=1

∑
p6 T

(m D)
p≡D′m (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)
(9-12)

and

Q D
T

{ ∑
m>X

gcd(m,Q)=1

∑
p6min( T

m D ,T0)

p≡D′m (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)

+

log2
T

X DT0∑
j=1

∑
m>X

gcd(m,Q)=1

∑
p∼2− j T

X D
p≡D′m (mod Q)

1pm< T
D

1PD(mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)}
. (9-13)

We now analyze the contribution from these four sums to (9-5) in turn, beginning with the two short
sums up to T0, which are both straightforward to bound. The main work goes into handling the large
primes case corresponding to the long sum in (9-12). Here we will make use of the results from Sections
7 and 8. The long sum from (9-13) will, again, be straightforward to handle due to the above choice of
the parameter X.

9E. Short sums. The following lemma provides straightforward bounds on the contribution of the short
sums in (9-12) and (9-13) to (9-5).

Lemma 9.2. Writing f i (n)= | f1 ∗ · · · ∗ f̂i ∗ · · · ∗ fH (n)|, we have∑
D6T 1−1/H

(D,Q)=1

f i (D)
log T

∣∣∣∣Q
T

∑
m<T0

gcd(m,Q)=1

∑
p6T/(m D)

p≡D′m
(mod Q)

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)∣∣∣∣
� (log log T )2

1
log T

Q
φ(Q)

exp
(

H − 1
H

∑
p6T
p-Q

| f (p)|
p

)
(9-14)



1384 Lilian Matthiesen

and∑
D6T 1−1/H

(D,Q)=1

f i (D)
log T

∣∣∣∣Q
T

∑
m>X

gcd(m,Q)=1

∑
p6min( T

Dm ,T0)

p≡Dm (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)∣∣∣∣
�
(log log T )2

log T
1

log T
Q

φ(Q)

∏
p6T
p-Q

(
1+
| f (p)|

p

)
. (9-15)

Remark. Both these bounds are negligible when compared to (6-2). In the first case this follows from
property (2) of Definition 1.3.

Proof. The short sum in (9-12) satisfies∣∣∣∣Q D
T

∑
m<T0

gcd(m,Q)=1

∑
p6T/(m D)

p≡Dm (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)∣∣∣∣
�

∑
m<T0

gcd(m,Q)=1

|h(m)|
Q D
T

∑
p6T/(m D)

p≡Dm (mod Q)

3(p) �
Q

φ(Q)

∑
m<T0

gcd(m,Q)=1

|h(m)|
m

�
Q

φ(Q)
1

log T
exp

( ∑
w(N )<p<T0

1
p

)
� (log log T )2

Q
φ(Q)

.

Thus, the left-hand side of (9-14) is bounded by

(log log T )2
Q

φ(Q)
1

log T

∑
D6T 1−1/H

(D,Q)=1

f i (D)
D

.

The claimed bound now follows since∑
D6T 1−1/H,(D,Q)=1

f i (D)
D
� exp

( ∑
p6T,p-Q

| f1(p)+ · · ·+ fH (p)− fi (p)|
p

)
= exp

(
H − 1

H

∑
p6T,p-Q

| f (p)|
p

)
,

recalling the definition of the functions f j from (1-6).
The short sum in (9-13) is bounded by∣∣∣∣Q D
T

∑
m>X

gcd(m,Q)=1

∑
p6min(T/(m D),T0)

p≡Dm (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)∣∣∣∣
�

∑
w(N )<p<T0

3(p)
p

max
A′∈(Z/QZ)∗

S|h|

(
T

pD
; Q, A′

)

�

∑
w(N )<p<T0

3(p)
p

1
log T

Q
φ(Q)

∏
p6T
p-Q

(
1+
|h(p)|

p

)
�

log T0

log T
Q

φ(Q)

∏
p6T
p-Q

(
1+
|h(p)|

p

)
,
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where we used (3-1). This shows that left-hand side of (9-15) is bounded by

log T0

(log T )2
Q

φ(Q)

∑
D6T 1−1/H

(D,Q)=1

f i (D)
D

∏
p6T
p-Q

(
1+
|h(p)|

p

)
.

Recall from Section 9D that log T0 = (log log T )2. To finish the proof of (9-15), recall also that f i (p)=
(H − 1) f (p)/H and h(p) = f (p)/H, that | f (p)| 6 H, and that | f i (pk)| 6 (C H)k for some positive
constant C. Assuming that N is sufficiently large to ensure that w(N ) > 2C H, we then have∑
D6T 1−1/H

(D,Q)=1

f i (D)
D

∏
p6T
p-Q

(
1+
|h(p)|

p

)
6

∏
w(N )<p6T

p-q

(
1+
| f (p)|

H p

)(
1+

(H−1)| f (p)|
H p

+
(C H)2

p2

(
1−

C H
p

)−1)

6 exp
( ∑
w(N )<p6T

2(C H)2

p2 +
H−1

p2

) ∏
w(N )<p6T

p-q

(
1+
| f (p)|

p

)

�

∏
p6T
p-Q

(
1+
| f (p)|

p

)
,

which completes the proof. �

9F. Large primes. In this subsection we finally apply the results from Section 8 to bound the contribution
of the dyadic parts of (9-12) to (9-5). More precisely, we prove:

