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We describe the generic blocks in the category of smooth locally admissible
mod-2 representations of GL2(Q2). As an application we obtain new cases of the
Breuil–Mézard and Fontaine–Mazur conjectures for 2-dimensional 2-adic Galois
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1. Introduction

Let p be a prime and let L be a finite extension of Qp with the ring of integers O
and uniformizer $ . We prove the following modularity lifting theorem.
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Theorem 1.1. Assume that p = 2. Let F be a totally real field where 2 is totally
split, let S be a finite set of places of F containing all the places above 2 and all the
infinite places and let

ρ : GF,S→ GL2(O)

be a continuous representation of the Galois group of the maximal extension of F
unramified outside S. Suppose:

(i) ρ̄ : GF,S
ρ
→GL2(O)→ GL2(k) is modular with nonsolvable image.

(ii) If v | 2 then ρ|GFv
is potentially semistable with distinct Hodge–Tate weights.

(iii) det ρ is totally odd.

(iv) If v | 2 then ρ̄|GFv
6∼=
(
χ
0
∗

χ

)
for any character χ : GFv → k×.

Then ρ is modular.

Kisin [2009a] and Emerton [2011] have proved an analogous theorem for p > 2.
Our proof follows the strategy of Kisin. We patch automorphic forms on definite
quaternion algebras and deduce the theorem from a weak form of the Breuil–Mézard
conjecture, which we prove for all p under some technical assumptions on the
residual representation of GQp (see Theorems 2.34 and 2.37) which force us to
assume (iv) in the theorem.

The Breuil–Mézard conjecture is proved by employing a formalism developed in
[Paškūnas 2015b], where an analogous result is proved under the assumption that
p ≥ 5 and the residual representation has scalar endomorphisms. We can prove the
result for primes 2 and 3 by better understanding the smooth representation theory
of G := GL2(Qp) in characteristic p: in the local part of the paper we extend the
results of [Paškūnas 2013] to the generic blocks, when p is 2 and 3, which we will
now describe.

Let Modsm
G (O) be the category of smooth G-representation on O-torsion modules.

We fix a continuous character ψ : Q×p → O× and let Modl.adm
G,ψ (O) be the full

subcategory of Modsm
G (O), consisting of representations on which the center of G

acts by the character ψ and which are equal to the union of their admissible
subrepresentations. The categories Modsm

G (O) and Modl.adm
G,ψ (O) are abelian; see

[Emerton 2010a, Proposition 2.2.18]. A finitely generated smooth admissible
representation of G with a central character is of finite length by Theorem 2.3.8 of
[Emerton 2010a]. This makes Modl.adm

G,ψ (O) into a locally finite category. Gabriel
[1962] has proved that a locally finite category decomposes into a direct product of
indecomposable subcategories as follows.

Let Irradm
G be the set of irreducible representations in Modl.adm

G,ψ (O). We define
an equivalence relation ∼ on Irradm

G by writing π ∼ τ if there exists a sequence
π = π1, π2, . . . , πn = τ in Irradm

G such that for each i one of the following holds:
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(1) πi ∼=πi+1; (2) Ext1G(πi , πi+1) 6= 0; (3) Ext1G(πi+1, πi ) 6= 0. We have a canonical
decomposition

Modl.adm
G,ψ (O)∼=

∏
B∈Irradm

G /∼

Modl.adm
G,ψ (O)[B], (1)

where Modl.adm
G,ψ (O)[B] is the full subcategory of Modl.adm

G,ψ (O) consisting of repre-
sentations with all irreducible subquotients in B. A block is an equivalence class
of ∼.

For a blockB let πB=
⊕

π∈B π , let πB ↪→ JB be an injective envelope of πB and
let EB :=EndG(JB). Then JB is an injective generator for Modl.adm

G,ψ (O)[B], EB is
a pseudocompact ring and the functor κ 7→HomG(κ, JB) induces an antiequivalence
of categories between Modl.adm

G,ψ (O)[B] and the category of right pseudocompact
EB-modules. The inverse functor is given by m 7→

(
m ⊗̂EB J∨B

)∨, where ∨ denotes
the Pontryagin dual; see [Gabriel 1962, Chapitre IV, §4]. The main result of
[Paškūnas 2013] computes the rings EB for each block B and describes the Galois
representation of GQp obtained by applying the Colmez’s functor to JB under the
assumption p ≥ 5 or p ≥ 3, depending on the block B.

If π ∈ Irradm
G then one may show that, after extending scalars, π is isomorphic

to a finite direct sum of absolutely irreducible representations of G. It has been
proved in [Paškūnas 2014] that the blocks containing an absolutely irreducible
representation are given by

(i) B= {π} with π supersingular;

(ii) B=
{(

IndG
B χ1⊗χ2ω

−1
)
sm,

(
IndG

B χ2⊗χ1ω
−1
)
sm

}
with χ2χ

−1
1 6= ω

±1, 1;

(iii) p > 2 and B=
{(

IndG
B χ ⊗χω

−1
)
sm

}
;

(iv) p = 2 and B= {1,Sp}⊗χ ◦ det;

(v) p ≥ 5 and B=
{
1,Sp,

(
IndG

B ω⊗ω
−1
)
sm

}
⊗χ ◦ det;

(vi) p = 3 and B= {1,Sp, ω ◦ det,Sp⊗ω ◦ det}⊗χ ◦ det;

where χ, χ1, χ2 :Q
×
p → k× are smooth characters, ω :Q×p → k× is the character

ω(x) = x |x | (mod$) and we view χ1 ⊗ χ2 as a character of the subgroup of
upper-triangular matrices B in G which sends

(a
0

b
d

)
to χ1(a)χ2(d). An absolutely

irreducible representation π is supersingular if it is not a subquotient of a principal
series representation (they have been classified by Breuil [2003a]) and Sp denotes
the Steinberg representation.

To each block above one may attach a semisimple 2-dimensional k-representation
ρ̄ss of GQp : in case (i) ρ̄ss is absolutely irreducible, and such that Colmez’s functor V
(see Section 2B1) maps π to ρ̄ss; in case (ii) ρ̄ss

= χ1⊕χ2; in cases (iii) and (iv)
ρ̄ss
=χ⊕χ ; in cases (v) and (vi) ρ̄ss

=χ⊕χω, where we consider characters of GQp

as characters of Q×p via local class field theory, normalized so that uniformizers
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correspond to geometric Frobenii. We note that the determinant of ρ̄ss is equal to
ψε modulo $ , where ε is the p-adic cyclotomic character and ω is its reduction
modulo $ .

Theorem 1.2. If B = {π} with π supersingular (so that ρ̄ss is irreducible) then
EB is naturally isomorphic to the quotient of the universal deformation ring of ρ̄ss

parametrizing deformations with determinant ψε, and V (JB)∨(ψε) is a tautologi-
cal deformation of ρ̄ss to EB.

We also obtain an analogous result for blocks in (ii); see Theorem 2.23. Let
Rps be the deformation ring parametrizing all the 2-dimensional determinants, in
the sense of [Chenevier 2014], lifting (tr ρ̄ss, det ρ̄ss), and let Rps,ψ be the quotient
of Rps parametrizing those which have determinant ψε.

Theorem 1.3. Assume that the block B is given by (i) or (ii) above. Then the center
of the category Modl.adm

G,ψ (O)[B] is naturally isomorphic to Rps,ψ.

We view this theorem as an analogue of the Bernstein center for this category.
Theorems 1.2 and 1.3 are new if p=2 and if p=3 and B={π}with π supersingular.
Together with the results of [Paškūnas 2013] this covers all the blocks except for
those in (iv) and (vi) above.

One also has a decomposition similar to (1) for the category Banadm
G,ψ(L) of

admissible unitary L-Banach space representations of G on which the center of G
acts byψ ; see Section 2B4. An admissible unitary L-Banach space representation5
lies in Banadm

G,ψ(L)[B] if and only if all the irreducible subquotients of the reduction
modulo $ of a unit ball in 5 modulo $ lie in B. An irreducible 5 is ordinary if
it is a subquotient of a unitary parabolic induction of a unitary character. Otherwise
it is called nonordinary.

Corollary 1.4. Assume that the block B is given by (i) or (ii) above. Colmez’s
Montreal functor5 7→ V̌ (5) induces a bijection between the isomorphism classes of

• absolutely irreducible nonordinary 5 ∈ Banadm
G,ψ(L)[B];

• absolutely irreducible ρ̃ : GQp → GL2(L) such that det ρ̃ = ψε and the
semisimplification of the reduction modulo$ of a GQp-invariant O-lattice in ρ̃
is isomorphic to ρ̄ss.

A stronger result, avoiding the assumption on B, is proved in [Colmez et al.
2014]. However, our proof of Corollary 1.4 avoids the hard p-adic functional
analysis, which is used to construct representations of GL2(Qp) out of 2-dimensional
representations of GQp via the theory of (ϕ, 0)-modules by Colmez [2010], which
plays the key role in [Colmez et al. 2014].

It might be possible, given the global part of this paper, and the results of
[Paškūnas 2015a], where various deformation rings are computed, when p = 2,
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to prove Theorem 1.1 by repeating the arguments of Kisin [2009a]. We have not
checked this. However, our original goal was to prove Theorems 1.2 and 1.3;
Theorem 1.1 came out as a bonus at the end.

1A. Outline of the paper. The paper has two largely independent parts: a local one
and a global one. We will review each of them individually by carefully explaining
which arguments are new.

1A1. Local part. For concreteness, assume that B = {π} with π supersingular.
Let ρ̄ = V (π), let Rρ̄ be the universal deformation ring of ρ̄ and let Rψρ̄ be the
quotient of Rρ̄ parametrizing deformations with determinant ψε. We follow the
strategy outlined in [Paškūnas 2013, §5.8]. We show that J∨B is the universal
deformation of π∨ and EB is the universal deformation ring by verifying that
hypotheses (H0)–(H5), made in Section 3 of [Paškūnas 2013], hold. In Section 3.3
of the same work we developed a criterion to check that the ring EB is commutative.
To apply this criterion, one needs the ring Rψρ̄ to be formally smooth and to control
the image of some Ext1-group in some Ext2-group. The first condition does not
hold if p = 2 and if p = 3 and ρ̄ ∼= ρ̄ ⊗ ω. Even if p = 3 and ρ̄ 6∼= ρ̄ ⊗ ω, so
that the ring is formally smooth, to check the second condition is a computational
nightmare. In [Colmez et al. 2014] we found a different characteristic-0 argument
to get around this. The key input is the result of [Berger and Breuil 2010] which
says that if a locally algebraic principal series representation admits a G-invariant
norm, then its completion is irreducible, and π occurs in the reduction modulo $
with multiplicity one. We deduce from [Colmez et al. 2014, Corollary 2.22] that the
ring EB is commutative. The argument of Kisin [2010] shows that V (JB)∨(ψε) is
a deformation of ρ̄ to EB and we have surjections Rρ̄ � EB � Rψρ̄ .

To prove Theorem 1.2 we have to show that the surjection ϕ : EB � Rψρ̄ is an
isomorphism. The proof of this claim is new and is carried out in Section 2B3.
Corollary 1.4 is then a formal consequence of this isomorphism. If p ≥ 5 then Rψρ̄
is formally smooth and the claim is proved by a calculation on tangent spaces in
[Paškūnas 2013]. This does not hold if p = 2 or p = 3 and ρ̄ ∼= ρ̄ ⊗ω. We also
note that even if we admit the main result of [Colmez et al. 2014] (which we don’t),
we would only get that ϕ induces a bijection on maximal spectra of the generic
fibers of the rings. From this one could deduce that the map induces an isomorphism
between the maximal reduced quotient of EB and Rψρ̄ , and it is not at all clear
that EB is reduced. However, by using techniques of [Paškūnas 2015b] we can
show that certain quotients EB/a are reduced and identify them with crystabeline
deformation rings of ρ̄ via ϕ. Again the argument uses the results of [Berger and
Breuil 2010] in a crucial way. Further, we show that the intersection of all such
ideals in EB is zero, which allows us to conclude the proof. A similar argument
using density appears in [Colmez et al. 2014, §2.4], however we have to work a bit
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more here, because we fix a central character; see Section 2A. Theorem 1.2 implies
immediately that det V̌ (5)=ψε for all5∈Banadm

G,ψ(L)[B]. This is proved directly
in [Colmez et al. 2014] without any restriction on B, and is the most technical part
of that paper.

Once we have Theorem 1.2, the Breuil–Mézard conjecture is proved the same
way as in [Paškūnas 2015b]; see Section 2C. If B is the block containing two
generic principal series representations, so that ρ̄ss

=χ1⊕χ2, with χ1χ
−1
2 6= 1, ω±1,

then we prove the Breuil–Mézard conjecture for both nonsplit extensions
(χ1

0
∗

χ2

)
and(χ1

∗

0
χ2

)
and deduce the conjecture in the split case in a companion paper [Paškūnas

2015a], following an idea of Hu and Tan [2015]. We formulate and prove the
Breuil–Mézard conjecture in the language of cycles, as introduced by Emerton and
Gee [2014]. All our arguments are local, except that if the inertial type extends
to an irreducible representation of the Weil group WQp of Qp, the description of
locally algebraic vectors in the Banach space representations relies on a global input
of Emerton [2011, §7.4]. Dospinescu’s results [2015] on locally algebraic vectors
in extensions of Banach space representations of G are also crucial in this case.

1A2. Global part. As already explained, an analogue of Theorem 1.1 has been
proved by Kisin if p > 2. Moreover, if p = 2 and ρ|GFv

is semistable with Hodge–
Tate weights (0, 1) for all v | 2, then the theorem has been proved by Khare and
Wintenberger [2009b] and Kisin [2009b] in their work on Serre’s conjecture. We
use their results as an input in our proof.

The strategy of the proof is the same as in [Kisin 2009a]. By base change
arguments, which are the same as in [Khare and Wintenberger 2009b; Kisin 2009b;
2009c] (see Section 3F) we reduce ourselves to a situation where the ramification of
ρ and ρ̄ outside 2 is minimal and ρ̄ comes from an automorphic form on a definite
quaternion algebra. We patch automorphic forms on definite quaternion algebras
and deduce the theorem from a weak form of the Breuil–Mézard conjecture, which
is proved in the local part of the paper. Assumption (iv) in Theorem 1.1 comes
from the local part of the paper.

Let us explain some differences with [Kisin 2009a]. If p > 2 then the patched
ring is formally smooth over a completed tensor product of local deformation rings.
This implies that the patched ring is reduced, equidimensional and O-flat and that its
Hilbert–Samuel multiplicity is equal to the product of Hilbert–Samuel multiplicities
of the local deformation rings. For p = 2 we modify the patching argument used
in [Kisin 2009a] following [Khare and Wintenberger 2009b]. This gives us two
patched rings, and the passage between them and the completed tensor product of
local rings is not as straightforward as before. To overcome this we use an idea
which appears in errata to [Kisin 2009a] published in [Gee and Kisin 2014]. If
ρf is a Galois representation associated to a Hilbert modular form lifting ρ̄ and
v is a place of F above p, then one knows from [Blasius 2006; Katz and Messing



On 2-dimensional 2-adic Galois representations of local and global fields 1307

1974; Saito 2009] that the Weil–Deligne representation associated to ρ|GFv
is pure.

Kisin shows that this implies that the point on the generic fiber of the potentially
semistable deformation ring, defined by ρf |GFv

, cannot lie on the intersection of
two irreducible components, and hence is regular. Using this we show that the
localization of patched rings at the prime ideal defined by ρf is regular, and we
are in a position to use the Auslander–Buchsbaum theorem; see Lemma 3.14 and
Proposition 3.17. As explained in [Gee and Kisin 2014], this observation enables
us to deal with cases when the patched module is not generically free of rank 1
over the patched ring, which was the case in the original paper [Kisin 2009a]. In
particular, we don’t add any Hecke operators at places above 2 and we don’t use
[Darmon et al. 1997, Lemma 4.11].

As a part of his proof, Kisin uses the description by Gee [2011] of Serre weights
for ρ̄, which is available only for p > 2. We determine Serre weights for ρ̄ when
p = 2 in Section 3D under assumption (iv) of Theorem 1.1. As in [Gee 2011]
the main input is a modularity lifting theorem, which in our case is the theorem
proved by Khare and Wintenberger [2009b] and Kisin [2009b]. We do this by a
characteristic-0 argument, where Gee argues in characteristic p; see Section 3D.

The modularity lifting theorems for p = 2 proved by Kisin [2009b], and more
recently by Thorne [2016], do not require 2 to split completely in the totally real
field F, but they put a more restrictive hypothesis on ρ|GFv

for v | 2. Kisin assumes
that ρ|GFv

for all v | 2 is potentially crystalline with Hodge–Tate weights equal to
(0, 1) for every embedding Fv ↪→ Q2 and Fv = Q2 if ρ|GFv

is ordinary. Thorne
removes this last assumption, but requires instead that ρ̄|GFv

be nontrivial for at least
one v |∞. We need 2 to split completely in F in order to apply the results on the
p-adic Langlands correspondence, which is currently available only for GL2(Qp).

2. Local part

2A. Capture. Let K be a profinite group with an open pro-p group. Let O[[K ]] be
the completed group algebra, and let Modpro

K (O) be the category of compact linear-
topological O[[K ]]-modules. Let ψ : Z(K )→O× be a continuous character. We
let Modpro

K ,ψ(O) be the full subcategory of Modpro
K (O) such that M ∈ Modpro

K (O)
lies in Modpro

K ,ψ(O) if and only if Z(K ) acts on M via ψ−1. Let {Vi }i∈I be a family
of continuous representations of K on finite-dimensional L-vector spaces, and let
M ∈Modpro

K (O).
Definition 2.1. We say that {Vi }i∈I captures M if the smallest quotient M � Q
such that Homcont

O[[K ]](Q, V ∗i )∼= Homcont
O[[K ]](M, V ∗i ) for all i ∈ I is equal to M.

We let c :=
(
−1

0
0
−1

)
and note that the center of SL2(Zp) is equal to {1, c}.

Lemma 2.2. If K =SL2(Zp) then O[[K ]]/(c−1) and O[[K ]]/(c+1) are O-torsion-
free.
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Proof. If Kn is an open normal subgroup of K such that the image of c in K/Kn is
nontrivial, then O[K/Kn] is a free O[Z ]-module, where Z is the center of K. This
implies that O[K/Kn]/(c± 1) is a free O-module and by passing to the limit we
obtain the assertion. �

Lemma 2.3. Let K = SL2(Zp), let Z be the center of K and let {Vi }i∈I be a family
which captures O[[K ]] such that each Vi has a central character. Let I+ and I−

be subsets of I consisting of i such that c acts on Vi by 1 and by −1, respectively.
Let ψ : Z → L× be a character. If ψ(c) = 1 then I+ captures every projective
object in Modpro

K ,ψ(O). If ψ(c) = −1 then I− captures every projective object in
Modpro

K ,ψ(O).

Proof. If M ∈ Modpro
K (O) is O-torsion-free then I captures M if and only if

the image of the evaluation map
⊕

i∈I Vi ⊗HomK (Vi ,5)→ 5 is dense, where
5 = Homcont

O (M, L) is the Banach space representation of K with the topol-
ogy induced by the supremum norm [Colmez et al. 2014, Lemma 2.10]. Let
5 = Homcont

O (O[[K ]], L) and 5± := Homcont
O (O[[K ]]/(c ± 1), L). Since 5 =

5+⊕5−, and {Vi } captures O[[K ]], we deduce that the image of the evaluation map⊕
i∈I Vi⊗HomK (Vi ,5

±)→5± is dense. If i ∈ I+ then c acts trivially on Vi and so
HomK (Vi ,5

−)= 0. This implies the image of
⊕

i∈I+Vi ⊗HomK (Vi ,5
+)→5+

is dense. Using Lemma 2.2 we deduce that I+ captures O[[K ]]/(c− 1). A sim-
ilar argument shows that I− captures O[[K ]]/(c+ 1). Every projective object in
Modpro

K ,ψ(O) can be realized as a direct summand of a product of some copies of
O[[K ]]/(c − ψ(c)), which implies the assertion; see the proof of [Colmez et al.
2014, Lemma 2.11]. �

Lemma 2.4. Let K =SL2(Zp), and let Z be the center of K, ψ : Z→ L× a charac-
ter and V a continuous representation of K on a finite-dimensional L-vector space
with a central character ψV . If ψ(c) = ψV (c) then {V ⊗ Sym2a L2

}a∈N captures
every projective object in Modpro

K ,ψ(O); if ψ(c)=−ψV (c) then {V⊗Sym2a+1L2
}a∈N

captures every projective object in Modpro
K ,ψ(O).

