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Semiample invertible sheaves with
semipositive continuous hermitian metrics

Atsushi Moriwaki

Let (L , h) be a pair of a semiample invertible sheaf and a semipositive continuous
hermitian metric on a proper algebraic variety over C. In this paper, we prove
that (L , h) is semiample metrized, answering a generalization of a question of
S. Zhang.

Introduction

Let X be a proper algebraic variety over C. Let L be an invertible sheaf on X ,
and let h be a continuous hermitian metric of L . We say that (L , h) is semiample
metrized if, for any ε > 0, there is n > 0 such that, for any x ∈ X (C), we can find
l ∈ H 0(X, L⊗n) \ {0} with

sup{h⊗n(l, l)(w) | w ∈ X (C)} ≤ eεnh⊗n(l, l)(x).

Shouwu Zhang proposed the following question:

Question 0.1 [Zhang 1995, Question 3.6]. If L is ample and h is smooth and
semipositive, does it follow that (L , h) is semiample metrized?

Theorem 3.5 of the same reference gives an affirmative answer in the case
where X is smooth over C. The purpose of this paper is to give an answer for a
generalization of the above question. First of all, we fix some notation: We say that
L is semiample if there is a positive integer n0 such that L⊗n0 is generated by global
sections. Moreover, h is said to be semipositive (or we say that (L , h) is semipositive)
if, for any point x ∈ X (C) and a local basis s of L on a neighborhood of x ,
− log h(s, s) is plurisubharmonic around x (for the definition of plurisubharmonicity
on a singular variety, see Section 1). Note that h is not necessarily smooth. By
using the recent work of Coman, Guedj and Zeriahi [Coman et al. 2013], we have
the following answer:

Theorem 0.2. If L is semiample and h is continuous and semipositive, then (L , h)
is semiample metrized.
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1. Plurisubharmonic functions on singular complex analytic spaces

Let T be a reduced complex analytic space. An upper-semicontinuous function

ϕ : T → R∪ {−∞}

is said to be plurisubharmonic if ϕ 6≡ −∞ and, for each x ∈ T , there is an analytic
closed embedding ιx : Ux ↪→ Wx of an open neighborhood Ux of x into an open
set Wx of Cnx together with a plurisubharmonic function 8x on Wx such that
ϕ|Ux = ι

∗
x(8x). For an analytic map f : T ′ → T of reduced complex analytic

spaces and a plurisubharmonic function ϕ on T , it is easy to see that ϕ ◦ f is
either identically −∞ or plurisubharmonic on T ′. By [Fornæss and Narasimhan
1980, Theorem 5.3.1], an upper-semicontinuous function ϕ : T → R∪ {−∞} is
plurisubharmonic if and only if, for any analytic map % : D→ T , ϕ ◦ % is either
identically −∞ or subharmonic on D, where D := {z ∈ C | |z|< 1}. Moreover, if
T is compact and ϕ is plurisubharmonic on T , then ϕ is locally constant.

Let ω be a smooth (1, 1)-form on T , that is, in the same way as in the definition
of plurisubharmonic functions, ω is a smooth (1, 1)-form on the regular part of T
and, for each x ∈ T , there is an analytic closed embedding ιx : Ux ↪→ Wx of an
open neighborhood Ux of x into an open set Wx of Cnx together with a smooth
(1, 1)-form �x on Wx such that ω|Ux = ι

∗
x(�x). We assume that ω is locally

given by ddc(u) for some smooth function u on a neighborhood of x . Let φ be
a quasiplurisubharmonic function on T ; that is, for each x ∈ T , φ can be locally
written as the sum of a smooth function and a plurisubharmonic function around x .
We say that φ is ω-plurisubharmonic if there is an open covering T =

⋃
λ Uλ,

together with a smooth function uλ on Uλ for each λ, such that ω|Uλ
= ddc(uλ)

and φ|Uλ
+uλ is plurisubharmonic on Uλ. The condition for ω-plurisubharmonicity

is often denoted by ddc([φ])+ω ≥ 0.
Here we consider the following lemma:

Lemma 1.1. Let f : X → Y be a surjective and proper morphism of algebraic
varieties over C. Let ϕ be a real-valued function on Y (C).

(1) ϕ is continuous if and only if ϕ ◦ f is continuous.

(2) Assume that ϕ is continuous. Then ϕ is plurisubharmonic if and only if ϕ ◦ f
is plurisubharmonic.