Lemma 9.3 (contribution from large primes). Keep the assumptions of Proposition 6.4. Let Q be as in
Proposition 6.4, recall the definition of PD from (9-8), and let E]h(T, D, j) denote the expression∣∣∣∣DQ

T

∑
m∼2− j X

gcd(m,Q)=1

∑
p6T/(m D)

p≡D′m (mod Q)

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)∣∣∣∣.
Then, provided the parameter E0 from Proposition 6.4 is sufficiently large depending on d , mG and H, we
have

H∑
i=1

(1− 1
H )

log T
log 2∑

k= (log log T )2
log 2

∑
D∼2k

(D,Q)=1

1D 6∈B2k

∑
d1,...,d̂i ,...,dH

Di=D

(∏
i ′ 6=i

| fi ′(di ′)|

di ′

)log2
X
T0∑

j=0

E]fi
(T, D, j)

log T

�

(
(log log T )−1/(2s+2 dim G)

+
δ(N )−10s dim G

(log log T )1/2

)
1+‖F‖Lip

log T
Q

φ(Q)

∏
p6T
p-Q

(
1+
| f (p)|

p

)
, (9-16)

where the implied constant may depend on d, mG , α f , E and H.

Remark. This contribution agrees with the bound (6-2).
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The remainder of this subsection is concerned with the proof of (9-16). Considering E]h(T, D, j) for a
fixed value of j, 16 j 6 log2(X/T0), the Cauchy–Schwarz inequality yields∑

m∼2− j X
gcd(m,Q)=1

∑
p62 j T

X D
p≡Dm (mod Q)

mp∈PD

1mp6N h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)

6

( ∑
p62 j T

X D

|h(p)|23(p)
)1

2
(

Q
φ(Q)

∑
A′∈(Z/QZ)∗

∑
m,m′∼2− j X

m≡m′≡A′ (mod Q)
gcd(Q,m)=1

h(m)h(m′)

×
φ(Q)

Q

∑
p6 T

D max(m,m′)
p A′≡D′ (mod Q)

pm,pm′∈PD

3(p)F
(

gD

(
pm− D′

Q

)
0

)
F
(

gD

(
pm′− D′

Q

)
0

))1
2

. (9-17)

The first factor is easily seen to equal O(2 j T/(X D)), since h(p)�H 1 at primes. To estimate the second
factor, we seek to employ the orthogonality of the “W -tricked von Mangoldt function” with nilsequences,
combined with the fact that for most pairs (m,m′) the product nilsequence that appears in the above
expression is equidistributed (see Proposition 8.1). For this purpose, let us make the change of variables
p = Qn+ D′m in the inner sum of the second factor, where D′m is such that D′m ≡ D′m (mod Q). This
yields

φ(Q)
Q

∑
p6T/(D max(m,m′))

p A′≡D′ (mod Q)
pm,pm′∈PD

3(p)F
(

gD

(
pm− D′

Q

)
0

)
F
(

gD

(
pm′− D′

Q

)
0

)

=

∑
n6T/(Q D max(m,m′))
nm+D̃m ,nm′+D̃m′∈ID

φ(Q)
Q

3(Qn+ D′m)F(gD(nm+ D̃m)0)F(gD(nm′+ D̃m′)0), (9-18)

for suitable values of 06 D̃m < m, 06 D̃m′ < m′ and with ID = {n : Dn+ D′′ ∈ I } as defined in (9-8)
and I as in the statement of Proposition 6.4. Let us consider the summation range

Im,m′ = {n ∈ N : nm+ D̃m ∈ ID, nm′+ D̃m′ ∈ ID}

in the above expression more closely. Since I is a discrete interval, ID is a discrete interval too and, for
m,m′ ∼ 2− j X, we have

#{n ∈ N : nm+ D̃m ∈ ID} � |ID|2 j/X � |I |2 j/(DX)6 T 2 j/(DX Q)

and, similarly, #{n ∈ N : nm′+ D̃m′ ∈ ID} � T 2 j/(DX Q). We will now split the set

{(m,m′) : m,m′ ∼ 2− j X,m ≡ m′ ≡ A′ (mod Q)}
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into two subsets, one containing all pairs (m,m′) for which #Im,m′ 6 δ(N )2 j T/(DX Q), and one con-
taining those pairs for which

#Im,m′ > δ(N )2 j T/(DX Q). (9-19)

In the former case, the trivial bound of (9-18) asserts that∣∣∣∣ ∑
n6T/Q D max(m,m′)

n∈Im,m′

φ(Q)
Q

3(Qn+ D′m)F(gD(nm+ D̃m)0)F(gD(nm′+ D̃m′)0)

∣∣∣∣6 δ(N )T 2 j

DX Q
.

This leaves us to bound (9-18) in the case where (9-19) holds.
To start with, recall our assumption from the start of Section 9C that all values of D are unexceptional

in the sense that D ∼ 2k for some k > (log log T )2/ log 2 and D 6∈ B2k , where BK was defined in
Proposition 7.4. Thus, for any fixed unexceptional value of D, the finite sequence

(gD(n)0)n6T/(Dq)

is totally δ(N )c1 E0-equidistributed. Thus, applying Proposition 8.1 with g = gD and with E2 = c1 E0, we
obtain for every integer

K ∈ [T0, X ]

an exceptional set EK of size

#EK � δ(T )O(c1c2 E0)K 2 (9-20)

such that for all pairs of integers (m,m′) ∈ (K , 2K ]2 \ EK the following estimate holds:∣∣∣∣ ∑
n6T/(Q D max(m,m′))
nm+D̃m ,nm′+D̃m′∈ID

F(gD(nm+ D̃m)0)F(gD(nm′+ D̃m′)0)

∣∣∣∣< (1+‖F‖Lip)δ(N )c1c2 E0 T
K Q D

.