Proof. Proposition 2.12 in [Colmez et al. 2014] implies that {Syma L2
}a∈N captures

O[[K ]]. We leave it as an exercise for the reader to check that this implies that
{V ⊗Syma L2

}a∈N also captures O[[K ]]. The assertion follows from Lemma 2.3. �

Lemma 2.5. Let M ∈Modpro
GL2(Zp),ψ

(O) and let V be a continuous representation
of K on a finite-dimensional L-vector space with a central character ψ . Then⋂

φ

Kerφ =
⋂
ξ,η

Ker ξ,

where the first intersection is taken over all φ ∈ Homcont
O[[SL2(Zp)]]

(M, V ∗) and the
second intersection is taken over all characters η : Z×p → L× with η2

= 1 and all
ξ ∈ Homcont

O[[GL2(Zp)]]
(M, (V ⊗ η ◦ det)∗).
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Proof. Let Z be the center of GL2(Zp). The determinant induces the isomorphism
GL2(Zp)/Z SL2(Zp)∼= Z×p /(Z

×
p )

2, which is a cyclic group of order 2 if p 6= 2, and
a product of cyclic groups of order 2 if p = 2. Hence, IndGL2(Zp)

Z SL2(Zp)
1∼=

⊕
η ◦ det,

where the sum is taken over all characters η with η2
= 1. The isomorphism

Homcont
O[[SL2(Zp)]]

(M, V ∗)∼= Homcont
O[[Z SL2(Zp)]]

(M, V ∗)

∼= Homcont
O[[GL2(Zp)]]

(M, V ∗⊗ IndGL2(Zp)

Z SL2(Zp)
1)

∼=

⊕
η

Homcont
O[[GL2(Zp)]]

(M, V ∗⊗ η ◦ det)

implies the assertion. �

Lemma 2.6. Let M∈Modpro
GL2(Zp),ψ

(O) and let {Vi }i∈I be a family of continuous rep-
resentations of K on finite-dimensional L-vector spaces with a central character ψ .
If {Vi |SL2(Zp)}i∈I captures M |SL2(Zp) then {Vi ⊗ η ◦ det}i∈I,η captures M, where η
runs over all characters η : Z×p → L× with η2

= 1.

Proof. The assertion follows from Lemma 2.5 and [Colmez et al. 2014, Lemma 2.7].
�

Proposition 2.7. Let K =GL2(Zp), and let Z be the center of K and ψ : Z→ L×

a continuous character. There is a smooth irreducible representation τ of K which
is a type for a Bernstein component containing a principal series representation,
but not containing a special series representation, such that

{τ ⊗Syma L2
⊗ η′ ◦ det}a∈N,η′

captures every projective object in Modpro
K ,ψ(O). Here, for each a ∈N, η′ runs over

all continuous characters η′ :Z×p → L× such that τ⊗Syma L2
⊗η′ ◦det has central

character ψ .

Proof. If p 6= 2 (resp. p = 2) then 1+ pZp (resp. 1+ 4Z2) is a free pro-p group
of rank 1. Using this one may show that there is a smooth, nontrivial character
χ : Z×p → L× and a continuous character η0 : Z

×
p → L× such that ψ = χη2

0. Let e
be the smallest integer such that χ is trivial on 1+ peZp. Let

J =
(

Z×p Zp

peZp Z×p

)
,

and let χ ⊗ 1 : J → L× be the character which sends
(a

c
b
d

)
7→ χ(a). The rep-

resentation τ := IndK
J (χ ⊗ 1) is irreducible and is a type. More precisely, for an

irreducible smooth L-representation π of G =GL2(Qp), we have HomK (τ, π) 6= 0
if and only if π ∼= (IndG

B ψ1⊗ψ2)sm, where B is a Borel subgroup and ψ1|Z×p = χ

and ψ2|Z×p = 1; see [Henniart 2002, §A.2.2]. The central character of τ is equal to χ .
We claim that the family

{
τ ⊗Sym2a L2

⊗ (det)−a
⊗ ηη0 ◦ det

}
a∈N,η

, where η runs
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over all the characters with η2
= 1, captures every projective object in Modpro

K ,ψ(O).
If M ∈Modpro

K ,ψ(O) is projective then M |SL2(Zp) is projective in Modpro
SL2(Zp),ψ

(O)
[Emerton 2010b, Proposition 2.1.11]. Lemma 2.4 implies that the family captures
M |SL2(Zp). Since each representation in the family has central character equal to
χη2

0 = ψ , the claim follows from Lemma 2.6. Since the family of representations
appearing in the claim is a subfamily of the representations appearing in the propo-
sition, the claim implies the proposition. �

2B. The image of Colmez’s Montreal functor. Let G =GL2(Qp), K =GL2(Zp).
Let B be the subgroup of upper-triangular matrices in G, let T be the subgroup of
diagonal matrices and let Z be the center of G. We make no assumption on the
prime p. We fix a continuous character ψ : Z→O×.

Let Modpro
G (O) be the category of profinite augmented representations of G

[Emerton 2010a, Definition 2.1.6]. The Pontryagin duality

π 7→ π∨ := Homcont
O (π, L/O)

induces an antiequivalence of categories between Modsm
G (O) and Modpro

G (O) [Emer-
ton 2010a, (2.2.8)]. Let Modl.adm

G (O) be the full subcategory of Modsm
G (O) con-

sisting of locally admissible [Emerton 2010a, Definition 2.2.17] representations
of G and let Modl.adm

G,ψ (O) be the full subcategory of Modl.adm
G (O) consisting of

those representations on which Z acts by the character ψ . Let C(O) be the full
subcategory of Modpro

G (O) antiequivalent to Modl.adm
G,ψ (O) via the Pontryagin duality.

For π1, π2 ∈Modl.adm
G,ψ (O) we let ExtiG,ψ(π1, π2) be the Yoneda Ext group computed

in Modl.adm
G,ψ (O).

Let π ∈Modl.adm
G,ψ (O) be absolutely irreducible and either supersingular [Barthel

and Livné 1994; Breuil 2003a] or a principal series representation isomorphic to(
IndG

B χ1⊗χ2ω
−1
)
sm, for some smooth characters χ1, χ2 : Q×p → k× such that

χ1χ
−1
2 6= ω

±1, 1. This hypothesis ensures that π ′ :=
(
IndG

B χ2⊗χ1ω
−1
)
sm is also

absolutely irreducible and π 6∼= π ′. Let P � π∨ be a projective envelope of π∨

in C(O) and let E = EndC(O)(P). Then E is naturally a topological ring with a
unique maximal ideal and residue field k = EndC(O)(π∨); see [Paškūnas 2013, §2].

Proposition 2.8. If π is supersingular then k ⊗̂E P ∼= π∨. If π is a principal series
then k ⊗̂E P ∼= κ∨, where κ is the unique nonsplit extension 0→ π→ κ→ π ′→ 0 .

Proof. In both cases, (k ⊗̂E P)∨ is the unique representation in Modl.adm
G,ψ (O) which

is maximal with respect to the following conditions: (1) socG(k ⊗̂E P)∨ ∼= π ;
(2) π occurs in (k ⊗̂E P)∨ with multiplicity one; see [Paškūnas 2013, Remark 1.13].
For, if τ ∈ Modl.adm

G,ψ (O) satisfies both conditions, then (1) and [Paškūnas 2013,
Lemma 2.10] imply that the natural map HomC(O)(P, τ∨) ⊗̂E P → τ∨ is surjec-
tive, and (2) and the exactness of HomC(O)(P, ∗) imply that HomC(O)(P, τ∨) ∼=
HomC(O)(P, π∨)∼= k. Hence, dually we obtain an injection τ ↪→ (k ⊗̂E P)∨.
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Let π1 be an irreducible representation in Modl.adm
G,ψ (O) such that Ext1G,ψ(π1, π) is

nonzero. It follows from Corollary 1.2 in [Paškūnas 2014] that if π is supersingular
then π1 ∼= π and hence (k ⊗̂E P)∨ ∼= π , and if π is a principal series as above
then π1 ∼= π or π1 ∼= π

′. We will now explain how to modify the arguments
of [Paškūnas 2013, §8] so that they also work for p = 2, the main point being
that Emerton’s functor of ordinary parts works for all p. Proposition 4.3.15(2)
of [Emerton 2010b] implies that Ext1G,ψ(π

′, π) is one-dimensional. Let κ be the
unique nonsplit extension 0→ π→ κ→ π ′→ 0. We claim that Extn

G,ψ(π
′, κ)= 0

for all n ≥ 0. The claim for n = 1 implies that (k ⊗̂E P)∨ ∼= κ . It is proved in
[Emerton and Paškūnas 2010, Corollary 3.12] that the δ-functor H •OrdB , defined in
[Emerton 2010b, Definition 3.3.1], is effaceable in Modl.adm

G,ψ (O). Hence it coincides
with the derived functor R

•OrdB . An open compact subgroup N0 of the unipotent
radical of B is isomorphic to Zp, and hence H i (N0, ∗) vanishes for i ≥ 2. This
implies that Ri OrdB = H i OrdB = 0 for i ≥ 2. The proof of [Paškūnas 2013,
Lemma 8.1] does not use the assumption p > 2 and gives that

OrdB κ ∼= OrdB π ∼= R1 OrdB π
′ ∼= R1 OrdB κ ∼= χ2ω

−1
⊗χ1. (2)

Our assumption on χ1 and χ2 implies that χ1ω
−1
⊗ χ2 and χ2ω

−1
⊗ χ1 are

distinct characters of T. It follows from [Emerton 2010b, Lemma 4.3.10] that
all the Ext-groups between them vanish. Since π ′ ∼=

(
IndG

B
χ1ω

−1
⊗χ2

)
sm, where

B is the subgroup of lower-triangular matrices in G, all the terms in Emerton’s
spectral sequence [2010b, (3.7.4)] converging to Extn

G,ψ(π
′, κ) are zero. Hence,

Extn
G,ψ(π2, κ) = 0 for all n ≥ 0. Let us also note that the 5-term exact sequence

associated to the spectral sequence implies that Ext1G,ψ(π, κ) is finite-dimensional.
�

Proposition 2.9. If π is supersingular then let S = Q = π∨. If π is a principal
series then let S = π∨ and Q = κ∨. Then S and Q satisfy the hypotheses (H0)–(H5)
of [Paškūnas 2013, §3].

Proof. If π is supersingular then there are no other irreducible representations in
the block of π and hence the only hypothesis to check is (H4), which is equivalent
to the finite-dimensionality of Ext1G,ψ(π, π). This follows from Proposition 9.1 in
[Paškūnas 2010b]. If π is a principal series then the assertion follows from the
Ext-group calculations made in the proof of Proposition 2.8. �

The proposition enables us to apply the formalism developed in [Paškūnas 2013,
Section 3]. Corollary 3.12 of [Paškūnas 2013] implies:

Proposition 2.10. The functor ⊗̂E P is an exact functor from the category of pseudo-
compact right E-modules to C(O).
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If m is a pseudocompact right E-module then HomC(O)(P,m ⊗̂E P) ∼= m by
[Paškūnas 2013, Lemma 2.9]. This implies that the functor is fully faithful, so that

Homcont
E (m1,m2)∼= HomC(O)(m1 ⊗̂E P,m2 ⊗̂E P). (3)

Proposition 2.11. E is commutative.

Proof. Let C̃(O) be the full subcategory of Modpro
G (O) which is antiequivalent

to Modl.adm
G (O) via the Pontryagin duality. Let P̃ be a projective envelope of π∨

in C̃(O), let Ẽ :=EndC̃(O)(P̃) and let a be the closed two-sided ideal of Ẽ generated
by the elements z−ψ−1(z), for all z in the center of G. We may consider C(O) as
a full subcategory of C̃(O). Since the center of G acts on P̃/aP̃ by ψ−1, we have
P̃/aP̃ ∈ C(O). The functor HomC(O)(P̃/aP̃, ∗) is exact, since

HomC(O)(P̃/aP̃,M)= HomC̃(O)(P̃,M) (4)

for all M ∈ C(O), and P̃ is projective. Hence, P̃/aP̃ is projective in C(O). Its
G-cosocle is isomorphic to π∨, since the same is true of P̃. Hence, P̃/aP̃ is a pro-
jective envelope of π∨ in C(O). Since projective envelopes are unique up to isomor-
phism, P̃/aP̃ is isomorphic to P. Since a is generated by central elements, any φ∈ Ẽ
maps aP̃ to itself. This yields a ring homomorphism Ẽ→ EndC(O)(P̃/aP̃) ∼= E .
Projectivity of P̃ and (4) applied with M = P̃/aP̃ implies that the homomorphism
is surjective and induces an isomorphism Ẽ/a∼= EndC(O)(P̃/aP̃). Since Ẽ is com-
mutative [Colmez et al. 2014, Corollary 2.22] we deduce that E is commutative. �

Proposition 2.12. E is a complete local noetherian commutative O-algebra with
residue field k.

Proof. Proposition 2.11 asserts that E is commutative. Corollary 3.11 of [Paškūnas
2013] implies that the natural topology on E (see [Paškūnas 2013, §2]) coincides
with the topology defined by the maximal ideal m, which implies that E is com-
plete for the m-adic topology. It follows from Lemma 3.7, Proposition 3.8(iii) of
[Paškūnas 2013] that m/(m2

+ ($)) is a finite-dimensional k-vector space. Since
E is commutative, we deduce that E is noetherian. �

Proposition 2.13. Let Q = π∨ if π is supersingular and let Q = κ∨ if π is a
principal series. The ring E represents the universal deformation problem of Q
in C(O), and P is the universal deformation of Q.

Proof. Since E is commutative by Proposition 2.11 and since hypotheses (H0)–(H5)
of [Paškūnas 2013, §3] are satisfied by Proposition 2.9, the assertion follows from
[Paškūnas 2013, Corollary 3.27]. �
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2B1. Colmez’s Montreal functor. This subsection is essentially the same as Section
5.7 of [Paškūnas 2013]. Let GQp be the absolute Galois group of Qp. We will
consider ψ as a character of GQp via local class field theory, normalized so that the
uniformizers correspond to geometric Frobenii. Let ε : GQp →O× be the p-adic
cyclotomic character. Similarly, we will identify ε with the character of Q×p , which
maps x to x |x |.

Colmez [2010] has defined an exact and covariant functor V from the category
of smooth, finite-length representations of G on O-torsion modules with a central
character to the category of continuous finite-length representations of GQp on
O-torsion modules. This functor enables us to make the connection between the
GL2(Qp) and GQp worlds. We modify Colmez’s functor to obtain an exact covariant
functor

V̌ : C(O)→Modpro
GQp
(O)

as follows. Let M be in C(O). If it is of finite length then V̌ (M) := V (M∨)∨(εψ),
where ∨ denotes the Pontryagin dual and ε is the cyclotomic character. In general,
we may write M ∼= lim

←−−
Mi , where the limit is taken over all quotients of finite length

in C(O), and we define V̌ (M) := lim
←−−

V̌ (Mi ). If π ∈ Modl.fin
G,ψ(k) is absolutely

irreducible, then π∨ is an object of C(O), and if π is supersingular in the sense
of [Barthel and Livné 1994], then V̌ (π∨) ∼= V (π) is an absolutely irreducible
continuous representation of GQp associated to π by Breuil [2003a]. If π ∼=(
IndG

B χ1⊗χ2ω
−1
)
sm then V̌ (π∨) ∼= χ1. If π ∼= χ ◦ det then V̌ (π∨) = 0 and if

π ∼= Sp⊗χ ◦det, where Sp is the Steinberg representation, then V̌ (π∨)∼= χ . Since
V̌ is exact we obtain an exact sequence of GQp-representations

0→ χ2→ V̌ (κ∨)→ χ1→ 0. (5)

The sequence is nonsplit by [Colmez 2010, Proposition VII.4.13(iii)]. If m is a
pseudocompact right E-module then there exists a natural isomorphism of GQp-
representations

V̌ (m ⊗̂E P)∼=m ⊗̂E V̌ (P), (6)

by [Paškūnas 2013, Lemma 5.53]. It follows from (6) and Proposition 2.10 that
V̌ (P) is a deformation of ρ := V̌ (k ⊗̂E P) to E . If π is supersingular then ρ is an
absolutely irreducible 2-dimensional representation of GQp , and if π is a principal
series then ρ is a nonsplit extension of distinct characters; see (5). In both cases,
EndGQp

(ρ)= k and so the universal deformation problem of ρ is represented by a
complete local noetherian O-algebra R. Let Rψ be the quotient of R parametrizing
deformations of ρ with determinant equal to ψε.

Proposition 2.14. The functor V̌ induces surjective homomorphisms R � E and
ϕ : E � Rψ.
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Proof. This is proved in the same way as [Paškūnas 2013, Proposition 5.56, §5.8],
following [Kisin 2010]. For the first surjection it is enough to prove that V̌ induces
an injection

Ext1C(O)(Q, Q) ↪→ Ext1GQp
(ρ, ρ).

This follows from [Colmez 2010, Théorème VII.5.2]. To prove the second surjection,
we observe that Rψ is reduced and O-torsion-free: if p ≥ 5 then Rψ is formally
smooth over O, if p = 3 then the assertion follows from results of [Böckle 2010],
and if p=2 then the assertion follows from [Chenevier 2009, Proposition 4.1]. Thus
it is enough to show that every closed point of Spec Rψ [1/p] is contained in Spec E .
This is equivalent to showing that for every deformation ρ̃ of ρ with determinant ψε
there is a Banach space representation 5 lifting Q∨ with central character ψ such
that V̌ (5)∼= ρ̃. This follows from [Colmez et al. 2015, Theorem 10.1]. �

2B2. Banach space representations. Let Banadm
G,ψ(L) be the category of admissible

unitary L-Banach space representations [Schneider and Teitelbaum 2002, §3] on
which Z acts by the character ψ . If 5 ∈ Banadm

G,ψ(L) then we let

V̌ (5) := V̌ (2d)⊗O L , (7)

where 2 is any open bounded G-invariant lattice in 5. Therefore, V̌ is exact and
contravariant on Banadm

G,ψ(L).

Remark 2.15. One of the reasons we use V̌ instead of V is that this allows us to
define V̌ (5) without making the assumption that the reduction of 5 modulo $
has finite length as a G-representation.

If m is an E[1/p]-module of finite length then we let

5(m) := Homcont
O (m0

⊗̂E P, L), (8)

where m0 is any E-stable O-lattice in m. Then 5(m) is an admissible unitary
L-Banach space representation of G, by [Paškūnas 2015b, Lemma 2.21], with
the topology given by the supremum norm. Since the functor ⊗̂E P is exact by
Proposition 2.10, the functor m 7→5(m) is exact and contravariant. Moreover, it is
fully faithful, as

HomG(5(m1),5(m2))∼= HomC(O)
(
m0

2 ⊗̂E P,m0
1 ⊗̂E P

)
L

∼= HomE[1/p](m2,m1), (9)

where the first isomorphism follows from Theorem 2.3 of [Schneider and Teitelbaum
2002] and the second from (3).

Lemma 2.16. Let m be an E[1/p]-module of finite length and let 5 ∈ Banadm
G,ψ(L)

be such that π does not occur as a subquotient in the reduction of an open bounded
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G-invariant lattice in 5 modulo $ . Then Ext1G(5,5(m)) computed in Banadm
G,ψ(L)

is zero.

Proof. If2 is an open bounded G-invariant lattice in B∈Banadm
G,ψ(L) then we define

m(B) :=HomC(O)(P,2d)L . Proposition 4.17 in [Paškūnas 2013] implies that m(B)
is a finitely generated E[1/p]-module. The functor B 7→m(B) is exact by [Paškūnas
2013, Lemma 4.9]. The evaluation map HomC(O)(P,2d) ⊗̂E P→2d induces a
continuous G-equivariant map B→5(m(B)). If m is an E[1/p]-module of finite
length and B∼=5(m) then m(B)∼=m and the map B→5(m(B)) is an isomorphism
by [Paškūnas 2013, Lemma 4.28]. Moreover, m(B)= 0 if and only if π does not oc-
cur as a subquotient of 2/($), by [Colmez et al. 2014, Proposition 2.1(ii)]. Hence,
if we have an exact sequence 0→5(m)→B→5→0 then by applying the functor
m to it, we obtain an isomorphism m∼=m(5(m))∼=m(B) and hence an isomorphism
5(m)∼=5(m(B)). The map B→5(m(B)) splits the exact sequence. �

The proof of [Paškūnas 2015b, Lemma 4.3] shows that we have a natural iso-
morphism of GQp-representations

V̌ (5(m))∼=m⊗E V̌ (P). (10)

Let us point out a special case of this isomorphism. If n is a maximal ideal of E[1/p]
then its residue field κ(n) is a finite extension of L . Let Oκ(n) be the ring of integers
in κ(n) and let $κ(n) be the uniformizer. Then 2 := Homcont

O (Oκ(n) ⊗̂E P,O) is
an open bounded G-invariant lattice in 5(κ(n)). The evaluation map induces an
isomorphism 2d ∼=Oκ(n) ⊗̂E P. Since E is noetherian, Oκ(n) is a finitely presented
E-module and thus the usual and completed tensor products coincide. We obtain

V̌ (2d)∼=Oκ(n)⊗E V̌ (P), V̌ (5(κ(n)))∼= κ(n)⊗E V̌ (P). (11)

Since the residue field of Oκ(n) is k, we have

2/($κ(n))∼= Homcont
k (k ⊗̂E P, k)∼= (k ⊗̂E P)∨. (12)

Recall from [Paškūnas 2013, §4] that 5 ∈ Banadm
G,ψ(L) is irreducible if it does

not have a nontrivial closed G-invariant subspace. It is absolutely irreducible if
5⊗L L ′ is irreducible in Banadm

G,ψ(L
′) for every finite field extension L ′/L . An

irreducible 5 is ordinary if it is a subquotient of a unitary parabolic induction of a
unitary character. Otherwise it is called nonordinary.