Proof. (1) It is sufficient to see that if ϕ ◦ f is continuous, then ϕ is continuous.
Otherwise, there are y ∈ Y (C), ε0 > 0 and a sequence {yn} on Y (C) such that
limn→∞ yn = y and |ϕ(yn)−ϕ(y)| ≥ ε0 for all n. We choose xn ∈ X (C) such that
f (xn)= yn . As f : X→ Y is proper, we can find a subsequence {xni } of {xn} such
that x := limi→∞ xni exists in X (C). Note that

f (x)= lim
i→∞

f (xni )= lim
i→∞

yni = y,
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so that, as ϕ ◦ f is continuous,

ϕ(y)= (ϕ ◦ f )(x)= lim
i→∞

(ϕ ◦ f )(xni )= lim
i→∞

ϕ( f (xni ))= lim
i→∞

ϕ(yni ),

which is a contradiction, so that ϕ is continuous.

(2) We need to check that if ϕ ◦ f is plurisubharmonic, then ϕ is plurisubharmonic.
By using Chow’s lemma, we may assume that f : X→ Y is projective. Moreover,
since the assertion is local with respect to Y , we may further assume that there is a
closed embedding ι : X ↪→ Y ×PN such that p◦ ι= f , where p : Y ×Pn

→ Y is the
projection to the first factor. The remaining proof is same as the last part of the proof
of [Demailly 1985, Theorem 1.7]. Let g : (D, 0)→ (Y, y) be a germ of an analytic
map. By the theorem of Fornæss and Narasimhan, it is sufficient to show that ϕ ◦ g
is subharmonic. Clearly we may assume that g is given by the normalization of a
1-dimensional irreducible germ (C, y) in (Y, y). Using hyperplanes in PN , we can
find x ∈ X and a 1-dimensional irreducible germ (C ′, x) in (X, x) such that (C ′, x)
lies over (C, y). Let g′ : (D, 0)→ (X, x) be the germ of an analytic map given by
the normalization of (C ′, x). Then we have an analytic map σ : (D, 0)→ (D, 0)
with g ◦ σ = f ◦ g′:

(D, 0)
g′
−−−→ (X, x)

σ

y y f

(D, 0)
g

−−−→ (Y, y)

Changing a variable of (D, 0), we may assume that σ is given by σ(z)= zm for some
positive integer m. Then ϕ◦g◦σ is subharmonic because ϕ◦ f is plurisubharmonic.
Therefore, as σ is étale over the outside of 0, ϕ ◦ g is subharmonic on the outside
of 0, and hence ϕ ◦ g is subharmonic on (D, 0) by the removability of singularities
of subharmonic functions. �

2. Descent of a semipositive continuous hermitian metric

Here, we consider a descent problem of a semipositive continuous hermitian metric.

Theorem 2.1. Let f : X → Y be a surjective and proper morphism of algebraic
varieties over C with f∗OX = OY . Let L be an invertible sheaf on Y . If h′ is a
semipositive continuous hermitian metric of f ∗(L), then there is a semipositive
continuous hermitian metric h of L such that h′ = f ∗(h).

Proof. Let h0 be a continuous hermitian metric of L on Y . There is a continuous
function φ on X (C) such that h′ = exp(φ) f ∗(h0). Let F be a subvariety of X such
that F is an irreducible component of a fiber of f : X→ Y . Then, as

( f ∗(L), h′)|F ' (OF , exp(φ|F )),



506 Atsushi Moriwaki

we can see that −φ|F is plurisubharmonic, so that φ|F is constant. Therefore,
for any point y ∈ Y (C), φ|µ−1(y) is constant because µ−1(y) is connected, and
hence there is a function ψ on Y (C) such that ψ ◦ f = φ. By Lemma 1.1(1), ψ is
continuous, so that, if we set h := exp(ψ)h0, then h is continuous on Y (C) and
h′ = f ∗(h).