Before we continue with the analysis of (9-18), we prove a quick lemma that will allow us to handle the
contribution of exceptional sets EK in the proof of Lemma 9.3.

Lemma 9.4. Suppose j 6 log2(X/T0) and let EK be the exceptional set obtained from Proposition 8.1
when applied with g = gD . Then, provided E0 is sufficiently large, we have

1
φ(Q)

∑
A′∈(Z/QZ)∗

∑
m,m′∼2− j X

m≡m′≡A′ (mod Q)

|h(m)h(m′)|1(m,m′)∈ED,2− j X

� δ(N )O(c1c2 E0)

(
2− j X
φ(Q)

1
log(2− j X)

∏
p62− j X

p-Q

(
1+
|h(p)|

p

))2

,

where c1 and c2 are the constants defined in Proposition 7.4 and Proposition 8.1, respectively.
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Proof. In view of (9-20), Cauchy–Schwarz yields

1
φ(Q)

∑
A′∈(Z/QZ)∗

∑
m,m′∼2− j X

m≡m′≡A′ (mod Q)

|h(m)h(m′)|1(m,m′)∈ED,2− j X

�
2− j X
φ(Q)

δ(N )O(c1c2 E0)

( ∑
m,m′∼2− j X

m≡m′≡A′ (mod Q)

|h(m)|2|h(m′)|2
)1/2

�
2− j X
φ(Q)

δ(N )O(c1c2 E0)
∑

m∼2− j X
m≡A′ (mod Q)

|h(m)|2.

Since 2− j X > T0 = exp((log log T )2)� Q2, we may apply Shiu’s bound (3-1) and the trivial inequality
h(p)2 6 |h(p)| to obtain the upper bound

�

(
2− j X
φ(Q)

)2

δ(N )O(c1c2 E0)
1

log(2− j X)

∏
p62− j X

p-Q

(
1+
|h(p)|

p

)

� δ(N )O(c1c2 E0) log(2− j X)
(

2− j X
φ(Q)

1
log(2− j X)

∏
p62− j X

p-Q

(
1+
|h(p)|

p

))2

.

Recall that X was defined in Section 9D and satisfies X 6 T � N. Since furthermore δ(N )6 (log N )−1,
any sufficiently large choice of E0 guarantees that

δ(N )O(c1c2 E0) log(2− j X)6 δ(N )O(c1c2 E0)

holds. This completes the proof. �

As a final tool for the proof of Lemma 9.3, we require an explicit bound on the correlation of the
“W -tricked von Mangoldt function” with nilsequences. The following lemma provides such bounds in our
specific setting. We include a proof building on that of Green and Tao [2010, Proposition 10.2] in the
Appendix.

Lemma 9.5. Let G/0 be an s-step nilmanifold, let G• be a filtration of G of degree d and let X be an
M-rational Malcev basis adapted to it. Let 3′ : N→ R be the restriction of the ordinary von Mangoldt
function to primes, that is, 3′(pk)= 0 whenever k > 1. Let W =W (x), let q ′ and b′ be integers such that
0< b′<Wq ′6 (log x)E and gcd(Wq ′, b′)= 1 hold. Let α ∈ (0, 1). Then, for every y ∈ [exp((log x)α), x]
and for every polynomial sequence g ∈ poly(Z,G•), the following estimate holds:∣∣∣∣∑

n6y

φ(Wq ′)
Wq ′

3′(Wq ′n+b′)F(g(n)0)
∣∣∣∣�α,d,dimG,E,‖F‖Lip

∣∣∣∣∑
n6y

F(g(n)0)
∣∣∣∣+yE (x),

where

E (x) := (log log x)−1/(22d+3 dim G)
+

M O(10d dim G)

(log log x)1/2d+2 .
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Employing Lemma 9.5 for the upper endpoint of an interval [y0, y1], and either a trivial estimate or the
lemma for the lower endpoint, say, depending on whether or not y0 6 y1/2

1 , we obtain as an immediate
consequence that∣∣∣∣ ∑

y06n6y1

φ(Wq ′)
Wq ′

3′(Wq ′n+ b′)F(g(n)0)
∣∣∣∣

�α,s,E,‖F‖Lip

∣∣∣∣∑
n6y0

F(g(n)0)
∣∣∣∣+ ∣∣∣∣∑

n6y1

F(g(n)0)
∣∣∣∣+ y1/2

1 + y1E (x) (9-21)

for any 0< y0 < y1 6 x such that y1/2
1 > exp((log x)α).