Proposition 2.17. If n is a maximal ideal of E[1/p] then either the κ(n)-Banach
space representation 5(κ(n)) is absolutely irreducible nonordinary or

π ∼=
(
IndG

B χ1⊗χ2ω
−1)

sm
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and (after possibly replacing κ(n) by a finite extension) there exists a nonsplit
extension

0→
(
IndG

B δ1⊗ δ2ε
−1)

cont→5(κ(n))→
(
IndG

B δ2⊗ δ1ε
−1)

cont→ 0, (13)

where δ1, δ2 :Q
×
p → κ(n)× are unitary characters congruent to χ1 and χ2, respec-

tively, such that δ1δ2 = ψε.

Proof. It follows from (11) that dimκ(n) V̌ (5(κ(n))) = 2. Since V̌ applied to a
parabolic induction of a unitary character is a one-dimensional representation of
GQp , we deduce that if 5(κ(n)) is absolutely irreducible then it cannot be ordinary.

If π is supersingular then (12) implies that 2/($κ(n))∼= π , which is absolutely
irreducible. This implies that 5(κ(n)) is absolutely irreducible. If π is a principal
series then2/($κ(n)) is of length 2 and both irreducible subquotients are absolutely
irreducible. Hence, 5(κ(n)) is either irreducible or of length 2. Let us assume that
5(κ(n)) is not absolutely irreducible. Then after possibly replacing κ(n) by a finite
extension we have an exact sequence of admissible κ(n)-Banach space representa-
tions 0→51→5(κ(n))→52→ 0. This sequence is nonsplit, since otherwise
V̌ (5(κ(n))) would be a direct sum of two one-dimensional representations, which
would contradict [Paškūnas 2015b, Lemma 4.5(iii)]. Let 21 :=2∩51 and let 22

be the image of 2 in 52. Since we are dealing with admissible representations, 22

is a bounded O-lattice in 52. Lemma 5.5 of [Paškūnas 2010a] says that we have
the exact sequences of Oκ(n)-modules

0→21→2→22→ 0, (14)

0→21/($κ(n))→2/($κ(n))→22/($κ(n))→ 0. (15)

It follows from (12) that the exact sequence of G-representations in (15) is the
unique nonsplit extension 0→ π→ κ→ π ′→ 0. Proposition 4.2.14 of [Emerton
2010b] applied with A =Oκ(n)/($ n

κ(n)) for all n ≥ 1 implies that

51 ∼=
(
IndG

B δ1⊗ δ2ε
−1)

cont, 52 ∼=
(
IndG

B δ
′

2⊗ δ
′

1ε
−1)

cont,

where δ1, δ2, δ
′

1, δ
′

2 : Q×p → κ(n)× are unitary characters with δ1, δ′1 congruent
to χ1 and δ2, δ′2 congruent to χ2 modulo $κ(n). We reduce (14) modulo $ n

κ(n)

to obtain an exact sequence to which we apply OrdB . This gives us an injection
OrdB

(
22/($

n
κ(n))

)
↪→ R1 OrdB

(
22/($

n
κ(n))

)
. Since both are free Oκ(n)/($ n

κ(n))-
modules of rank 1, the injection is an isomorphism. This implies that δ1 is congruent
to δ′1 and δ2 is congruent δ′2 modulo$ n

κ(n) for all n≥1. Hence, δ1=δ
′

1 and δ2=δ
′

2. �

2B3. Main local result. We will prove that the surjection ϕ : E � Rψ in Proposition
2.14 is an isomorphism. The argument combines the first part of the paper with
methods of [Paškūnas 2015b]. The argument in [Paškūnas 2013] used to prove this
statement when p ≥ 5 uses the fact that the rings Rψ are formally smooth in that
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case. This does not hold in general; when p = 2 or 3 and even when the ring is
formally smooth and p = 3, the computations just get too complicated.

Let V be a continuous representation of K with a central character ψ of the form
τ ⊗ Syma L2

⊗ η ◦ det, where η : Z×p → L× is a continuous character, and τ is a
type for a Bernstein component containing a principal series representation, but not
containing a special series representation.

Proposition 2.18. If n is a maximal ideal of E[1/p] then the following hold:

(i) dimκ(n) HomK (V,5(κ(n)))≤ 1.

(ii) dimκ(n) HomK (V,5(En/n
2))≤ 2.

Moreover, if HomK (V,5(κ(n))) 6= 0 then det V̌ (5(κ(n)))= ψε.

Proof. If m is an E[1/p]-module of finite length and L ′ is a finite extension of L , then
5(m⊗L L ′)∼=5(m)⊗L L ′ and HomK (V,5(m))⊗L L ′∼=HomK (V,5(m)⊗L L ′).
This implies that it is enough to prove the assertions after replacing κ(n) by a
finite extension. In particular, we may assume that 5(κ(n)) is either absolutely
irreducible or a nonsplit extension as in Proposition 2.17. Since V̌ is compatible
with twisting by characters, to prove the proposition it is enough to assume that η
is trivial, so that V is a locally algebraic representation of K.

Since τ is a type and 5(κ(n)) is admissible, HomK (V,5(κ(n))) 6= 0 if and
only if (after possibly replacing κ(n) by a finite extension) 5(κ(n)) contains a
subrepresentation of the form 9⊗Syma L2, where 9 is an absolutely irreducible
smooth principal series representation in the Bernstein component described by τ ;
see the proof of [Paškūnas 2010a, Theorem 7.2]. Let 5 be the universal unitary
completion of 9 ⊗ Syma L2. Then 5 is absolutely irreducible, by [Berger and
Breuil 2010, Corollaire 5.3.4] and [Breuil and Emerton 2010, Proposition 2.2.1].

If 5(κ(n)) is absolutely irreducible, we deduce that 5(κ(n))∼=5. Since 5 in
[Berger and Breuil 2010] is constructed out of a (ϕ, 0)-module of a 2-dimensional
crystabeline representation of GQp with determinant ψε, applying V̌ undoes this
construction to obtain the Galois representation we started with. In particular,
det V̌ (5(κ(n)))=ψε. Moreover, it follows from [Colmez 2010, Théorème VI.6.50]
that the locally algebraic vectors in 5(κ(n)) are isomorphic to 9⊗Syma L2, which
implies that

dimκ(n) HomK (V,5(κ(n)))= dimκ(n) HomK (V, 9⊗Syma L2)= 1, (16)

giving part (i).
If5(κ(n)) is reducible, then using the fact that (13) is nonsplit we deduce that5

is the unique irreducible subrepresentation of 5(κ(n)). It follows from [Paškūnas
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2013, Lemma 12.5]1 that the locally algebraic vectors in 5 are isomorphic to
9 ⊗ Syma L2 and the locally algebraic vectors in 5(κ(n))/5 are zero. Thus
locally algebraic vectors in 5(κ(n)) are isomorphic to 9⊗Syma L2 and so part (i)
holds. Moreover, applying V̌ to (13) we obtain an exact sequence 0→ δ2 →

V̌ (5(κ(n)))→ δ1→ 0. Hence, det V̌ (5(κ(n)))= δ1δ2 = ψε.
The exact sequence 0→ n/n2

→ En/n
2
→ κ(n)→ 0 of E[1/p]-modules gives

rise to an exact sequence of admissible Banach space representations of G

0→5(κ(n))→5(En/n
2)→5(κ(n))⊕d

→ 0,

where d=dimκ(n) n/n
2. We claim that HomG(5,5(En/n

2)) is one-dimensional as
a κ(n)-vector space. Given the claim we can deduce part (ii) by the same argument
as in [Paškūnas 2015b, Corollary 4.21]. To show the claim let 5′ :=5(κ(n))/5.
If 5′ is zero then the assertion follows from (9). If 5′ is nonzero then the reduction
of the unit ball modulo $κ(n) is isomorphic to π ′. Since (13) is nonsplit we obtain
HomG(5

′,5(κ(n))) = 0, and Lemma 2.16 implies that Ext1G(5
′,5(κ(n))) = 0.

Hence, HomG(5(κ(n)),5(En/n
2))∼=HomG(5,5(En/n

2)) and the claim follows
from (9). �

Let2 be a K-invariant O-lattice in V and let M(2) :=Homcont
O[[K ]](P,2

d)d, where
(∗)d :=HomO(∗,O). It follows from Proposition 2.8 that (k⊗̂E P)∨ is an admissible
representation of G; dually, this implies that k ⊗̂E P is a finitely generated O[[K ]]-
module. Hence, [Paškūnas 2015b, Proposition 2.15] implies that M(2) is a finitely
generated E-module. We will denote by m-Spec the set of maximal ideals of a
commutative ring.

Proposition 2.19. Let a be the E-annihilator of M(2). Then E/a is reduced
and O-torsion-free. Moreover, m-Spec(E/a)[1/p] is contained in the image of
m-Spec Rψ [1/p] under ϕ] : Spec Rψ → Spec E.

Proof. Theorem 5.2 in [Paškūnas 2015b] implies that there is a P-regular x ∈ E such
that P/xP is a finitely generated O[[K ]]-module which is projective in Modpro

K ,ψ(O).
It follows from [Paškūnas 2015b, Lemma 2.33] that M(2) is Cohen–Macaulay as
a module over E and its Krull dimension is equal to 2. If m is an E[1/p]-module
of finite length then

dimL HomK (V,5(m))= dimL m⊗E M(2), (17)

by [Paškūnas 2015b, Proposition 2.22]. Proposition 2.18 together with [Paškūnas
2015b, Proposition 2.32] imply that E/a is reduced. It is O-torsion-free, since M(2)
is O-torsion-free. Let n be a maximal ideal of E[1/p]. Since E is a quotient of R,
n lies in the image of m-Spec Rψ [1/p] if and only if det κ(n)⊗E V̌ (P) = ψε.

1The assumption p ≥ 5 in [Paškūnas 2013, §12] is only invoked in the proof of Theorem 12.7 by
appealing to Theorem 11.4. All the other arguments in that section work for all primes p.
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Proposition 2.18, (11) and (17) imply that this holds for all the maximal ideals of
(E/a)[1/p]. �

Corollary 2.20. The surjection ϕ : E � Rψ, given by Proposition 2.14, induces an
isomorphism E/a∼= Rψ/ϕ(a).

Proof. Since (E/a)[1/p] and (Rψ/ϕ(a))[1/p] are Jacobson, Proposition 2.19
implies that ϕ induces an isomorphism between E/a and the image of Rψ in the
maximal reduced quotient of (Rψ/ϕ(a))[1/p]. This implies that the surjection
E/a� Rψ/ϕ(a) is injective, and hence an isomorphism. �

Lemma 2.21. The E-annihilators of Homcont
K (P, V ∗) and M(2) are equal.

Proof. One inclusion is trivial; the other follows from [Paškūnas 2015b, (11)],
which says that Homcont

K (P, V ∗) is naturally isomorphic to Homcont
O (M(2), L). �

Theorem 2.22. The functor V̌ induces an isomorphism ϕ : E ∼=
−→ Rψ. Moreover,

V̌ (P) is the universal deformation of ρ with determinant ψε.

Proof. It follows from Corollary 2.20 and Lemma 2.21 that the kernel of ϕ is
contained in the E-annihilator of Homcont

K (P, V ∗). It follows from Proposition 2.7
that the intersection of the annihilators as V varies is zero. Hence, ϕ is injective, and
hence an isomorphism by Proposition 2.14. The second part is a formal consequence
of the first part. �

2B4. Blocks. As explained in the introduction the category Modl.adm
G,ψ (O) decom-

poses into a product of subcategories

Modl.adm
G,ψ (O)∼=

∏
B∈Irradm

G /∼

Modl.adm
G,ψ (O)[B], (18)

where Modl.adm
G,ψ (O)[B] is the full subcategory of Modl.adm

G,ψ (O) consisting of repre-
sentations with all irreducible subquotients in B. Dually we obtain a decomposition

C(O)∼=
∏

B∈Irradm
G /∼

C(O)[B], (19)

where M ∈ C(O) lies in C(O)[B] if and only if M∨ lies in Modl.adm
G,ψ (O)[B].

For a block B let πB =
⊕

π∈B π , and let πB ↪→ JB be an injective envelope
of πB. Then PB := (JB)∨ is a projective envelope of (πB)∨ in C(O). Moreover,
JB is an injective generator of Modl.adm

G,ψ (O)[B] and PB is a projective generator of
C(O)[B]. The ring EB := EndC(O)(PB) carries a natural topology with respect to
which it is a pseudocompact ring; see [Gabriel 1962, Chapitre IV, Proposition 13].
In addition, the functor

M 7→ HomC(O)(PB,M)
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induces an equivalence of categories between C(O)[B] and the category of right
pseudocompact EB-modules; see Corollaire 1 after [Gabriel 1962, Chapitre IV,
Théorème 4]. The inverse functor is given by m 7→ m ⊗̂EB PB, as follows from
Lemmas 2.9 and 2.10 in [Paškūnas 2013]. Moreover, the center of the category
of C(O)[B], which by definition is the ring of the natural transformations of the
identity functor, is naturally isomorphic to the center of the ring EB; see Corollaire 5
after [Gabriel 1962, Chapitre IV, Théorème 4].

Let us prove Theorem 1.2, stated in the introduction. If B is a block containing
a supersingular representation π then B= {π} and so πB = π , PB is a projective
envelope of π∨ and EB coincides with the ring denoted by E in the previous
section. Theorem 2.22 implies that EB is naturally isomorphic to Rψρ , the quotient
of the universal deformation ring of ρ := V̌ (π∨) parametrizing deformations with
determinant ψε. Since this ring is commutative, we deduce that the center of
C(O)[B] is naturally isomorphic to Rψρ . Moreover, V̌ (PB) is the tautological
deformation of ρ to Rψρ ; see Theorem 2.22.

If B contains a generic principal series representation then B= {π1, π2}, where

π1 ∼=
(
IndG

B χ1⊗χ2ω
−1)

sm, π2 ∼=
(
IndG

B χ2⊗χ1ω
−1)

sm, (20)

and χ1, χ2 :Q
×
p → k× are continuous characters such that χ1χ

−1
2 6= 1, ω±1. Then

πB = π1⊕π2 and so PB
∼= P1⊕ P2, where P1 is a projective envelope of π∨1 and

P2 is a projective envelope of π∨2 in C(O). Thus

EB
∼= EndC(O)(P1⊕ P2)∼= Endcont

GQp
(V̌ (P1)⊕ V̌ (P2)), (21)

where the last isomorphism follows from [Paškūnas 2013, Lemma 8.10]. The
assumption on the characters χ1, χ2 implies that if we consider them as repre-
sentations of GQp via the local class field theory, Ext1-groups between them are
1-dimensional. This means there are unique up to isomorphism nonsplit extensions

ρ1 =

(
χ1 ∗

0 χ2

)
, ρ2 =

(
χ1 0
∗ χ2

)
.

Let R1 be the universal deformation ring of ρ1, let Rψ1 be the quotient of R1

parametrizing deformations of ρ1 with determinant ψε, and let ρuniv
1 be the tauto-

logical deformation of ρ1 to Rψ1 . We define R2, Rψ2 and ρuniv
2 in the same way with

ρ2 instead of ρ1. It follows from Theorem 2.22 and (21) that

EB
∼= Endcont

GQp
(ρuniv

1 ⊕ ρuniv
2 ). (22)

We have studied the right-hand side of (22) in [Paškūnas 2013, §B.1] for p > 2 and
in [Paškūnas 2015a] in general. To describe the result we need to recall the theory
of determinants due to Chenevier [2014].



On 2-dimensional 2-adic Galois representations of local and global fields 1321

Let ρ : GQp → GL2(k) be a continuous representation. Let A be the category of
local artinian augmented O-algebras with residue field k. Let Dps

:A→ Sets be the
functor which maps (A,mA) ∈ A to the set of pairs of functions (t, d) : GQp → A
such that:

• d : GQp → A× is a continuous group homomorphism, congruent to det ρ
modulo mA.

• t : GQp → A is a continuous function with t (1)= 2.

• For all g, h ∈ GQp , the following are satisfied:

(i) t (g)≡ tr ρ(g) (mod mA).
(ii) t (gh)= t (hg).

(iii) d(g)t (g−1h)− t (g)t (h)+ t (gh)= 0.

The functor Dps is prorepresented by a complete local noetherian O-algebra Rps.
Let Rps,ψ be the quotient of Rps parametrizing those pairs (t, d) where d = ψε.
Combining (22) with [Paškūnas 2015a, Propositions 3.12 and 4.3, Corollary 4.4]
we obtain the following:

Theorem 2.23. Let B= {π1, π2} as above and let ρ = χ1⊕χ2. The center of EB,
and hence the center of the category C(O)[B], is naturally isomorphic to Rps,ψ.
Moreover, EB is a free Rps,ψ-module of rank 4:

EB
∼=

(
Rps,ψeχ1 Rps,ψ8̃12

Rps,ψ8̃21 Rps,ψeχ2

)
.

The generators satisfy the following relations:

e2
χ1
= eχ1, e2

χ2
= eχ2, eχ1eχ2 = eχ2eχ1 = 0, (23)

eχ18̃12 = 8̃12eχ2 = 8̃12, eχ28̃21 = 8̃21eχ1 = 8̃21, (24)

eχ28̃12 = 8̃12eχ1 = eχ18̃21 = 8̃21eχ2 = 8̃
2
12 = 8̃

2
21 = 0, (25)

8̃128̃21 = ceχ1, 8̃218̃12 = ceχ2 . (26)

The element c is regular in Rps,ψ and generates the reducibility ideal.

In order to state the result about the center of C(O)[B] in a uniform way, as
in Theorem 1.3, we note that if ρ is an irreducible representation then mapping a
deformation ρA to (tr ρA, det ρA) induces a homomorphism of O-algebras Rps

→ Rρ ,
which is an isomorphism by [Chenevier 2014, Theorem 2.22, Example 3.4].

For a block B, let Banadm
G,ψ(L)[B] be the full subcategory of Banadm

G,ψ(L) consist-
ing of those 5 for which, for some (equivalently any) open bounded G-invariant
lattice 2, all the irreducible subquotients of 2 ⊗O k lie in B. It is shown in
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[Paškūnas 2013, Proposition 5.36] that Banadm
G,ψ(L) decomposes into a direct sum

of subcategories
Banadm

G,ψ(L)∼=
⊕

B∈Irradm
G /∼

Banadm
G,ψ(L)[B].

Corollary 2.24. If B = {π} with π supersingular then let ρ = V̌ (π∨). If B =

{π1, π2} with π1, π2 given by (20) then let ρ = V̌ (π∨1 )⊕ V̌ (π∨2 ) = χ1⊕ χ2. The
map 5 7→ V̌ (5) induces a bijection between the isomorphism classes of

• absolutely irreducible nonordinary 5 ∈ Banadm
G,ψ(L)[B];

• absolutely irreducible ρ̃ : GQp → GL2(L) such that det ρ̃ = ψε and the
semisimplification of the reduction modulo$ of a GQp-invariant O-lattice in ρ̃
is isomorphic to ρ.

Proof. Given Theorems 1.2 and 2.23, this is proved in the same way as [Paškūnas
2013, Theorem 11.4]. �

If 5 ∈ Banadm
G,ψ(L)[B] and 2 is an open bounded G-invariant lattice in 5, then

2/$ n is an object of Modl.adm
G,ψ (O)[B] for all n ≥ 1. Theorem 1.3 gives a natural

action of Rps,ψ on 2/$ n for all n ≥ 1. Passing to the limit and inverting p, we
obtain a natural homomorphism Rps,ψ

[1/p] → Endcont
G (5).

Corollary 2.25. Let B be as in Corollary 2.24 and let 5 ∈ Banadm
G,ψ(L)[B] be

absolutely irreducible. Then tr V̌ (5) is equal to the specialization of the universal
pseudocharacter tuniv

: GQp → Rps,ψ at x : Rps,ψ
→ Endcont

G (5)∼= L.

Proof. This is proved in the same way as [Paškūnas 2013, Proposition 11.3]. To carry
out that proof we need to verify that V̌ (PB) is annihilated by g2

−tuniv(g)g+ψε(g)
for all g ∈ GQp . If B contains a supersingular representation this follows from
Cayley–Hamilton since V̌ (PB) is the universal deformation of ρ with determinant
ψε, and tr V̌ (PB)= tuniv by [Chenevier 2014, Theorem 2.22, Example 3.4]. If B
contains a generic principal series then V̌ (PB) ∼= ρ

univ
1 ⊕ ρuniv

2 and the assertion
follows from [Paškūnas 2015a, Proposition 3.9]. �

Corollary 2.26. For any 5 as in Corollary 2.24, we have dimL Ext1G,ψ(5,5)= 3.