Finally, let us see that h is semipositive. As this is a local question on Y , we may
assume that there is a local basis s of L over Y . If we set ϕ =− log h(s, s), then
ϕ ◦ f is plurisubharmonic because h′ is semipositive. Therefore, by Lemma 1.1(2),
ϕ is plurisubharmonic, as required �

3. The proof of Theorem 0.2

In the case where X is smooth over C, L is ample and h is smooth, this theorem
was proved by Zhang [1995, Theorem 3.5]. First we assume that L is ample.
Then there are a positive integer n0 and a closed embedding X ↪→ PN such
that OPN (1)|X ' L⊗n0 . Let hFS be the Fubini–Study metric of OPn (1). Let φ
be the continuous function on X (C) given by h⊗n0 = exp(−φ)hFS|X . We set
ω = c1(OPN (1), hFS). Then φ is (ω|X )-plurisubharmonic. Therefore, by [Coman
et al. 2013, Corollary C], there is a sequence {ϕi } of smooth functions on PN (C)

with the following properties:

(1) ϕi is ω-plurisubharmonic for all i .

(2) ϕi ≥ ϕi+1 for all i .

(3) For x ∈ X (C), limi→∞ ϕi (x)= φ(x).

Since X is compact and φ is continuous, (3) implies that the sequence {ϕi } converges
to φ uniformly on X (C). We choose i such that |φ(x)− ϕi (x)| ≤ εn0/2 for all
x ∈ X . We set hi = exp(−ϕi )hFS. Then hi is a semipositive smooth hermitian
metric of OPN (1). Therefore, there is a positive integer n1 such that, for x ∈PN (C),
we can find l ∈ H 0(PN ,OPN (n1)) \ {0} with

sup{h⊗n1
i (l, l)(w) | w ∈ PN (C)} ≤ en1(εn0/2)h⊗n1

i (l, l)(x).

In particular, if x ∈ X (C), then l(x) 6= 0 (so that l|X 6= 0) and

sup{h⊗n1
i (l, l)(w) | w ∈ X (C)} ≤ eεn0n1/2h⊗n1

i (l, l)(x).

Note that
h⊗n0e−εn0/2 ≤ hi ≤ h⊗n0 (3-1)

on X (C), because hi = h⊗n0 exp(φ − ϕi ) and −εn0/2 ≤ φ − ϕi ≤ 0 on X (C).
Therefore,

sup{h⊗n0n1(l, l)(w) | w ∈ X (C)}e−n0n1ε/2 ≤ sup{h⊗n1
i (l, l)(w) | w ∈ X (C)}
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and
h⊗n1

i (l, l)(x)≤ h⊗n0n1(l, l)(x),

and hence

sup{h⊗n0n1(l, l)(w) | w ∈ X (C)} ≤ en1n0εh⊗n0n1(l, l)(x),

as required.
In general, as L is semiample, there are a positive integer n2, a projective algebraic

variety Y over C, a morphism f : X → Y and an ample invertible sheaf A on Y
such that f∗OX = OY and f ∗(A)' L⊗n2 . Thus, by Theorem 2.1, there is a semipos-
itive continuous hermitian metric k of A such that ( f ∗(A), f ∗(k))' (L⊗n2, h⊗n2).
Therefore, the assertion of the theorem follows from the previous observation.

4. A variant of Theorem 0.2

The following theorem is a consequence of Theorem 0.2 together with the arguments
in [Zhang 1995, Theorem 3.3]. However, we can give a direct proof using ideas in
the proof of Theorem 0.2.

Theorem 4.1. Let X be a projective algebraic variety over C. Let L be an ample
invertible sheaf on X and let h be a semipositive continuous hermitian metric of
L. Let us fix a reduced subscheme Y of X , l ∈ H 0(Y, L|Y ) and a positive number ε.
Then, for the given X , L , h, Y , l and ε, there is a positive integer n1 such that, for
all n ≥ n1, we can find l ′ ∈ H 0(X, L⊗n) with l ′|Y = l⊗n and

sup{h⊗n(l ′, l ′)(w) | w ∈ X (C)} ≤ enε sup{h(l, l)(w) | w ∈ Y (C)}n.

Proof. In the case where X is smooth over C and h is smooth and positive, the
assertion of the theorem follows from [Zhang 1995, Theorem 2.2], in which Y is
actually assumed to be a subvariety of X . However, the proof works well under
the assumption that Y is a reduced subscheme. First of all, let us see the theorem
in the case where X is smooth over C and h is smooth and semipositive. As L
is ample, there is a positive smooth hermitian metric t of L with t ≤ h. Let us
choose a positive integer m such that e−ε/2 ≤ (t/h)1/m