This brings us back to the task of bounding (9-18) under the assumption of (9-19). We shall start by
applying (9-21) with [y0, y1] = Im,m′ and x = N = T 1+o(1). To do so, note that (9-19) implies that

1
2

log y1 > log
δ(N )T 2 j

DX Q

> log T
DX
+ j log 2+ log δ(N )− log Q

>
(

log T
D

)1/U
+ j log 2− log log N − 2E log log T

>
( log T

H

)1/4
− log log N − 2E log log T

�E,H (log T )1/4,

where we used the definition of X and the assumptions that Proposition 6.4 makes on δ. Thus, choosing
α = 1

5 , say, the conditions of Lemma 9.5 are satisfied for every T that is sufficiently large with respect to
E and H. Hence, (9-21) yields the following estimate for the interval [y0, y1] = Im,m′ :∣∣∣∣ ∑
n6T/(Q D max(m,m′))

n∈Im,m′

φ(Q)
Q

3(Qn+ D′m)F(gD(nm+ D̃m)0)F(gD(nm′+ D̃m′)0)

∣∣∣∣
�s,E,H,‖F‖Lip

∣∣∣∣∑
n6y0

F(gD(nm+ D̃m)0)F(gD(nm′+ D̃m′)0)

∣∣∣∣
+

∣∣∣∣∑
n6y1

F(gD(nm+ D̃m)0)F(gD(nm′+ D̃m′)0)

∣∣∣∣+ T 2 j

DX Q
E (T ).

Proposition 8.1 shows that the right-hand side is small for most pairs (m,m′). Indeed, together with
Proposition 8.1, the above implies that (9-17) is bounded above by

�s,E,H,‖F‖Lip

(
T 2 j

DX

)1/2

×

(
Q

φ(Q)

∑
A′∈(Z/QZ)∗

∑
m,m′∼2− j X

m≡m′≡A′ (mod Q)

|h(m)h(m′)|
T 2 j

Q DX

(
δ(N )O(c1c2 E0)+ 1(m,m′)∈ED,2− j X

+ E (T )
))1/2

.
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Treating the part of this expression to which Lemma 9.4 applies separately and rewriting in the remaining
part the sum over m,m′ as a square, we obtain after collecting together all the normalization factors:

�s,E,H,‖F‖Lip

T
Q D

{
max

A′∈(Z/QZ)∗

(
Q2 j

X

∑
m∼2− j X
m≡A′(Q)

|h(m)|
)2

(δ(N )O(c1c2 E0)+ E (T ))

+ δ(N )O(c1c2 E0)

(
Q

φ(Q)
1

log(2− j X)

∏
p62− jX

p-Q

(
1+
|h(p)|

p

))2}1
2

�s,E,H,‖F‖Lip

T
Q D

(δ(N )O(c1c2 E0)+ E (T ))
(

Q
φ(Q)

1
log(2− jX)

∏
p62− jX

p-Q

(
1+
|h(p)|

p

))
,

where we applied Shiu’s bound in the last step. Summing the above expression over j 6 log2(X/T0) and
taking into account the factor (log T )−1, we deduce that the inner sum in (9-16) is bounded by

�s,E,H,‖F‖Lip
(δ(N )O(c1c2 E0)+ E (T ))

×

(
1

log T
Q

φ(Q)

∏
p6T
p-Q

(
1+
|h(p)|

p

)) log2(X/T0)∑
j=1

1
log(2− j X)

∏
2− j X<p′<T

(
1−
|h(p′)|

p′

)

Since δ(N )6 (log N )−1, choosing E0 sufficiently large in terms of d and m0 ensures that

δ(N )O(c1c2 E0)+ E (T )� (log N )−1
+ E (T )� E (T ).

To complete the proof of Lemma 9.3, it thus remains to show that the inner sum over j in the expression
above is Oα f (1). To see this, observe that property (2) of Definition 1.3 yields

∏
X2− j<p6T

(
1−
|h(p)|

p

)
�

(
log(2− j X)

log T

)α f /H

.

Thus,

log2(X/T0)∑
j=1

1
log(2− j X)

∏
2− j X<p′<T

(
1−
|h(p′)|

p′

)
�

1
(log T )α f /H

log2(X/T0)∑
j=1

1
(log X − j log 2)1−α f /H

�α f

(log X)α f /H

(log T )α f /H �α f
1,

as required.

9G. Small primes. To complete the proof of Proposition 6.4, it remains to bound the contribution of
the dyadic parts of (9-13) to (9-5). This is achieved by the following lemma, which will be proved by a
combination of Cauchy–Schwarz, Lemma 1.8 and the choice of the parameter X from Section 9D.
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Lemma 9.6 (contribution from small primes). Let E[h(T, D, j) denote the expression∣∣∣∣DQ
T

∑
m>X

gcd(m,Q)=1

∑
p∼2− j T

X D
p≡D′m (mod Q)

1pm< T
D

1PD (mp)h(m)h(p)3(p)F
(

gD

(
pm− D′

Q

)
0

)∣∣∣∣.
Then

H∑
i=1

(1−1/H) log T/log 2∑
k=(log log T )2/log 2

∑
D∼2k

(D,Q)=1

1D 6∈B2k

∑
d1,...,d̂i ,...,dH

Di=D

(∏
j 6=i

| f j (d j )|

d j

)log2(T/(X DT0))∑
j=0

E[fi
(T, D, j)

log T

� (log T )−1/4 1
log T

φ(Q)
Q

∏
p6T
p-Q

(
1+
| f (p)|

p

)
.