Proof. Let Banadm.fl
G,ψ (L)[B] be the full subcategory of Banadm

G,ψ(L)[B] consisting of
objects of finite length. It follows from [Paškūnas 2013, Theorem 4.36] that this
category decomposes into a direct sum of subcategories

Banadm.fl
G,ψ (L)[B] ∼=

⊕
n∈m-Spec Rps,ψ [1/p]

Banadm.fl
G,ψ (L)[B]n,

where, for a maximal ideal n of Rps,ψ
[1/p], the direct summand Banadm.fl

G,ψ (L)[B]n
consists of those finite-length representations which are killed by a power of n.
Moreover, the last part of [Paškūnas 2013, Theorem 4.36] implies that the functor
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5 7→ HomC(O)(PB,2
d)[1/p], where 2 is any open bounded G-invariant lattice

in 5, induces an antiequivalence of categories between Banadm.fl
G,ψ (L)[B]n and the

category of modules of finite length over the n-adic completion of EB[1/p], which
we denote by ÊB,n.

Let ρ̃= V̌ (5). Corollary 2.24 tells us that ρ̃ is an absolutely irreducible represen-
tation with determinantψε. Let n be the maximal ideal of Rps,ψ

[1/p] corresponding
to the pair (tr ρ̃, det ρ̃). It follows from Corollary 2.25 that 5 is annihilated by n

and hence lies in Banadm.fl
G,ψ (L)[B]n. Let A be the completion of Rps,ψ

[1/p] at n.
In the supersingular case, EB = Rps,ψ

= Rψ, and so ÊB,n = A. In the generic
principal series case, since ρ̃ is absolutely irreducible, the image of the generator
of the reducible locus in Rps,ψ in κ(n) is nonzero. It follows from the description
of EB in Theorem 2.23 that ÊB,n is isomorphic to the algebra of 2× 2 matrices
with entries in A. Thus in both cases we get that Banadm.fl

G,ψ (L)[B]n is antiequivalent
to the category of A-modules of finite length, and 5 is identified with the residue
field κ(n) of A. Hence,

Ext1G,ψ(5,5)∼= Ext1A(κ(n), κ(n)).

Arguing as in [Kisin 2009c, Lemma 2.3.3] we may identify A with the universal
deformation ring parametrizing pseudocharacters with determinant ψε and values
in local artinian L-algebras which lift tr ρ̃. Since ρ̃ is absolutely irreducible we
may further identify this ring with the quotient of the universal deformation ring
of ρ̃ to local artinian L-algebras parametrizing deformations with determinant ψε.
This ring is formally smooth over L of dimension 3, as H 2(GQp , ad0(ρ̃)) ∼=

H 0(GQp , ad0(ρ̃)(1)) = 0 and so the deformation problem of ρ̃ is unobstructed.
In particular, dimL Ext1A(κ(n), κ(n))= dimL nA/n2 A = 3. �

2C. The Breuil–Mézard conjecture. In this section we apply the formalism de-
veloped in [Paškūnas 2015b] to prove new cases of the Breuil–Mézard conjecture,
when p = 2. We place no restriction on p in this section.

Let ρ : GQp → GL2(k) be a continuous representation which is either abso-
lutely irreducible, in which case we let π be a supersingular representation of G
such that V (π)∼= ρ, or which is isomorphic to

(
χ1
0
∗

χ2

)
, a nonsplit extension with

χ1χ
−1
2 6= 1, ω±1, in which case we let π =

(
IndG

B χ1⊗χ2ω
−1
)
sm. As before we let

Rψ be the quotient of the universal deformation ring of ρ parametrizing deformations
with determinant ψε and let ρuniv be the tautological deformation of ρ to Rψ.

Proposition 2.27. P satisfies the hypotheses (N0)–(N2) of [Paškūnas 2015b, §4].

Proof. (N0) says that k ⊗̂Rψ P is of finite length and finitely generated over O[[K ]].
This follows from Proposition 2.8. To verify (N1) we need to show that

HomSL2(Qp)(1, P∨)= 0.
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The SL2(Qp)-invariants in P∨ are stable under the action of G. Since P∨ is an in-
jective envelope of π , if the subspace is nonzero then it must intersect π nontrivially.
However, πSL2(Qp) = 0, which concludes the proof. (N2) requires V̌ (P) and ρuniv

to be isomorphic as Rψ [[GQp ]]-modules and this is proved in Theorem 2.22. �

Recall from [Serre 2000, §V.A] that the group of d-dimensional cycles Zd(A) of a
noetherian ring A is a free abelian group generated by p∈Spec A with dim A/p= d .
For d-dimensional cycles

∑
p npp and

∑
p mpp, we write

∑
p npp ≤

∑
p mpp, if

np ≤ mp for all p ∈ Spec A with dim A/p= d .
If M is a finitely generated A-module of dimension at most d then Mp is an Ap-

module of finite length, which we denote by `Ap(Mp), for all p with dim A/p=d . We
note that `Ap(Mp) is nonzero only for finitely many p. Thus zd(M) :=

∑
p `Ap(Mp)p,

where the sum is taken over all p ∈ Spec A such that dim A/p= d , is a well defined
element of Zd(A).

If (A,m) is a local ring then we define a Hilbert–Samuel multiplicity e(z) of
a cycle z =

∑
p npp ∈ Zd(A) to equal

∑
p npe(A/p), where e(A/p) is the Hilbert–

Samuel multiplicity of the ring A/p. If M is a finitely generated A-module of
dimension d then the Hilbert–Samuel multiplicity of M is equal to the Hilbert–
Samuel multiplicity of its cycle zd(M); see [Serre 2000, §V.2].

If2 is a continuous representation of K on a free O-module of finite rank, we let

M(2) :=
(
Homcont

O[[K ]](P,2
d)
)d
,

where (∗)d := HomO(∗,O). If λ is a smooth representation of K on an O-torsion
module of finite length then we let

M(λ) :=
(
Homcont

O[[K ]](P, λ
∨)
)∨
,

where the superscript ∨ denotes the Pontryagin dual.

Proposition 2.28. Let2 be a continuous representation of K on a free O-module of
finite rank with central character ψ . Then M(2) is a finitely generated Rψ-module.
If M(2) is nonzero then it is Cohen–Macaulay and has Krull dimension equal to 2.
We have an equality of 1-dimensional cycles

z1(M(2)/$)=
∑
σ

mσ z1(M(σ )), (27)

where the sum is taken over all the irreducible smooth k-representations of K, and
mσ denotes the multiplicity with which σ appears as a subquotient of 2⊗O k.

Moreover, M(σ ) 6= 0 if and only if HomK (σ, π) 6= 0, in which case the Hilbert–
Samuel multiplicity of z1(M(σ )) is equal to 1.

Proof. We showed in Proposition 2.27 that k ⊗̂Rψ P is a finitely generated O[[K ]]-
module. It follows from Corollary 2.5 in [Paškūnas 2015b] that M(2) is a finitely
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generated Rψ-module. The restriction of P to K is projective in Modpro
K ,ψ(O) by

[Paškūnas 2015b, Corollary 5.3]. Proposition 2.24 in [Paškūnas 2015b] implies
that (27) holds as an equality of (d − 1)-dimensional cycles, where d is the Krull
dimension of M(2). Theorem 5.2 in [Paškūnas 2015b] shows that there is an x
in the maximal ideal of Rψ such that we have an exact sequence 0→ P x

→ P→
P/xP→0, where the restriction of P/xP to K is a projective envelope of (socK π)

∨

in Modpro
K ,ψ(O). Lemma 2.33 in [Paškūnas 2015b] implies that M(2) is a Cohen–

Macaulay module of dimension 2 and that $, x is a regular sequence of parameters.
If σ is an irreducible smooth k-representation of K with central character ψ then
the proof of [Paškūnas 2015b, Lemma 2.33] yields an exact sequence

0−→ M(σ ) x
−→M(σ )−→

(
Homcont

O[[K ]](P/xP, σ∨)
)∨
−→ 0.

Since P/xP is a projective envelope of (socK π)
∨ in Modpro

K ,ψ(O), we deduce that
dimk M(σ )/x M(σ ) is equal to dimk HomK (σ, π). If HomK (σ, π) is zero then
Nakayama’s lemma implies that M(σ )= 0. If HomK (σ, π) is nonzero then it is a
one-dimensional k-vector space, since the K-socle of π is multiplicity free. The
exact sequence 0→M(σ ) x

→M(σ )→ k→ 0 implies that M(σ ) is a cyclic module,
and if a denotes its annihilator then Rψ/a∼= k[[x]]. �

Remark 2.29. If ρ is absolutely irreducible and ρ|IQp
∼=
(
ωr+1

2 ⊕ω
p(r+1)
2

)
⊗ωm

then

socK π ∼=
(
Symr k2

⊕Symp−1−r k2
⊗ detr

)
⊗ detm,

where 0≤ r ≤ p− 1, 0≤ m ≤ p− 2 and ω2 is the fundamental character of Serre
of niveau 2; see [Breuil 2003a; 2003b]. If ρ ∼=

(
χ1
0

∗

χ2ωr+1

)
⊗ωm, where χ1, χ2 are

unramified and χ1 6= χ2ω
r+1 then

π ∼=
(
IndG

B χ1⊗χ2ω
r)

sm⊗ω
m
◦ det .

Hence, socK π ∼= Symr k2
⊗ detm if 0< r < p− 1 and detm ⊕Symp−1 k2

⊗ detm

otherwise. In particular, socK π is multiplicity free.

If n ∈m-Spec Rψ [1/p] then the residue field κ(n) is a finite extension of L . Let
Oκ(n) be the ring of integers in κ(n). By specializing the universal deformation at n,
we obtain a continuous representation ρuniv

n : GQp →GL2(Oκ(n)), which reduces to
ρ modulo the maximal ideal of Oκ(n). A p-adic Hodge type (w, τ, ψ) consists of
the following data: w= (a, b) is a pair of integers with b> a, τ : IQp→GL2(L) is
a representation of the inertia subgroup with an open kernel and ψ :GQp→O× is a
continuous character such that ψε ≡ det ρ (mod$), ψ |IQp

= εa+b−1 det τ , where
ε is the p-adic cyclotomic character. If ρuniv

n is potentially semistable then we say
that it is of type (w, τ, ψ) if its Hodge–Tate weights are equal to w, the determinant
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is equal to ψ and the restriction of the Weil–Deligne representation, associated to
ρun
n by Fontaine [1994], to IQp is isomorphic to τ .

Henniart [2002] has shown the existence of a smooth irreducible representation
σ(τ) (resp. σ cr(τ )) of K on an L-vector space such that if π is a smooth absolutely
irreducible infinite-dimensional representation of G and LL(π) is the Weil–Deligne
representation attached to π by the classical local Langlands correspondence then
HomK (σ (τ ), π) 6= 0 (resp. HomK (σ

cr(τ ), π) 6= 0) if and only if LL(π)|IQp
∼= τ

(resp. LL(π)|IQp
∼= τ and the monodromy operator N is 0). The representations

σ(τ) and σ cr(τ ) are uniquely determined if p> 2. If p= 2 there might be different
choices; we choose one.

We let σ(w, τ ) := σ(τ)⊗Symb−a−1L2
⊗ deta. Then σ(w, τ ) is a finite-dimen-

sional L-vector space. Since K is compact and the action of K on σ(w, τ ) is
continuous, there is a K-invariant O-lattice 2 in σ(w, τ ). Then 2/($) is a smooth
finite-length k-representation of K, and we let σ(w, τ ) be its semisimplification.
One may show that σ(w, τ ) does not depend on the choice of a lattice. For each
smooth irreducible k-representation σ of K we let mσ (w, τ ) be the multiplicity
with which σ occurs in σ(w, τ ). We let σ cr(w, τ ) := σ cr(τ )⊗Symb−a−1L2

⊗deta

and let mcr
σ (w, τ ) be the multiplicity of σ in σ cr(w, τ ). If p= 2 then one may show

that σ(w, τ ) and σ cr(w, τ ) do not depend on the choice of σ(τ) and σ cr(τ ).

Proposition 2.30. Let V =σ(w,τ ) (resp. V =σ cr(w,τ )) and let2 be a K-invariant
lattice in V. Then n ∈ m-Spec Rψ [1/p] lies in the support of M(2) if and only
if ρuniv

n is potentially semistable (resp. potentially crystalline) of type (w, τ, ψ).
Moreover, for such n, we have dimκ(n) M(2)⊗Rψ κ(n)= 1.

Proof. Proposition 2.22 of [Paškūnas 2015b] implies that

dimκ(n) M(2)⊗Rψ κ(n)= dimκ(n) HomK (V,5(κ(n))).

Since V is a locally algebraic representation,

HomK (V,5(κ(n)))∼= HomK (V,5(κ(n))alg),

where the superscript alg denotes the subspace of locally algebraic vectors. This last
subspace is nonzero if and only if ρuniv

n is potentially semistable (resp. potentially
crystalline) of type (w, τ, ψ), in which case it is one-dimensional. The argument is
identical to the proof of [Paškūnas 2015b, Proposition 4.14], except that, because
we assume that ρ is generic, we don’t have to consider the nasty cases here. �

Corollary 2.31. There exists a reduced, O-torsion-free quotient Rψ(w, τ ) of Rψ

such that a map of O-algebras x : Rψ → L ′ into a finite field extension of L factors
through Rψ(w, τ ) if and only if ρuniv

x is potentially semistable of type (w, τ, ψ).
Moreover, if 2 is a K-invariant O-lattice in σ(w, τ ) and a is the Rψ-annihilator

of M(2) then Rψ(w, τ )= Rψ/
√
a.
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The same result holds if we consider potentially crystalline instead of potentially
semistable representations with σ cr(w, τ ) instead of σ(w, τ ).

Proof. Since the support of M(2) is closed in Spec Rψ, the assertion follows from
Proposition 2.30. �

Corollary 2.32. Let 2 be a K-invariant lattice in either σ(w, τ ) or σ cr(w, τ ) and
let a be the Rψ-annihilator of M(2). Then we have equalities of cycles

z2(Rψ/a)= z2(M(2)), z1(Rψ/(a,$))= z1(M(2)/$).

Proof. The last part of Proposition 2.30 implies that M(2) is generically free of
rank 1. This implies the first assertion; see [Paškūnas 2015b, Lemma 2.27]. The
second follows from the first combined with the fact that $ is both Rψ/a- and
M(2)-regular; see Proposition 2.2.13 in [Emerton and Gee 2014]. �

Proposition 2.33. Let a be the Rψ-annihilator of M(2), where 2 is a K-invariant
O-lattice in σ(w, τ ) (resp. σ cr(w, τ )). Then Rψ/a is reduced. In particular, it is
equal to Rψ(w, τ ) (resp. Rψ,cr(w, τ )).

Proof. Proposition 2.30 of [Paškūnas 2015b] together with the last part of Proposition
2.30 of the current paper says that it is enough to show that, for almost all n in
m-Spec Rψ [1/p] lying in the support of M(2),

dimκ(n) HomK (V,5(Rψn /n
2 Rψn ))≤ 2.

This amounts to checking that the subspace E of Ext1G(5(κ(n)),5(κ(n))) generated
by the extensions of admissible unitary κ(n)-Banach spaces 0→5(κ(n))→ B→
5(κ(n))→ 0 such that the induced map between the subspaces of locally algebraic
vectors Balg

→5(κ(n))alg is surjective, is at most one-dimensional; see the proof
of [Paškūnas 2015b, Corollary 4.21].

If τ does not extend to an irreducible representation of WQp then the proof
of [Paškūnas 2015b, Theorem 4.19] carries over: the key input into that proof
is that the closure of 5(κ(n))alg in 5(κ(n)) is equal to the universal unitary
completion of 5(κ(n))alg and the only case of this fact not covered by the ref-
erences given in the proof of [Paškūnas 2015b, Theorem 4.19] is when p = 2 and
5(κ(n))alg ∼=

(
IndG

B χ ⊗χ | � |
−1
)
sm⊗W , where W is an algebraic representation

of G and χ : Q×p → κ(n)× is a smooth character. However, in that case it is
explained in the second paragraph of the proof of [Paškūnas 2014, Proposition 6.13]
how to deduce from [Paškūnas 2009, Proposition 4.2] that any G-invariant O-lattice
in 5(κ(n))alg is a finitely generated O[G]-module, which provides the key input
also in this case. We note that the assumption p > 2 in [Paškūnas 2009, §4] is only
used to apply the results of Berger, Li and Zhu; in particular, the proof of [Paškūnas
2009, Proposition 4.2] works for all p.
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If τ extends to an irreducible representation of WQp then the assertion is proved
by Dospinescu [2015]. Although2 the main theorem of [Dospinescu 2015] is stated
under the assumption p ≥ 5, the argument only uses that assumption if we let
5=5(κ(n)), in which case det V̌ (5)= ψε and dimL Ext1G,ψ(5,5)= 3. This is
given by Corollaries 2.24 and 2.26. �

Theorem 2.34. There is a finite set {Cσ }σ ⊂ Z1(Rψ/$), indexed by the irreducible
smooth k-representations σ of K, such that for all p-adic Hodge types (w, τ ) we
have equalities

z1(Rψ(w, τ )/$)=
∑
σ

mσ (w, τ )Cσ ,

z1(Rψ,cr(w, τ )/$)=
∑
σ

mcr
σ (w, τ )Cσ .

The cycle Cσ is nonzero if and only if HomK (σ, π) 6= 0, in which case its Hilbert–
Samuel multiplicity is equal to 1.

Proof. Let a be the Rψ-annihilator of M(2), where 2 is a K-invariant O-lattice in
σ(w, τ ). Corollary 2.31 and Proposition 2.33 imply that

z1(Rψ(w, τ )/$)= z1(Rψ/(
√
a,$))= z1(Rψ/(a,$)).

Corollary 2.32 and Proposition 2.28 imply that

z1(Rψ/(a,$))=
∑
σ

mσ (w, τ )z1(M(σ )).

We let Cσ = z1(M(σ )). The proof in the potentially crystalline case is the same. �

Remark 2.35. One may use a global argument to prove Proposition 2.33, without
using the results of [Dospinescu 2015]. However, one needs to assume that the local
residual representation can be realized as a restriction to GQp of a global modular
representation.

Let b be the kernel Rψ/a� Rψ/
√
a. Since M(2) is Cohen–Macaulay, Rψ/a is

equidimensional. Thus if b is nonzero then it is a 2-dimensional Rψ-module, and
the cycle z1(b/$) is nonzero. Since

z1(Rψ/(a,$))= z1(Rψ/(
√
a,$))+ z1(b/$),

if Rψ/a is not reduced then we would conclude that e(Rψ/(a,$))>e(Rψ(w,τ )/$).
Since e(Rψ/(a,$))= e(M(2)/$)=

∑
σ mσ (w, τ )e(Cσ ), in this case we would

obtain a contradiction to the Breuil–Mézard conjecture.
If the residual representation can be suitably globalized (when p = 2 this means

that it is of the form ρ̄|GQp
, where ρ̄ satisfies the assumptions made in Section 3B)

then a global argument gives an inequality in the opposite direction, thus allowing

2I thank G. Dospinescu for pointing this out to me.
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us to conclude that Rψ/a is reduced. If p > 2 then such an argument is made in
[Kisin 2009a, §2.3]. If p = 2 then the same argument can be made using inequality
(41) in the proof of Proposition 3.17 and the proof of Corollary 3.27.

Remark 2.36. If R� is the framed deformation ring of ρ and R is the universal
deformation ring of ρ then R�∼= R[[x1, x2, x3]]. Thus we have a map of cycle groups

f : Zi (R)→ Zi+3(R�), p 7→ p[[x1, x2, x3]],

which preserves Hilbert–Samuel multiplicities. The extra variables only keep
track of a choice of basis. This implies that if Rψ,�(w, τ ) is the quotient of R�

parametrizing potentially semistable framed deformations of type (w, τ, ψ) then
Rψ,�(w, τ ) ∼= Rψ(w, τ )[[x1, x2, x3]], so that the cycle of Rψ,�(w, τ )/$ is the
image of the cycle of Rψ(w, τ )/$ under f . Using this, one may deduce a version
of Theorem 2.34 for framed deformation rings.

Let ρ =
(
χ1
0

0
χ2

)
, and let R� be the universal framed deformation ring of ρ. Let

Rψ,�(w, τ ) (resp. Rψ,�,cr(w, τ )) be the reduced, O-torsion-free quotient of R�

parametrizing potentially semistable (resp. potentially crystalline) lifts of p-adic
Hodge type (w, τ, ψ).