≤ 1 on X (C). If we set
tm = h1−1/m t1/m , then tm is smooth and positive, so that, for a sufficiently large
integer n, there is l ′ ∈ H 0(X, L⊗n) such that l ′|Y = l⊗n and

sup{t⊗n
m (l ′, l ′)(w) | w ∈ X (C)} ≤ enε/2 sup{tm(l, l)(w) | w ∈ Y (C)}n,

and hence the assertion follows because e−ε/2h ≤ tm ≤ h on X (C).
For a general case, we use the same symbols n0, X ↪→ PN , hFS, φ, ω and {ϕi }

as in the proof of Theorem 0.2. Clearly we may assume that l 6= 0. Since L is
ample, if a0 is a sufficiently large integer, then, for each j = 0, . . . , n0− 1, there is
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l j ∈ H 0(X, L⊗n0a0+ j ) with l j |Y = l⊗n0a0+ j . Let us fix a positive number A such that

sup{h⊗n0a0+ j (l j , l j )(w) |w ∈ X (C)} ≤ eA sup{h(l, l)(w) |w ∈ Y (C)}n0a0+ j (4-1)

for j =0, . . . , n0−1. We choose i with |φ(x)−ϕi (x)|≤ εn0/2 for all x ∈ X , and we
set hi = exp(−ϕi )hFS. As hi is smooth and semipositive, for the given PN , OPN (1),
hi , Y , l⊗n0 (as an element of H 0(Y,OPN (1)|Y )) and n0ε/4, there is a positive integer
a1 such that the assertion of the theorem holds for all a ≥ a1. We put

n1 := n0 max
{

a1+ a0+ 1,
4A
n0ε
− 3a0+ 1

}
.

Let n be an integer with n ≥ n1. If we set n = n0(a+a0)+ j (0≤ j ≤ n0−1), then

a ≥ a1 and a ≥
4A
n0ε
− 4a0,

so that we can find l ′′ ∈ H 0(PN ,OPN (a)) with l ′′|Y = l⊗n0a and

sup{h⊗a
i (l ′′, l ′′)(w) | w ∈ PN (C)} ≤ ea(n0ε/4) sup{hi (l⊗n0, l⊗n0)(w) | w ∈ Y (C)}a,

which implies that

sup{h⊗n0a(l ′′, l ′′)(w) |w∈ X (C)}≤e(3/4)n0aε sup{h(l, l)(w) |w∈Y (C)}n0a, (4-2)

because of (3-1). Here we set l ′ = l ′′⊗ l j . Then, l ′|Y = l⊗n and, using (4-1) and
(4-2), we have

sup{h⊗n(l ′, l ′)(w) | w ∈ X (C)}

≤ sup{h⊗n0a(l ′′, l ′′)(w) | w ∈ X (C)} sup{h⊗n0a0+ j (l j , l j )(w) | w ∈ X (C)}

≤ e(3/4)n0aε+A sup{h(l, l)(w) | w ∈ Y (C)}n,

which implies the assertion because (3/4)n0aε+ A ≤ εn. �

5. Arithmetic application

As an application of Theorem 0.2, we have the following generalization of the
arithmetic Nakai–Moishezon criterion (see [Zhang 1995, Corollary 4.8]).

Corollary 5.1. Let X be a projective and flat integral scheme over Z. Let L be
an invertible sheaf on X such that L is nef on every fiber of X → Z. Let h be
an F∞-invariant semipositive continuous hermitian metric of L , where F∞ is the
complex conjugation map X (C)→X (C). If d̂eg(ĉ1((L , h)|Y )dim Y ) > 0 for all
horizontal integral subschemes Y of X , then, for an F∞-invariant continuous
hermitian invertible sheaf (M , k) on X , H 0(X ,L ⊗n

⊗M ) has a basis consisting
of strictly small sections for a sufficiently large integer n.
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Proof. Let X be the generic fiber of X → Spec(Z) and let Y be a subvariety of X .
Let Y be the Zariski closure of Y in X . As

d̂eg(ĉ1((L , h)|Y )dim Y ) > 0,

(L , h)|Y is big by [Moriwaki 2012, Theorem 6.6.1], so that H 0(Y ,L ⊗n0 |Y )\ {0}
has a strictly small section for a sufficiently large integer n0. Moreover, if we
set L = L |X , then L|Y is big, and hence deg(Ldim Y

· Y ) > 0 because L is nef.
Therefore, L is ample by the Nakai–Moishezon criterion for ampleness. In particular,
by Theorem 0.2, h is semiample metrized. Thus the assertion follows from the
arguments in [Zhang 1995, Theorem 4.2]. �
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