Proof. Applying Cauchy–Schwarz to the expression E[h(T, D, j) for a fixed value of j satisfying
06 j 6 log2(T/(X DT0)), we obtain∣∣∣∣Q D

T

∑
m>X

(m,Q)=1

∑
p∼2− j T

X D
p≡D′m (mod Q)

1pm< T
D

h(m)h(p)3(p)F
(

g
(

pm− D′

Q

)
0

)
1PD (mp)

∣∣∣∣

6

(
Q

φ(Q)
1

2 j X

∑
X<m<2 j X

gcd(m,Q)=1

|h(m)|2
)1

2
(
φ(Q)

(
2 j X D

T

)2 ∑
p,p′∼2− j T

X D
p≡p′ (mod Q)

h(p)h(p′)3(p)3(p′)

×
Q

X2 j

∑
X<m<T/(D max(p,p′))

mp≡D′ (mod Q)
pm∈ID

F
(

g
(

pm−D′

Q

)
0

)
F
(

g
(

p′m−D′

Q

)
0

))1
2

. (9-22)

We estimate the second factor trivially as O(1) by using the bounds |h(p)h(p′)| � 1 and ‖F‖∞ =
‖F‖∞ 6 1. Thus, (9-22) is bounded by

�

(
Q

φ(Q)
1

2 j X

∑
X<m<2 j X

gcd(m,Q)=1

|h(m)|2
)1/2

.

This expression can be handled as that in Lemma 1.8: Note that X 6 2 j X 6 T/(DT0), where

X =
( T

D

)1−1/(log T
D )

(U−1)/U

� (T/D)1/2

and
T

DT0
=

( T
D

)1−(log log T
D )

2/ log T
D
.
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Thus, Shiu’s bound (3-1) and the trivial inequality |h(p)|2 6 |h(p)| imply that(
Q

φ(Q)
1

2 j X

∑
X<m<2 j X

gcd(m,Q)=1

|h(m)|2
)1/2

�

(
1

log T
Q

φ(Q)

∏
p6T
p-Q

(
1+
|h(p)|

p

))1/2

.

The right-hand side is bounded below by (log T )−1/2, thus the above is bounded by

� (log T )1/2
(

1
log T

Q
φ(Q)

∏
p6T
p-Q

(
1+
|h(p)|

p

))
.

Finally, note that the summation range in j is short: it is bounded by

log2(T/(X DT0))� (log T )1/U
� (log T )1/4.

This shows that

H∑
i=1

(1−1/H) log T/log 2∑
k=1

∑
D∼2k

(D,Q)=1

1D 6∈B2k

∑
d1,...,d̂i ,...,dH

Di=D

(∏
j 6=i

| f j (d j )|

d j

) log2(T/(X DT0))∑
j=0

E[fi
(T, D, j)

log T

� (log T )−1+ 1
2+

1
4

H∑
i=1

∑
D6T 1−1/H

(D,Q)=1

∑
d1,...,d̂i ,...,dt

Di=D

(∏
j 6=i

| f j (d j )|

d j

)
1

log T
Q

φ(Q)

∏
p6T
p-Q

(
1+
|h(p)|

p

)

� (log T )−
1
4

1
log T

Q
φ(Q)

∏
p6T
p-Q

(
1+
| f (p)|

p

)
.

This completes the proof of Lemma 9.6 as well as the proof of Proposition 6.4. �

Appendix: Explicit bounds on the correlation of 3 with nilsequences

The aim of this appendix is to provide a proof of Lemma 9.5. This result is due to Green and Tao and we
expect that a statement like Lemma 9.5 will eventually appear in [Green 2014]. The author is grateful to
Ben Green for very helpful discussions.

The proof of Lemma 9.5 rests upon the decomposition of 3′ that already appeared in the proof of the
original result, [Green and Tao 2010, Proposition 10.2]. To be precise, let γ ∈ (0, 1) be a small positive
real number that will later be chosen depending on the degree d of the given filtration G•. Further, let
χ [+χ ] = idR be a smooth decomposition of the identity function idR : R→ R, idR(t) := t , that is such
that supp(χ ])⊂ (−1, 1) and supp(χ [)⊂ R \

[
−

1
2 ,

1
2

]
. This decomposition of idR induces the following

decomposition of 3′:

φ(Wq ′)
Wq ′

3′(Wq ′n+ b′)− 1=
φ(Wq ′)

Wq ′
3[(Wq ′n+ b′)+

(φ(Wq ′)
Wq ′

3](Wq ′n+ b′)− 1
)
,
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where (cf. [Green and Tao 2010, (12.2)])

3](n)=− log xγ
∑
d|n

µ(d)χ ]
(

log d
log xγ

) (
|t |> 1⇒ χ ](t)= 0

)
is a truncated divisor sum, and where

3[(n)=− log xγ
∑
d|n

µ(d)χ [
(

log d
log xγ

) (
|t |6 1

2 ⇒ χ [(t)= 0
)

is an average of µ(d) running over large divisors of n. This decomposition in turn splits the correlation
from Lemma 9.5 into two correlations that shall be bounded separately.