Theorem 2.37. There is a subset {C1,σ , C2,σ }σ of Z4(Rψ,�/$) indexed by the ir-
reducible smooth k-representations σ of K such that for all p-adic Hodge types
(w, τ ) we have equalities

z4
(
Rψ,�(w, τ )/$

)
=

∑
σ

mσ (w, τ )(C1,σ + C2,σ ),

z4
(
Rψ,�,cr(w, τ )/$

)
=

∑
σ

mcr
σ (w, τ )(C1,σ + C2,σ ).

The cycle C1,σ is nonzero if and only if HomK
(
σ,
(
IndG

B χ1⊗χ2ω
−1
)
sm

)
6= 0, and

C2,σ is nonzero if and only if HomK
(
σ,
(
IndG

B χ2⊗χ1ω
−1
)
sm

)
6= 0, in which case

the Hilbert–Samuel multiplicity is equal to 1.

Proof. Given Theorem 2.34, the assertion follows from Theorem 7.3 and Remark 7.4
of [Paškūnas 2015a]. �

The following corollary will be used in the global part of the paper.

Corollary 2.38. Assume that p = 2, ψ is unramified and either ρ is absolutely
irreducible or ρss

= χ1⊕χ2, with χ1 6= χ2. If w = (0, 1) and τ = 1⊕ 1 then

Rψ,�,cr(w, τ )= Rψ,�(w, τ ).

In other words, every semistable lift of ρ with Hodge–Tate weights (0, 1) is
crystalline.
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Proof. It is enough to prove the statement when ρ is nonsplit. Since if the assertion
was false in the split case then by choosing a different lattice in the semistable,
noncrystalline lift we would also obtain a contradiction in the nonsplit case. Since
framed deformation rings are formally smooth over the nonframed ones, it is enough
to prove that Rψ(w, τ )= Rψ,cr(w, τ ). By the same argument as in Remark 2.35
we see that it is enough to show that Rψ(w, τ )/$ and Rψ,cr(w, τ )/$ have the
same cycles (and even the equality of Hilbert–Samuel multiplicities will suffice).
Since p = 2 there are only 2 irreducible smooth k-representations of K : 1 and st.
The K-socle of π in all the cases is isomorphic to 1⊕ st, σ(w, τ )/$ ∼= st and
σ cr(w, τ )/$ ∼= 1. The assertion follows from Theorem 2.34. �

Remark 2.39. Assume that p = 2, let ξ : GQp → O× be unramified and congru-
ent to ψ modulo $ , and let (w, τ ) be arbitrary. It follows from Theorem 2.34,
Remark 2.36, Theorem 2.37 and the proof of Corollary 2.38 that

z4
(
Rψ,�(w, τ )/$

)
= (m1(w, τ )+mst(w, τ ))z4

(
Rξ,�((0, 1), 1⊕ 1)/$

)
,

where the cycles live in Z4(R�). This equality implies the equality of the respective
Hilbert–Samuel multiplicities.

3. Global part

In the global part of the paper we let p = 2, so that L is a finite extension of Q2

with the ring integers O and residue field k.

3A. Quaternionic modular forms. We follow very closely [Kisin 2009b, §3.1].
Let F be a totally real field in which 2 splits completely. Let D be a quaternion
algebra with center F, ramified at all the infinite places of F and a set of finite
places 6 which does not contain any primes dividing 2. We fix a maximal order OD

of D, and for each finite place v 6∈6 we have an isomorphism (OD)v ∼= M2(OFv ).
For each finite place v of F we will denote by N(v) the order of the residue field
at v, and by $v ∈ Fv a uniformizer.

Denote by A
f
F ⊂ AF the finite adeles, and let U =

∏
vUv be a compact open

subgroup contained in
∏
v(OD)

×
v . We assume that if v ∈ 6 then Uv = (OD)

×
v

and if v | 2 then Uv = GL2(OFv ) = GL2(Z2). Let A be a topological Z2-algebra.
For each v | 2, we fix a continuous representation σv :Uv→ Aut(Wσv ) on a finite
free A-module. Write Wσ =

⊗
v|2,AWσv and denote by σ :

∏
v|2Uv → Aut(Wσ )

the corresponding representation. We regard σ as being a representation of U by
letting Uv act trivially if v - 2. Finally, assume there exists a continuous character
ψ : (A

f
F )
×/F×→ A× such that, for any place v of F, the action of Uv ∩O×Fv on σ

is given by multiplication by ψ . We extend the action of U on Wσ to U (A f
F )
×

by letting (A f
F )
× act via ψ .
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Let Sσ,ψ(U, A) denote the set of continuous functions

f : D× \ (D⊗F A
f
F )
×
→Wσ

such that for g ∈ (D⊗F A
f
F )
× we have f (gu)= σ(u)−1 f (g), u ∈U , and f (gz)=

ψ−1(z) f (g), z ∈ (A f
F )
×. If we write (D⊗F A

f
F )
×
=
∐

i∈I D×tiU (A
f
F )
× for some

ti ∈ (D ⊗F A
f
F )
× and some finite index set I, then we have an isomorphism of

A-modules

Sσ,ψ(U, A) ∼=−→
⊕
i∈I

W
(
U (A f

F )
×
∩t−1

i D×ti
)
/F×

σ , f 7→ ( f (ti ))i∈I . (28)

Lemma 3.1. Let Umax =
∏
vO
×

Dv
, where the product is taken over all finite places

of F. Let t ∈ (D⊗F A
f
F )
×. Then the group

(
Umax(A

f
F )
×
∩ t D×t−1

)
/F× is finite

and there is an integer N, independent of t , such that its order divides N.

Proof. This is explained in Section 7.2 of [Khare and Wintenberger 2009b]; see
also [Taylor 2006, Lemma 1.1]. �

I thank Mark Kisin for explaining the proof of the following lemma to me.

Lemma 3.2. Let v1 be a finite place of F such that D splits at v1 and v1 does
not divide 2N, where N is the integer defined in Lemma 3.1. Let U =

∏
vUv be a

subgroup of (D⊗F A
f
F )
× such that Uv =O×Dv

if v 6= v1 and Uv1 is the subgroup of
upper triangular, unipotent matrices modulo $v1 . Then(

U (A f
F )
×
∩ t D×t−1)/F× = 1 for all t ∈ (D⊗F A

f
F )
×. (29)

Proof. Let u ∈
(
U (A f

F )
×
∩ t D×t−1

)
such that u 6∈ F×. Then the F-subalgebra F[u]

of t Dt−1 is a quadratic field extension of F. Let u′ be the conjugate of u over F.
Then u′ = Nm(u)/u, where Nm is the reduced norm. Consider w = u/u′ =
u2/Nm(u). Write u = hg with h ∈ U and g ∈ (A f

F )
×. Then Nm(g) = g2 and so

w = u/u′ = h2/Nm(h). Thus w is in U and also in t D×t−1.
Since

(
U (A f

F )
×
∩ t D×t−1

)
/F× is a subgroup of

(
Umax(A

f
F )
×
∩ t D×t−1

)
/F×,

uN is in F× and hence wN
= uN/(u′)N

= 1. Let l be the prime dividing N(v1).
Since Uv1 is a pro-l group and l does not divide N, the image of w under the
projection U →Uv1 is equal to 1. Since for every v the map D→ Dv is injective,
we conclude that w = 1, which implies that u ∈ F. �

If (29) holds then it follows from (28) that σ 7→ Sσ,ψ(U, A) defines an exact
functor from the category of continuous representations of U on finitely generated
A-modules, on which Uv for v - 2 acts trivially and U ∩ (A f

F )
× acts by ψ , to the

category of finitely generated A-modules.
Let S be a finite set of places of F containing 6, all the places above 2,

all the infinite places and all the places v for which Uv is not maximal. Let
Tuniv

S,A = A[Tv, Sv]v 6∈S be a commutative polynomial ring in the indicated formal
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variables. We let (D⊗F A
f
F )
× act on the space of continuous Wσ -valued functions

on (D⊗F A
f
F )
× by right translations, (h f )(g) := f (gh). Then Sσ,ψ(U, A) becomes

a Tuniv
S,A -module with Sv acting via the double coset Uv

(
$v
0

0
$v

)
Uv and Tv acting via

the double coset Uv
(
$v
0

0
1

)
Uv. We write Tσ,ψ(U, A) or Tσ,ψ(U ) for the image of

Tuniv
S,A in the endomorphisms of Sσ,ψ(U, A).

3B. Residual Galois representation. Keeping the notation of the previous section
we fix an algebraic closure F of F and let GF,S be the Galois group of the maximal
extension of F in F which is unramified outside S. We view ψ as a character of
GF,S via global class field theory, normalized so that uniformizers are mapped to
geometric Frobenii. Let χcyc :GF,S→O× be the global 2-adic cyclotomic character.
We note that χcyc is trivial modulo $ . For each place v of F, including the infinite
places, we fix an embedding F ↪→ Fv . This induces a continuous homomorphism
of Galois groups GFv := Gal(Fv/Fv)→ GF,S . We fix a continuous representation

ρ̄ : GF,S→ GL2(k)

and assume that the following conditions hold:

• The image of ρ̄ is nonsolvable.

• ρ̄ is unramified at all finite places v - 2.

• If v ∈ S is a finite place, v 6∈6, and v - 2, then the eigenvalues of ρ̄(Frobv) are
distinct.

• If v ∈6 then the eigenvalues of ρ̄(Frobv) are equal.

• det ρ̄ ≡ ψχcyc (mod$).

• If v ∈ S is a finite place, v 6∈6, and v - 2, then

Uv =
{
g ∈ GL2(OFv ) : g ≡

( 1
0
∗

1

)
(mod$v)

}
and at least one such v does not divide 2N, so that the condition of Lemma 3.2
is satisfied.

3B1. Local deformation rings. We fix a basis of the underlying vector space Vk

of ρ̄. For each v ∈ S let R�
v be the framed deformation ring of ρ̄|GFv

and let Rψ,�v

be the quotient of R�
v parametrizing lifts with determinant ψχcyc. We will now

introduce some quotients of Rψ,�v .
For v | 2 let τv be a 2-dimensional representation of the inertia group Iv with an

open kernel, and let wv = (av, bv) be a pair of integers with bv > av. Let σ(τv)
be any absolutely irreducible representation of Uv = GL2(Z2) with the property
that, for all irreducible infinite-dimensional smooth representations π of GL2(Q2),
HomUv (σ (τv), π) 6= 0 if and only if the restriction to Iv of the Weil–Deligne
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representation LL(π) associated to π via the local Langlands correspondence is
isomorphic to τ . The existence of such σ(τv) is shown in [Henniart 2002], where it
is also shown that if HomUv (σ (τv), π) 6= 0 then it is one-dimensional. We choose
a Uv-invariant O-lattice σ(τv)0 in σ(τv) and let

σv := σ(τv)
0
⊗O Symbv−av−1O2

⊗O detav . (30)

We let Rψ,�v (σv) be the reduced, O-flat quotient of Rψ,�v parametrizing potentially
semistable lifts with Hodge–Tate weights wv and inertial type τv. This ring is
denoted by Rψ,�(w, τ ) in the local part of the paper.

We similarly define σ cr(τv) by additionally requiring that HomUv (σ
cr(τv), π) 6= 0

if and only if the monodromy operator N in LL(π) is zero and LL(π)|Iv∼= τv. In
this case we let

σv := σ
cr(τv)

0
⊗O Symbv−av−1O2

⊗O detav . (31)

We let Rψ,�v (σv) be the quotient of Rψ,�v parametrizing potentially crystalline
lifts with Hodge–Tate weights wv and inertial type τv. This ring is denoted by
Rψ,�,cr(w, τ ) in the local part of the paper.

It follows either from the local part of the paper or from [Kisin 2008], where a
more general result is proved, that if Rψ,�v (σv) is nonzero then it is equidimensional
of Krull dimension 5. Since the residue field of Z2 has 2 elements, σ(τv) need not
be unique (see [Henniart 2002, §§A.2.6, A.2.7]); however, the semisimplification
of σ(τv)0⊗O k is the same in all cases.

If v is infinite then Rψ,�v is a domain of Krull dimension 3 and Rψ,�v

[ 1
2

]
is regular

[Kisin 2009b, Proposition 2.5.6; Khare and Wintenberger 2009b, Proposition 3.1].
If v is finite, ρ̄ is unramified at v and ρ̄(Frobv) has distinct Frobenius eigenvalues,

then Rψ,�v has Krull dimension 4 and Rψ,�v

[1
2

]
is regular. This follows from

[Kisin 2009b, Proposition 2.5.4], where it is shown that the dimension is 4 and
the irreducible components are regular. Since we assume that the eigenvalues of
ρ̄(Frobv) are distinct, ρ̄ cannot have a lift of the form γ ⊕ γχcyc. It follows from
the proof of [Kisin 2009b, Proposition 2.5.4] that different irreducible components
of Rψ,�v

[ 1
2

]
do not intersect.

If v is finite, ψ and ρ̄ are unramified at v and ρ̄(Frobv) has equal eigenvalues,
then for an unramified character γ :GFv→O× such that γ 2

=ψ |GFv
we let Rψ,�v (γ )

be a reduced O-torsion-free quotient of Rψ,�v with the property that if L ′/L is a
finite extension then a map x : Rψ,�v → L ′ factors through Rψ,�v (γ ) if and only if Vx

is isomorphic to
(γχcyc

0
∗

γ

)
. It follows from [Kisin 2009b, Proposition 2.5.2] via

[Kisin 2009c, Proposition 2.6.6] and [Khare and Wintenberger 2009b, Theorem 3.1]
that Rψ,�v (γ ) is a domain of Krull dimension 4 and Rψ,�v (γ )

[ 1
2

]
is regular. If L is

large enough then there are precisely two such characters, which we denote by γ1
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and γ2. We let R̄ψ,�v be the image of

Rψ,�v → Rψ,�v (γ1)
[ 1

2

]
× Rψ,�v (γ2)

[ 1
2

]
.

Then R̄ψ,�v is a reduced, O-flat quotient of Rψ,�v such that if L ′/L is a finite extension
then a map x : Rψ,�v → L ′ factors through R̄ψ,�v if and only if Vx is isomorphic to(γχcyc

0
∗

γ

)
for an unramified character γ . Moreover,

R̄ψ,�v

[ 1
2

]
∼= Rψ,�v (γ1)

[ 1
2

]
× Rψ,�v (γ2)

[ 1
2

]
.

Thus R̄ψ,�v

[1
2

]
is regular and equidimensional and the Krull dimension of R̄ψ,�v is 4.

We let
R�

S =
⊗̂
v∈S

R�
v , Rψ,�S =

⊗̂
v∈S

Rψ,�v , σ :=
⊗̂
v|2

σv,

and
Rψ,�S (σ ) :=

⊗̂
v|2

Rψ,�v (σv)
⊗̂
v∈6

R̄ψ,�v

⊗̂
v∈S\6
v -2∞

Rψ,�v

⊗̂
v|∞

Rψ,�v .

It follows from above that Rψ,�S (σ ) is equidimensional of Krull dimension equal to

1+ 4
∑
v | 2

1+ 3|6| + 3
(
|S| − |6| −

∑
v | 2

1−
∑
v |∞

1
)
+ 2

∑
v |∞

1= 1+ 3|S|. (32)

3B2. Global deformation rings. Since ρ̄ is assumed to have nonsolvable image,
ρ̄ is absolutely irreducible. We define RψF,S to be the quotient of the universal
deformation ring of ρ̄ parametrizing deformations with determinant ψχcyc. If Q
is a finite set of places of F disjoint from S then we let SQ = S ∪ Q and define
RψF,SQ

in the same way by viewing ρ̄ as a representation of GF,SQ .
Denote by Rψ,�F,SQ

the complete local O-algebra representing the functor which as-
signs to an artinian, augmented O-algebra A the set of isomorphism classes of tuples
{VA, βw}w∈S , where VA is a deformation of ρ̄ to A with determinant ψχcyc and βw
is a lift of a chosen basis of Vk to a basis of VA. The map {VA, βw}w∈S 7→ {VA, βv}

induces a homomorphism of O-algebras Rψ,�v → Rψ,�F,SQ
for every v ∈ S and hence

a homomorphism of O-algebras Rψ,�S → Rψ,�F,SQ
.

3C. Patching. For each n≥ 1 let Qn be the set of places of F disjoint from S, as in
[Kisin 2009b, Lemma 3.2.2] via [Khare and Wintenberger 2009b, Proposition 5.10].
We let Q0 = ∅, so that SQn = S for n = 0. Let UQn =

∏
v(UQn )v be a compact

open subgroup of (D⊗F A
f
F )
× such that (UQn )v = Uv for v 6∈ Qn and (UQn )v is

defined as in [Kisin 2009b, §3.1.6] for v ∈ Qn .
Let m be a maximal ideal of Tuniv

S,O such that the residue field is k, Tv is mapped to
tr ρ̄(Frobv) and Sv is mapped to the image of ψ(Frobv) in k for all v 6∈ S. We define
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mQn in Tuniv
SQn ,O

in the same manner. Let σ =
⊗

v|2 σv, where each σv is given by
either (30) or (31). We assume that Sσ,ψ(U,O)m 6= 0. Then for all n ≥ 0 there is
a surjective homomorphism of O-algebras RψF,SQn

→ Tσ,ψ(UQn )mQn
such that for

all v 6∈ SQn the trace of Frobv of the tautological RψF,SQn
-representation of GF,SQn

is mapped to Tv. Set

Mn(σ )= Rψ,�F,SQn
⊗RψF,SQn

Sσ,ψ(UQn ,O)mQn
,

with the convention that if n = 0 then Qn =∅, SQn = S, mQn =m, so that

M0(σ )= Rψ,�F,S ⊗RψF,S
Sσ,ψ(U,O)m.

It follows from the local-global compatibility of Jacquet–Langlands and Langlands
correspondences that the action of Rψ,�F,SQn

on Mn(σ ) factors through the quotient

Rψ,�F,SQn
(σ ) := Rψ,�S (σ )⊗

Rψ,�S
Rψ,�F,SQn

.

Let h= dimk H 1(GF,S, adρ̄)−2= |Qn|. Let a∞ denote the ideal of O[[y1, . . . , yh]]

generated by (y1, . . . , yh). Since Rψ,�F,SQn
is formally smooth over RψF,SQn

of relative
dimension j = 4|S| − 1 we may choose an identification

Rψ,�F,SQn
= RψF,SQn

[[yh+1, . . . , yh+ j ]]

and regard Mn(σ ) as an O[[y1, . . . , yh+ j ]]-module. This allows us to consider RψF,SQn

as an Rψ,�S -algebra via the map Rψ,�S → Rψ,�F,SQn
/(yh+1, . . . , yh+ j )= RψF,SQn

. We let

RψF,SQn
(σ ) := Rψ,�S (σ )⊗

Rψ,�S
RψF,SQn

.

Let g=2|Qn|+1 and t=2−|S|+|Qn| and let Ĝm be the completion of the O-group
Gm along the identity section. The patching argument as in [Khare and Wintenberger
2009b, Proposition 9.3] shows that there exist O[[y1, . . . , yh+ j ]]-algebras R′

∞
(σ )

and R∞(σ ) and an R∞(σ )-module M∞(σ ) with the following properties:

(P1) There are surjections of O-algebras

Rψ,�S (σ )[[x1, . . . , xg]]� R′
∞
(σ )� R∞(σ ).

(P2) There is an isomorphism of Rψ,�S (σ )-algebras

R∞(σ )/a∞R∞(σ )
∼=
−→ Rψ,�F,S (σ )

and an isomorphism of Rψ,�F,S (σ )-modules

M∞(σ )/a∞M∞(σ )
∼=
−→M0(σ ).

(P3) M∞(σ ) is finite flat over O[[y1, . . . , yh+ j ]].
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(P4) Spf R′
∞
(σ ) is equipped with a free action of (Ĝm)

t, and a (Ĝm)
t -equivariant

morphism δ : Spf R′
∞
(σ )→ (Ĝm)

t, where (Ĝm)
t acts on itself by the square

of the identity map.

(P5) We have δ−1(1) = Spf R∞(σ ) ⊂ Spf R′
∞
(σ ), and the induced action of

(Ĝm[2])t on Spf R∞(σ ) lifts to M∞(σ ).

If A is a local noetherian ring of dimension d and M is a finitely generated
A-module, we denote by e(M, A) the coefficient of xd in the Hilbert–Samuel
polynomial of M with respect to the maximal ideal of A, multiplied by d!. In
particular, e(M, A)=0 if dim M<dim A. If M= A we abbreviate e(M, A) to e(A).

It follows from [Khare and Wintenberger 2009b, Proposition 2.5] that there is a
complete local noetherian O-algebra

(
Rinv
∞
(σ ),minv

σ

)
with residue field k such that

Spf Rinv
∞
(σ )= Spf R′

∞
(σ )/(Ĝm)

t. Moreover,

R′
∞
(σ )= Rinv

∞
(σ ) ⊗̂O O[[Zt

2]]
∼= Rinv

∞
(σ )[[z1, . . . , zt ]]. (33)

This implies that

dim R′
∞
(σ )= dim Rinv

∞
(σ )+ t, e(R′

∞
(σ )/$)= e(Rinv

∞
(σ )/$). (34)

Lemma 3.3. There are a1, . . . , at ∈m
inv
σ such that

R∞(σ )∼=
Rinv
∞
(σ )[[z1]]

((1+ z1)2− (1+ a1))
⊗Rinv

∞ (σ )
· · ·⊗Rinv

∞ (σ )

Rinv
∞
(σ )[[zt ]]

((1+ zt)2− (1+ at))
. (35)

In particular, R∞(σ ) is a free Rinv
∞
(σ )-module of rank 2t.

Proof. It follows from [Khare and Wintenberger 2009b, Lemma 9.4] that Spf R∞(σ )
is a (Ĝm[2])t -torsor over Spf Rinv

∞
(σ ). The assertion follows from [SGA 3 II 1970,

Exposé VIII, Proposition 4.1]. �

Lemma 3.4. Let p ∈ Spec Rinv
∞
(σ ). The group (Ĝm[2])t(O) acts transitively on the

set of prime ideals of R∞(σ ) lying above p.

Proof. Let us write X for Spf R∞(σ ) and G for (Ĝm[2])t. The action of G on X
induces an action of (±1)t = G(O) ↪→ G(R∞(σ )) on X (R∞(σ )). If g ∈ G(O)
we let φg ∈ X (R∞(σ )) be the image of (g, idR∞(σ )). The map g 7→ φg induces a
homomorphism of groups G(O)→ Aut(R∞(σ )). Explicitly, if g = (ε1, . . . , εt),
where εi is either 1 or −1, then φg is Rinv

∞
(σ )-linear and maps 1+ zi to εi (1+ zi )

for 1≤ i ≤ t . It follows from (35) that G(O) acts transitively on the set of maximal
ideals of κ(p)⊗Rinv

∞ (σ )
R∞(σ ). �

Lemma 3.5. The support of M∞(σ ) in Spec R∞(σ ) is a union of irreducible com-
ponents. The Krull dimension of Spec R∞(σ ) is equal to h+ j + 1.
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Proof. It follows from part (P3) above that the support of M∞(σ ) is equidimensional
of dimension h+ j+1. To prove the assertion it is enough to show that the dimension
of R∞(σ ) is less than or equal to h+ j+1. Using Lemma 3.3, (34), (P1) and (32) we
deduce that dim R∞(σ )≤ dim Rψ,�S (σ )+ g− t = 3|S|+1+ g− t = h+ j +1. �

Lemma 3.6. e(R′
∞
(σ )/$)≤ e

(
Rψ,�S (σ )/$

)
.

Proof. It follows from (33) and Lemmas 3.3 and 3.5 that

dim R′
∞
(σ )= dim R∞(σ )+ t = t + h+ j + 1= 3|S| + 1+ g,

which is also the dimension of Rψ,�S (σ )[[x1, . . . , xg]] by (32). The surjection in
(P1) above implies that

e(R′
∞
(σ )/$)≤ e

(
Rψ,�S (σ )[[x1, . . . , xg]]/$

)
= e

(
Rψ,�S (σ )/$

)
. �

Lemma 3.7. If Sσ,ψ(U,O)m is supported on a closed point n ∈ Spec Rψ,�S (σ )
[ 1

2

]
then the localization Rψ,�S (σ )n is a regular ring.

Proof. Since the rings R�
v

[1
2

]
are regular for all v - 2 it is enough to show that n

defines a regular point in Spec Rψ,�v (σ ) for all v | 2. This follows from the proof of
Lemma B.5.1 in [Gee and Kisin 2014]. The argument is as follows: if the point
is not regular, then it must lie on the intersection of two irreducible components
of Spec Rψ,�v (σ ), but this would violate the weight–monodromy conjecture for
WD(ρn|GFv

); see [Gee and Kisin 2014] for details. �

Lemma 3.8. If Sσ,ψ(U,O)m is supported on a closed point n ∈ Spec R∞(σ )
[ 1

2

]
then the localization R∞(σ )n is a regular ring.

Proof. Let nS be the image of n in Spec Rψ,�S [[x1, . . . , xg]], let n′ be the image of n
in Spec R′

∞
(σ ) via the maps in (P1), and let ninv be the image of n in Spec Rinv

∞
(σ )

via (35). It follows from Lemma 3.7 that Rψ,�S (σ )[[x1, . . . , xg]]nS is a regular ring.
If the map

Rψ,�S (σ )[[x1, . . . , xg]]nS � R′
∞
(σ )n′ (36)

is an isomorphism, then R′
∞
(σ )n′ is a regular ring. We may assume that L is

sufficiently large, so that using (33) we may write n′ = (ninv, z1− a1, . . . , zt − at)

with ai ∈ $O for 1 ≤ i ≤ t . The images of z1 − a1, . . . , zt − at in n′/(n′)2 are
linearly independent. Since

Rinv
∞
(σ )ninv ∼= R′

∞
(σ )n′/(z1− a1, . . . , zt − at)R′∞(σ )n′,

we deduce that Rinv
∞
(σ )ninv is regular. It follows from (35) that the map

Rinv
∞
(σ )

[1
2

]
→ R∞(σ )

[ 1
2

]
is étale. Hence R∞(σ )n is a regular ring.
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If (36) is not an isomorphism then the dimension of the quotient must decrease.
This leads to the inequality dim R∞(σ)n<dim R∞(σ)−1. Since M∞(σ ) is a Cohen–
Macaulay module, as follows from (P3), its support cannot contain embedded
components, hence dim M∞(σ )n = dim M∞(σ )− 1. This leads to a contradiction,
as M∞(σ )n is a finitely generated R∞(σ )n-module. �

Lemma 3.9. Let A be a local noetherian ring and let (x1, . . . , xd) be a system of
parameters of A. If A is equidimensional then every irreducible component of A
contains a closed point of (A/(x2, . . . , xd))[1/x1].

Proof. Let p be an irreducible component of A. If A/(p, x2, . . . , xd)[1/x1] is
zero then x1 is nilpotent in A/(p, x2, . . . , xd). Since (x1, . . . , xd) is a system of
parameters of A, we conclude that A/(p, x2, . . . , xd) is zero dimensional, which
implies that dim A/p≤ d − 1, contradicting equidimensionality of A. �

Lemma 3.10. There is an integer r , independent of σ and the choices made in
the patching process, such that for all p ∈ Spec R∞(σ ) in the support of M∞(σ )
we have

dimκ(p) M∞(σ )⊗R∞(σ ) κ(p)≥ r,

with equality if p is a minimal prime of R∞(σ ) in the support of M∞(σ ).

Proof. Let q be a minimal prime of R∞(σ ) in the support of M∞(σ ). It is enough
to show that dimκ(q) M∞(σ )⊗R∞(σ ) κ(q) is independent of q and σ . Since

M∞(σ )/(y1, . . . , yh+ j )M∞(σ )∼= Sσ,ψ(U,O)m

and Sσ,ψ(U,O)m is a finitely generated O-module, y1, . . . , yh+ j ,$ is a system of
parameters for R∞(σ )/q and it follows from Lemma 3.9 that there is a maximal
ideal n of R∞(σ )

[ 1
2

]
, contained in V (q), such that Sσ,ψ(U,O)n 6= 0. It follows from

(P3) that M∞(σ ) is a Cohen–Macaulay module. The same holds for the localization
at n. Since R∞(σ )n is a regular ring by Lemma 3.8, a standard argument with the
Auslander–Buchsbaum theorem shows that M∞(σ )n is a free R∞(σ )n-module. By
localizing further at q we deduce that

dimκ(q) M∞(σ )⊗R∞(σ ) κ(q)= dimκ(n) M∞(σ )⊗R∞(σ ) κ(n)

= dimκ(n) Sσ,ψ(U,O)m⊗R∞(σ ) κ(n). (37)

So it is enough show that dimκ(n) Sσ,ψ(U,O)m⊗R∞(σ )κ(n) is independent of n and σ .
The action of R∞(σ ) on Sσ,ψ(U,O)m factors through the action of the Hecke algebra
Tσ,ψ(U ), which is reduced. Thus Tσ,ψ(U )

[ 1
2

]
is a product of finite field extensions

of L and we have

Sσ,ψ(U,O)m⊗R∞(σ ) κ(n)= Sσ,ψ(U,O)n = (Sσ,ψ(U,O)m⊗O L)[n].
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Let π =⊗′vπv be the automorphic representation of (D⊗F A
f
F )
× corresponding to

f D
∈ (Sσ,ψ(U,O)m⊗O L)[n]. We assume that L is sufficiently large. It follows

from the discussion in [Kisin 2009c, §3.1.14], relating Sσ,ψ(U, L) to the space of
classical automorphic forms on (D⊗F A

f
F )
×, that

dimL(Sσ,ψ(U,O)m⊗O L)[n] =
∏
v∈S
v -2∞

dimL π
Uv
v

∏
v | 2

dimL HomUv (σ (τv), πv).

We claim that the right-hand side of the above equation is equal to 2|S\(6∪{v|2∞})|.
The claim will follow from the local-global compatibility of Langlands and Jacquet–
Langlands correspondences. Let ρn be the representation of GF,S corresponding
to n, considered as a maximal ideal of RψF,S(σ )

[ 1
2

]
. If v | 2 then the results of

[Henniart 2002] imply that dimL HomUv (σ (τv), πv) = 1. If v ∈ 6 then πv is an
unramified character of D×v , and hence dimL π

Uv
v = 1. If v ∈ S, v - 2∞ and v 6∈6

then D is split at v, ρ̄|GFv
is unramified and ρ̄(Frobv) has distinct eigenvalues. This

implies that ρn|GFv
is an extension of distinct tamely ramified characters ψ1, ψ2

such that ψ1ψ
−1
2 6= χ

±1
cyc . We deduce that πv is a tamely ramified principal series.

Since Uv is equal to the subgroup of unipotent upper-triangular matrices modulo$v

in this case, we deduce that dimL π
Uv
v = 2. �

Lemma 3.11. There is an integer r , independent of σ and the choices made in the
patching process, such that for all minimal primes p of Rinv

∞
(σ ) in the support of

M∞(σ ) we have
dimκ(p) M∞(σ )⊗Rinv

∞ (σ )
κ(p)= 2tr.

Proof. To ease the notation, let us drop σ from it in this proof. Since p is minimal,
it is an associated prime and so M∞ will contain Rinv

∞
/p as a submodule. Since M∞

is O-torsion-free, this implies that the quotient field κ(p) has characteristic 0. It
follows from (35) that R∞⊗Rinv

∞
κ(p) is étale over κ(p), and so

R∞⊗Rinv
∞
κ(p)∼=

∏
q

κ(q),

where the product is taken over all prime ideals q of R∞ such that q∩ Rinv
∞
= p.

From this we get

dimκ(p) M∞⊗Rinv
∞
κ(p)=

∑
q

[κ(q) : κ(p)] dimκ(q) M∞⊗R∞ κ(q).

It follows from Lemma 3.4 and (P5) that all q appearing in the sum lie in the support
of M∞. Lemma 3.10 implies that dimκ(q) M∞⊗R∞ κ(q)= r . Thus

dimκ(p) M∞⊗Rinv
∞
κ(p)= r dimκ(p) R∞⊗Rinv

∞
κ(p)= r2t ,

where the last equality follows from Lemma 3.3. �
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Lemma 3.12. Let A be a local noetherian ring, let M, N be finitely generated
A-modules of dimension d , and let x ∈ A be M-regular and N-regular. If `Aq(Mq)≤

`Aq(Nq) for all q ∈ Spec A with dim A/q= d then

e(M/x M, A/x A)≤ e(N/x N , A/x A).

If `Aq(Mq)= `Aq(Nq) for all q ∈ Spec A with dim A/q= d then

e(M/x M, A/x A)= e(N/x N , A/x A).

Proof. It follows from Proposition 2.2.13 in [Emerton and Gee 2014] that

e(M/x M, A/x A)=
∑
q

`Aq(Mq)e(A/(q, x)), (38)

where the sum is taken over all primes q in the support of M such that dim A/q= d .
The above formula implies both assertions. �

Lemma 3.13. e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
≤ 2tre

(
Rinv
∞
(σ )/$

)
.

Proof. Let Tinv
∞
(σ ) be the image of Rinv

∞
(σ ) in EndO(M∞(σ )). Then

e
(
Tinv
∞
(σ )/$, Rinv

∞
(σ )/$

)
≤ e

(
Rinv
∞
(σ )/$

)
.

If q is a minimal prime of Rinv
∞
(σ ) in the support of M∞(σ ) then it follows from

Lemma 3.11 that there are surjections Tinv
∞
(σ )⊕2tr

q � M∞(σ )q. Thus `(M∞(σ )q)≤
2tr`

(
Tinv
∞
(σ )q

)
. The assertion follows from Lemma 3.12 applied with x = $ ,

M = M∞(σ ) and N = Tinv
∞
(σ )⊕2tr. �

Lemma 3.14. If the support of Sσ,ψ(U,O)m meets every irreducible component of
Rψ,�S (σ ) then the following hold:

(i) Rψ,�S (σ )[[x1, . . . , xg]]� R′
∞
(σ ) is an isomorphism.

(ii) Rinv
∞
(σ ) is reduced, equidimensional and O-flat.

(iii) R∞(σ ) is reduced, equidimensional and O-flat.

(iv) The support of M∞(σ ) meets every irreducible component of R∞(σ ).

(v) 2tre
(
Rψ,�S (σ )/$

)
= e

(
M∞(σ )/$, Rinv

∞
(σ )/$

)
.

Proof. Since Rψ,�S (σ )[[x1, . . . , xg]] is reduced and equidimensional and has the
same dimension as R′

∞
(σ ), to prove (i) it is enough to show that R′

∞
(σ )q 6= 0 for

every irreducible component V (q) of Spec Rψ,�S (σ )[[x1, . . . , xg]]. Since the diagram

Rψ,�S (σ )[[x1, . . . , xg]] //R∞(σ )

��

Rψ,�S (σ ) //

OO

RψF,S(σ )
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commutes and the support of Sσ,ψ(U,O)m meets every irreducible component
of Spec Rψ,�S , V (q) will contain a maximal ideal nS of Rψ,�S (σ )[[x1, . . . , xg]]

[ 1
2

]
,

which lies in the support of Sσ,ψ(U,O)m. It follows from the proof of Lemma 3.8
that (36) is an isomorphism in this case. Thus R′

∞
(σ )q 6= 0.

From part (i) we deduce that R′
∞
(σ ) is reduced, equidimensional and O-flat. It

follows from (33) that the same holds for Rinv
∞
(σ ). Since R∞(σ ) is a free Rinv

∞
(σ )-

module by Lemma 3.3, it is O-flat. Hence, it is enough to show that R∞(σ )
[1

2

]
is

reduced and equidimensional. It follows from Lemma 3.3 that R∞(σ )
[ 1

2

]
is étale

over Rinv
∞
(σ )

[ 1
2

]
, which implies the assertion. We also note that it follows from (i)

that the inequality in Lemma 3.6 is an equality, and (33) implies that

e
(
Rinv
∞
(σ )/$

)
= e

(
Rψ,�S /$

)
. (39)

It follows from our assumption that the support of M∞(σ ) meets every irreducible
component of Rψ,�S (σ )[[x1, . . . , xg]]. Part (i) and (33) imply that the support of
M∞(σ ) meets every irreducible component of Rinv

∞
(σ ). It follows from Lemma 3.4

that the group (Ĝm[2])t(O) acts transitively on the set of irreducible components
of R∞(σ ) lying above a given irreducible component of Rinv

∞
(σ ). Thus for part (iii)

it is enough to show that the support of M∞(σ ) in Spec R∞(σ ) is stable under the
action of (Ĝm[2])t(O). This is given by (P5) and can be proved in the same way as
[Khare and Wintenberger 2009b, Lemma 9.6].

Let V (q) be an irreducible component of Spec R∞(σ ). It follows from (iii) that
the localization R∞(σ )q is a reduced artinian ring, and hence is equal to the quotient
field κ(q). Thus M∞(σ )q ∼= M∞(σ )⊗R∞(σ ) κ(q). It follows from Lemma 3.10 that
M∞(σ )q has length r as an R∞(σ )q-module. By part (iv) M∞(σ ) is supported on
every irreducible component of R∞(σ ), and thus the cycle of M∞(σ ) is equal to
r times the cycle of R∞(σ ). Since both are O-torsion-free, we deduce that the cycle
of M∞(σ )/$ is equal to r times the cycle of R∞(σ )/$ , which implies that

e
(
M∞(σ )/$,Rinv

∞
(σ )/$

)
=re

(
R∞(σ )/$,Rinv

∞
(σ )/$

)
=2tre

(
Rinv
∞
(σ )/$

)
. (40)

Part (v) follows from (39) and (40). �

Proposition 3.15. For some s ≥ 0 there is an isomorphism of Rψ,�S -algebras

Rψ,�F,S
∼= Rψ,�S [[x1, . . . , xs+|S|−1]]/( f1, . . . , fs).

Proof. The assertion follows from the proof of [Khare and Wintenberger 2009b,
Proposition 4.5], where s = dimk H 1

{L⊥v }
(S, (Ad0)∗(1)) in the notation of that paper;

see their Lemma 4.6 and the displayed equation above it. �

Corollary 3.16. For some s ≥ 0 there is an isomorphism of Rψ,�S (σ )-algebras

Rψ,�F,S (σ )
∼= Rψ,�S (σ )[[x1, . . . , xs+|S|−1]]/( f1, . . . , fs).
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In particular, dim Rψ,�F,S (σ )≥ 4|S| and dim RψF,S(σ )≥ 1.

Proof. Since

Rψ,�F,S (σ )
∼= Rψ,�F,S ⊗Rψ,�S

Rψ,�S (σ )

the assertion follows from Proposition 3.15. Since dim Rψ,�S (σ )= 3|S|+1 by (32),
the isomorphism implies that

dim Rψ,�F,S (σ )≥ 3|S| + 1+ s+ |S| − 1− s = 4|S|.

Since Rψ,�F,S (σ ) is formally smooth over RψF,S(σ ) of relative dimension 4|S|−1, we
conclude that dim RψF,S(σ )≥ 1. �

Proposition 3.17. If Sσ,ψ(U,O)m 6= 0 then the following are equivalent:

(a) 2tre
(
Rψ,�S (σ )/$

)
= e

(
M∞(σ )/$, Rinv

∞
(σ )/$

)
.

(b) 2tre
(
Rψ,�S (σ )/$

)
≤ e

(
M∞(σ )/$, Rinv

∞
(σ )/$

)
.

(c) the support of M∞(σ ) meets every irreducible component of R∞(σ ).

(d) RψF,S(σ ) is a finitely generated O-module of rank at least 1 and

Sσ,ψ(U,O)n 6= 0 for all n ∈m-Spec RψF,S(σ )
[1

2

]
.

In this case any representation ρ : GF,S → GL2(O) corresponding to a maximal
ideal of RψF,S(σ )

[ 1
2

]
is modular.

Proof. Lemmas 3.6 and 3.13 and (33) imply that

e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
≤ 2tre

(
Rψ,�S (σ )/$

)
. (41)

Thus (a) is equivalent to (b). Moreover, if (a) holds then the inequalities in the
lemmas cited above have to be equalities. Since Rψ,�S (σ ) is reduced and O-torsion-
free, we deduce that R′

∞
(σ ) ∼= Rψ,�S (σ )[[x1, . . . , xg]]. Hence, R′

∞
(σ ) is reduced,

equidimensional and O-torsion-free. The isomorphism (33) implies that the same
holds for Rinv

∞
(σ ), which implies that R∞(σ ) is reduced, equidimensional, and

O-torsion-free; see the proof of Lemma 3.14. Since we have assumed (a), we have

2tre
(
Rinv
∞
(σ )/$

)
= e

(
M∞(σ )/$, Rinv

∞
(σ )/$

)
. (42)

Let V (q1), . . . , V (qm) be the irreducible components of the support of M∞(σ )
in Spec R∞(σ ). Since R∞(σ ) is reduced, if V (q) is an irreducible component of
Spec R∞(σ ) then `(R∞(σ )q)= 1. It follows from Lemma 3.10 that if V (q) is an ir-
reducible component of Spec R∞(σ ) in the support of M∞(σ ) then `(M∞(σ )q)= r .
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It follows from (38) that

e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
= r

m∑
i=1

e
(
R∞(σ )/($, qi ), Rinv

∞
(σ )/$

)
, (43)

e
(
R∞(σ )/$, Rinv

∞
(σ )/$

)
=

∑
q

e
(
R∞(σ )/($, q), Rinv

∞
(σ )/$

)
, (44)

where the last sum is taken over all the irreducible components V (q). Since
e
(
R∞(σ )/($, q), Rinv

∞
(σ )/$

)
6= 0 we deduce from (42)–(44) that (b) implies (c).