The correlation estimate of the 3[ term with nilsequences follows as in [Green and Tao 2010, §12]
from the noncorrelation of Möbius with nilsequences and inherits an error term which saves a factor
OA(log x)−A for any given A> 1 when compared to the trivial bound. In [Green and Tao 2010, Conjecture
8.5], it was conjectured that the Möbius function is orthogonal to linear nilsequences. Since [Green and
Tao 2012a, Theorem 1.1] proves this conjecture, not just for linear, but for polynomial nilsequences, it
follows without any essential changes in the proof, that the correlation estimate [Green and Tao 2010,
equation (12.10)] continues to hold for polynomial sequences. That is to say, we have an estimate of the
form ∣∣∣∣∑

n6N

3[(n)F(g(n)0)
∣∣∣∣�‖F‖Lip,G/0,s,A N (log N )−A. (A-1)

In our setting, we may express the congruence condition modulo Wq ′ as a character sum

φ(Wq ′)
Wq ′

3[(n)1n≡b′ (mod Wq ′) = Eχ (mod Wq ′)
φ(Wq ′)

Wq ′
3[(n)χ(n)χ(b′).

As with equation (12.8) of [Green and Tao 2010], the factor F(g(n)0) from the statement of Lemma 9.5
may be reinterpreted as F(g′(Wq ′n+b′)0) for a new polynomial sequence g′. Reinterpreting the product
χ(n)F(g′(n)0) of a character χ with the given nilsequence as a nilsequence itself allows us to employ the
correlation estimate (A-1) with N given by xq ′W � x(log x)E to handle the correlation for 3[. Thanks
to the saving of an arbitrary power of log x in (A-1), we can compensate the factor of Wq ′, which is
bounded above by (log x)E , that we lose when passing to the character sums. In total, we obtain

1
y

∑
n6y

φ(Wq ′)
Wq ′

3[(Wq ′n+ b′)F(g(n)0)�
‖F‖Lip,s,G/0,B (log y)−B

�
‖F‖Lip,s,G/0,B ′ (log x)−B ′ .

It remains to analyze the contribution of the function λ] : N→ R, defined via

λ](n) :=
φ(Wq ′)

Wq ′
3](Wq ′n+ b′)− 1.
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This contribution satisfies the general bound∣∣∣∣1y ∑
n6y

(
φ(Wq ′)

Wq ′
3](Wq ′n+ b′)− 1

)
F(g(n)0)

∣∣∣∣6 ‖λ]‖U k+1[y]‖F(g(·)0)‖U k+1[y]∗

for every k > 1, where the dual uniformity norm is defined via

‖F(g( · )0)‖U k+1[N ]∗ := sup
{∣∣∣∣ 1

N

∑
n6N

f (n)F(g(n)0)
∣∣∣∣ : ‖ f ‖U k [N ] 6 1

}
.

The main task that remains is to obtain control on the above dual uniformity norm for at least one value
of k. In [Green and Tao 2010], this is achieved through their Proposition 11.2, which decomposes a
general nilsequence into an averaged nilsequence of bounded dual uniformity norm plus an error term
that is small in the L∞ norm. The proof of this decomposition uses a compactness argument and, as such,
does not provide explicit error terms. Central ideas for a new approach not working with compactness
were indirectly provided by work of Eisner and Zorin-Kranich [2013] on a different question. They
replace in their work the Lipschitz function in the definition of a nilsequence by a smooth function and the
Lipschitz norm by a Sobolev norm. Moreover, they show that certain constructions that play a central role
in [Green and Tao 2012b] have counterparts in the Sobolev norm setting. Building on these observations,
Green [2014] proves that in the Sobolev norm setting the dual U s+1 norm of an s-step nilsequence is in
fact bounded. The statement of the latter result involves the following notion of Sobolev norms.

Definition A.1 [Green 2014]. Let G/0 be an m-dimension nilmanifold together with a Malcev basis
X = {X1, . . . , Xm}. For any ψ ∈ C∞(G/0), set

‖ψ‖W m ,X = sup
m′6m

sup
16i1,...,im′6m

‖DX i1
· · · DX im′

ψ‖∞,

where DXψ(g0)= limt→0(d/dt)ψ(exp(t X)g0).

Lemma A.2 [Green 2014, Theorem 5.3.1]. Let G/0 be a k-step nilmanifold together with a filtration G•
of degree d > k and an M-rational Malcev basis adapted to it. Let g ∈ poly(Z,G•) and suppose
F̃ ∈ C∞(G/0). Then

‖F̃(g(·)0)‖U d+1[N ]∗ := sup
{∣∣∣∣ 1

N

∑
n6N

f (n)F̃(g(n)0)
∣∣∣∣ : ‖ f ‖U d+1[N ] 6 1

}
� M10d dim G

‖F̃‖W 2d dim G ,X
.

In order to apply Lemma A.2 in our situation, an auxiliary result is needed that allows one to pass
from the Lipschitz setting to the Sobolev setting, i.e., to write any Lipschitz function on G/0 as the sum
of a smooth function, to which Lemma A.2 can be applied, and a small L∞ error. This is the content
of the following lemma which will be proved using a standard smoothing trick; the author thanks Ben
Green for pointing out this approach.