We have
R∞(σ )/(y1, . . . , yh+ j )∼= RψF,S(σ ),

M∞(σ )/(y1, . . . , yh+ j )M∞(σ )∼= Sσ,ψ(U,O)m.
Thus, if M∞(σ ) is supported on the whole of Spec R∞(σ ) then Sσ,ψ(U,O)m is
supported on the whole of Spec RψF,S(σ ). Since Sσ,ψ(U,O)m is a free O-module of
finite rank, we deduce that (c) implies (d).

If (d) holds then it follows from Corollary 3.16 that f1, . . . , fs,$ is a part of a
system of parameters of Rψ,�S (σ )[[x1, . . . , xs+|S|−1]], and Lemma 3.9 implies that
every irreducible component of that ring contains a closed point of RψF,S(σ )

[ 1
2

]
.

Since every such component is of the form q[[x1, . . . , xs+|S|−1]], we deduce that
every irreducible component of Rψ,�S (σ ) contains a closed point of RψF,S(σ )

[ 1
2

]
. It

follows from the second part of (d) that the support of Sσ,ψ(U,O)m meets every
irreducible component of Rψ,�S (σ ). It follows from Lemma 3.14 that (d) implies (a).
Since Sσ,ψ(U,O)

[ 1
2

]
is a finite-dimensional L-vector space, the last assertion is a

direct consequence of (d). �

3D. Small weights. Let 1̃ be the trivial representation of GL2(Z2) on a free O-
module of rank 1. We let s̃t be the space of functions f : P1(F2)→ O such that∑

x∈P1(F2)
f (x)=0 equipped with the natural action of GL2(Z2). The reduction of 1̃

modulo $ is the trivial representation, the reduction of s̃t modulo $ is isomorphic
to k2, which we will also denote by st. These are the only smooth irreducible
k-representations of GL2(Z2).

The purpose of this subsection is to verify that the equivalent conditions of
Proposition 3.17 hold when, for all v | 2, σv is either 1̃ or s̃t, under the assumption
that ρ̄|Gv does not have scalar semisimplification at any place v | 2. If σ is the trivial
representation then the result will follow from the modularity lifting theorem of
[Khare and Wintenberger 2009b; Kisin 2009b]. In the general case, our assumption
implies that any semistable lift of ρ̄|GFv

with Hodge–Tate weights (0, 1) is crystalline
(see Corollary 2.38). This implies that S1̃,ψ(U,O)m and Sσ,ψ(U,O)m and RψF,S(1̃)
and RψF,S(σ ) coincide.

If p> 2, the results of this section are proved in [Gee 2011] by a characteristic-p
argument.
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Proposition 3.18. Assume that ψ is trivial on U ∩ (A f
F )
×, σv = 1̃ for all v | 2

and ρ̄|Gv does not have scalar semisimplification for any v | 2. Then RψF,S(σ ) is a
finite O-module of rank at least 1.

Proof. It follows from Lemma 2.2 in [Taylor 2003] that there is a finite solvable,
totally real extension F ′ of F such that, for all places w of F ′ above a place
v ∈ S, we have F ′w = Fv, except if v | 2 and ρ̄|Gv is unramified, in which case F ′w
is an unramified extension of Q2 and ρ̄|GF ′w

is trivial. Let S′ be the places of F ′

above the places S of F. By changing F by F ′ we are in position to apply Propo-
sition 9.3 of [Khare and Wintenberger 2009b], part (II) of which says that the
ring RψF ′,S′(σ ) is a finite O-module. We now argue as in the last paragraph of the
proof of Theorem 10.1 of [Khare and Wintenberger 2009b]. The restriction to
GF ′,S′ induces a map between the deformation functors and hence a homomorphism
RψF ′,S′(σ )→ RψF,S(σ ). Let ρψF,S :GF,S→GL2

(
RψF,S(σ )

)
be the universal deformation.

Since RψF ′,S′(σ )/$ is finite, the image of GF ′,S′ in GL2
(
RψF,S(σ )/$

)
under ρψF,S is a

finite group. Since F ′/F is finite the image of GF,S in GL2
(
RψF,S(σ )/$

)
is a finite

group. Lemma 3.6 in [Khare and Wintenberger 2009a] implies that RψF,S(σ )/$ is
finite. Since dim RψF,S(σ )≥ 1 by Corollary 3.16, we conclude that dim RψF,S(σ )= 1
and $ is a system of parameters for RψF,S(σ ), which implies that RψF,S(σ ) is a finite
O-module of rank at least 1. �

Corollary 3.19. Assume that ψ is trivial on U ∩ (A f
F )
×, σv = 1̃ for all v | 2 and

ρ̄|Gv does not have scalar semisimplification for any v | 2. If Sσ,ψ(U,O)m 6= 0 then
the equivalent conditions of Proposition 3.17 hold.

Proof. Since Sσ,ψ(U,O)m is nonzero and O-torsion-free, there is a maximal ideal n
of RψF,S

[1
2

]
such that Sσ,ψ(U,O)n 6= 0. This implies that ρ̄ satisfies hypotheses (α)

and (β) made in Section 8.2 of [Khare and Wintenberger 2009b].
Let n be any maximal ideal of Rψ,�F,S (σ )

[ 1
2

]
, and let ρn be the corresponding

representation of GF,S . It follows from Theorem 9.7 in [Khare and Wintenberger
2009b] or Theorem 3.3.5 of [Kisin 2009b] that there is a Hilbert eigenform f over F
such that ρn∼= ρf . Let π =

⊗
′

v πv be the corresponding automorphic representation
of GL2(A

f
F ). If v is a finite place, where D ramifies, then, because of the way we

have set up our deformation problem, ρn|GFv
is isomorphic to

(γvχcyc
0
∗

γv

)
, where γv

is an unramified character. The restriction of the 2-adic cyclotomic character to GFv
is an unramified character which sends the arithmetic Frobenius to qv ∈ Z×2 . Since
ρn arises from a Hilbert modular form, the representation ρn|GFv

cannot be split,
as in this case we would obtain a contradiction to the purity of ρn; see [Blasius
2006, §2.2]. Hence, ρn|GFv

is nonsplit, and this implies that πv is a twist of the
Steinberg representation by an unramified character, at all v, where D is ramified.
By Jacquet–Langlands correspondence there is an eigenform f D

∈ Sσ,ψ(U,O)m
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with the same Hecke eigenvalues as f . This implies that Sσ,ψ(U,O)m is supported
on n. Proposition 3.18 implies that part (d) of Proposition 3.17 holds. �

Lemma 3.20. Fix a place w of F above 2. Let σ and σ ′ be such that for all
v | 2, v 6= w, we have σv = σ ′v, which is equal to either 1̃ or s̃t, and σw = 1̃ and
σ ′w = s̃t. Assume that ψ is trivial on U ∩ (A f

F )
×, and ρ̄|GFw

does not have scalar
semisimplification. Then the rings RψF,S(σ ) and RψF,S(σ

′) are equal. Moreover, if n
is a maximal ideal of RψF,S(σ )

[1
2

]
then Sσ,ψ(U,O)m is supported on n if and only if

Sσ ′,ψ(U,O)m is supported on n.

Proof. The ring Rψ,�w (1̃) parametrizes crystalline lifts of ρ̄|GFw
with Hodge–Tate

weights (0, 1). The ring Rψ,�w (s̃t) parametrizes semistable lifts of ρ̄|GFw
with Hodge–

Tate weights (0, 1). Since both rings are reduced and O-torsion-free, we have a
surjection Rψ,�w (s̃t)� Rψ,�w (1̃). The assumption that ρ̄|GFw

does not have scalar
semisimplification implies that every such semistable lift is automatically crystalline,
hence the map is an isomorphism. This implies that the global deformation rings
are equal; see Corollary 2.38.

We will deduce the second assertion from the Jacquet–Langlands correspondence
and the compatibility of local and global Langlands correspondence. Let τ be either
σ or σ ′. We fix an isomorphism i :Qp ∼= C, let τ

C
= τ ⊗O C and let τ ∗

C
be the C-

linear dual of τ . Since U∩(A f
F )
× acts trivially on τ by assumption, we may consider

τ ∗
C

as a representation of U (A f
F )
×, on which (A f

F )
× acts by ψ . Let U ′ =

∏
vU ′v be

an open subgroup of U such that U ′v =Uv , if v - 2 and U ′v ={g ∈Uv : g≡ 1(mod 2)}
for all v | 2. Then U ′ acts trivially on τ . Let C∞(D×\(D⊗F AF )

×/U ′) be the space
of smooth C-valued functions on D× \ (D⊗F AF )

× which are invariant under U ′.
Since U ′ is a normal subgroup of U, U acts on this space by right translations.
It follows from [Kisin 2009c, §3.1.14; Taylor 2006, Lemma 1.3] that we have an
isomorphism

Sτ,ψ(U,O)⊗O C∼= HomU (A f
F )
×(τ,C∞(D× \ (D⊗F AF )

×/U ′D×
∞
)).

This isomorphism is equivariant for the Hecke operators at v 6∈ S. The action of
Rψ,�F,S (τ ) on Sτ,ψ(U,O)m factors through the action of the Hecke algebra Tτ,ψ(U ).
Let n be a maximal ideal of T(U )τ,ψ

[1
2

]
. The isomorphism above implies that

Sτ,ψ(U,O)n is nonzero if and only if there is an automorphic form

f D
∈ C∞(D× \ (D⊗F AF )

×/U ′D×
∞
),

on which the Hecke operators for v 6∈ S act by the eigenvalues given by the map
Tτ,ψ(U )→ κ(n) i

→C. Additionally, HomU (A f
F )
×(τ
∗

C
, π) 6= 0, where π =⊗′vπv is

the automorphic representation corresponding to f D.
If Sσ,ψ(U,O)n is nonzero then the above implies that HomUw(1, πw) 6= 0, which

implies that πw is an unramified principal series representation, which implies that
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HomUw(s̃t, πw) 6= 0. Since σv = σ ′v for all v 6= w, we conclude that Sσ ′,ψ(U,O)n
is nonzero.

If Sσ ′,ψ(U,O)n is nonzero then the same argument shows that HomUw(s̃t, πw) 6=0,
which implies that πw is either an unramified principal series representation, in
which case HomUw(1, πw) 6= 0 and thus Sσ,ψ(U,O)n 6= 0, or πw is a special series.
We would like to rule the last case out. By Jacquet–Langlands correspondence
to π we may associate an automorphic representation π ′ =⊗′vπ

′
v of GL2(AF ) such

that πv = π ′v for all v, where D is split. In particular, π ′w = πw. Let ρn be the
representation of GF,S corresponding to the maximal ideal n of RψF,S

[ 1
2

]
. By the

compatibility of local and global Langlands correspondence, if π ′w is special then
ρ|GFw

is semistable noncrystalline. However, this cannot happen, as explained
above. �

Corollary 3.21. Assume that ψ is trivial on U ∩ (A f
F )
×, σv is either 1̃ or s̃t

for all v | 2, and ρ̄|Gv does not have scalar semisimplification for any v | 2. If
Sσ,ψ(U,O)m 6= 0 then the equivalent conditions of Proposition 3.17 hold.

Proof. If σv = 1̃ for all v | 2 then the assertion is proved in Corollary 3.19. Using
this case and Lemma 3.20 we may show that part (d) of Proposition 3.17 is verified
for all σ as above. �

3E. Computing Hilbert–Samuel multiplicity. Let σ =
⊗

v|2 σv be a continuous
representation of U on a finitely generated O-module Wσ , where the σv are of the
form (30) or (31). Let ψ : (A f

F )
×/F×→O× be a continuous character such that

U ∩(A f
F )
× acts on Wσ by the character ψ . Let σ̄ and ψ̄ be representations obtained

by reducing σ and ψ modulo $ . We assume that U satisfies (29), which implies
that the subgroups UQn also satisfy (29). Hence, the functor σ 7→ Sσ,ψ(UQn ,O)
is exact. We note that since Rψ,�F,S is formally smooth over RψF,S , it is a flat RψF,S-
module; therefore, the functor ⊗RψF,S

Rψ,�F,S is exact, and so is the localization at mQn .
Hence the functor

σ 7→ Mn(σ )= Rψ,�F,SQn
⊗RψF,SQn

Sσ,ψ(UQn ,O)mQn
(45)

is exact. Following [Kisin 2009a, §2.2.5] we fix a U-invariant filtration on σ̄ by
k-subspaces

0= L0 ⊂ L1 ⊂ · · · ⊂ Ls =Wσ ⊗O k

such that, for i = 0, 1, . . . , s − 1, σi := L i+1/L i is absolutely irreducible. Since
the functor in (45) is exact, this induces a filtration on Mn(σ )⊗O k, which we
denote by

0= M0
n (σ )⊂ M1

n (σ )⊂ · · · ⊂ M s
n(σ )= Mn(σ )⊗O k, (46)
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such that, for i = 0, 1, . . . , s− 1, we have

M i+1
n (σ )/M i

n(σ )
∼= Mn(σi ). (47)

Each representation σi is of the form
⊗

v|2 σi,v, where σi,v is either the trivial rep-
resentation, in which case we let σ̃i,v = 1̃, or st, in which case we let σ̃i,v := s̃t. We
let σ̃i :=

⊗
v|2 σ̃i,v and consider it as a representation of U by letting Uv for v

not above 2 act trivially. We note that, since both 1̃ and s̃t have trivial central
character, U ∩ (A f

F )
× acts trivially on σ̃i . We choose a continuous character

ξ : F×\(A f
F )
×
→O× such thatψ≡ ξ (mod$) and the restriction of ξ to U∩(A f

F )
×

is trivial. For example, we could choose ξ to be a Teichmüller lift of ψ̄ . Let

Mn(σ̃i )= Rξ,�F,SQn
⊗RξF,SQn

Sσ̃i ,ξ (UQn ,O)mQn
.

The exactness of the functor in (45), used with σ̃i and ξ instead of σ and ψ , and
(47) give us an isomorphism

αi,n : M i+1
n (σ )/M i

n(σ )
∼= Mn(σi )∼= Mn(σ̃i )⊗O k. (48)

The isomorphism αi,n is equivariant for the action of the Hecke operators out-
side SQn , since they act by the same formulas on all the modules. Hence (48) is an
isomorphism of R�

S [[x1, . . . , xg]]-modules. We let ai,n be the Rξ,�F,SQn
(σ̃i )-annihilator

of Mn(σ̃i )⊗O k. Since the action of R�
S [[x1, . . . , xg]] on Mn(σ ) and Mn(σ̃i ) fac-

tors through Rψ,�F,SQn
(σ ) and Rξ,�F,SQn

(σ̃i ), respectively, we obtain a surjection

ϕi,n : R
ψ,�
F,SQn

(σ )� Rξ,�F,SQn
(σ̃i )/ai,n. (49)

Proposition 3.22. We may patch in such a way that:

• There is an R∞(σ )-module M∞(σ ) as in Section 3C.

• There is a filtration

0= M0
∞
(σ )⊂ M1

∞
(σ )⊂ · · · ⊂ M s

∞
(σ )= M∞(σ )⊗O k

by R∞(σ )-submodules.

• For each 1≤ i ≤ s there is an R∞(σ̃i )-module M∞(σ̃i ) as in Section 3C and
a surjection ϕi : R∞(σ )� R∞(σ̃i )/ai , where ai is the R∞(σ̃i )-annihilator of
M∞(σ̃i )⊗O k, which allows us to consider M∞(σ̃i )⊗O k as an R∞(σ )-module.

• For each 1≤ i ≤ s there is an isomorphism of R∞(σ )-modules

αi : M i
∞
(σ )/M i−1

∞
(σ )∼= M∞(σ̃i )⊗O k.

Proof. We modify the proof of [Khare and Wintenberger 2009b, Proposition 9.3],
which in turn is a modification of the proof of [Kisin 2009c, Proposition 3.3.1]. Let
1(σ)m := (D(σ )m, L(σ )m, D′(σ )m) be the patching data of level m as in the proof
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of [Khare and Wintenberger 2009b, Proposition 9.3], where σ indicates the fixed
weight and inertial type we are working with. In particular, D(σ )m and D′(σ )m
are finite Rψ,�S (σ )[[x1, . . . , xg]]-algebras, where g = h+ j + t − d , and L(σ )m is a
module over D(σ )m satisfying a number of conditions, listed in the proof of [Khare
and Wintenberger 2009b, Proposition 9.3]. Our patching data of level m consists
of tuples

1m :=
(
1(σ)m, {L(σ )im}

s
i=0, {1(σ̃i )m}

s
i=1, {ϕi,m}

s
i=1, {αi,m}

s
i=1
)
,

where {L(σ )im}
s
i=0 is a filtration of L(σ )m ⊗O k by D(σ )m-submodules, ϕi,m :

D(σ )m � D(σ̃i )m/ai,m is a surjection of R�
S [[x1, . . . , xg]]-algebras, where ai,m

is the D(σ̃i )m-annihilator of L(σ̃i )⊗O k, and αi,m is an isomorphism of D(σ )m-
modules between L(σ )im/L(σ )i−1

m and L(σ̃i )⊗O k, where the action of D(σ )m on
this last module is given by ϕi,m .

An isomorphism of patching data between 1m and 1′m is a tuple
(
β, {βi }

s
i=1

)
,

where β :1m(σ )∼=1
′
m(σ ) and βi :1m(σ̃i )∼=1m(σ̃i ) are isomorphisms of patching

data, in the sense of [Khare and Wintenberger 2009b, Proposition 9.3], which
respect the filtration and the maps {ϕi,m}

s
i=1, {αi,m}

s
i=1. There are only finitely

many isomorphism classes of patching data of level m, since there are only finitely
many isomorphism classes of patching data of level m in the sense of [Khare and
Wintenberger 2009b, Proposition 9.3], and a finite O-module can admit only finitely
many filtrations and there are only finitely many maps between two finite modules.

We then proceed as in the proof of [Khare and Wintenberger 2009b, Proposition
9.3]. In particular, the integers a, rm , n0 and ideals cm and bn are those defined in
[loc. cit.]. For an integer n ≥ n0 + 1 and for m with n ≥ m ≥ 3, let 1n,m(σ ) =

(D(σ )n,m, L(σ )n,m, D′(σ )n,m) be the patching data of level m as in the proof of
[Khare and Wintenberger 2009b, Proposition 9.3]. Then

D(σ )n,m = Rn+a(σ )/
(
cm Rn+a(σ )+m(rm)

Rn+a(σ )

)
,

L(σ )n,m = Mn+a(σ )/cm Mn+a(σ ),

where Rn(σ ) := Rψ,�F,SQn
(σ ). We define 1n,m(σ̃i ) analogously with σ̃i instead of σ

and with ξ instead of ψ . We let (L(σ )in,m)
s
i=1 be the filtration obtained by reducing

(46) modulo cm . Similarly, we let {ϕi,n,m}
s
i=1, {αi,n,m}

s
i=1 be the maps obtained by

reducing (48) and (49) modulo cm . Then

1n,m :=
(
1(σ)n,m, {L(σ )in,m}

s
i=0, {1(σ̃i )n,m}

s
i=1, {ϕi,n,m}

s
i=1, {αi,n,m}

s
i=1}

)
is a patching datum of level m in our sense. Since there are only finitely many
isomorphism classes of patching data of level m, after replacing the sequence(

(Rn+a(σ ),Mn+a(σ )), {(Rn+a(σ̃i ),Mn+a(σ̃i ))}
s
i=1
)

n≥n0+1
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by a subsequence, we may assume that, for each m ≥ n0 + 4 and all n ≥ m, we
have 1m,n =1m,m . The patching data 1m,m form a projective system; see [Kisin
2009c, Proposition 3.3.1]. We obtain the desired objects by passing to the limit. �

We need to control the image of Rinv
∞
(σ ) under ϕi . Following [Khare and

Wintenberger 2009b] we let CNLO be the category of complete local noetherian
O-algebras with a fixed isomorphism of the residue field with k, and whose maps
are local O-algebra homomorphisms. If A ∈CNLO then we let SpA :CNLO→ Sets
be the functor SpA(B) = HomCNLO(A, B). Let G be a finite abelian group. We
let G∗ be the group scheme defined over O such that, for every O-algebra A,
G∗(A)= HomGroups(G, A×). Assume that we are given a free G∗ action on SpA.
This means that, for all B ∈ CNLO, G∗(B) acts on SpA(B) without fixed points.
By Proposition 2.6(1) in [Khare and Wintenberger 2009b] the quotient G∗ \ SpA
exists in CNLO and is represented by (Ainv,minv

A ) ∈ CNLO. Moreover, SpA is a
G∗-torsor over SpAinv .

Lemma 3.23. Let (A,mA) and (B,mB) be in CNLO. Assume that G∗ acts freely
on SpA and SpB and we are given a G∗-equivariant closed immersion SpB ↪→ SpA.
Then the map induces a closed immersion SpB inv ↪→ SpAinv .