Lemma A.3. Suppose that F : G/0→ C is a Lipschitz function and let m be a positive integer. Then
there is a constant c ∈ (0, 1), only depending on G, such that for every ε ∈ (0, c) there exists a function
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ψm ∈ C∞(G/0) such that
‖F − F ∗ψm‖∞ 6 ε(1+‖F‖Lip) (A-2)

and
‖F ∗ψm‖W m ,X � (m/ε)2m M O(m). (A-3)

Taking Lemma A.3 on trust for the moment, we first complete the proof of Lemma 9.5 before providing
that of Lemma A.3. Recall that the filtration G• of the nilmanifold G/0 from Lemma 9.5 is of degree d .
The previous two lemmas allow us to reduce the proof of Lemma 9.5 to a bound on the U d+1-norm of
λ] : N→ R. More precisely, we have

1
y

∑
n6y

(
φ(Wq ′)

Wq ′
3](Wq ′n+ b′)− 1

)
F(g(n)0)

� ε(1+‖F‖Lip)+
1
y

∑
n6y

(
φ(Wq ′)

Wq ′
3](Wq ′n+ b′)− 1

)
(F ∗ψm)(g(n)0)

� ε(1+‖F‖Lip)+‖λ
]
‖U d+1[y]‖(F ∗ψm)(g(·)0)‖U d+1[y]∗ . (A-4)

Since 3] is a truncated divisor sum, one can analyze its U d+1-norm with the help of Theorem D.3 in
Appendix D of [Green and Tao 2010]. We will follow the final section of that appendix (“The correlation
estimate for 3]”) of closely.

For each nonempty subset B ⊂ {0, 1}d+1, let

9B(n, h)= (Wq ′(n+ω · h)+ b′)ω∈B , (n, h) ∈ Z×Zd+1,

denote the relevant system of forms. The set of exceptional primes for this system, denoted by P9B ,
is defined to be the set of all primes p such that the reduction modulo p of P9B contains two linearly
dependent forms or a form that degenerates to a constant. It is clear that whenever x is sufficiently large,
the set P9B consists of all prime factors of W (x)q ′ and, in particular, it contains all primes up to w(x).
For each prime p, the local factor β(B)p corresponding to 9B is defined to be

β(B)p =
1

pd+2

∑
(n,h)∈(Z/pZ)d+2

∏
ω∈B

p
φ(p)

1p - Wq ′(n+ω·h)+b′ .

By [Green and Tao 2010, Lemma 1.3], we have β(B)p = 1+ Od(1/p2) for all p 6∈P9B , and hence∏
p 6∈P9B

β(B)p = 1+ Od

( 1
w(x)

)
= 1+ Od

( 1
log log x

)
,

while the product of exceptional local factors satisfies∏
p∈P9

β(B)p =

∏
p|W (x)q ′

β(B)p =

( W (x)q ′

φ(W (x))q ′

)|B|
,

since gcd(W (x)q ′, b′)= 1.
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Let K y be a convex body that is contained in the hypercube [−y, y]d+2. Then, Theorem D.3 of [Green
and Tao 2010], applied with ai = 1 and χi = χ#, implies that if γ > 0 is sufficiently small depending on
d , then

1
yd+2

∑
(n,h)∈K y

∏
ω∈B

3](Wq ′(n+ω · h)+ b′)

=
vol(K y)

yd+2

∏
p

β(B)p + Od

(
(log yγ )−1/20 exp

(
Od

( ∑
p∈P9B

p−1/2
)))

.

Since Wq ′6 (log x)E , we have |P9B |�w(x)/log x+E log log x/logw(x). Recall thatw(x)6 log log x
and that log y ∈ [(log x)α, log x]. Thus,

(log yγ )−1/20 exp
(

Od

( ∑
p∈P9B

p−1/2
))
� (γ (log x)α)−1/20 exp(Od(|P9B |))

�d (log x)−α/20(log x)Od (E)/ logw(x),

which is o(1) as x→∞.
Choosing K y = {(n, h) : 0< n+ω · h 6 y for all ω ∈ {0, 1}d+1

}, we obtain

‖λ]‖2
d+1

U d+1[y] =
vol(K y)

yd+2

∑
B⊆{0,1}d+1

(−1)|B|
∏

p 6∈P9B

β(B)p + Od
(
(log x)−α/20+Od (E)/logw(x))

�d
vol(K y)

yd+2

1
log log x

+ (log x)−α/20+O(E)/logw(x)
�d,α,E

1
log log x

.

Returning to (A-4), it follows from the above bound, Lemma A.2 and an application of Lemma A.3 with
m = 2d dim G and ε = (log log x)−1/(m2d+3), that for exp((log x)α)6 y 6 x

1
y

∑
n6y

(φ(Wq ′)
Wq ′

3′(Wq ′n+ b′)− 1
)

F(g(n)0)

�d,α,E
1+‖F‖Lip

(log log x)1/(22d+3 dim G)
+‖λ]‖U d+1[y]‖(F ∗ψm)(g(·)0)‖U d+1[y]∗

�d,α,E
1+‖F‖Lip

(log log x)1/(22d+3 dim G)
+

M10d dim G
‖F ∗ψm‖W 2d dim G ,X

(log log x)1/2d+1

�d,dim G,α,E
1+‖F‖Lip

(log log x)1/(22d+3 dim G)
+
(log log x)1/2

d+2
M O(10d dim G)

(log log x)1/2d+1 ,

which reduces the proof of Lemma 9.5 to that of Lemma A.3.

Proof of Lemma A.3. Let dX denote the metric on G/0 that was introduced in [Green and Tao 2012b,
Definition 2.2] and define for every ε′ > 0 the following ε′-neighborhood

Bε′ = {x ∈ G/0 : dX (x, idG 0) < ε
′
}.
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Let ε ∈ (0, 1). Since F is Lipschitz, we have |F(x)− F(y)| 6 ε(1+‖F‖Lip) whenever both x and y
belong to the neighborhood Bε of idG 0. To ensure that (A-2) holds, it thus suffices to ensure that ψm is
nonnegative, supported in Bε and that

∫
G/0 ψm = 1. Indeed, these assumptions imply that∣∣∣∣F(x)− ∫

G/0
F(y)ψm(x − y) dy

∣∣∣∣= ∣∣∣∣∫
G/0
(F(y)− F(x))ψm(x − y) dy

∣∣∣∣
6 ε(1+‖F‖Lip)

∫
G/0

ψm(x − y) dy

= ε(1+‖F‖Lip).

The function ψm will be constructed as the m-fold convolution of a smooth bump function. For this
purpose, observe that

mBε/m ⊆Bε.

If g = exp(s1 X1) · · · exp(sdim G Xdim G), then the (unique) coordinates

ψ(g) := (s1, . . . , sdim G)

are called Malcev coordinates, while the unique coordinates

ψexp(g) := (t1, . . . , tdim G)

for which g = exp(t1 X1+ · · · + tdim G Xdim G) are called exponential coordinates. Proceeding as in the
proof of Lemma A.14 in [Green and Tao 2012b], one can identify G/0 with the fundamental domain{
g ∈ G : ψ(g) ∈

[
−

1
2 ,

1
2

)}
⊂ G. Furthermore, their Lemma A.2 shows that the change of coordinates

between exponential and Malcev coordinates, i.e., ψ◦ψ−1
exp orψexp◦ψ

−1, is in either direction a polynomial
mapping with M O(1)-rational coefficients. Thus, Bε lies within the fundamental domain provided ε < c0

for some sufficiently small constant c0. This embedding of Bε in G allows us to define log on Bε. Let us
equip g with the maximum norm associated to X , that is ‖X‖ :=maxi |ti | for X =

∑
i ti X i . Then the

definition of dX and Green and Tao’s Lemma A.2 imply that

{X ∈ g : ‖X‖< δ} ⊆ log Bε/m

for some δ of the form δ= (ε/m)M−O(1). Following the above preparation, we now choose a nonnegative
smooth function χ1 :R

dim G
→R>0 with support in {t ∈Rdim G

: ‖t‖∞< 1} that satisfies
∫

Rdim G χ1(t) dt =
1. Then, by setting χ(t) = δ · χ1(δ t), we obtain a function χ : Rdim G

→ R>0 that is supported on
{t ∈ Rdim G

: ‖t‖∞ < δ}, satisfies
∫

Rdim G χ(t) dt = 1 and has furthermore the property that∥∥∥ ∂
∂ti
χ(t1, . . . , tdim G)

∥∥∥
∞

� (m/ε)2 M O(1) (A-5)

for 16 i 6 dim G. We may identify χ with a function defined on the vector space g equipped with the
basis {X1, . . . , Xdim G}, by setting χ(t1 X1+ · · ·+ tdim G Xdim G)= χ(t1, . . . , tdim G).
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To obtain a smooth bump function on G/0, we consider the composition χ ◦ log : G/0→ R, which
is supported in Bε/m . Since the differential d logidG

: g→ g is the identity, there are positive constants
C0,C1 and c1, such that

C0 6
∫

G/0
χ ◦ log6 C1,

provided ε < c1. Hence there is a constant C such that
∫

G/0 ψ = 1 for ψ = Cχ ◦ log.
With this function ψ at hand, let ψm = ψ

∗m be the m-th convolution power of ψ . It is clear that for
every 0< k 6m, the function ψ∗k is supported in Bε and that

∫
G/0 ψ

∗k
= 1. Setting ψ∗0 = δ0, where δ0

denotes the Kronecker δ-function with weight 1 at 0, we furthermore have

DX i1
· · · DX ik

(F ∗ψm)= F ∗ DX i1
ψ ∗ · · · ∗ DX ik

ψ ∗ψ∗(m−k)

and, hence,

‖DX i1
· · · DX ik

(F ∗ψm)‖∞ 6 ‖F‖∞ · ‖DX i1
(Cχ ◦ log)‖∞ · · · ‖DX ik

(Cχ ◦ log)‖∞

for any k 6 m. Our final task is to bound ‖DX j (Cχ ◦ log)‖∞ for every j 6 dim G. Writing [·]i : g→ R

for the i-th co-ordinate map with respect to the basis X , we have

DX j (χ ◦ log)(g)=
dim G∑
i=1

∂χ

∂X i
(log g) · lim

t→0

[
log(exp(t X j )g)

]
i . (A-6)

Since the differential d logidG
: g→ g is the identity, there are constants C2 > 0 and c2 > 0, such that for

every g ∈Bc2 and for 16 i 6 m, the derivative∣∣lim
t→0
[log(exp(t X j )g)]i

∣∣
is bounded by C2. Choosing c<min(c0, c1, c2), the bound (A-3) now follows from (A-6) and the bounds
given in (A-5). �
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