Proof. Since G∗ acts trivially on SpAinv , by the universal property of the quotient,
the map SpB→ SpA→ SpAinv factors through SpB inv → SpAinv . Hence, we obtain
the following commutative diagram in CNLO:

Ainv

��

//B inv

��
A // //B

Since SpA is a G∗-torsor over SpAinv , it follows from [SGA 3 II 1970, Exposé VIII,
Proposition 4.1] that A is a free Ainv-module of rank |G|. Similarly, B is a free B inv-
module of rank |G|. It follows from the commutative diagram that the surjection
A � B induces a surjection A/minv

A A � B/minv
B B. Since both k-vector spaces have

dimension |G|, the map is an isomorphism and this implies that the image of minv
A

is equal to minv
B . Hence, the top horizontal arrow in the diagram is surjective. �

Let CNL[m]O be the full subcategory of CNLO consisting of objects (A,mA) such
that mm

A = 0. We have a truncation functor CNLO→CNL[m]O , A 7→ A[m] := A/mm
A .

If A represents the functor X , we denote by X [m] the functor represented by A[m]. For
group chunk actions, we refer the reader to [Khare and Wintenberger 2009b, §2.6].

Lemma 3.24. Let (A,mA) and (B,mB) be in CNLO. Assume that G∗ acts freely on
X := SpA and Y := SpB and we are given an isomorphism X [m] ∼= Y [m] compatible
with the group chunk (G∗)[m]-action. If m is large enough then the image of minv

A A
in A/mm

A = B/mm
B is equal to the image of minv

B B.
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Proof. Let X inv and Y inv denote the quotients of X and Y by G∗. Then we have
isomorphisms

G∗× X ∼= X ×X inv X, G∗× Y ∼= Y ×Y inv Y,

where the map is given by (g, x) 7→ (x, gx). We define Z := X [m] = Y [m] and
C := A/mm

A = B/mm
B . The restriction of the above isomorphism to CNL[m]O gives

us isomorphisms

(G∗× Z)[m] ∼= (Z ×X inv Z)[m], (G∗× Z)[m] ∼= (Z ×Y inv Z)[m].

Thus we have an isomorphism

(Z ×X inv Z)[m] ∼= (Z ×Y inv Z)[m],

where the map is given by (z1, z2) 7→ (z1, z2). On rings this isomorphism reads
(C ⊗Ainv C)[m] ∼= (C ⊗B inv C)[m], c1⊗ c2 7→ c1⊗ c2.

Both A/minv
A A and B/minv

B B are k-vector spaces of dimension |G|. In particular,
if m > |G| then mm

A ⊂minv
A A and mm

B ⊂minv
B B. So we obtain a map C � A/minv

A A.
If m > 2|G| then by base changing along this map, we obtain an isomorphism

A/minv
A A⊗k A/minv

A A ∼= A/minv
A A⊗B inv A/minv

A A.

If the image of B inv in A/minv
A A is not equal to k then, for some b ∈ B inv, 1⊗ b

and b⊗ 1 will be linearly independent over k in the left-hand side of the above
isomorphism and linearly dependent in the right-hand side. This implies that the
image of B inv in A/minv

A A is equal to k. Thus minv
B C ⊂minv

A C and by symmetry we
obtain the other inclusion. �

Let Gn be the Galois group of the maximal abelian extension of F , of degree a
power of 2, which is unramified outside Qn and split at primes in S. Let Gn,2 =

Gn/2Gn . It follows from [Khare and Wintenberger 2009b, Lemma 5.1(f)] that
Gn,2 ∼= (Z/2Z)t. Let G∗n,2 be the group scheme defined over O such that, for every
O-algebra A, G∗n,2(A) = HomGroups(Gn,2, A×). For a local artinian augmented
O-algebra A and χ ∈ G∗n,2(A), if ρA is a GF,SQn

-representation lifting ρ̄ to A then
so is ρA⊗χ . Moreover, since χ2 is trivial, ρA and ρA⊗χ have the same determinant.
This induces an action of G∗n,2 on

Spf R�
F,SQn

, Spf Rψ,�F,SQn
(σ ), and Spf Rξ,�F,SQn

(σ̃i ).

It follows from [Khare and Wintenberger 2009b, Lemma 5.1] that this action is free.
Proposition 2.6 of [Khare and Wintenberger 2009b] implies that the quotient by
G∗n,2 is represented by a complete local noetherian O-algebra, which we will denote
by
(
R�,inv

F,SQn
,minv

n
)
,
(
Rψ,�,inv

F,SQn
(σ ),minv

n,σ
)

and
(
Rξ,�,inv

F,SQn
(σ̃i ),m

inv
n,σ̃i

)
, respectively.
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Lemma 3.25. The map

Spf Rξ,�F,SQn
(σ̃i )/ai,n→ Spf Rψ,�F,SQn

(σ )

induced by (49) is G∗n,2-equivariant. Moreover,

ϕi,n
(
minv

n,σ Rψ,�F,SQn
(σ )

)
=minv

n,σ̃i
Rξ,�F,SQn

(σ̃i )/ai,n.

Proof. The first part follows from [Khare and Wintenberger 2009b, Lemma 9.1];
see the paragraph after the proof of Proposition 7.6 and the third paragraph of the
proof of Lemma 9.6 of the same paper.

Let
qσ : R�

F,SQn
� Rψ,�F,SQn

(σ ) and qσ̃i : R
�
F,SQn

� Rξ,�F,SQn
(σ̃i )

denote the natural surjections. Since ϕi,n ◦ qσ = qσ̃i (mod an,i ), it is enough to
show that qσ

(
minv

n R�
F,SQn

)
=minv

n,σ Rψ,�F,SQn
(σ ) for all σ and ψ as above. This follows

from Lemma 3.23. �

Let minv
σ and minv

σ̃i
be the maximal ideals of Rinv

∞
(σ ) and Rinv

∞
(σ̃i ), respectively.

Proposition 3.26. The surjection ϕi : R∞(σ )� R∞(σ̃i )/ai maps minv
σ R∞(σ ) onto

the image of minv
σ̃i

R∞(σ̃i ). In particular,

e
(
M i
∞
(σ )/M i−1

∞
(σ ), Rinv

∞
(σ )/$

)
= e

(
M∞(σ̃i )⊗O k, Rinv

∞
(σ̃i )/$

)
. (50)

Proof. If (A,m) is a complete local noetherian algebra then by A[r ] we denote the
ring A/mr. We will use the same notation as in the proof of the previous proposition.
It is shown in the course of the proof of part (I) of [Khare and Wintenberger 2009b,
Proposition 9.3] that

R∞(σ )∼= lim
←−−

m
D′′m,m(σ ),

where D′′m,n(σ ) = Rn+a(σ )
[r ′m ]. Moreover, it is shown that the map is (Ĝm[2])t -

equivariant by fixing an identification of Gn+a,2 with (Z/2Z)t.
For each fixed r ≥ 0 we have

R∞(σ )[r ] ∼= lim
←−−

m
D′′m,m(σ )

[r ].

Hence, by choosing m large enough we may assume that R∞(σ )[r ] = D′′m,m(σ )
[r ]

with r ≤ r ′m . Since (Ĝm[2])t -action on SpR∞(σ ) and on SpRn+a(σ )
is free by [Khare

and Wintenberger 2009b, Lemmas 5.1 and 9.4], we are in the situation of Lemma
3.24. Hence the image of minv

σ R∞(σ ) in D′′m,m(σ )
[r ] is equal to the image of

minv
m+a,σ Rm+a(σ ). It follows from Lemma 3.25 that the composition

R∞(σ )−→ Rm+a(σ )
[r ] ϕi,m
−−→ (Rm+a(σ̃i )/ai,m)

[r ]
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mapsminv
σ R∞(σ) onto the image ofminv

σ̃i
R∞(σ̃i). The action of Rm+a(σ̃i) on Lm,m(σ̃i)

factors through Rm+a(σ̃i )
[r ′m ]. Since by construction

ϕi = lim
←−−

m
ϕi,m, R∞(σ̃i )= lim

←−−
m

Rm+a(σ̃i )
[r ′m ], M∞(σ̃i )= lim

←−−
m

Lm,m(σ̃i ),

we deduce that ϕi maps minv
σ R∞(σ ) onto the image of minv

σ̃i
R∞(σ̃i ). �

Corollary 3.27. Assume that Sσ,ψ(U,O)m 6= 0 and that ρ̄|GFv
6∼=
(
χ
0
∗

χ

)
for v | 2 and

any character χ : GFv → k×. Then the equivalent conditions of Proposition 3.17
hold, and any ρ :GF,S→GL2(O) corresponding to a maximal ideal of RψF,S(σ )

[ 1
2

]
is modular.

Proof. We will verify that part (b) of Proposition 3.17 holds. We first note that, since
Sσ,ψ(U,O)m 6= 0 and U satisfies (29), there is an i such that Sσ̃i ,ξ (U, k)m 6= 0. This
implies that Sσ̃i ,ξ (U,O)m 6=0, and it follows from Lemma 3.20 that Sσ̃i ,ξ (U,O)m 6=0
for all 1≤ i ≤ s and S1̃,ξ (U,O)m 6= 0. In particular, the rings Rξ,�S (σ̃i ) are nonzero
and equal to Rξ,�S (1̃). Corollary 3.21 implies that for all 1≤ i ≤ s the equality

2tre
(
Rξ,�S (σ̃i )/$

)
= e

(
M∞(σ̃i )/$, Rinv

∞
(σ̃i )/$

)
(51)

holds. Since the Hilbert–Samuel multiplicity is additive in short exact sequences,
we have

e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
=

s∑
i=1

e
(
M i
∞
(σ )/M i−1

∞
(σ ), Rinv

∞
(σ )/$

)
. (52)

Proposition 3.26 implies that for all 1≤ i ≤ s we have

e
(
M i
∞
(σ )/M i−1

∞
(σ ), Rinv

∞
(σ )/$

)
= e

(
M∞(σ̃i )/$, Rinv

∞
(σ̃i )/$

)
. (53)

Thus

e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
= 2tr

s∑
i=1

e
(
Rξ,�S (σ̃i )/$

)
. (54)

Thus to verify part (b) of Proposition 3.17 it is enough to show that

e
(
Rψ,�S (σ )/$

)
≤

s∑
i=1

e
(
Rξ,�S (σ̃i )/$

)
. (55)

If A and B are complete local κ-algebras with residue field κ then it is shown in
[Kisin 2009a, Proposition 1.3.8] that e(A ⊗̂κ B)= e(A)e(B). Since ψ is congruent
to ξ modulo $ , inequality (55) reduces to the following inequality on Hilbert–
Samuel multiplicities of potentially semistable rings at all v | 2:

e
(
Rψ,�v (σv)/$

)
≤

sv∑
i=1

e
(
Rξ,�v (σ̃v,i )/$

)
. (56)
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Here the σv,i are irreducible k-representation of GL2(F2) which appear as graded
pieces of a GL2(Z2)-invariant filtration on σv⊗O k. Inequality (56) is proved in the
local part of the paper; see Remark 2.39. �

3F. Modularity lifting. Let F be a totally real field in which 2 splits completely.

Definition 3.28. An allowable base change is a totally real solvable extension F ′

of F such that 2 splits completely in F ′.

Lemma 3.29. Assume that [F :Q] is even. Let ρ̄ : GF → GL2(k) be a continuous
absolutely irreducible representation. If there is a Hilbert eigenform f such that
ρ̄ ∼= ρ̄f then there is a Hilbert eigenform g of parallel weight 2 such that ρ̄ ∼= ρ̄g

and at v | 2 the corresponding representation πv of GL2(Fv) is either an unramified
principal series or a twist of Steinberg representation by an unramified character.
Moreover, if ρ̄|GFv

6∼=
(
χ
0
∗

χ

)
for all v | 2 and any character χ : GFv → k× then we

may assume that πv is an unramified principal series representation for all v | 2.

Proof. Let D be the totally definite quaternion algebra with center F split at all
the finite places. Let f D

∈ Sτ,ψ(U,O) be the eigenform on D associated to f
by the Jacquet–Langlands correspondence, where U =

∏
vUv is a compact open

subgroup of (D⊗F A
f
F )
× such that Uv=GL2(OFv ) for all v | 2, and U is sufficiently

small, so that (29) holds, and τ =
⊗

v|2 τv is a locally algebraic representation of U.
Let m be the maximal ideal of the Hecke algebra Tuniv

S,O corresponding to ρ̄. Then
f D
∈ Sτ,ψ(U,O)m, and hence Sτ,ψ(U,O)m is nonzero.

Let τ̄ denote the reduction of a U-invariant lattice in τ , and let ψ̄ denote ψ
modulo $ . Since U satisfies (29) the functor σ 7→ Sσ,ψ(U,O) is exact. The
localization functor is also exact. Hence there is an irreducible subquotient σ
of τ̄ such that Sσ,ψ̄(U, k)m is nonzero. Such a σ is of the form

⊗
v|2 σv, where

σv is a representation of GL2(F2). Thus σv is either trivial, in which case we let
σ̃v = 1̃, or k2, in which case we let σ̃v = s̃t. Then the reduction of σ̃v modulo $v is
isomorphic to σv and F×v ∩Uv acts trivially on σ̃v . Let σ̃ :=

⊗
v|2 σ̃v . Choose a lift

ξ : (A
f
F )
×/F×→ O× of ψ̄ , which is trivial on U ∩ (A f

F )
×. The exactness of the

functor σ 7→ Sσ,ξ (U,O) implies that Sσ̃ ,ξ (U,O)m is nonzero, since its reduction
modulo $ is equal to Sσ,ξ (U, k)m. We may take any eigenform gD

∈ Sσ̃ ,ψ̃(U,O)m
and then using Jacquet–Langlands transfer it to a Hilbert modular form, which will
have the prescribed properties. The last part follows from Lemma 3.20. �

Theorem 3.30. Let F be a totally real field where 2 is totally split, and let

ρ : GF,S→ GL2(O)

be a continuous representation. Suppose:



1354 Vytautas Paškūnas

(i) ρ̄ : GF,S
ρ
→GL2(O)→ GL2(k) is modular with nonsolvable image.

(ii) If v | 2 then ρ|GFv
is potentially semistable with distinct Hodge–Tate weights.

(iii) det ρ is totally odd.

(iv) If v | 2 then ρ̄|GFv
6∼=
(
χ
0
∗

χ

)
, for any character χ : GFv → k×.

Then ρ is modular.

Proof. Let ψ = χ−1
cyc det ρ, where χcyc is the 2-adic cyclotomic character. By

solvable base change it is enough to prove the assertion for the restriction of ρ
to GF ′ , where F ′ is a totally real solvable extension of F. Using Lemma 2.2 of
[Taylor 2003] we may find an allowable base change F ′ of F such that [F ′ :Q] is
even and ρ̄|GF ′

is unramified outside places above 2. We may further assume that
if ρ is ramified at v - 2 then the image of inertia is unipotent. Let 6 be the set of
places outside 2 where ρ is ramified. If v ∈6 then

ρ|GF ′v
∼=

(
γvχcyc ∗

0 γv

)
,

where γv is an unramified character such that γ 2
v = ψ |GF ′v

.
Since ρ̄ is assumed to be modular, Lemma 3.29 implies that ρ̄ ∼= ρ̄f , where

f is a Hilbert eigenform of parallel weight 2, and an unramified principal series at
v | 2. Using Lemma 3.5.3 of [Kisin 2009c] (see also Theorem 8.4 of [Khare and
Wintenberger 2009b]) there is an admissible base change F ′′/F ′ such that ρ|GF ′′

is
ramified at an even number of places outside 2. We still denote this set by 6, and
there is a Hilbert eigenform g over F ′′ such that ρ̄|GF ′′

∼= ρ̄g, and such that g has
parallel weight 2, is special of conductor 1 at v ∈6, and is unramified otherwise.

Let D be the quaternion algebra with center F ′′ ramified exactly at all infinite
places and all v ∈ 6. Choose a place v1 of F ′′ as in Lemma 3.2 and such that ρ̄
is unramified at v1 and ρ̄(Frobv1) has distinct eigenvalues. Let S be the union of
infinite places, 6, places above 2 and v1. Let U =

∏
vUv be an open subgroup of

(D⊗F ′′ A
f
F ′′)
× such that Uv =O×Dv

if v 6= v1 and Uv1 is unipotent upper triangular
modulo $v1 . We note that Lemma 3.2 implies that U satisfies (29). Let m be the
maximal ideal in the Hecke algebra Tuniv

S,O corresponding to ρ̄.
Let gD be the eigenform on D corresponding to g via the Jacquet–Langlands

correspondence. Then gD
∈ Sσ,ψ ′(U,O)m, where σ is the trivial representation

of U and ψ ′ : (A f
F ′′)
×
→O× is a suitable character congruent to ψ modulo $ . In

particular, Sσ,ψ ′(U,O)m 6= 0. It follows from Lemma 3.20 that Sσ,ψ ′(U,O)m 6= 0
for all σ =

⊗
v|2 σv, where σv is either 1̃ or s̃t. Since U satisfies (29), we

deduce that Sσ,ψ(U, k)m 6= 0 for any irreducible smooth k-representation σ of∏
v|2 GL2(Z2). Since U satisfies (29), we deduce via Lemma 3.1.4 of [Kisin 2009c]

that Sσ,ψ(U,O)m 6= 0 for any continuous finite-dimensional representation σ of∏
v|2 GL2(Z2) on which U ∩ (A f

F ′′)
× acts by ψ .
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For v | 2 suppose that ρ|GF ′′v
has Hodge–Tate weights wv = (av, bv) with bv > av

and inertial type τv. Let σv be defined by (30) and let σ =
⊗

v|2 σv. The above
implies that Sσ,ψ(U,O)m 6= 0 and, since ρ|GF ′′

defines a maximal ideal of RψF ′′,S
[ 1

2

]
,

the assertion follows from Corollary 3.27. �
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[Schneider and Teitelbaum 2002] P. Schneider and J. Teitelbaum, “Banach space representations and
Iwasawa theory”, Israel J. Math. 127 (2002), 359–380. MR 1900706 Zbl 1006.46053

[Serre 2000] J.-P. Serre, Local algebra, Springer, Berlin, 2000. MR 1771925 Zbl 0959.13010

[SGA 3 II 1970] M. Demazure and A. Grothendieck, Schémas en groupes, Tome II: Groupes de type
multiplicatif, et structure des schémas en groupes généraux, Exposés VIII–XVIII (Séminaire de
Géométrie Algébrique du Bois Marie 1962–1964), Lecture Notes in Math. 152, Springer, Berlin,
1970. MR 43 #223b Zbl 0209.24201

[Taylor 2003] R. Taylor, “On icosahedral Artin representations, II”, Amer. J. Math. 125:3 (2003),
549–566. MR 1981033 Zbl 1031.11031

[Taylor 2006] R. Taylor, “On the meromorphic continuation of degree two L-functions”, Doc. Math.
Extra Vol. (2006), 729–779. MR 2290604 Zbl 1138.11051

[Thorne 2016] J. A. Thorne, “A 2-adic automorphy lifting theorem for unitary groups over CM fields”,
preprint, 2016, available at http://www.math.harvard.edu/~thorne/p_equals_2.pdf.

Communicated by Brian Conrad
Received 2015-09-01 Revised 2016-04-22 Accepted 2016-05-22

paskunas@uni-due.de Universität Duisburg-Essen, Fakultät für Mathematik,
Thea-Leymann-Str. 9, 45127 Essen, Germany

mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF02784538
http://dx.doi.org/10.1007/BF02784538
http://msp.org/idx/mr/1900706
http://msp.org/idx/zbl/1006.46053
http://dx.doi.org/10.1007/978-3-662-04203-8
http://msp.org/idx/mr/1771925
http://msp.org/idx/zbl/0959.13010
http://www.msri.org/publications/books/sga/sga/pdf/sga3-2.pdf
http://www.msri.org/publications/books/sga/sga/pdf/sga3-2.pdf
http://msp.org/idx/mr/43:223b
http://msp.org/idx/zbl/0209.24201
http://dx.doi.org/10.1353/ajm.2003.0021
http://msp.org/idx/mr/1981033
http://msp.org/idx/zbl/1031.11031
http://www.emis.de/journals/DMJDMV/vol-coates/taylor.pdf
http://msp.org/idx/mr/2290604
http://msp.org/idx/zbl/1138.11051
http://www.math.harvard.edu/~thorne/p_equals_2.pdf
mailto:paskunas@uni-due.de
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2016 is US $290/year for the electronic version, and $485/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 10 No. 6 2016

1147Modular elliptic curves over real abelian fields and the generalized Fermat equation
x2`

+ y2m
= z p

SAMUELE ANNI and SAMIR SIKSEK

1173Geometry and stability of tautological bundles on Hilbert schemes of points
DAVID STAPLETON

1191Anabelian geometry and descent obstructions on moduli spaces
STEFAN PATRIKIS, JOSÉ FELIPE VOLOCH and YURI G. ZARHIN

1221On the local Tamagawa number conjecture for Tate motives over tamely ramified fields
JAY DAIGLE and MATTHIAS FLACH

1277Heegner divisors in generalized Jacobians and traces of singular moduli
JAN HENDRIK BRUINIER and YINGKUN LI

1301On 2-dimensional 2-adic Galois representations of local and global fields
VYTAUTAS PAŠKŪNAS
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